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Spillovers, disclosure lags, and
incentives to innovate: Do
oligopolies over-invest in R&D?
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b Università di Bergamo

Abstract

We develop a dynamic duopoly, in which �rms have to take
into account a technological externality, that reduces over time
their innovation costs, and an inter-�rm spillover, that lowers only
the second comer�s R&D cost. This spillover exerts its e¤ect after
a disclosure lag. We identify three possible equilibria, which are
classi�ed, according to the timing of R&D investments, as early,
intermediate, and late. The intermediate equilibrium is subgame
perfect for a wide parameters range. When the innovation size
is large, it implies underinvestment. Hence, even in presence of
a moderate degree of inter-�rms spillover, the competitive equi-
librium calls for public policies aimed at increasing the research
activity. When we focus on minor innovations �the case in which,
according to the earlier literature, the market equilibrium under-
invests �our results imply that the policies aimed at stimulating
R&D have to be less sizeable than suggested before.
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1 Introduction

Understanding �rms�decision to innovate is of fundamental importance
to design policies aimed at maximizing welfare. The �rms�choices are
driven by their incentives; hence the market structure in which �rms
operate plays a crucial role in determining the pace of technical progress.
This provides a strong motivation for the analysis of oligopolies, which
are the most widespread market con�guration.
In our study, we analyze a duopoly in which � as in many recent

contributions (e.g. Stenbacka and Tombak (1994), Hoppe (2000), and
Schmidt-Dengler (2006)) � the R&D cost shrinks over time thanks to
general advances in knowledge and technology. In addition to this stan-
dard technological externality, �rms take into account a spillover that
lowers the second comer�s innovation cost,1 exerting its e¤ect after a time
period which we label �disclosure lag�. Whenever the follower wants to
exploit the spillover, he grants to the leader a competitive advantage
period (at least) equal to the disclosure lag. Of course, the �rst inno-
vator is aware of this fact, accordingly the behavior of the interacting
�rm is signi�cantly in�uenced by the presence of the spillover and of the
disclosure lag.
What we �nd is that in our framework three types of equilibria arise,

while the existing contributions, following Fudenberg and Tirole (1985),
detect two possible market equilibria: an early and a late one.
This literature, which starts with Reinganum (1981), and is excel-

lently surveyed by Hoppe (2002), identi�es two driving forces charac-
terizing the equilibria: the length of the follower�s strategic delay, and
the intensity of the competitive pressure. In the early equilibrium, the
second innovator delays his decision to invest for a relatively long pe-
riod. This choice is driven by the desire to grasp the bene�t of technical
progress, that reduces the innovation cost as time goes by. The fol-
lower�s optimal choice implies a long competitive advantage period for
the innovator leader, which favors the latter�s payo¤ at the expenses of
the former�s one. Hence, to avoid being preempted, the �rst mover in-
vests �very soon�, and the R&D investment is socially excessive. The
preemption possibility also implies rent equalization. In contrast, a late
equilibrium arises once technical progress has substantially reduced the
innovation costs, so that an innovation leader cannot emerge, because
the rival would immediately copy her decision. In this case, any inno-
vator �anticipating that there will be no leadership �waits until her

1The importance of spillovers for R&D is underscored in De Bondt (1996), who
provides many reference of earlier contributions, which, however, adopt static even
if multi-stage frameworks.
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choice maximizes the joint discounted stream of net pro�ts. The collu-
sive �avour of this equilibrium is apparent: accordingly, Fudenberg and
Tirole�s analysis implies that this type of market equilibrium underin-
vests.
A distinctive feature of the new type of equilibriumwe identify, is that

the follower invests exactly at the end of the disclosure lag, i.e. as soon
as he can exploit the spillover. We label �intermediate�this third type
of equilibrium, since the decisions to innovate occur at dates positioned
between the early, and the late ones. The intermediate equilibrium takes
place after the early one, in fact the shorter competitive advantage pe-
riod it implies, is an optimal choice for the follower only when the R&D
costs have become su¢ ciently low. The intermediate equilibrium antici-
pates the early one, since the foresaking of the spillover bene�ts becomes
optimal only when the R&D costs are very low.
The intermediate equilibrium is particularly relevant because it is

subgame perfect for a large range of the parameters set.
To understand this point, consider �rst the case of an innovation of

limited size. In this situation, when the spillover is (relatively) high, the
follower grasps (relatively) large bene�ts from investing at the end of
the disclosure lag, so that he �nds optimal to select this strategy for a
long time interval. This makes the leader unwilling to wait until the late
equilibrium prevails, which gives rise to the intermediate equilibrium.
Instead, the late equilibrium is subgame perfect when the spillover is
very low, because in this case the �immediate reply� strategy for the
follower becomes optimal at earlier dates.2

When the innovation size is large, an early equilibrium may emerge,
because a major innovation, bringing a large cost advantage to the
leader, enhances her incentive to be �rst. However, due to the reduc-
tion in innovation costs, the higher the spillover, the sooner the second
comer optimally invests in reply to an early leader�s investment. This re-
duces the leaders�e¢ ciency advantage period, leading to the dominance
of the intermediate equilibrium. Moreover, a (relatively) high spillover
increases the second comer�s payo¤ in the intermediate time interval,
and this softens the leader�s preemption incentive to invest. This milder
competition implies higher payo¤s for both �rms in the intermediate
equilibrium.
When the innovation size is large, the intermediate equilibrium im-

plies that the duopolistic market equilibrium involves underinvestment.
An underinvesting equilibrium in presence of a major innovation is a
result that contrasts not only with the literature following Fudenberg

2As in the previous literature, a small cost reduction, implying a weak incentive
to innovate �rst, does not give rise to an equilibrium with preemption.
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and Tirole, but also with the previous contributions inspired by Loury
(1979), and by Lee and Wilde (1980).3 The relevant implication is that,
according to our model, the competitive equilibrium calls for public poli-
cies aimed at increasing the research activity. Notice that the natural
indicators of an highly competitive environment, namely an equilibrium
with R&D di¤usion and rent equalization, do not imply that the R&D
investment is excessive from the social planner�s perspective.
With minor innovations �the case in which, according to the earlier

literature, the market equilibrium underinvests �the prevalence of the
intermediate equilibrium imply that the policies aimed at stimulating
R&D have to be less sizeable than suggested before, despite the presence
of an inter-�rm spillover. Notice that the equilibrium we describe is
more realistic than the late one, which is characterized by simultaneous
adoptions, a phenomenon seldom observed in the real world.
These results, being driven by the assumption of an inter-�rm spillover

coupled with the one of a disclosure lag, di¤er from the ones already ob-
tained in the literature. In fact, Riordan (1992) focuses on the early
equilibrium, and analyses the impact of price and entry regulations on
the timing of adoption. Because these regulatory schemes tend to reduce
the �rst innovator�s rents, they are likely to delay the early adoption,
which can be socially bene�cial.
Stenbacka and Tombak (1994) analyze the role of experience, which

implies that the probability of successful implementation of an innova-
tion is an increasing function of the time distance from the investment
date. As for welfare, they show that a collusive adoption timing may
improve welfare when compared with the market equilibrium. This hap-
pens when the pace of technical progress is fairly high: when this is the
case, a collusive adoption is bene�cial because the industry can fully take
advantage of the reduction of innovation cost. In contrast, a competitive
market equilibrium, being driven by the incentives to obtain a strategic
advantage, induces a premature adoption.
In Hoppe (2000), �rms are uncertain about the pro�tability of the in-

3Loury, and Lee and Wilde assume that a new technique becomes suddenly avail-
able, and immediately triggers the industry�s investment in R&D. The competitive
pressure induced by the market structure implies that the equilibrium involves an
R&D investment that is higher than the social optimum. This result can partially
be ascribed to the tournament nature of these models. In a non-tournament model,
Beath et al (1989) underscore the role of the competitive threat as a major deter-
minant of R&D expenditure. Because the larger is the competitive threat the more
resources �rms invest in R&D, overinvestment is more likely the larger is the size of
the innovation. Delbono and Denicolò (1991), again in a non-tournament framework,
�nd that the equilibrium R&D e¤ort can be lower than the social optimum if the
marginal e¢ ciency of the R&D expenditure is low (hence each �rm invests less and
gets a small R&D output).
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novation. Her framework di¤ers from the one by Fudenberg and Tirole,
thanks to the presence of technological uncertainty, which induces an
asymmetry between the leader and the follower. The latter observes the
leader�s outcome, and hence becomes aware about the actual pro�tabil-
ity characterizing the new technique. This informational spillover may
bring about a second-mover advantage. Moreover, an high probability
of failure induces a late simultaneous adoption because it curtails the
�rst mover expected payo¤. When the late equilibrium is subgame per-
fect, Hoppe �nds that an earlier simultaneous adoption would be welfare
increasing, while the result are less de�nite when the early equilibrium
prevails.
Weeds (2002) presents a tournament version of Fudenberg and Tirole

(1985), in which pro�ts evolve stochastically. She suggests that the early
(late) equilibrium over(under)-invests; however the late equilibrium is
closer to the social optimum than the early one.4

The paper proceeds in the standard way. In Section 2 we present
our model. In Section 5 we discuss the equilibrium concept adopted in
the analysis and we compute the di¤erent market equilibria, in which
�rms compete both in the innovation and in the product stages. Then,
subgame perfectness is invoked as a selection device among market equi-
libria. In Section 6 we spell out the welfare implications of our analysis.
Concluding comments in Section 7 end the paper.

