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ABSTRACT 

This paper shows a connection between Data Envelopment Analysis (DEA) and the 

methodology proposed by Sumpsi et al. (1997) to estimate the weights of objectives for 

decision makers in a multiple attribute approach. This connection gives rise to a 

modified DEA model that allows to estimate not only efficiency measures but also 

preference weights by radially projecting each unit onto a linear combination of the 

elements of the payoff matrix (which is obtained by standard multicriteria methods). For 

users of Multiple Attribute Decision Analysis the basic contribution of this paper is a new 

interpretation of the methodology by Sumpsi et al. (1997) in terms of efficiency. We also 

propose a modified procedure to calculate an efficient payoff matrix and a procedure to 

estimate weights through a radial projection rather than a distance minimization. For 

DEA users, we provide a modified DEA procedure to calculate preference weights and 

efficiency measures which does not depend on any observations in the dataset. This 

methodology has been applied to an agricultural case study in Spain.  

 
Keywords: Multicriteria Decision Making, Goal Programming, Weights, Preferences, 

Data Envelopment Analysis.  
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1. Introduction and objectives 
Several authors have pointed out some close connections between Data Envelopment 

Analysis (DEA) and Multicriteria Decision Making (MCDM) See Belton and Vickers 

(1993), Stewart (1994, 1996), Joro et al. (1998), Bouyssou (1999). These authors have 

underlined the equivalence between the notion of ‘efficiency’ in DEA and MCDM (see, 

for example, Bouyssou, 1999, p. 974) although both approaches are different regarding 

how efficiency is measured in practice. In DEA, the so-called ‘efficient frontier’ is built as 

the envelope of all the Decision Making Units (DMUs hereafter) included in the sample, 

so that efficiency is measured in relative terms by comparing each unit with the rest in 

the sample. On the contrary, efficiency is measured in absolute terms in MCDM. That is, 

in a MCDM problem, the decision maker (DM) faces a number of constraints which 

determine the feasible set. Therefore, by exploring the feasible set it is possible to 

determine which solutions are efficient or not (and hence, which DMs taking those 

solutions behave in an efficient way, without any comparison across DMs). In order to 

translate multicriteria objectives into DEA terminology, a "max" objective can be 

understood as an output whereas a "min" objective can be interpreted as an input or a 

bad output (see Doyle and Green, 1993; Steward, 1994 and Bouyssou, 1999).  

 

Further to the efficiency concept, in this paper we report an additional connection by 

stressing the parallelism between DEA and the multicriteria methodology proposed by 

Sumpsi et al. (1997) to estimate the weights of different objectives in the preferences of 

DMs. We claim that, although these methodologies have been developed independently 

from each other, there is a strong parallelism between them. 

 

MCDM and DEA also have in common that both of them deal with individuals, activities 

or organizations that are concerned with multiple objectives or inputs and outputs. In 

such a framework, it seems relevant to measure or to evaluate the relative importance of 

each objective, input or output according to the preferences of DMs. The methodology 

by Sumpsi et al. is aimed at measuring this importance by projecting the observed 

values of objectives onto a linear combination of the elements of the payoff matrix 

(where such a matrix is obtained by optimizing each objective separately). Since these 

elements are efficient (see below for further discussion), we claim that this procedure 

has a strong resemblance to DEA, where each unit is projected on a combination of 

efficient units. The first contribution of this paper is to underline this connection, hence 

providing a new interpretation for the Sumpsi et al. procedure. 
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On the other hand, although the aim of DEA is not estimating preferences but efficiency 

scores, it requires constructing a weighted combination of inputs and outputs. As the 

weights (known as virtual multipliers) used to compute such combinations are 

endogenously determined to provide the best possible score for each unit, they could be 

understood as having some connection with the preferences of DMs. For example, 

Cooper et al. (2000, section 6.6) suggests to bound DEA weights according to the 

importance given by some experts to each of the criteria (inputs) using an Analytic 

Hierarchy Process (AHP) analysis. Nevertheless, the weights obtained from a standard 

DEA analysis do not represent a suitable measure of the preferences of a given DM, 

since DEA parameters are crucially influenced by the structure of the production process 

under analysis, which often is just related to technological issues, and the representation 

of the efficient frontier is crucially influenced by the amounts of inputs and outputs of 

other observations in the data. 

