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Abstract

With the recent availability of high-frequency financial data the long

range dependence of volatility regained researchers’ interest and has lead

to the consideration of long memory models for realized volatility. The

long range diagnosis of volatility, however, is usually stated for long sample

periods, while for small sample sizes, such as e.g. one year, the volatility

dynamics appears to be better described by short-memory processes. The

ensemble of these seemingly contradictory phenomena point towards short

memory models of volatility with nonstationarities, such as structural

breaks or regime switches, that spuriously generate a long memory pattern

(see e.g. Diebold and Inoue, 2001; Mikosch and Stărică, 2004b). In this

paper we adopt this view on the dependence structure of volatility and

propose a localized procedure for modeling realized volatility. That is

at each point in time we determine a past interval over which volatility

is approximated by a local linear process. Using S&P500 data we find

that our local approach outperforms long memory type models in terms

of predictability.
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1 Introduction

One of the key elements in the modeling of the stochastic dynamic behavior of fi-

nancial assets is the volatility. It is not only a measure of uncertainty about future

returns but also an important input parameter in derivative pricing, hedging and port-

folio selection. Accurate volatility modeling is therefore in the focus of the financial

econometrics and quantitative finance research. Among the many possible volatility

measures the (square root) of quadratic variation has emerged as the most frequently

used one. With the availability of high-frequency data, so–called realized volatility es-

timators (sums of squared high-frequency returns) have been proposed and have been

shown to provide better volatility forecasts than the concurrent volatility estimators

based on a coarser, e.g. daily, sampling frequency (see e.g. Andersen, Bollerslev,

Diebold and Labys, 2001b).

Realized volatility together with other volatility measures exhibit significant auto-

correlation which is the basis for the statistical predictability of volatility. In fact, the

sample autocorrelation function has typically a hyperbolically decaying shape, also

known as “long memory”. Therefore, a strand of literature (see e.g. the literature on

autoregressive fractional integrated moving average, ARFIMA, and fractional inte-

grated generalized autoregressive conditional heteroscedaticity, FIGARCH, models)

focused on this kind of correlation phenomenon. The long memory “diagnosis” is usu-

ally stated for long sample periods such as typically three to ten years. The diagnosis

can, however, also be generated by a simple model with change inside this rather long

interval: the possibility of such intermediate changes provides an alternative view on

the described phenomenon. Like in the physical sciences, where one uses wave and

particle theory to explain the emission of light, we have here a duality of theories for

the emission of volatility. It is the object of this paper to investigate this dual view
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on volatility phenomenon.

In doing so, we need to determine the time-varying (local) structure of volatility.

This is conveniently done via adaptive statistical techniques, that allow us to find

for each time point a past time interval, where a local volatility model is a good

approximator. This adaptively chosen time interval varies with the time point in

consideration. We, thus, refer to this procedure as localized volatility modeling.

We investigate localized realized volatility (LRV) modeling based on autoregressive

processes. We apply the LRV to S&P500 data and compare it to (approximate) long

memory techniques, such as the ARFIMA and heterogenous autoregressive (HAR)

models. We find that the LRV technique provides improved volatility forecasts.

In the literature of the long memory view of volatility, fractionally integrated

I(d) processes have frequently been under consideration due to their hyperbolically

decaying shock propagation for 0 < d < 1. These long memory processes have been

proposed by e.g. Granger (1980), Granger and Joyeux (1980) and Hosking (1981), and

can be opposed to the extreme case of short memory (i.e. I(0) processes) and those of

infinite memory (i.e. I(1) processes). When applied to volatility they seem to provide

a better description and predictability than short memory models estimated over (the

same) long sample periods. A typical example is the empirically better performance

of the FIGARCH model of Baillie, Bollerslev and Mikkelsen (1996) as opposed to

a standard GARCH model. For realized volatility, the ARFIMA process emerged

as a standard model (see e.g. Andersen, Bollerslev, Diebold and Labys, 2003; Pong,

Shackleton, Taylor and Xu, 2004). An alternative and quite popular model, that does

not belong to the class of fractionally integrated processes but approximates the long

range dependence by a sum of several multi-period volatility components, is the HAR

model proposed by Corsi (2008).
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The question on the true source of the long memory diagnosis, however, still re-

mains. In fact, the theoretical results provided in Diebold and Inoue (2001) and

Granger and Hyung (2004) show that this phenomenon can also be spuriously gener-

ated by a short-memory model with structural breaks or regime-shifts. More gener-

ally, Mikosch and Stărică (2004b) even argue independently of any particular model

assumptions that nonstationarities in the data, such as changes in the unconditional

mean or variance, can lead to the diagnosis of long range dependencies. Thus, pa-

rameter changes in the volatility equation of GARCH models may induce the ob-

served long memory in the absolute or squared daily returns (see also Č́ıžek, Härdle

and Spokoiny, 2009; Mikosch and Stărică, 2004a), who find that a locally adaptive

GARCH model outperforms the stationary, i.e. constant (in parameters) GARCH

model). For realized volatility, which is usually modeled directly, we expect from

these arguments that a dynamic short memory model with changing parameters may

be the driving source of volatility. This motivates our choice of a local AR(1) opposed

to the long memory approaches.

The remainder of the paper is structured as follows. The next section describes the

construction and empirical properties of our S&P500 index futures realized volatility

measure. Section 3 presents in detail the LRV modeling approach along with some

simulation experiments. Section 4 briefly reviews the standard long memory models

and Section 5 empirically compares these dual views within a forecasting exercise.

Section 6 concludes.