2 The model

We consider an industry composed of two �rms, i and j, which �in each
(in�nitesimally short) time period �are involved in a two�stage interac-
tion: �rst they decide whether to innovate or not, then they compete à
la Cournot in the �nal market.
Market demand is linear and equal to: P = a � Q, where P is the

market clearing price and Q = qi + qj is the total quantity supplied.
Each �rm has a unit cost of production c. Notice that, at the beginning,
the two �rms are symmetric.
The investment in R&D immediately yields a cost-reducing process

4The presence of an inter-�rm spillover assimilates our model to the frameworks
proposed by Katz and Shapiro (1987), Dutta et al. (1995), and Hoppe and Lehmann-
Gruber (2005) among others. Katz and Shapiro introduce an extreme form of tech-
nological spillover, assuming that, in a duopoly, the follower can adopt at no cost
the new technology as soon as the leader has invested. This hypothesis induces the
possibility of a second mover advantage. A similar approach is followed in Dasgupta
(1988). Dutta et al. demonstrate that the second mover advantage may prevail
as subgame perfect equilibrium output in product innovation games. Hoppe and
Lehmann-Gruber generalize the previous results by analyzing the issue of multiple
peaks in the leader�s payo¤ function.

5



innovation, which shrinks the unit production cost by an amount x,
with x < c. Hence �rm h�s post�innovation production cost is C(qh) =
(c� x)qh, h = i; j:
Each �rm�s payo¤ will depend not only on its adoption date but

also on its rival�s one. If both �rms have not invested up to period t,
their individual pro�ts in the Cournot subgame at t are those of the
pre�innovation stage, i.e.

�0 =
A2

9
; (1)

where A = a�c: The subscript indicates the number of �rms which have
already introduced the innovation. The instantaneous welfare (com-
puted à la Marshall) is then equal to:

W0 =
4A2

9
: (2)

If instead only one �rm, say �rm 1; invests in R&D at t, it bene�ts of
an e¢ ciency advantage, and obtains a higher market share. The market
price at t decreases in comparison with the pre-innovation level, while
the individual pro�ts become:

�L1 =
(A+ 2x)2

9
; �F1 =

(A� x)2
9

; (3)

where L and F stands for �leader�and �follower�. Notice that �L1 > �
F
1 ;

�L1 > �0 and �
F
1 < �0: Because the quantity produced by the �rm that

has not innovated is (A � x)=3; to preserve the duopolistic structure
characterizing our market we need to assume that A > x. This hypothe-
sis implies that, in a Cournot environment, the cost-reducing innovation
is non�drastic. In case of asymmetric behavior at t, welfare is:

W1 =
8A(A+ x) + 11x2

18
; (4)

with W1 > W0:
Finally, we need to compute the outcomes when both �rms have

innovated at t. In this case, being more e¢ cient, they both produce more
than in the status quo; therefore, the market price is lower. Individual
pro�ts at t are:

�2 =
(A+ x)2

9
: (5)

Obviously, �L1 > �2; notice that the di¤erence between �
L
1 and �2

is increasing in x: when only one �rm enjoys a cost advantage, she
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obtains a larger market share while bene�ting from an higher price to
cost margin. When both �rms have innovated, the social welfare is:

W2 =
4(A+ x)2

9
; (6)

with W2 > W1, since A > x.
When �rms simultaneously invest in R&D, individual pro�ts rise

from (1) to (5) and welfare jumps from (2) to (6). Alternatively, �rms
may behave asymmetrically, so that there are both an innovation leader
and a follower. Under these circumstances individual pro�ts �rst change
from (1) to (3) (and welfare from (2) to (4)), and then, when the follower
invests in R&D, pro�t change from (3) to (5) (and welfare from (4) to
(6)).
Time is continuous and �rms� horizon is in�nite. Firms discount

future pro�ts at the common rate r.
In our set-up, the research project has a �xed size, as in Fudenberg

and Tirole (1985), Hoppe (2000), and many others. If the �rst �rm
investing in R&D sinks the cost as soon as the innovation becomes tech-
nically feasible, i.e. at time 0, it pays . Such a cost then decreases at
the constant rate � > 0; thanks to the advances in pure research, and to
the availability of new results obtained in related �elds. Of course, this
form of technical progress is exogenous to any single �rm. This picture
is captured by the following R&D cost function

CL(tL) = e
��tL ; for tL 2 [0;1); (7)

where tL is the calendar time when the innovation leader introduces the
technical improvement.
In his classic study, Mans�eld (1985) reports that in 59% of cases the

innovator�s rivals needs more than twelve months to obtain the relevant
information. More recently, Cohen et al. (2002) compute that the aver-
age adoption lag for unpatented process innovation in Japan, and in the
US, is, respectively, 2.03 and 3.37 years. Accordingly, we introduce in
the innovation follower R&D cost function, an element representing the
delay needed to grasp the bene�t stemming from the leader�s innovative
activity. More precisely, we assume an exogenously determined disclo-
sure lag, �. An obvious but important consequence of our assumption
is that �whenever the follower wants to exploit the spillover �the intro-
duction of an innovation grants to the leader a competitive advantage
period (at least) equal to � years.5

5Miyagiwa and Ohno (2002) adopt the same assumption in a R&D model built
in the spirit of Lee and Wilde (1980).
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As for the innovation follower, the R&D cost evolution is described
by:

CF (tF ) =

�
e��tF for tF 2 [tL; tL +�)
(1� �)e��tF for tF 2 [tL +�;1)

; (8)

where tF is the adoption time for the innovation follower. � 2 [0; ��] is the
inter-�rm spillover parameter; �� shall be assumed as being strictly lower
than unity. In fact, for realistic values of �; if � were close to unity, the
follower �bearing almost no innovation cost �would always invest at
the end of the disclosure lag. Hence, this particular case would deliver
results close to the ones in Katz and Shapiro (1987). Whenever � > 0;
the innovation is only partially appropriable: the second comer enjoys a
reduction in R&D costs by imitating his competitor at tF � tL +�.
The way we introduce the spillover and the disclosure lag into the

model is extremely simple: it would have been preferable to consider a
stochastic disclosure lag, with a probability of information di¤usion de-
pending upon the time elapsed from the introduction of the innovation,
and on the follower�s imitation e¤ort. The latter should in�uence also
the spillover size.6 However, even the simplest stochastic formulation
�namely the one involving a constant probability of information dif-
fusion coupled with a �xed spillover size �precludes the attainment of
explicit results.7 Hence, our formulation has been chosen as the optimal
compromise between analytical tractability and �realism�.
We denote by VL(tL; tF ) the stream of future pro�ts, discounted back

to time 0, obtained by the �rm investing at tL while her rival sinks the
innovation cost at tF � tL. Hence, we have that:

VL(tL; tF ) =
�0
r
+
�L1 � �0
r

e�rtL +
�2 � �L1
r

e�rtF � CL(tL)e�rtL ;

and therefore, from (1), (3), and (5):

VL(tL; tF ) =
A2

9r
+
4(A+ x)x

9r
e�rtL � (2A+ 3x)x

9r
e�rtF � CL(tL)e�rtL ; :

(9)

6To endogenize � we could have followed Jin and Troege (2006), which suggest
that �rms can raise it, paying a convex imitation cost. Nevertheless, we preferred
not to pursue this development of the model, because our framework is already fairly
complex. For the same reason we do not endogenize the lenght of the disclosure lag.

7A constant probability of information disclosure does not represent an improve-
ment upon our formulation, since the sparse empirical evidence available suggests
that the probability of successful imitation increases over time.
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The second addendum represents the �rst innovator stand-alone in-
centive, while the third one is the pro�t reduction imposed to the inno-
vation leader by the follower�s decision to adopt.
The second innovator�s payo¤ is:

VF (tL; tF ) =
�0
r
+
�F1 � �0
r

e�rtL +
�2 � �F1
r

e�rtF � CF (tF )e�rtF ;

and hence, from (1), (3), and (5) we have that:

VF (tL; tF ) =
A2

9r
� (2A� x)x

9r
e�rtL +

4Ax

9r
e�rtF � CF (tF )e�rtF : (10)

Here, the incentive to innovate is summarized by the third adden-
dum, while the pro�t externality imposed by the leader to the follower
is captured by the second addendum.
Before describing the �rms�value functions, we introduce some tech-

nical assumptions, restricting the admissible values for �; � and :

Assumption 1 : 1� A
A+x

h
r(2A+3x)+�(6A+3x)
r(2A�x)+�(6A+3x)

i�=r
< �� < 1:

As we shall discuss, if the maximum spillover �� were close to zero,
the results delivered by our model would be similar to those obtained
by Fudenberg and Tirole (1985). Accordingly, by requiring that the
maximum spillover is high, we make the discussion more interesting.
Actually, Assumption 1 allows the spillover levels to be su¢ ciently high
that all the cases considered in what follows are relevant.

Assumption 2 : � � �� = 1
r
ln
�
1 + r

�
2A+3x
6A+3x

�
:

The purpose of Assumption 2 is to limit the number of cases that we
need to consider. Notice that Assumption 1 guarantees that �� > 0; when
we present some numerical exercises, we will verify that Assumption 2
does not restrict � to values too short to be sensible.