 

In this paper we try to establish a particular way to apply DEA in order to obtain 

estimates of preference parameters, by taking advantage of the parallelism between 

DEA and the Sumpsi et al. methodology. For this purpose, we propose to project each 

decision unit onto a linear combination of the elements of the payoff matrix. The 

rationale behind this procedure is to control for the technological constraints (those 

related to the production structure) and isolate the effects specifically associated to 

preferences. The payoff matrix allows constructing a linear version of the set of efficient 

alternatives among which it is possible to choose. By evaluating the distance to each 

element of the payoff matrix it can be inferred which criteria are revealed as preferred for 

the DM. Using this approach, we get both an estimation of the preference weights for 

each DM and a measure of efficiency in a single model. This efficiency measure has the 

property of being independent of the rest of the observations in the dataset. 

 

The paper has the following structure: Section 2 reviews the basic elements of the DEA 

approach. Section 3 presents the Sumpsi et al. methodology and proposes a 

modification to guarantee that all the elements of the payoff matrix are efficient. The 

fourth section offers an alternative way to use DEA in order to measure efficiency and 

estimate the weights of inputs and outputs. Section 5 presents an empirical application 

of the suggested method to agricultural economics using real data from an irrigated area 

in Spain. We obtain efficiency measures that are very close to the real values and to 

conventional DEA measures. We also obtain preference weights that are very similar to 

those obtained when using the Sumpsi et al. methodology. To test the practical 
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usefulness of these estimates we show, in a validation exercise, that they provide a 

good approximation to observed behaviour. Section 6 summarizes the main 

contributions of the paper. 

 

2. DEA model 

In a standard DEA model there are n  DMUs, using s  different inputs to produce t  

different outputs. Using the standard notation, ijX  and rjY  denote, respectively, the 

amount of input i  used and output r  produced by the j th−  DMU. jX  ( jY ) represents 

the 1s×  ( 1t× ) column input (output) vector corresponding to the j th−  DMU. The DEA 

model proposed by Banker et al. (1984), known as BCC model after its authors, allows 

for variable returns to scale, by forcing the weighting parameters ( )1
T

t, ,λ ≡ λ λ…  to add 

up to one (see below) in the original model of Charnes et al. (1978). In order to measure 

the efficiency of a specific DMU, labelled as ‘ 0 ’, the following output oriented (dual) 

model has to be solved: 

 

0
11

:..

0

0

≥
=

≤

≥

λ
λ
λ

θλ

θ

XX

YY
ts

Max

T

T

           (BCCD-O) 

where X (Y ) is the matrix representing all the inputs (outputs) of all the DMUs, T  

denotes transposing, )1,...,1(1 ≡  and the jλ  parameters ( 1j , ,n= … ) are the weights 

associated to each observed DMU in order to construct a convex combination of all of 

them (or just a subset if some jλ ’s are equal to zero). The values of these parameters 

are DMU-specific. 

 

DEA seeks to identify efficient units and combine them to construct an efficient frontier. 

A unit is said to be radially efficient if the optimal value of θ  is equal to one. In order to 

guarantee that a unit is fully efficient, a second phase analysis should be carried out. In 

this second optimisation stage the sum of the positive and negative slacks, defined as 

T
0s Y Y+ = λ −θ  and T

0s X X− = −λ  respectively, is maximised. In this case, a unit is 

said to be fully efficient if the optimal value of θ  is equal to one and all the slacks are 



 
 

 
 
 

 
http://www.upo.es/econ 

 5

equal to zero. The peer units associated to the unit under analysis are those with a 

strictly positive value of λ . The combination (weighted by the λ s) of these peer units 

defines a virtual unit on the frontier. We could make the unit under analysis be efficient 

by transforming it into this virtual one. 