2 Realized volatility

The recent literature usually refers to realized volatility as a measure of the quadratic

variation of the (logarithmic) price of a financial asset that is based on high-frequency,

4



i.e. intradaily, returns. Most commonly it is the daily quadratic variation that is of

main interest. For the ease of exposition, we, thus, normalize the daily time interval to

unity and assume that M + 1 intraday prices are observed at time points n0, . . . , nM .

The continuously compounded j-th within-day return of day t is denoted by:

rt,j = pt,nj − pt,nj−1
, j = 1, . . . ,M, (1)

where pt,nj is the logarithmic price observed at time point nj of trading day t. Daily

realized volatility is then defined by

R̃V t =
M∑
j=1

r2
t,j. (2)

If the logarithmic price process follows a continuous-time semimartingale, this quan-

tity converges to the quadratic variation for M → ∞ (see e.g. Andersen and Boller-

slev, 1998; Barndorff-Nielsen and Shephard, 2002b). Importantly, if the price is given

by a diffusion process, then realized volatility converges to the daily integrated volatil-

ity, which is the main object of interest. Consistency and asymptotic distribution of

realized volatility as an estimator of the integrated volatility are derived in Barndorff-

Nielsen and Shephard (2002a).

2.1 Market microstructure effects

The theoretical results on realized volatility build on the notion of an infinite sampling

frequency. In practice, however, the very high-frequency prices are contaminated by

market microstructure effects, such as bid-and-ask bounce effects, price discreteness

etc., leading to biases in realized volatility (see e.g. Andersen, Bollerslev, Diebold

and Ebens, 2001a; Barndorff-Nielsen and Shephard, 2002a). A common approach to
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reduce these effects is to simply construct realized volatility based on lower frequency

returns, such as 10 to 30 minutes. However, such a procedure comes at the cost of

a less precise volatility estimate. Various alternative methods have been proposed to

solve this bias-variance trade-off, such as selecting an in a mean-square-error-sense

optimal sampling frequency (see e.g. Bandi and Russell, 2005; Zhang, Mykland and

Aı̈t-Sahalia, 2005), or to employ subsampling procedures, also called multiscale esti-

mators, that average over the realized volatility based on all price observations and

various realized volatilities each being calculated from different subsamples of high-

frequency returns (see e.g. Zhang et al., 2005). The use of kernel-based estimators was

originally proposed by Zhou (1996) and further extended in Hansen and Lunde (2006).

However, both of these estimators are inconsistent. Barndorff-Nielsen, Hansen, Lunde

and Shephard (2008) instead developed consistent, so–called realized kernel estima-

tors for realized volatility, that have very attractive properties. In particular, for

an appropriate choice of the kernel the estimator is efficient (relative to a paramet-

ric maximum-likelihood estimator), the asymptotic variance of the estimator is even

smaller than that of the multiscale estimator and the realized kernels are robust to

a host of market microstructure frictions including a particular type of endogenous

noise.

For our empirical application we therefore construct realized volatility based on

the kernel procedure. In particular, we use a flat-top realized kernel, i.e.

RVt = R̃V t +
H∗∑
h=1

k

(
h− 1

H∗

)
(γt,h + γt,−h) (3)

with kernel weight function k(x) being twice continuously differentiable on [0, 1] and

satisfying k(0) = 1, and k(1) = k′(0) = k′(1) = 0. The h-th realized autocovariance

for day t is defined by γt,h =
∑M
j=1 rt,jrt,j−h. Note, that for each day t the number

of autocovariances considered in the realized kernel is determined by H = cξ
√
M ,
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where ξ denotes the noise-to-signal ratio, that relates the (daily) variance of the

market microstructure noise to the (daily) integrated volatility, and c is a constant

that depends (inter alia) on the specific kernel weight function. Since the asymptotic

variance of the realized kernel, i.e. of the RVt estimator, depends on c, this variance

can be minimized by an appropriate choice of c∗, leading to the optimal number of

lags H∗.

The computation of the realized kernel estimator requires the precise specification

of the kernel weight function. For our empirical application we consider the modified

Tukey-Hanning kernel with weight function k(x) = sin2
{
π
2
(1− x)p

}
, as it is most

efficient among the finite lag kernels analyzed in Barndorff-Nielsen et al. (2008). Note

that for increasing p the number of autocovariances considered in the realized kernel

(3) is also increasing (due to an increasing value of c∗). Moreover, for increasing p

the realized kernel approaches the (parametric) efficiency bound. As such, a large

value of p might be preferable. In practice, however, the increasing number of lags

imposes some limitations as it involves a large number of returns outside the daily

time interval. We, thus, follow Barndorff-Nielsen et al. (2008) and choose p = 2 for

our empirical application. Noteworthy, for this choice of p the realized kernel is still

close to efficient. The optimal number of lags in the realized kernel is then determined

for each day by

H∗ = 5.74ξ̂
√
M (4)

with 5.74 being the optimal c∗ for the Tukey-Hanning kernel with p = 2. We estimate

the noise-to-signal ratio by ξ̂ = R̃V t,1/2M

R̃V t,15
, where the numerator gives the estimator

of the noise variance suggested by Bandi and Russell (2005), which is basically given

by the conventional realized volatility estimator based on one minute returns (as is

indicated here by the second subscript of R̃V ). The denominator estimates the daily

integrated volatility at a low, i.e. 15 minutes, sampling frequency, at which market
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microstructure effects should be negligible. Given H∗, realized volatility is finally

computed according to (3). The market microstructure noise uncorrected realized

volatility R̃V t and the realized autocovariances γt,h are based on one minute returns.