Assumption 3 :  � � = 4Ae�
��

9(r+�)(1���) :

This hypothesis implies that, when the innovation becomes feasible,
its lump-sum cost is su¢ ciently high that the second comer does not wish
to innovate before the disclosure lag is complete. Accordingly, there is a
time span in which the spillover is not foresaken by the follower, which
provides a role for the spillover itself.
Notice that � > 0; by Assumption 1.
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3 The follower�s investment problem

Since the follower optimally reacts to the leader�s decisions, it is natural
to analyze �rst his behavior.8

When the leader has invested in the early stages of the game, the
follower prefers to delay his adoption more than � years. In fact, opting
for a delay longer than �; the follower not only nets the bene�ts from
imitation, but he can also grasp relevant additional gains from pure re-
search, which is still producing results that are quantitatively important
to reduce the R&D cost. Maximizing (10) with respect to tF ; we obtain
the follower�s optimal choice, which is to invests at

T �F = �
1

�
ln

�
4A

9(r + �)(1� �)

�
: (11)

This solution applies when the leader sinks the costs at tL � T �F��:9
The comparative statics on T �F gives sensible results. In particular,

the higher the inter-�rms spillover, the sooner the second comer invests:
a high � reduces � ceteris paribus �the follower�s costs and therefore
anticipates his investment date.10

When the leader does not invest before T �F � �; the follower does
not sink the �xed cost at T �F : at that time, the disclosure lag has not
elapsed yet, which increases the follower�s cost, and prevents this choice
from being optimal.
If tL > T �F � �, the follower�s choice is among to wait exactly �

periods before investing (to grasp the inter-�rm spillover), to wait less
than �; and to copy immediately.
We now discuss separately the case of high, and of low spillovers. We

de�ne
�0(�) = 1� r + �

r
e�� +

�

r
e(r+�)�;

and we notice that �0(0) = 0; that @�0(�)=@� > 0; and that @2�0(�)=(@�)2 >
0:

8For ease of exposition, we refer to the follower as if it were headed by a male
CEO.

9Assumptions 2 and 3 guarantee that T �F �� � 0 for any � 2 [0; ��]; � 2 [0; ��]:
10An higher �2 � �L1 increases the follower�s incentive to innovate, and hence an-

ticipates his decision; an increase in  or in r delays his investment decision, because
the innovation is more costly, or the future pro�ts are more heavily discounted. The
technical progress parameter � plays a twofold role: on the one hand, its increase
implies that, at any date, the innovation costs are lower, which calls for an earlier
investment; on the other hand, a faster reduction in innovation costs may induce
a �rm to wait because it knows that the cost will quickly become smaller. With a
low spillover, the �rst direct e¤ect prevails over the second indirect one; in contrast,
when � is high, the impact of an increase in � on T �F may well be positive.
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Suppose �rst that � > �0(�); i.e. that the spillover is high. In
this case, the choice of waiting less than � is never optimal. In fact,
when the spillover is sizable, and the innovation cost is still high enough,
waiting � years implies an R&D cost saving that is high enough to
compensate for an e¢ ciency disadvantage period equal to the disclosure
lag. Hence, there is a time interval in which the follower�s optimal choice
is to wait � periods before innovating. We de�ne �T as the �rst date
such that the second �rm payo¤ gained by the �immediately following�
strategy, becomes as high as the payo¤granted by the decision of waiting
� periods before investing in R&D. Solving the equation VF (tL; tL) =
VF (tL; tL +�); where the follower�s value function is given by (10), it is
immediate to obtain:

�T = �1
�
ln

�
4A

9r

1� e�r�
1� (1� �)e�(r+�)�

�
: (12)

Notice that an increase in the spillover parameter raises �T . In fact,
a more relevant bene�t from imitation postpones the undertaking of a
line of action that prescribes the forsaking of the bene�t itself.11

Finally, if the innovation leader decides to invest �late� (i.e. when
tL 2 [ �T ;1)) the R&D cost is so low that it is optimal for the second �rm
to immediately enter upon his rival�s investment, without exploiting the
inter-�rm spillover.
The above arguments are formally presented in:

Proposition 1 When � 2 [�0(�); ��]; the follower�s optimal strategy is
to invest at
(a) T �F if tL 2 [0; T �F ��]
(b) tL +� if tL 2 (T �F ��; �T ]
(c) tL if tL 2 ( �T ;1).

Proof: See the Appendix.

When the spillover is low (� < �0(�)); the above analysis must be
partly modi�ed for tL > T �F ��. In this case, waiting � periods is less
rewarding for the follower, and it gets less and less rewarding as time goes
by, due to the shrinking in the R&D cost. Accordingly, the follower�s
choice of waiting less than � becomes optimal for some tL > T �F ��.
De�ning

T 0F = �
1

�
ln

�
4A

9(r + �)

�
(13)

11Apart from the e¤ect of �; the comparative static for �T is quite similar to the
one for T �F :
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as the follower�s optimal investment date in absence of spillover, his
optimal choice is summarized by:

Proposition 2 When � 2 [0; �0(�)); the follower�s optimal strategy is
to invest at
(a) T �F if tL 2 [0; T �F ��];
(b) tL + � if tL 2 (T �F � �; �TL] where �TL 2 (T �F � �; T 0F ] is the time
instant such that VF (tL; tL +�) = VF (tL; T 0F );
(c) T 0F if tL 2 ( �TL; T 0F ];
(d) tL if tL 2 (T 0F ;1):

Proof: See the Appendix.

Notice that, lim�!0 T
�
F = T

0
F ; moreover Proposition 2 has the inter-

esting

Corollary 3 lim�!0 �TL = T
�
F ��

Proof: See the Appendix.

Accordingly, when � = 0; the time interval sub (b) in Proposition
2 collapses to Ø, and the follower�s optimal strategy is to invest at
T 0F (= T �F ) if tL 2 [0; T 0F ]; and to immediately follow the leader�s in-
vestment for tL 2 (T 0F ;1): This result comes as no surprise: when there
is no spillover, the disclosure lag cannot have any e¤ect on the follower�s
optimal decision. Hence, what we �nd is the follower�s optimal strategy
identi�ed by Fudenberg and Tirole (1985).

4 The leader�s investment decision and the value
functions behavior

We now solve the leader�s optimal decision problem, determining her
payo¤.12

In a model without spillovers, if the leader opts for an early adoption,
she is aware that her competitor will postpone his investment for quite
a long time. This allows for an inverted-U leader�s payo¤ function. This
shape is determined by two opposing forces. An increase in the leader�s
adoption time induces a reduction in her innovation cost, which increases
her value function, but implies also a shortening in her e¢ ciency advan-
tage period, which reduces her payo¤. When tL is relatively low; the

12Notice that �for ease of exposition �we refer to the leader as if it were run by
a female CEO.
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former e¤ect dominates the latter because the cost reduction induced by
the technological externality is quantitatively relevant. From the value
function (9), it is clear that the leader�s optimal entry date is obtained
balancing the later attainment of the pro�ts yielding the stand-alone
incentive, with the decrease in the innovation cost. Hence, the leader�s
optimal investment date is independent from the follower�s decision, and
therefore from the spillover. Maximizing (9) given tF , one immediately
obtains that

T �L = �
1

�
ln

�
4(A+ x)

9(r + �)

�
; (14)

which applies also for � > 0:
However, the presence of a spillover and of a disclosure lag brings

about several e¤ects. Because � reduces T �F , it shrinks the leader�s cost
advantage period, reducing the leader�s value function.13 Moreover, a
longer � reduces the time interval during which the leader knows that
the follower is playing T �F as his optimal reply. This happens because
T �F has been computed on the ground of the attainment of the spillover,
and hence on the completion of the disclosure lag. The joint e¤ect of the
presence of � and � (that reduces T �F ) may imply that T

�
L > T

�
F ��; so

that the leader�s value function is increasing in [0; T �F ��]: In Figure 1,
the dashed line represents the leader�s value function, which �for tL 2
[0; T �F � �] �has the usual inverted-U shape, while Figure 2 considers
cases in which T �L is larger than T

�
F �� (and henceforth it is not shown):

[Figure 1 about here]

[Figure 2 about here]

For tL 2 (T �F ��; �T ]� the leader�s value function tends again to as-
sume an inverted-U shape. This behavior can be easily understood with
reference to the case � > �0(�); in which the leader is aware that the
follower grants her an e¢ ciency period of lenght equal to the disclosure
lag, and hence constant (refer to Proposition 1). Therefore, if tL is close
to T �F ��; the reduction in the �xed cost due to the technological exter-
nality outweights the e¤ects of the postponement of the post-innovation
higher pro�ts (that �in current value �do not change over time). As tL
gets larger, the second negative e¤ect prevails over the former positive
one.14

13Exploiting equations (9) and (11), it is immediate to notice that @VL(tL;T
�
F )

@� < 0:
14When � gets smaller, �T is reduced (as implied by Eq. (12)). Hence, the negative

e¤ect may not have the time to become strong enough to induce the inverted-U shape
for the innovation leader value function.
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We now characterize in more details the maximum value functions
under di¤erent assumptions concerning � and �; focusing �rst on tL 2
(0; �T ]; and then on tL 2 ( �T ;1).
Accordingly, we �rst analyze, for tL 2 (0; �T ], the case in which � is

small with respect to �; a concept that we make precise by de�ning

�00(�) = 1� 4Are(r+�)�

(r + �)(6A+ 3x)(er� � 1) + 4Ar;

and assuming that � � �00(�): Figure 3 is helpful to locate the portion
of space we are considering.15