2.2 Data description

Our empirical analysis is based on realized volatility of the S&P500 index futures

ranging from January 2, 1985 to February 4, 2005. From the various S&P500 Index

futures with maturity dates in March, June, September and December, we consider

only the most liquid contracts. We then construct realized volatility according to

the realized kernel estimator. In particular, we compute realized volatility based on

equation (3) using 1 minute returns. For the estimation of H∗ we further consider 15

minute returns, as described above. The returns are constructed using the previous-

tick method and by excluding overnight returns.

Table 1: Descriptive Statistics

Series Mean Std.Dev. Skewness Kurtosis Ljung-Box(21)(1)

RVt 1.0709 8.1691 59.0882 3861 1375

log(RVt) -0.5139 0.8797 0.4335 4.9912 46809
(1) The critical value of the Ljung-Box test statistic of no autocorrelation up to ap-
proximately 1 month is 32.671.

The descriptive statistics of the resulting realized volatility series are presented in

Table 1. In summary, the empirical characteristics of the series are in line with the

findings reported in the earlier literature on realized volatility. In particular, realized

volatility is strongly skewed and fat-tailed, while its logarithmic version is much closer

to Gaussianity. This is also confirmed by the kernel density estimate of logarithmic

realized volatility, which is presented in Figure 1 along with the kernel density esti-

8



0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

-4 -3 -2 -1  0  1  2  3  4

d
e
n
si

ty

log. RV

Figure 1: Kernel density estimate of logarithmic realized volatility of the S&P500 in-
dex futures (solid line). The shaded area corresponds to the pointwise 95% confidence
intervals and the dashed line represents the kernel density estimate of i.i.d. random
variables simulated from the fitted normal distribution.

mate of i.i.d. random variables simulated from the fitted normal distribution (with a

sample size corresponding to the empirical one). Moreover, the sample autocorrela-

tion function of (logarithmic) realized volatility (depicted in the lower panel of Figure

2) exhibits the aforementioned hyperbolic decay. We evaluate this long memory di-

agnosis in more detail in the empirical application. In the following, however, we first

introduce our localized approach to realized volatility modeling.

3 The localized realized volatility approach

An alternative view on the long memory phenomenon of volatility is given by a

localization of the realized volatility dynamics. The idea of this localized approach

for modeling realized volatility is as follows. It is assumed that at each point in
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Figure 2: Time evolvement and sample autocorrelation function (sacf) of logarithmic
realized volatility of the S&P500 index futures.

time there exists a past time interval over which volatility can be approximated by

a local autoregressive model of order one (LAR(1)) with constant parameters. In

contrast to fitting a global volatility model, this implies that we obtain at each point

in time a potentially new set of parameters, which is estimated based on the so–called

interval of homogeneity. This technique, thus, also involves the determination of the

length of this interval over which the parameters of the local model are assumed

to be constant. Once the interval length and the parameters are determined for

a particular time period, the corresponding local model may be used for volatility

predictions. This section describes the adaptive estimation and the implementation

of the localized approach in more detail. The performance is also tested in a set of

simulation experiments.
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3.1 Adaptive estimation method

The local (time-varying) autoregressive scheme of order 1 is defined through a time-

varying parameter set θt = (θ1t, θ2t, θ3t)
>:

logRVt = θ1t + θ2t logRVt−1 + εt, εt ∼ N(0, θ2
3t). (5)

Here the Gaussian distributed innovations εt have a mean of zero and variance θ2
3t.

time-varying parameters at any point in time t are of course too flexible to really

constitute a practical dynamic model. We therefore need to strike a balance between

model flexibility and dimensionality. This is done by localizing a low dimensional

time series dynamics in the high dimensional model (5).

The basic idea is to approximate (5) at a fixed time point τ by a parameter

set θτ = (θ1τ , θ2τ , θ3τ )
>, where θτ is constant over the interval Iτ = [τ − s, τ) with

0 < s < τ . The interval Iτ defines a “locally homogeneous” span of data and is called

“interval of homogeneity”. The question is how to find Iτ or the value of s over which

the model parameters are estimated.

To this end, consider first the maximum likelihood (ML) estimator θ̃τ given an

homogeneous interval Iτ :

θ̃τ = argmaxθ∈ΘL(logRV ; Iτ , θ)

= argmaxθ∈Θ

{
−s

2
log 2π − s log θ3 −

1

2θ2
3

τ−1∑
t=τ−s

(logRVt − θ1 − θ2 logRVt−1)2

}

where Θ denotes the parameter space and L(logRV ; Iτ , θ) the local conditional log-

likelihood function. We, thus, refer to this estimator as the local ML estimator.

For notational simplification, we also use the short notation L(Iτ , θ) for the local

conditional log-likelihood function.
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Let the (logarithmic) realized volatility be exactly modelled by an AR(1) process

with parameter θ∗τ at time point τ , i.e θ∗τ is constant over the Interval Iτ . The accuracy

of estimation can then be measured by the log-likelihood ratio (LR):

LR(Iτ , θ̃τ , θ
∗
τ ) = L(Iτ , θ̃τ )− L(Iτ , θ

∗
τ ). (6)

Polzehl and Spokoiny (2006) have proved that LR and its power transformation

|LR(Iτ , θ̃τ , θ
∗
τ )|r with r > 0 are bounded for an i.i.d. sequence of Gaussian innovations

(in our case this refers to the innovations of the local AR(1) process):

Eθ∗τ

∣∣∣LR(Iτ , θ̃τ , θ
∗
τ )
∣∣∣r ≤ ξr (7)

with ξr = 2r
∫
ξ≥0 ξ

r−1e−ξdξ = 2rΓ(r). This bound is non-asymptotic and allows to

construct a confidence interval, which can be used to identify a homogeneous interval.