[Figure 3 about here]

In this case, due to the low spillover, the �rst innovator payo¤ in the
early interval is higher than the follower�s one for some t1; as depicted
in Figure 1, Panels (A1) and (A2). Moreover, a relatively long disclosure
lag calls for an early end of the interval [0; T �F��]; which implies that the
innovation leader value function is higher than the follower�s one at the
end of this interval (i.e. for � � �00(�); we have that VL(T �F ��; T �F ) �
VF (T

�
F ��; T �F )):
The fact that the disclosure lag is relatively long has another impor-

tant implication: in the intermediate interval, i.e. for tL 2 (T �F ��; �T ];
the value function for the leader is higher than the one for the follower,
who must let the leader enjoy a long cost advantage period.
These behaviors are formally stated in:

Proposition 4 (a) When � 2 [0; �00(�)]; VL(tL; T �F ) � VF (tL; T
�
F ) for

some tL 2 [0; T �F ��];
(b) when � 2 (�0(�); �00(�)]; VL(tL; tL + �) > VF (tL; tL + �) for tL 2
(T �F ��; �T ];
(c) when � 2 [0; �0(�)]; VL(tL; tL +�) > VF (tL; tL +�) for tL 2 (T �F �
�; �TL]; and VL(tL; T

0
F ) � VF (tL; T 0F ); for tL 2 ( �TL; T 0F ]; with the equality

applying at tL = T 0F :

Proof: See the Appendix.

We now consider �again for tL 2 (0; �T ] �the e¤ects of a relatively
large spillover.
In this case, the fact that � > �00(�) implies that VL(T �F ��; T �F ) �

VF (T
�
F ��; T �F ) (refer to Figure 2): As it will become clear in Section 5,

15Notice that �00(0) = 0; and that, for � < ��; @�00(�)=@� > 0; while �00(�) >
�0(�):
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it is important to verify whether the leader�s maximum value function is
increasing in tL 2 (0; T �F��]: Simple calculations show that T �L � T �F��
if � � ��(�); where

��(�) = 1� A

A+ x
e��:

It is obvious that @��(�)=@� < 0; and that ��(0) > 0. In Figure 3,
��(�) is the downward sloping bold curve, which is portrayed only for
values such that ��(�) > �00(�):
We now restrict our attention to the sub-case � > maxf��(�); �00(�)g;

so that the innovation leader�s value function is increasing in the in-
terval [0; T �F � �], and VL(tL; T �F ) and VF (tL; T

�
F ) can be drawn for

tL 2 [0; T �F ��] as in Figure 2.
In comparison to the previous case (i.e. � � �00(�)), the higher

spillover reduces the leader�s payo¤ in the early interval. This happens
because an increase in � anticipates the follower�s optimal reply date,
and therefore reduces the leader�s e¢ ciency advantage period.16

The relatively high spillover bears important consequences also for
the intermediate interval. Delaying for � periods his entry, the fol-
lower obtains large bene�ts in terms of �xed costs, which moves upward
his value function. The increase in the inter-�rm spillover parameter
involves also a second e¤ect, namely the rise in �T . As already under-
scored, a larger bene�t from imitation postpones the undertaking of a
line of action that implies the renounce to the bene�t itself. These two
e¤ects imply that �in the early stages of the interval (T �F��; �T ] �the in-
novation follower enjoys a payo¤ larger than the �rst mover�s one, while
in later stages the innovation leader grasps higher payo¤s. We denote by
T ip; the unique solution for the equation VL(tL; tL+�) = VF (tL; tL+�):
(The superscript stands for �intersection point�).
An increase in � bene�ts the follower, and therefore augments VF (tL; tL+

�); postponing T ip: In Figure 2, Panel (B1), we plot the value functions
for a relatively low spillover, so that T ip is lower than T̂L; the date at
which VL(tL; tL + �) is maximum. When instead the spillover is sub-
stantial, VL(tL; tL+�) reaches T̂L at a date earlier than T

ip; as in Figure
2, Panel (B2): As we shall argue in the next section, this may lead to
second-mover advantage games.
Having de�nined

�000(�) = 1� [(6A+ 3x)�+ 4Ar](e
�r� � 1) + (2A+ x)r

r[4(A+ x)� (2A+ 3x)e�r�] e(r+�)�;

16Formally, we have that @VL(tL; T �F )=@T
�
F > 0:
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that can be traced in Figure 3, we formally present the above arguments
in:17

Proposition 5 (a) When � 2 (maxf��(�); �00(�)g; ��]; the maximum
for leader�s value function in the interval [0; �T ] lies in the sub-interval
(T �F ��; �T ];
(b) when � 2 (maxf��(�); �00(�)g; �000(�)]; at T ip the leader�s value func-
tion has not reached its maximum;
(c) when � 2 (�000(�); ��]; at T ip the leader�s value function is non-
increasing.

Proof: See the Appendix.

To complete the discussion of the parameter space, we need to con-
sider the small area � 2 [�00(�); ��(�)) (refer to Figure 3). There, the
spillover is su¢ ciently low to allow VL(tL; T

�
F ) � VF (tL; T

�
F ) for some

tL 2 [0; T �F ��]: On the other hand, � is high enough to induce a second
mover advantage for some tL 2 (T �F ��; �T ]: In this case, the �rms�value
function are depicted in Figure 4.

[Figure 4 about here]

Eventually, we consider the time interval tL 2 ( �T ;1):
In this case, the R&D cost is so low that it is optimal for the second

�rm to immediately enter upon his rival�s investment, without exploit-
ing the inter-�rm spillover. Accordingly, the �rst �rm is aware that�as
soon as she innovates�the second �rm will immediately follow her deci-
sion, and invest. Hence, each �rm takes her decision anticipating such
a follower�s behavior. This leads to an equilibrium where the two �rms
maximize their joint payo¤: knowing that it will be immediately fol-
lowed, each �rm delays its innovation until its discounted sum of pro�ts
reaches its maximum. In this context, where �rms remain symmetric,
the maximization of a single �rm�s payo¤ coincides with their joint max-
imization.
When the leader decides to invest �late� she knows that �as soon

as she innovates �the rival �rm immediately sinks the innovation cost.
Accordingly, the payo¤ for both the �rst �rm is:

VS(tS; tS) =
A2

9r
+
(2A+ x)x

9r
e�rtS � xe�(r+�)tS ; (15)

where S stands for �symmetric�.

17It is possible to show that �000(0) = 0; and that @�000(�)=@�
��
�=0

> 0:
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Maximization of (15) with respect to tS under the constraint tS �
�T yields that the �rst �rm optimal timing is:

T le =

8<: �T if � > 1� e(r+�)�
h
1� (r + �)1�e�r�

r
4A
2A+x

i
�1
�
ln
�
2A+x
(r+�)

�
if � � 1� e(r+�)�

h
1� (r + �)1�e�r�

r
4A
2A+x

i ;
where the superscript stands for �late�.
VS(tS; tS) tends to display an inverted-U shape. When tS is close to

�T ; the reduction over time in the �xed cost for the innovation prevails
over the reduction in the value function due to the delay in the attain-
ment of the post-innovation higher pro�ts. However, when �T is high,
which is the case if � is large, the second e¤ect prevails for tS 2 ( �T ;1);
and the value function is decreasing. In Figures 1, 2 and 4 we have de-
picted the case in which VS(tS; tS) takes its standard inverted-U shape.

5 The market equilibrium

In this Section we discuss the equilibrium in the non-cooperative R&D
game. Subgame perfectness is the natural criterion to apply in these
contexts. As in many dynamic games, we restrict our attention to pure
strategies. Accordingly, before applying subgame perfectness, we need
to introduce the assumptions that allow us to disregard mixed strategies.
As already mentioned, in our set-up, only one research project is

available to the �rms: hence, the choice to innovate at time t is an
irreversible stopping decision. Therefore, our model belongs to the class
of symmetric timing games, which can be divided into two sub-classes,
depending upon which �rm (the one that moves �rst or the one that
moves second) obtains the higher payo¤.
We can make this point more precise, by assuming for the moment

that we have exogenously assigned the task of moving �rst to one of the
two �rms. In this case, there is a �rst mover advantage if the �rm that
must move �rst obtains the higher payo¤. If, instead, the �rst mover
obtains the lower payo¤, there is a second mover advantage. Obviously
the �rst mover is assumed to behave optimally, choosing the innovation
time that maximizes its payo¤, given the second mover optimal choice.
To deal with �rst mover advantage games, we drop the hypothesis

of exogenously assigned roles and we follow Hoppe and Lehman-Gruber
(2005) assuming that:
Assumption 4 : if the two �rms � at t � are indi¤erent between

the roles of the �rst or of the second mover, then each �rm aims at
becoming the leader. Each �rm is randomly selected with probability
1/2 as holding the right of moving �rst at t, while the other �rm may
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postpone its adoption.18 If the leader is indi¤erent between adopting at
time t or later, then it chooses t.
Assumption 4 is used to rule out, as it happens in most of the litera-

ture, the possibility of coordination failures as an equilibrium outcome.
In other words, �rms do not choose to move at the same instant of time
if they know that they would regret this choice afterwards.19

In dealing with second mover advantage games, we assume that the
equilibrium is driven by expectations, and we make the following
Assumption 5 : Whenever the innovation leader payo¤ is lower than

the second comer�s, one �rm �randomly chosen with probability 1/2 �
believes that the other one never enters �rst.
The above hypothesis (and therefore the equilibrium it implies) may

seem arbitrary. In fact, it rules out the mixed-strategies equilibria,
often referred to as a war of attrition (Fudenberg and Tirole (1991)).
However�if we reject Assumption 5 �our �rms would start to random-
ize at T̂L, obtaining, in every instant of time an expected payo¤ equal
to the leader�s one. Hence, the rejection of Assumption 5 leads �in the
second mover advantage cases �to the attainment of equilibria implying
later adoption dates but the same expected payo¤ for the leader than the
one we study. In what follows, it will become apparent that removing
Assumption 5 is harmless for our results.
Notice that Fudenberg and Tirole (1985) argue that the most reason-

able outcome is the equilibrium that Pareto-dominates the others. In
our case, Pareto ranking implies that all �rms prefer the pure strategy
equilibrium involving an advantage for the follower.
Subgame perfectness requires that the equilibrium must survive all

the possible o¤-equilibrium deviations. Accordingly we need to compare
the leader�s payo¤ at any candidate equilibrium with her payo¤ at any
instant earlier than the one that is part of the proposed equilibrium.
If we can �nd an instant at which the leader�s payo¤ is higher than
the discounted value of her payo¤ at the candidate equilibrium, the
leader prefers to invest at that date rather than to wait for the proposed
equilibrium, which therefore is not subgame perfect. When the leader�s
payo¤ is higher than the follower�s one, we also need to take into account
the possibility of preemption by the follower. This follows from the fact
that the roles of the leader and of the follower are not pre-assigned: if

18Adoption by one �rm may result in an instantaneous follow-on adoption by the
other �rm, i.e. the two �rms adopt �consecutively but at the same instant of time�,
obtaining the same payo¤.
19From a technical standpoint �as Hoppe and Lehman-Gruber (2005) remark �

an equilibrium involving coordination failures cannot be obtained in the case of a
continuous-time game without a grid, in which equilibria are de�ned to be the limits
of discrete-time mixed strategies (Fudenberg and Tirole (1985), and (1991)).
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the follower�s payo¤ is lower than the leader�s one, the former has an
incentive to preempt the latter, becoming the leader.
The logic to obtain the unique subgame perfect equilibrium in �rst-

mover advantage games can be described by exploiting Panel (A1) in
Figure 1. When both �rms invest simultaneously at T le; they obtain
VS(T

le; T le): However, the leader would like to adopt �rst at T �L; the
date at which her discounted payo¤ is at its maximum. But the roles
of innovation leader and follower are not pre-assigned. Hence, when
the second �rm knows that the other will adopt at time T �L, it is in
his interest to preempt at time T �L � dt: By backward induction, we
conclude that the equilibrium strategy for the �rst innovator is to invest
as soon as the leader�s payo¤ is equal to the follower�s one (i.e. at
T
¯ L
). (Assumption 4 grants us that each �rm has a 50% chance of being

the �rst innovator, and that only one �rm invests at T
¯ L
.) Notice that

the preemption argument spelled out above yields equal payo¤s to the
two �rms in the subgame perfect equilibrium. Hence, in this case the
equilibrium involves rent dissipation.
To conclude that the SPNE dictates to the leader to invest at T

¯ L
,

and to the follower at T �F in the cases portrayed in Figure 1, it is not
needed that VL(T �L; T

�
F ) > VS(T

le; T le): Actually, it is su¢ cient to �nd
a VL(tL; tL + �) > VS(T

le; T le). When this is the case, it is in the �rst
mover�s interest to deviate from fT le; T leg, and backward induction leads
to the rent dissipation equilibrium fT

¯ L
; T �Fg: (Refer to Figure 1, Panel

(A2)).
As an example of second-mover advantage game consider Panel (B2)

in Figure 2. Investing simultaneously at T le; both �rms obtain VS(T le; T le):
However, VL(T̂L; T̂L +�) > VS(T le; T le). Hence, by Assumption 5 , the
�rm that believes that the other one never enters �rst chooses tL = T̂L;
the other �rm has no incentive to preempt its rival before date tL:
Having clari�ed the equilibrium concept, we may now exploit the

results obtained in the previous Sections to qualify the SPNE.
When � 2 [maxf��(�); �00(�)g; ��]; Propositions 1 and 5 imply that

the SPNE is either T le, or it is in the intermediate interval (T �F ��; �T ]:
The equilibrium is at T le (i.e. it is �late�) if VS(T le; T le) > VL(T̂L; T̂L +
�): If, on the contrary, VL(T̂L; T̂L+�) � VS(T le; T le); it is �intermediate�
(i.e. the entry dates belong to the interval (T �F ��; �T ]). Moreover, from
Proposition 5, Part (b), if � 2 [maxf��(�); �00(�)g; �000(�)]; we have
that T̂L � T ip so that in the SPNE the �rst �rm invests at T ip, and
the second at T ip +�: Notice that this equilibrium is of the �rst mover
advantage type, and implies preemption (refer to Figure 2, Panel (B1)).
When � 2 [maxf��(�); �000(�)g; ��]; Proposition 5, Part (c), implies that
T̂L < T

ip; and the subgame perfect equilibrium is of the second-mover
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advantage type (refer to Panel (B2) in Figure 2). As intuition suggests,
if � gets higher for a given disclosure lag, the candidate equilibrium shifts
from the �rst-mover advantage type to the second-mover one: the higher
is the spillover, and hence the lower is the �xed cost for the follower,
the more likely is that his payo¤ is higher than the leader�s one. The
di¤erence between our second-mover�s advantage equilibria and Hoppe�s
(2000) one lies in the fact that �in our model �the information spillover
takes time to materialize; accordingly the entry is sequential. Of course,
the presence of a disclosure lag limits the area in which the second-mover
advantage prevails. When � shrinks to zero, our analysis converges to
Hoppe�s one.20

If � 2 [0; �00(�)]; the SPNE is either T le, or it prescribes to the leader
the adoption in [0; T �F � �] (and hence it is �early�). The equilibrium
is late (at T le) when VS(T le; T le) is larger than the leader�s maximum
deviation payo¤ in [0; �T ]: When this is not the case, Propositions 1, 2,
and 4 guarantee that the SPNE is the preemptive equilibrium in which
the leader adopts at maxf0;T

¯ L
g, and the follower adopts at T �F . Both

Panels in Figure 1, provide examples of this equilibrium.
Finally, if � 2 [�00(�); ��(�)), we have three candidate equilibria. Not

surprisingly, there is �as usual �the simultaneous entry date that max-
imizes the �rms�joint payo¤. Moreover, the spillover is su¢ ciently low
to allow for a candidate equilibrium in [0; T �F ��]; where the advantage
for the innovation leader is still high. Nonetheless, � is high enough to
induce �for some tL 2 (T �F ��; �T ] �an higher payo¤ for the follower.
Accordingly, we have a candidate SPNE also in (T �F � �; �T ] (refer to
Figure 4). As before, the candidate equilibrium in the intermediate in-
terval (T �F ��; �T ] is of the �rst-mover advantage type if T̂L � T ip, while
it involves a second-mover advantage when T̂L < T ip:

5.1 Numerical results
The determination of the SPNE as a function of the parameters cannot
be performed analytically, due to the high degree of non linearity in our
model. Hence, we now present some numerical results.21

In our simulations, we normalize to unity the market dimension pa-
rameter A, and we �x the discount rate r to 0.03, which is consistent

20From the technical standpoint, consider T̂L as de�ned in the Proof for Proposition
5, and notice that the limit for � ! 0 of T̂L converges to �̂M in Hoppe (2000), p.
322.
21Our routine has been written in Matlab, and it is based on a discretization of

the space [� x �]; for � 2 [10(�10); 0:8] and � 2 [10(�10); 4]: We have used 300.000
gridpoints, however our results do not relevantly change for any number of evaluation
points larger than 15.000. This routine is available upon request from the authors.
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with computing calendar time in years. The parameter  does not play
any substantial role (provided that  � �): the e¤ect of an higher 
(i.e. of a less e¢ cient R&D) is to postpone all of the equilibria, without
changing their relative convenience. Hence, we choose  = 50 with no
loss of generality. As for �; we study industry-speci�c rates of reduction
in innovation costs. Referring to Cummins and Violante (2002), and to
the related literature, one can �nd estimates of the technical change in
sector speci�c capital goods. The sector in which productivity (of capital
goods) has grown at the fastest pace is �not surprisingly ��computers
and o¢ ce equipment�, where productivity grew by more than 20% a year
in US, for the entire post-war period. Apart from this outlier, the great-
est technical change occurred in communications equipment (9% a year),
aircraft (8%), and instruments (6%). We then have a 5% change for the
�service industry machinery�. The productivity growth in all the other
sectors is between 0.1% and 3.8% a year. Because a non-negligible share
of the productivity increase is retained by the producer, we simulate the
model for � 2 f0:01; 0:04; 0:07g:
The �rst value characterizes technologically mature sectors, which

still bene�ts from some technical progress in the sectors producing their
machinery. We label this sectors as Industry I. In industry II, � = 0:04;
which is the case of a fairly dynamic sector. Finally, Industry III is a
frontier sector, where � = 0:07.
As mentioned in Section 2, to preserve the duopolistic structure of

our market, we consider only non-drastic innovation. Hence, the size of
the R&D output, x; is lower than A (x < 1): We investigate two types
of innovative output: a minor innovation where x = 0:05A(= 0:05) and
a major innovation where x = 0:5A(= 0:5):22

Because the lower is x; the lower is also ��; we compute limx!0 ��
for � 2 f0:01; 0:04; 0:07g; and we �nd that it is equal to {23.105, 7.438,
4.451}: Hence, the restriction implied by Assumption 2 is realistic in
most contexts.
Figure 5 portrays the equilibria arising in the case of a minor inno-

vation. Panel (a) highlights that in Industry I a low spillover implies,
for a given �; a late equilibrium, while as the spillover increases the
intermediate equilibrium prevails. For instance, when � = 2:5; (refer to
Table 1) the late equilibrium prevails when � � 0:058, while if � > 0:058
we have the intermediate equilibrium.