The number of possible interval candidates is large, e.g. the first interval may

include just a few past observations and the intervals considered thereafter may be

increased by just one observation in each step up to including all past observations.

As this is computationally intensive, especially for large data sets, we consider only a

finite set of intervals Iτ = {I1
τ , . . . , I

K
τ } with a reasonable value of K, as proposed in

Chen and Spokoiny (2009). The intervals are increasingly ordered according to their

length, i.e. I1
τ ⊂ . . . ⊂ IKτ . The first interval I1

τ should be short enough such that

homogeneity can be assured. Note that to each interval there corresponds a local

ML estimate, denoted by θ̃kτ with k = 1, . . . , K. In statistical learning theory these

are called weak learners. The risk bound (7) is calculated under the hypothetical

constant θ∗τ parameter situation. By increasing the intervals in the nonparametric

situation (5) we incur an increasing modeling bias. “Oracle” type of results as given

in Belomestny and Spokoiny (2007) ensure that an optimal choice Îτ of an interval of
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homogeneity (striking a balance between bias and variation) can be obtained via an

adaptive procedure. Details of the “oracle” results can be found in the cited literature.

The aim of this research is to put forward the mentioned dual view on the depen-

dence structure of volatility. It is therefore appropriate here to concentrate on the

construction details rather than on the theoretical technicalities. The main ingredient

of the local model selection algorithm is based on a sequential testing procedure. The

procedure starts from the shortest interval I1
τ , where the homogeneity is assured and

θ̃1
τ is automatically accepted as a homogeneous estimator: θ̂1

τ = θ̃1
τ . Sequentially at

step k ≥ 2, we test the hypothesis of homogeneity of the successive interval Ikτ , see

Figure 3. The test at step k is formulated as:

∣∣∣LR(Ikτ , θ̃
k
τ , θ̂

k−1
τ )

∣∣∣r ≤ ζk (8)

where ζk is the critical value (described in more detail below). The test is motivated by

the bound (7). The likelihood ratio measures the difference of a new ML estimate θ̃kτ

over a “possibly” homogeneous interval Ikτ and the previously accepted homogeneous

estimate θ̂k−1
τ . If there is no significant difference between the two estimates, we

accept the new one θ̂kτ = θ̃kτ . The reason is that, compared to the former accepted

estimate θ̂k−1
τ , the new estimate has a smaller variation as more observations are used

in the estimation. On the other hand, if the difference is significant, it indicates

that a structural shift rather than homogeneity is detected and the sequential testing

terminates. The significance at each step is measured by a critical value. Therefore,

a set of critical values {ζk}Kk=1 is required in the sequential testing. In the next

section, we discuss the computation of the critical values and the choice of the involved

parameters.

The formal definition of the procedure is as follows:
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Ik−1
τ is homogeneous: θ̂k−1

τ = θ̃k−1
τ

Test homogeneity of Ikτ : θ̂kτ = θ̃kτ or θ̂k−1
τ

Figure 3: Sequential test of homogeneity: the longer interval Ikτ is tested after the
hypothesis of homogeneity over the shorter interval Ik−1

τ has been accepted.

1. Initialization: θ̂1
τ = θ̃1

τ .

2. k = 1

while
∣∣∣LR(Iτ , θ̃

k+1
τ , θ̂kτ )

∣∣∣r ≤ ζk+1 and k < K,

k = k + 1

θ̂kτ = θ̃kτ

3. Final estimate: θ̂τ = θ̂kτ

3.2 Choice of parameters and implementation details

To run the proposed adaptive procedure, we need to determine the input parameters,

i.e. the set of intervals, the power parameter r in (8) and the critical values. In

the following we present our choices and the computation of the critical values using

Monte Carlo simulation.

Set of intervals

We consider a finite set with K = 13 intervals. This set is composed of the following

interval lengths:

{1w, 1m, 3m, 6m, 1y, 1.5y, 2y, 2.5y, 3y, 3.5y, 4y, 4.5y, 5y},
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where w denotes a week (5 days), m refers to one month (21 days) and y to one year

(252 days). In other words, I1
τ = [τ − 1w, τ), I2

τ = [τ − 1m, τ), . . ., I13
τ = [τ − 5y, τ).

Note that the same set I = {Ikτ }13
k=1 is used for each time point τ and for notational

convenience we therefore drop the subscript in the following. Our interval choice

is motivated by practical reason that investors are often concerned about special

investment horizons. Using also different sets of intervals, we find that the procedure is

insensitive to the interval choice. Nevertheless, it is important to assure homogeneity

over the shortest interval.

Critical values

In the testing procedure, the critical values measure the significance of the ML es-

timate under the hypothesis of homogeneity. We here calculate the critical values

under homogeneity, i.e. constant parameters in (5). In particular, we generate

100 000 AR(1) processes with θt = θ∗ = (θ∗1, θ
∗
2, θ
∗
3)> for all t: yt = θ∗1 + θ∗2yt−1 + εt,

εt ∼ N(0, θ∗23 ). The starting value was set to y0 = θ∗1/(1 − θ∗2). The sample size of

each process is 1261 (corresponding to 5 years and 1 day) in accordance to the largest

interval of I. Clearly the ML estimate of the largest interval (I13) is the choice, i.e.