[Figure 5 about here]

The intuition for this result is the following: as underscored by Fu-
22We have veri�ed that reasonable perturbations in r; �; and x do not signi�cantly

a¤ect our results.
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denberg and Tirole (1985), the smaller the cost reduction, the weaker
is the incentive to innovate �rst.23 Hence, a small x means that the
highest deviation payo¤ for an early innovator is low, so that the early
equilibrium never prevails over the late one. Moreover, a low spillover
gives rise to a late equilibrium because it shrinks the intermediate region,
since the second �rm has a weak incentive to wait � to enjoy a modest
R&D cost-reducing spillover (refer to the de�nition for �T and to Fig-
ure 2). Hence, the late equilibrium prevails over any possible deviation
occurring in the intermediate period.

Industry Innovation
minor major

I � � 0:058 late � � 0:103 early
� > 0:058 intermediate � > 0:103 intermediate

II � � 0:061 late � � 0:111 early
0:061 < � � 0:069 early

� > 0:069 intermediate � > 0:111 intermediate
III � � 0:061 late � � 0:136 early

0:061 < � � 0:082 early
� > 0:082 intermediate � > 0:136 intermediate

Table 1: R&D equilibria (� = 2:5)

When � grows, the intermediate region enlarges, leading to a situa-
tion in which the �rst �rm�s deviation payo¤ becomes greater than her
late equilibrium payo¤. This leads to the prevalence of the intermediate
equilibrium.
Panel (b) in Figure 5 shows the equilibria arising in Industry II.

Again, for a given �; if the spillover is very low, the equilibrium in the
R&D stage is the late one, for the reasons explained before. However,
as � increases (but it is still lower than �00(�)), the early equilibrium
prevails. This happens in the small area contained between the two
curves exiting from the origin in Figure 5 (refer also to Table 1). To
understand this result, bear in mind that an increase in � raises the
payo¤s in the intermediate region, because the R&D costs are lower.24

The increase in the deviation payo¤ in the intermediate region destroys
the late equilibrium, and moves the equilibrium to the early stage, as
shown in Figure 1, Panel (A1) (refer also to the discussion in Section 5).

23This happens because the single innovator pro�t function, �l1; is more convex in
x than �2 (Refer to Eqs. (3) and (5)).
24The e¤ect of � on the late equilibrium payo¤ is of course similar, but it is less

signi�cant since at that time the R&D cost are already very low.

22



Finally, a further increases in � (above �00(�)), reducing the �rst
innovator�s payo¤ in the early stage, makes the intermediate equilibrium
dominant, as shown in Figure 2.
Figure 5, panel (c) shows the equilibrium selection in Industry III

(� = 0:07): we have the same pattern observed for Industry II, with
the only di¤erence being that the � threshold that discriminates the
intermediate equilibrium from the early one is higher. This happens
because the payo¤s are higher in the early region than in the intermediate
one. In fact, the former payo¤s bene�t more from a rapid technical
progress.
The case of a major innovation is portrayed in Figure 6, in which x =

0:50A(= 0:50): Here, the late equilibrium never prevails: a high x favors
the selection of the early equilibrium, as shown in Fudenberg and Tirole
(1985). However, in our framework, an early equilibrium arises only for
moderate values of the spillover parameter. In fact, when � increases
so that the intermediate equilibrium exists, the latter prevails for two
reasons. First, a high � negatively in�uences the �rst innovator payo¤s in
the early interval, because it anticipates the follower�s investment date
(equation (11)). Second, in the intermediate interval, as the spillover
increases, the second comer�s payo¤ gets larger, softening the incentive
to invest for the leader. This milder competition implies higher payo¤s
for both �rms, inducing the selection of the intermediate equilibrium.

[Figure 6 about here]

In sum, our analysis of the equilibrium selection process suggests
that the intermediate equilibrium is the subgame perfect one in large
portions of the parameter space.
This may help to explain the results in Schmidt-Dengler (2006). He

estimates the determinants of the adoption of equipment for magnetic
resolution images, which allows him to disentangle the preemption from
the stand alone pro�t-maximizing e¤ect. He �nds that preemption ac-
counts only for a relatively small share of the acceleration of invest-
ment timing that caracterizes the duopolistic market solution when com-
pared to the collusive scenario. This is what our model prescribes for
� > �00(�).

6 Welfare analysis

In order to assess the welfare properties of our equilibria, we now design
and solve the benevolent planner problem, and then we compare the
welfare maximizing investment levels with those realized by the market
equilibria. Hence, we determine under which parameter con�gurations
the market implies an excessive investment.
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In dealing with the planner problem, we need to introduce some
hypotheses.
First, we adopt a second best perspective, assuming that neither

the number of �rms acting in the market nor the way they compete in
the second stage quantity game lies within the regulatory power of the
benevolent planner. Therefore, what this non-omnipotent planner can
choose, is the timing of innovation.25 Hence, its decisions will be based
on the instantaneous welfare levels, given by Eqs. (2), (4) and (6), that
are attained by the Cournot decentralized solution.
Second, the spillover obtained by �rms engaging in a joint R&D

project at the dates prescribed by the planner, is the same that is grasped
by the second entrant when he waits �:While this assumption is debat-
able, it allows us to analyze the classic problem of the internalization of
the inter-�rm spillover.26

Therefore, the social planner maximizes �with respect to the adop-
tion dates tL and tF �the following welfare function

W (tL; tF )=
W0

r
+
W1 �W0

r
e�rtL +

W2 �W1

r
e�rtF

�e�(r+�)tL � (1� �)e�(r+�)tF ; (16)

where tL � tF is a natural constraint.
The maximization of (16) yields

T SPL = �1
�
ln

�
(8A+ 11x)x

18(r + �)

�
; T SPF = �1

�
ln

�
(8A� 3x)x

18(r + �)(1� �)

�
;

if � � 14x
8A+11x

; and

T SPL = T SPF = T SP = �1
�
ln

�
(8A+ 4x)x

9(r + �)(2� �)

�
;

25This approach is standard in the literature: see Stenbacka and Tombak (1994),
Hoppe (2000), and Weeds (2002). The �rst best equilibrium for an omnipotent
planner implies the presence of only one �rm: whenever there are non-decreasing
returns in the innovation size or probability, it is optimal to have only one �rm to
innovate and cover the entire market at the marginal (post-innovation) cost.
26Our approach implies that the joint R&D activity grants a faster information

�ow, but not a cost advantage, when compared to a decentralized solution. The
spillover parameter is actually unlikely to be signi�cantly increased by an R&D agree-
ment when the innovation costs incorporate large expenditures for the training of the
employees required by the new production process, for some new machineries (or for
adaptation of the existing plant), and so on (see De Bondt (1996)).
However, in the literature various alternative hypothesis have been discussed (see

e.g. Poyago-Theotoky (1999), Hinloopen (2003), Leahy and Neary (2007)). The
assumption of an increase in � will be brie�y discussed later.
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if not. The superscript SP stands for �social planner�.
To verify whether the decentralized solution induces overinvestment

in comparison with the centralized one, we weight the discounted (to 0)
innovation costs implied by the subgame perfect market solution against
those obtained by the social planner. When the market innovation costs
are higher (lower) than the planner solution ones, there is overinvest-
ment (underivestment). The di¤erence in the �rms� timings between
the centralized and the decentralized solutions adds to the ine¢ ciency
due to the use of a non-optimal amount of resources.
Because the market game often does not have a closed form solution,

to appreciate the di¤erences in the discounted innovation costs, we need
to rely on numerical simulations, which allow to obtain the following
results:

i) Whenever the early equilibrium prevails, the market solution implies
an excessive use of resources (i.e. overinvestment).

ii) Symmetrically, when the late equilibrium is subgame perfect, the
decentralized solution involves a too low level of investment.

iii) When the intermediate equilibrium dominates, it implies underin-
vestment, but for a small parameters sub-set, in which the size of
the innovation is small, and the speed of the exogenous technical
progress is high.