θ̂t = θ̂Kt = θ̃Kt . Remember that in the sequential testing the adaptive estimator at

step k depends on the critical values {ζ1, . . . , ζk} and we therefore use the notation

θ̂kt(ζ1,...,ζk) to emphasize the effect of the critical values. The estimate θ̂Kt is required to

fulfill the following risk bound:

Eθ∗
∣∣∣LR (IK , θ̃Kt , θ̂Kt(ζ1,...,ζK)

)∣∣∣r ≤ ξr (9)

Moreover, it has been discussed in the non- and semiparametric literature that an

increase in sample size implies an increase of bias due to the increase in degrees of

freedom, see e.g. Härdle, Müller, Sperlich and Werwatz (2004). To take this into

15



account, we introduce a weighting scheme for k = 1, . . . , K into the risk bound, i.e.:

Eθ∗
∣∣∣LR (Ik, θ̃kt , θ̂kt(ζ1,...,ζk)

)∣∣∣r ≤ k − 1

K − 1
ξr (10)

The weight (k − 1)/(K − 1) reflects the nature of the bias increase. It is also worth

mentioning that the above expressions deviate from (7), i.e. the adaptive estimator

replaces the parameter set θ∗. The bias due to this replacement is controlled for by

the critical values.

The sequential testing procedure is adopted to compute the critical values. At

step k = 1, we set ζ1 =∞ in agreement with the homogeneity of the shortest interval

I1, which delivers the result θ̂1
t = θ̃1

t . In selection of ζ2, we set all the remaining

ζk = ∞ for k ≥ 3 to specify the contribution of ζ2. We choose the minimal value of

ζ2 satisfying the following risk function:

Eθ∗
∣∣∣LR (Ik, θ̃kt , θ̂kt(ζ1,ζ2)

)∣∣∣r ≤ 1

K − 1
ξr, k = 2, . . . , K.

Consequently with ζ1, ζ2, . . . , ζk−1 fixed, we select the minimal value of ζk for k =

3, . . . , K which fulfills:

Eθ∗
∣∣∣LR (I l, θ̃lt, θ̂lt(ζ1,ζ2,...,ζk)

)∣∣∣r ≤ k − 1

K − 1
ξr, l = k, . . . , K.

Figure 4 depicts the critical values calculated for the simulated AR(1) processes with

θ∗ = (−0.1197, 0.7754, 0.5634)>. The parameters correspond to our real data set, i.e.

they are estimates of an AR(1) model fitted to the logarithm of realized volatility of

the S&P500 index data.

The choice of critical values depends on the parameter r. Belomestny and Spokoiny

(2007) suggest to choose r = 1/2 in order to provide a stable performance of simu-
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Figure 4: The set of critical values. They are based on r = 1/2 and on θ∗ =
(−0.1197, 0.7754, 0.5634)>, which are calculated for the log realized volatility of the
S&P500 index futures under the hypothesis of constant parameters in (5). The set of
interval lengths is given on the X-axis.

lation, we here follow their recommendation. Note that the critical values also rely

on the parameter θ∗ in the simulation. In our study, we discuss two ways for se-

lecting θ∗: in the first θ∗ is estimated over the full sample period, whereas in the

second θ∗ is estimated at each time point using a rolling window with a fixed length.

In general, a large rolling window size means that we put more attention to a time

homogeneous situation. Such a choice leads to a rather conservative procedure with

possibly low accuracy of estimation. On the contrary, a rolling window including

fewer observations is more sensitive to structural shifts. The size of rolling window

can be selected in a data driven way by minimizing some objective function, e.g., by

minimizing the forecasting error. In Section 5 we report the prediction performance

using both a constant set of critical values over all the observations and the time

dependent sets with rolling windows including 1-month, 6-month, 1-year and 2.5-year

observations. As expected, using the time dependent critical values increases the

accuracy of prediction.
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3.3 Simulation experiments

This section reports the performance of the adaptive estimation in a number of sim-

ulation experiments. The focus is the reaction of the new technique to a shift of

parameters. The parameters estimated for the full S&P 500 realized volatility data

serves again as a guidance. Several scenarios are studied here (see Table 2), by which

one parameter varies over some time periods while the other two remain constant.

Different size of shifts (big or small) followed by homogeneous intervals with different

lengths (long and short) are examined. For example, case 1 involves a big shift in θ1t,

the intercept of the LAR(1) process, over a long homogeneous time span [1501, 2800].

For each case, we generated 500 LAR(1) processes with 3260 observations. The first

1260 observations, corresponding to I13 = 5 years, are used as training set. The

Table 2: Scenarios of the simulation study

1. θ∗1t =

 1.1970 t ∈ [1501, 2800]

−0.1197 otherwise
2. θ∗1t =


1.1970 t ∈ [1501, 2000]

0.3591 t ∈ [2401, 2800]

−0.1197 otherwise

3. θ∗2t =

 −0.7754 t ∈ [1501, 2800]

0.7754 otherwise
4. θ∗2t =


−0.7754 t ∈ [1501, 2000]

0.6203 t ∈ [2401, 2800]

0.7754 otherwise

5. θ∗3t =

 0.1000 t ∈ [1501, 2800]

0.5634 otherwise
6. θ∗3t =


0.1000 t ∈ [1501, 2000]

0.4000 t ∈ [2401, 2800]

0.5634 otherwise

Note: in each of the 6 scenarios only one parameter is changed either once or twice. The
remaining ones are fixed to the values estimated from the full S&P500 realized volatility data,
i.e. (−0.1197, 0.7754, 0.5634)>.

average value of the estimated parameters (solid line) and the pointwise 95% confi-

dence intervals (shaded areas) are displayed in Figures 5 to 7. The true values of θ∗

(dashed line) are depicted for judgement. It shows that in many cases the method

reacts quickly to a big shift but slowly to a small shift. For example as the intercept
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Figure 5: Simulation results for θ1t: The red dashed line represents the process of the
true time-varying parameter and the bold solid line is the average values of the esti-
mated parameter over 500 simulations. The shaded area corresponds to the pointwise
95% confidence intervals. The average values of the selected homogeneous intervals
for each time point are presented below each case of simulations.
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Figure 6: Simulation results for θ2t: The red dashed line represents the process of the
true time-varying parameter and the bold solid line is the average values of the esti-
mated parameter over 500 simulations. The shaded area corresponds to the pointwise
95% confidence intervals. The average values of the selected homogeneous intervals
for each time point are presented below each case of simulations.
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Figure 7: Simulation results for θ3t: The red dashed line represents the process of the
true time-varying parameter and the bold solid line is the average values of the esti-
mated parameter over 500 simulations. The shaded area corresponds to the pointwise
95% confidence intervals. The average values of the selected homogeneous intervals
for each time point are presented below each case of simulations.

21



θ1t jumps at t = 1500, it needs 20 steps to catch up 70% of the big shift. For the

small shift at t = 2400, the procedure needs roughly 254 steps, see Figure 5. Similar

results are obtained for the shifts in θ2t. However, positive shifts in θ3t, corresponding

to an increase in the signal-to-noise ratio, are only slowly detected, see Figure 7.

The average values of the selected homogeneous intervals over the simulations for

each time point are presented below each case, see Figures 5 to Figure 7. As expected,

the homogeneous intervals are long when the parameters remain constant and become

short sharply after a shift. It is also observed that the length of homogenous intervals

seems to have no considerable influence on the adaptive estimation.

4 Long memory models

As we aim at a comparison to the long memory view of volatility, we briefly review

here the most popular realized volatility models emanating from this view.

In contrast to the fractionally integrated GARCH models, in which volatility is

a function of the daily squared return innovations that exhibits a hyperbolically de-

caying autocorrelation, the realized volatility literature applies fractionally integrated

processes directly to the (more precise) realized volatility measure. Andersen et al.

(2003), for example advocated the use of an ARFIMA(p, q) for modeling (logarithmic)

realized volatility. The ARFIMA(p, q) model is given by

φ(L)(1− L)d(logRVt − µ) = ψ(L)ut, (11)

with φ(L) = 1− φ1L− . . .− φpLp, ψ(L) = 1 + ψ1L+ . . .+ ψqL
q, L denoting the lag

operator, and d ∈ (0, 0.5) is the fractional difference parameter. Given the empirical

distributional properties of logarithmic realized volatility, ut is usually assumed to
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be a Gaussian white noise process, which facilitates the exact maximum-likelihood

estimation of the model.

The HAR model aims at reproducing the observed volatility phenomenon. How-

ever, in contrast to the ARFIMA model, the HAR model is formally not a long

memory model. Instead, the correlation structure is approximated by the sum of a

few multi-period volatility components. The use of such components is motivated

by the existence of heterogenous agents having different investment horizons (see

Corsi, 2008; Müller, Dacorogna, Dav, Olsen, Pictet and von Weizsäcker, 1997). In

particular, the HAR model put forward by Corsi (2008) builds on a daily, weekly and

monthly component, which are defined by:

RVt+1−k:t =
1

k

k∑
j=1

RVt−j. (12)

with k = 1, 5, 21, respectively. The HAR model is then given by

logRV t = α0 + αd logRV t−1 + αw logRV t−5:t−1 + αm logRV t−21:t−1 + ut (13)

with ut typically being also Gaussian white noise. Maximum-likelihood estimation

is straightforward. Interestingly, the HAR and ARFIMA models have been found

to obtain a similar forecasting performance with both models outperforming the tra-

ditional volatility models based on daily returns (for the latter see e.g. Andersen,

Bollerslev and Diebold, 2007; Koopman, Jungbacker and Hol, 2005).

5 Empirical analysis

We now turn to the empirical investigation of the dual views on the dynamics of

volatility. We focus our analysis on realized volatility of the S&P500 index futures
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from January 2, 1985 to February 4, 2005 (see Section 2). Like in the simulation

exercise we use the first 5 years of our sample as a training set. For the local autore-

gressive procedure this means that January 2, 1990 is the first time point for which

we estimate the LAR(1) model and that we allow the longest interval of homogene-

ity (K = 13) to be 5 years with the remaining set of subintervals given as in the

simulation part, i.e. 1 week (k = 1), 1 month (k = 2), . . ., 4.5 years (k = 12).

We estimate the LAR(1) model based on different sets of critical values. In partic-

ular, we first consider critical values obtained from a Monte Carlo simulation based on

the parameter values of an AR(1) model being estimated over the full sample period.

We refer to this as the global LAR(1) model. The other sets of critical values are

obtained adaptively using a 1 month, 6 months, 1 year and 2.5 years sample period.