While the �rst two results are intuitive, the third deserves more at-
tention.
To understand why an overinvesting intermediate equilibrium is pos-

sible only if the innovation size is small, consider the Eqs. (1-6), which
show that both the instantaneous social welfare, and the �rms pro�ts in-
crease more than proportionally with the size of the innovation. Because
the social welfare is larger than the �rms pro�t, also the wedge between
the social and the private incentives to innovate increases with x; which
acts against the possibility of overinvestment with a large innovation.
An increase in � reduces both the social planner�s optimal adoption

date(s) and the intermediate equilibrium ones. In the market game a
steeper cost reduction pro�le, bene�ts, ceteris paribus, the leader, who
pays the full cost, more than the follower. This provides an incentive for
his preemptive behavior, which leads to overinvestment for low values of
the spillover.27

27When the spillover is high, in fact, the internalization of the spillover has strong
positive e¤ects on welfare.
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Accordingly, the portion of the parameter space with overinvestment
is the wider, the larger is �, and the lower is x. However, even in this
case, the overinvestment area is very small: e. g. for � = 0:09; x = 0:05,
and � = 2, the intermediate equilibrium implies overivestment for � 2
[0:080; 0:115]:28

Hence, not only the intermediate equilibrium prevails for most of the
parameter con�gurations (as shown in Sub-section 5.1), but it also im-
plies that the duopolistic market equilibrium involves underinvestment.
This applies even when the innovation size is large, and hence the in-
centives to hasten innovation are remarkable. Therefore, the market
equilibrium calls for public policies aimed at increasing the research ac-
tivity even in this case, unless the inter-�rm spillover is very low. Notice
that the natural indicators of a highly competitive environment, namely
a di¤usion equilibrium and rent equalization, do not necessarily imply
that the R&D investment is excessive from the social planner�s perspec-
tive.
When we focus on minor innovations �the case in which the mar-

ket equilibrium underinvests, according to the earlier literature � our
results imply that the policies aimed at stimulating R&D have to be less
sizeable than suggested before, because the underinvesting intermediate
equilibrium is closer to the social optimum than the late equilibrium.29

7 Conclusions

In our duopoly game, �rms, in addition to a technological externality,
takes into account a spillover that lowers the second comer�s innovation
cost. This spillover exerts its e¤ect after a �disclosure lag�. In this
setting, a new equilibrium arises, in which the R&D investment takes
place at intermediate dates in comparison with those already identi�ed
in the literature.
Preemption, R&D di¤usion, and the possibility of rent equaliza-

tion characterize the intermediate equilibrium, which is competitive, al-
though in a mild form. The intermediate equilibrium is subgame perfect
for a large range of the parameters set; moreover, it is socially ine¢ cient,

28Notice that Assumption 5 applies only if � > �000(�), i.e. when the intermediate
equilibrium already implies underinvestment. Hence, it is not crucial for these results.
29Suppose that a joint R&D activity guarantees not only a faster but also an

easier, and hence less costly, information �ow. In this case the spillover parameter
in Eq. (16) should be higher than in the market game, and the social planner should
dictate earlier investment date(s). Under this alternative assumption, result ii) is
una¤ected, result iii) is strenghtened, because it applies for even larger parameters
set, while result i) weakens. In fact, it is possible � for a sizeable (and somehow
irrealistic) increase in � �that the second best optimal timing anticipates the early
equilibrium ones.
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implying a low level of investment in R&D.
This happens even in presence of major innovations, despite the large

incentive to invest in R&D provided by this type of innovation. This
result has important implications for innovation policy. For example,
research joint ventures should be assessed in more favorable terms than
those implied by the literature following d�Aspremont and Jacquemin
(1988), and Kamien, Muller, and Zhang (1992). In fact, while a RJV
may underinvest in comparison to an highly competitive equilibrium, it
is likely to improve social welfare over a �mildly competitive�, underin-
vesting, market outcome. Furthermore, our paper suggests that R&D
subsidies should be set in place in a range of market con�gurations wider
than that has been previously proposed. Finally, our analysis provides
an argument against the use of entry regulations (or price caps), which
are sometimes used to slow technology adoption, e.g. in telecommuni-
cation industries. We leave the analysis of these policy instruments for
further research.
When the innovation size is small, the prevalence of the intermediate

equilibrium implies that R&D enhancing policies must be less intense
than devised in the earlier literature. Actually, policies designed with-
out taking into account the inter-�rm spillover can be largely oversized,
even when the spillover is quantitatively modest. Notice also that the
intermediate equilibrium calls for moderate policies, which may prove
easy to implement from a political economy perspective.
Our setting can be extended in various directions, which however,

would require an heavy use of numerical techniques. For example, it
would be interesting to consider a stochastic inter-�rm spillover, in which
the probability of information di¤usion depends upon the time elapsed
from the introduction of the innovation, and on the follower�s imitation
e¤ort. Also, we would like to consider the possibility that the leader
actively (and hence costly) attempts to prevent information leakages,
thereby increasing the disclosure lag. Whenever the combined e¤ects of
the �rms�e¤orts lenghten this lag, they reduce the follower�s equilibrium
payo¤, and hence, also the leader�s one. Therefore, they tend to reduce
the intermediate equilibrium dominance area. However, the numerical
analysis developed in Sub-section 5.1 suggests that the e¤ect of the dis-
closure lag on the dominance areas are weak. Hence, our main result
should not be undermined by the adoption of a richer framework.
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A Appendix A: Proofs
Proof of Proposition 1

As a preliminary, notice that Assumptions 2 and 3 guarantees that the inter-
val [0; T �F ��] is non empty for � 2 [0; ��];� 2 [0; ��]: Notice, moreover,
that �T > T �F �� for � � 0:

Proof of part (a). The payo¤ at time 0 for the second �rm, when it invests
at tF ; is given by (10).

Suppose that the innovation leader has sunk the innovation cost at time
tL 2 [0; T �F ��]; and that the second comer decides to wait more than
�; to grasp the inter-�rms spillover. In this case, according to Eq. (8)
the innovation cost is CF (tF ) = (1��)e��tF ; and a few straightforward
calculations show that T �F ; as given by (11), maximizes VF (tL; tF ):

Alternatively, the second comer could decide not to wait for � periods, and
in this case he should invest at (13). This second alternative requires
that T 0F 2 [tL; tL + �). Had the latter restriction not been satis�ed,
the innovation follower would have bene�ted from the spillover. Since
T 0F > T

�
F , whenever tL 2 [0; T �F ��] the innovation follower grasps the

imitation bene�ts and invests at T �F :
Because of this, his payo¤ can be written as:

VF (tL; T
�
F ) =

A2

9r
+

�
2A� x
9r

�
e�rtL +

4A�

9r(r + �)

�
4A

9(r + �)(1� �)

� r
�

;

which implies: @VF (tL;T
�
F )

@tL
> 0; and @2VF (tL;T

�
F )

(@tL)2
< 0 in the whole interval

[0; T �F � �]. Also notice that
@VF (tL;T

�
F )

@�
> 0 for every tL 2 [0; T �F � �]:

(This explains the behavior of VF (tL; T �F ) for tL 2 [0; T �F ��] in Figures
1, 2, and 4)

Proof of part (b). When tL > T �F � �; the innovation follower will never
wait more than �, simply because tL > T �F � �: Hence, his available
strategies are:

(1) wait exactly � periods to grasp the bene�t of the spillover,
(2) invest immediately after the innovation leader, and
(3) wait for a time span shorter than � (to exploit the exogenous techno-

logical externality), and then invest (therefore, without exploiting the
inter-�rm spillover).

First we compare what the innovation follower obtains by waiting � periods
(strategy 1) with what he gets by investing immediately after the inno-
vation leader (strategy 2). Hence, we determine when VF (tL; tL +�) �
VF (tL; tL): This inequality immediately boils down to:

4A

9r
e�rtL � (1� �)e�(r+�)(tL+�) � 4A

r
e�r(tL+�) � e�(r+�)tL ;
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which, in its turn, is satis�ed when: tL � �T : Hence, the innovation
follower never chooses to immediately follow the leader for any tL 2
(T �F ��; �T ]:

Next, we compare strategy 1 with strategy 3; this comparison will be carried
out for tL 2 [T �F ��; T 0F ��] �rst, then for tL 2 (T 0F ��; T 0F ]; and �nally
for tL 2 (T 0F ; �T ].

As a preliminary, notice that the inequality �T � T 0F is satis�ed for � � �0(�):
Suppose now that the leader invests at tL 2 [T �F��; T 0F��]: In this interval,

the payo¤ function for a follower who does not exploit the inter-�rm
spillover is always increasing. In fact, this function is concave with a
global maximum at tF = T 0F 8 tL. Hence, it is optimal for the follower
to invest with a delay not lesser than �; which implies that the spillover
is actually exploited.

When tL 2 (T 0F��; T 0F ]; the optimal strategy for the innovation follower must
be determined by comparing what it gets by delaying its investment for
� periods, with what can be obtained by investing at T 0F : Hence, we
need to determine when VF (tL; tL+�)�VF (tL; T 0F ) � 0: This inequality
immediately boils down to:

4A

9r

h
e�r(tL+�) � e�rT 0F

i
� 

h
(1� �)e�(r+�)(tL+�) � e�(r+�)T 0F

i
� 0:
(A.1)

It is easy to show that the left hand side of (A.1) is non-increasing in tL in the
whole interval (T 0F ��; T 0F ]: Evaluate equation (A.1) at tL = T 0F , and�
exploiting equation (13)�substitute out T 0F when convenient, to obtain:

e�rT
0
F
4A

9r

�
e�r� � 1� r(1� �)e

�(r+�)�

r + �
+

r

r + �

�
� 0;

which is ful�lled when � � �0(�): Hence, under this restriction, the
follower�s strategy of waiting � periods is chosen for any tL 2 (T 0F �
�; T 0F ]:

Finally, strategy 3 can never be optimal for tL 2 (T 0F ;
�T ] simply because

the payo¤ function for a follower who does not exploit the spillover is
decreasing in tF 2 (tL; �T ] and thus there is no point in waiting when
the leader has already invested; recall moreover that the immediate in-
vestment strategy has already been proven to be dominated by a time
� delay.

Proof of Part (c).
The Proof of Part (b) implies that the innovation follower will never wait �;

for any tL � �T : Hence, if tL 2 ( �T ;1), his available strategies are:
(1) invest immediately after the innovation leader, and
(2) wait for a time span shorter than � (to exploit the exogenous techno-

logical externality), and then invest without exploiting the inter-�rm
spillover.
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The Proof of Part (b) implies that �when the innovation follower decides
to wait for a time span shorter than � �he invests at T 0F for any tL 2
(T 0F � �; T 0F ]. In fact, the payo¤ function for the follower, VF (tL; tF )
has a maximum at T 0F : We have already noticed that, for � > �0(�);
�T � T 0F . Hence, under this parameter restriction, the second innovator
invests immediately after the innovation leader. In fact, it is never in the
follower�s interest to wait � periods, because tL > �T ; while VF (tL; tF ) is
decreasing in tF in the whole interval tL 2 [ �T ;1): Hence, the follower
has no point in waiting.

This completes the Proof. �

Proof of Proposition 2
The Proof for Part (a) follows the corresponding one for Proposition 1.
Proof for Parts (b) and (c). From the Proof for Proposition 1, we already

know that when � 2 [0; �0(�)); then �T < T 0F : Notice, also, that it is
possible to prove that T 0F �� < �T :

In the time interval tL 2 [T �F ��; T 0F ��] the optimal strategy is again to
wait � and exploit the inter-�rm spillover, because the follower�s payo¤
function VF (tL; tF ) is increasing in tF 2 [tL; T 0F ��]:

When tL 2 (T 0F��; �T ]; the optimal strategy for the innovation follower must
be determined by comparing what he gets by delaying his investment for
� periods with what can be obtained by investing at T 0F : Unfortunately,
it is not possible to characterize analytically the sub-intervals in which
the two alternative strategies prevail. Let us denote by �TL the instant
when VF (tL; tL+�) = VF (tL; T 0F ): �TL 2 (T 0F ��; �T ] because: VF (tL; tL+
�) � VF (tL; T 0F ) is non-increasing in tL; lim�!0 [VF (T

0
F ��+ �; T 0F + �)

� VF (T 0F ��+ �; T 0F )] > 0 and VF ( �T ; �T+�)�VF ( �T ; T 0F ) < 0, in fact, by
de�nition, VF ( �T ; �T +�) = VF ( �T ; �T ); and VF ( �T ; �T ) < VF ( �T ; T 0F ): Hence,
for tL 2 (T 0F ��; �TL] strategy (1) is optimal, while for tL 2 ( �TL; T 0F ] the
innovation follower decides to innovate at T 0F (strategy 3).

Notice that Assumption 1 guarantees that VF (tL; tL+�) has a maximum in
(T �F ��; T 0F ]:

Proof for Part (d). Because �T < T 0F , when tL 2 (T 0F ;1); the innovation fol-
lower invests immediately after the innovation leader because its payo¤
function is decreasing in tF . �

Proof of Corollary 3
�TL has been de�ned as the time instant such that VF (tL; tL+�) = VF (tL; T 0F ):

Substitute �TL; and T 0F in the value function (10), and consider the cost
function (8) with � = 0, to conclude that �TL +� = T 0F : Because in this
case T �F = T

0
F ; the Proof is completed. �

Proof of Proposition 4
Proof for Part (a). For tl 2 [0; T �F ��]; the innovation leader payo¤ is given

by (9) in which the innovation costs are provided by (7) and tF = T �F :
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Exploiting equation (11), we obtain:

VL(tL; T
�
F ) =

A2

9r
+

�
4(A+ x)x

9r
� xe��tL

�
e�rtL�(2A+ 3x)x

9r

�
4A

9(r + �)(1� �)

� r
�

:

A few calculations show that the restriction � � �00(�); implies: VL(T �F �
�; T �F ) � VF (T �F ��; T �F ):

Notice also that @VL(tL;T
�
F )

@tL
? 0 when tL 7 T �L (with T �L given by (14)).

Proof for Part (b). When � 2 [�0(�); �00(�)); the �rst innovator is aware
of the fact that �if she invest later than T �F � ��her competitor will
invest with a delay of � periods (Proposition (1), Part (b)). In this case
one can show that the unique solution for the equation VL(tL; tL+�) =

VF (tL; tL+�); T
ip = �1

�
ln
�

(6A+3x)(1�e�r�)
9r[1�(1��)e�(r+�)�]

�
; lies outside the interval

[T �F ��; �T ] (namely T ip < T �F ��): Hence, the follower�s payo¤ is lower
than the �rst innovator�s one for tL 2 (T �F ��; �T ]:

Proof for Part (c). If tL 2 (T �F ��; �TL]; because T ip < T �F ��; it is obvious
that VL(tL; tL+�) > VF (tL; tL+�) for any tL 2 [T �F ��; �T ] and hence,
a fortiori, for any tL 2 [T �F ��; �TL]:

When tL 2 ( �TL; T 0F ]; the follower innovates at time T 0F (Proposition 2, Part
(c)): In this case, we have again that VL(tL; T 0F ) � VF (tL; T

0
F ) for tL 2

[T 0F��; T 0F ] (the equality applies at tL = T 0F ): To show this, consider �rst
that VL(T 0F ; T

0
F ) = VF (T

0
F ; T

0
F ), and that @[VL(tL; T

0
F )�VF (tL; T 0F )]=@tL <

0: Then, notice that VL(T �F � �; T �F ) � VF (T
�
F � �; T �F ); which implies

VL(T
�
F ��; T 0F ) � VF (T �F ��; T 0F ); and therefore A

2

9r
+ 4(A+x)x

9r
e�r(T

�
F��)�

(2A+3x)x
9r

e�rT
0
F � e�(r+�)(T �F��) � A2

9r
� (2A�x)x

9r
e�r(T

�
F��) + 4Ax

9r
e�rT

0
F �

e�(r+�)T
0
F : Because the two last functions intersect only twice (and

they are identical at T 0F ; where the weak inequality above reduces to
VL(T

0
F ; T

0
F ) = VF (T

0
F ; T

0
F )); we have that, in the whole interval [T

�
F �

�; T 0F ]; and hence, a fortiori, in the interval ( �TL; T
0
F ];

A2

9r
+ (2A+x)x

9r
e�rtL�

(2A+3x)x
9r

e�rT
0
F � e�(r+�)tL � A2

9r
� (2A�x)x

r
e�rtL + 4Ax

9r
e�rT

0
F � e�(r+�)T 0F :

Accordingly, the follower�s payo¤is lower than or equal to the �rst innovator�s
one for tL 2 (T �F ��; T 0F ]:�

Proof of Proposition 5
As a preliminary, notice that �000(�) � �00(�); � 2 [0; ��]:
Proof of Part (a). Recall that, for tL 2 [0; T �F ��]; the innovation follower

invests at T �F (Proposition 1); and the leader is aware of this behavior.
Notice that, if � � ��(�); we have that T �L � T �F � �; because the
latter inequality requires (A+x) � A

(1��)e
��; and hence � � 1� A

A+x
e��:

Because � � �00(�); we have that VL(T �F � �; T �F ) � VF (T
�
F � �; T �F ):

Hence, for tL 2 [0; T �F ��]; VL(tL; T �F ) is increasing, moreover, when it
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reaches its highest value, namely VL(T �F ��; T �F ); the �rst �rm payo¤ is
still lower than the second one.

When tL 2 (T �F��; �T ]; the follower innovates with a delay of�: Accordingly,
the �rst innovator�s payo¤ for tL 2 [T �F ��; �T ] is:

VL(tL; tL+�) =
A2

9r
+

��
4(A+ x)x

9r
� e��tL

�
� (2A+ 3x)x

9r
e�r�

�
e�rtL :

Notice that VL(tL; tL +�) reaches its maximum at

tL = T̂L = �
1

�
ln

�
4 (A+ x)� (2A+ 3x) e�r�

9(r + �)

�
;

a few calculations now allow to show that T̂L > T �F � �: Hence, the
maximum for the �rst �rm value function in the interval [0; �T ] lies in the
sub-interval (T �F ��; �T ]:

Proof of Parts (b) and (c). For � � maxf��(�); �00(�)g; notice that T ip;
the unique solution for the equation VL(tL; tL + �) = VF (tL; tL + �);

belongs to the interval [T �F ��; �T ]. Then compute that T ip < T̂L, when
� < �000(�). �
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Figure 4: Behaviors of the firms’ discounted payoffs for θ ∈

(θ”(∆),θ*(∆)]. 
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Figure 5 Equilibrium selection − minor  innovation (x = 0.05)
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Figure 6 Equilibrium selection − major  innovation (x = 0.50)
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