Figure 8 shows the distribution of the lengths of the selected homogenous intervals

over the evaluation period (January 2, 1990 to February 4, 2005) based on the global

and the adaptive critical values, respectively. Obviously, the global LAR(1) model ex-

hibits a slightly higher variation in the length of the selected intervals. Nevertheless,

the average interval length is for nearly all LAR(1) models about 6 months, which

indicates only a weak sensitivity of the interval selection procedure to the sample size

used in the computation of the critical values. Interestingly, with the exception of

the adaptive 1 month and 6 months LAR(1) models for which the median interval

length is at k = 3, we find that the median is k = 4, which corresponds to 6 months

of homogeneity.

We investigate the dual views by comparing the forecasting performance of the

localized realized volatility procedure to ARFIMA and HAR models. To this end, we

recursively compute one-step-ahead (logarithmic) realized volatility forecasts from all

three model types over the evaluation period. We compute the ARFIMA and HAR

forecasts based on a rolling window scheme, i.e. each forecast is based on an estimation
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Figure 8: Boxplot of the homogenous intervals selected by the LAR(1) procedure with
1 month, 6 months, 1 year, 2.5 years adaptive critical values and the global LAR(1)
procedure.

of the model over a constant number of observations. As it is sometimes argued, that

both long memory and structural breaks are driving volatility, we attempt to account

for this possibility by considering also smaller window sizes. Overall, we use 11 rolling

window sizes ranging from 3 months to 5 years, which is broadly consistent with our

choice of subintervals in the LAR(1) procedure. We additionally consider forecasts

from constant AR(1) models based on the same rolling windows, as this allows for a

direct evaluation of the relevance of the localization in our LAR(1) procedure. Recall,

that the individual forecasts from the LAR(1) model are based on varying estimation

periods, i.e. on the lengths of the homogenous time intervals that are selected at the

forecast origins.

Table 3 shows the root mean square forecast errors (RMSFE) and the mean abso-

lute forecast error (MAE) of the various models. Note, that the ARFIMA forecasts
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Table 3: Forecast evaluation criteria

Sample period RMSFE MAE

LAR(1) LAR(1)

local adaptive 1m 0.4858 - - 0.3667 - -

local adaptive 6m 0.4811 - - 0.3654 - -

local adaptive 1y 0.4876 - - 0.3704 - -

local adaptive 2.5y 0.4916 - - 0.3748 - -

local global 0.5014 - - 0.3824 - -

AR(1) ARFIMA HAR AR(1) ARFIMA HAR

3m 0.5149 0.5328 0.5381 0.3900 0.3978 0.4025

6m 0.5288 0.5225 0.5240 0.3987 0.3902 0.3862

1y 0.5398 0.5178 0.5185 0.4057 0.3860 0.3857

1.5y 0.5462 0.5143 0.5172 0.4103 0.3836 0.3843

2y 0.5509 0.5133 0.5158 0.4136 0.3826 0.3836

2.5y 0.5555 0.5132 0.5153 0.4157 0.3816 0.3839

3y 0.5574 0.5123 0.5155 0.4177 0.3814 0.3843

3.5y 0.5607 0.5132 0.5164 0.4202 0.3820 0.3859

4y 0.5649 0.5129 0.5171 0.4238 0.3817 0.3851

4.5y 0.5686 0.5130 0.5173 0.4273 0.3821 0.3854

5y 0.5712 0.5129 0.5176 0.4300 0.3819 0.3858

The table reports the forecast evaluation criteria for 1-day-ahead forecast of the logarithmic
realized variance of the S&P500 index futures based on the LAR(1), the constant AR(1), the
ARFIMA and the HAR models. The first column refers either to the sample period used in
the computation of the critical values in the LAR(1) procedure or to the rolling window sizes.
Bold numbers indicate the minimum of the forecast evaluation criteria within each model class.

are based on an ARFIMA(2,d,0) specification, which was selected according to the

Akaike as well as the Bayesian information criteria using the full sample period.

Estimation and forecasting is carried out using the Ox ARFIMA 1.04 package, see

Doornik and Ooms (2004), Doornik and Ooms (2006). Interestingly, our LAR(1)

procedure provides the most accurate forecasts. This holds already for the forecasts

based on the LAR(1) model with globally computed critical values. The performance

can be further improved using adaptive critical values. More precisely, a reduction of
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the sample period underlying the computation of the critical values introduces more

flexibility into the procedure, which seems to result in an (albeit somewhat small)

increase in forecast accuracy.

The direct comparison of the LAR(1) forecasts with those based on the constant

AR(1) models also reveals, that the adaptive local selection of the homogenous in-

tervals is indeed important. Obviously, the adaptive procedure, which determines at

each time point the adequate length of the time interval over which the AR(1) model

is appropriate, is superior. Noteworthy, for increasing window sizes the predictability

of the constant AR(1) model worsens. This might be expected as for larger sam-

ple sizes, e.g. more than 2 years, the autocorrelation function of realized volatility

exhibits more persistence and, thus, an AR(1) model tends to be misspecified.

For the same reason it is not surprising that the predictive performance of the

long memory models increases when we consider larger rolling windows. Note also,

that in accordance to the empirical results reported in the realized volatility litera-

ture so far, the HAR and ARFIMA models exhibit similar forecast accuracy with a

slight tendency of the ARFIMA model to outperform the HAR model. Both models,

however, are outperformed by the localized realized volatility method.

We further evaluate the predictive performance of the different realized volatility

models on the grounds of the so–called Mincer–Zarnowitz regressions, i.e. by re-

gressing the observed logarithmic realized volatility on the corresponding forecasts of

model i:

logRVt = α + β ̂logRVt,i + νt. (14)

This allows us to test for the unbiasedness of the different forecasts. Table 4 reports

the regression results along with the p-value of the F-test on unbiased forecasts, i.e.

H0 : α = 0 and β = 1. Note that for the ease of exposition, we solely focus on the
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Table 4: Mincer-Zarnowitz regression results for log. realized volatility

Model α β p-value R2

global LAR −0.0130
(0.0125)

1.0128
(0.0142)

0.1007 0.6959

adaptive LAR, 1y 0.0025
(0.0123)

1.001
(0.0127)

0.9780 0.7117

1y AR(1) −0.0010
(0.0144)

1.0117
(0.0158)

0.6002 0.4669

5y AR(1) 0.0221
(0.0162)

1.0367
(0.0213)

0.2216 0.6052

1y ARFIMA 0.0008
(0.0119)

1.001
(0.0132)

0.9962 0.6747

5y ARFIMA 0.0009
(0.0115)

1.0154
(0.0129)

0.4907 0.6811

1y HAR −0.0076
(0.0128)

0.9907
(0.0128)

0.7509 0.6742

5y HAR 0.0145
(0.0119)

1.0237
(0.0133)

0.2036 0.6756

Reported are the estimation results of the Mincer-Zarnowitz regres-
sions with heteroscedasticity and autocorrelation robust Newey-West
standard errors given in parentheses. The third column reports the
p-value of an F-test for H0 : α = 0 and β = 1.

forecasts based on a moderately small sample (1 year) and a large sample (5 years).

Correspondingly, we only consider the LAR(1) models based on the 1 year adaptively

and on the globally computed critical values.

The results indicate that none of the forecasts is significantly biased at the 5% sig-

nificance level. Noteworthy, the adaptive computation of the critical values seems to

result in less systematic forecast errors. Similarly, the long memory and the constant

AR(1) models exhibit smaller p-values for larger window sizes. The regression coeffi-

cients reported in Table 4 indicate a superior forecasting performance of the adaptive

LAR(1) models. We investigate this result further and test for the significance of the

observed differences in the forecast accuracies. In particular, we conduct a pairwise
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test on the equality of the mean square forecast errors (MSFE) of the LAR(1) proce-

dure and the other models (see Diebold and Mariano, 1995). To this end, we regress

the difference between the squared forecast errors of the LAR(1) model and those of

the competing model i, i.e. e2
t,LAR − e2

t,i, on a constant µ. The null hypothesis of

equal MSFEs is equivalent to H0 : µ = 0. Table 5 presents the test results. Obvi-

ously, the null hypothesis is always rejected in favor of a significant better forecasting

performance of the adaptive LAR(1) model, as indicated by the significant negative

estimate of µ. For the global LAR(1) model, however, we fail to reject the null.

6 Conclusion

This paper investigates a dual view on the long range dependence of realized volatility.

While the current literature primarily advocates the use of long memory models to

explain this phenomenon, we argue that volatility can alternatively be described by

short memory models with structural breaks. To this end we propose the localized

approach to realized volatility modeling where we consider the case of a dynamic

short memory model. In particular, at each point in time we determine an interval

of homogeneity over which the volatility is approximated by an AR(1) process. Our

approach is based on local adaptive techniques developed in Belomestny and Spokoiny

(2007), which make it flexible and allows for arbitrarily time-varying coefficients. This

contrasts to smooth transition or regime switching models. Our procedure relies on

parameters, that have to be predetermined but allow more flexibility. In particular,

we show, that an adaptive view on intervals of homogeneity (and a decrease in the

respective underlying sample size) is increasing the procedure’s flexibility, yielding

higher accuracy in estimation and a better forecasting performance. Furthermore,

the choice of the underlying parameters can also be based upon criteria reflecting the
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Table 5: Diebold Mariano test results

compared models µ

(global LAR)-(1y AR(1)) −0.0400
(0.0096)

(global LAR)-(5y AR(1)) −0.0141
(0.0109)

(global LAR)-(1y ARFIMA) −0.0168
(0.0109)

(global LAR)-(5y ARFIMA) −0.0118
(0.0109)

(global LAR)-(1y HAR) −0.0175
(0.0104)

(global LAR)-(5y HAR) −0.0165
(0.0104)

(adaptive LAR, 1y)-(1y AR(1)) −0.0535
(0.0097)

(adaptive LAR, 1y)-(5y AR(1)) −0.0546
(0.0111)

(adaptive LAR, 1y)-(1y ARFIMA) −0.0304
(0.0108)

(adaptive LAR, 1y)-(5y ARFIMA) −0.0253
(0.0109)

(adaptive LAR, 1y)-(1y HAR) −0.0310
(0.0103)

(adaptive LAR, 1y)-(5y HAR) −0.0258
(0.0103)

Reported are test results for the Diebold Mariano test on equal fore-
cast performance, i.e. H0 : µ = 0 in the regression e2t,LAR − e2t,i =
µ+vt with et,i denoting the forecast error of model i. Heteroscedastic-
ity and autocorrelation robust Newey-West standard errors are given
in parentheses.
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user’s objective, such as in sample fit or forecasting criteria. Although we have re-

frained from doing so in our empirical application, we find that our adaptive localized

realized volatility procedure provides accurate volatility forecasts and significantly

outperforms the standard long memory realized volatility models. It seems that our

alternative view on volatility is practical and realistic. Our forecast evaluation further

suggests, that the adaptive localization is an important feature of our procedure, i.e.

the locally adaptive selection of the homogenous intervals is superior to the specifi-

cation of a short memory model that is assumed to be constant over a globally fixed

period, such as e.g. an AR(1) model based on fixed rolling window sizes.
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