 

We can also interpret DEA as minimizing the distance from the unit under analysis to the 

set of hyperplanes that envelopes all DMUs. This interpretation is more easily 

understood using the (output oriented) primal model, which has the following 

formulation: 

0,
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where coefficients iµ  and rv  are known as virtual multipliers. 

 

Inefficient DMUs can be projected onto the efficient frontier by radially expanding their 

outputs or radially contracting their inputs for an output or input orientation respectively. 

In Figure 1 an example has been graphed for an output-oriented model using one input 

(the amount of which is assumed to be the same for all units) to produce two outputs. 

Inefficient unit E  can be projected onto point E'  on the efficient frontier and the same 

occurs for F  and F' . The expansion factor for point E  is defined as the ratio of 

distances OE'/ OEθ = . This value is lower bounded by one and a value equal to one 

means that the virtual unit on the frontier is the evaluated unit itself, and hence it is 

efficient. The technical efficiency rate (TE ) is given by 1TE = θ , which is upper 

bounded by one and lower bounded by zero.  

 

Andersen and Petersen (1993) proposed a modified version of the original BCC model, 

commonly used to rank efficient units, where the DMU under evaluation is excluded from 

the reference set, so that it may be above the frontier. Inefficient units get the same 

score as in the standard model, whereas efficient ones get a so-called super-efficiency 

score that can be larger than one. The larger it is, the more efficient the associated DMU 

is. Units with an efficiency score greater than one are said to be super-efficient. 
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Since the virtual multipliers iµ and rv from (BCCP-O) are endogenously determined to 

provide the best score for each DMU, they could be interpreted as being somehow 

related to the weight, or the importance, the unit under analysis gives to each input or 

output in order to achieve the maximum efficiency. See Cooper et al. (2000), (page 25 

and pages 169-173), and Tone (1989, 1999). Nevertheless, these coefficients cannot be 

interpreted as measuring the preferences of DMs, since they are basically technical 

parameters (see Allen et al. 1997). Below we show an alternative way to use DEA in 

order to estimate the importance of each input and output for each DMU. The idea is to 

take advantage of the parallelism between DEA and the methodology by Sumpsi et al., 

which is summarized in the following section. 

 

3. Estimating the weights of attributes in a multiple attribute context 

The methodology proposed by Sumpsi et al. (1997), and extended by Amador et al. 

(1998) is based upon weighted goal programming and allows estimating the weight or 

the importance that different objectives have on the observed behaviour of DMs to be 

compatible “not with the answers (…) to artificial questionnaires but compatible to the 

actual behaviour which they follow” (Sumpsi et al. 1997, page 65). 

 

Assume that some DM have a set of q  “more is better” objectivesa  depending on a 

vector of decision variables x  according to the functions ( )if x  ( 1i , ,q= … ). Moreover, 

the DM faces a number of known technical constraints which somehow limit his 

decisions. The first step is to construct the payoff matrix for these objectives. The first 

element of the first column of this matrix is obtained by solving the problem: 

Fx
ts

xfMax

∈
:..

)(1

        [1] 

where F  denotes the feasible set which results from problem-specific constraints. The 

optimal value of ( )1f x , denoted as 1 11
*f f≡ , is the first entry of the payoff matrix. To get 

the other entries of the first column, we substitute ( )1arg max f x  in ( )if x , for 

2i , ,q= … . The rest of the columns of the payoff matrix are obtained by implementing 
                                                 
a Note that this assumption does not imply any loss of generality. A “less is better” objective can be 
transformed in “more is better” multiplying by –1. If the target is to get exactly a certain value, the objective 
can be written as minimizing the distance (or maximizing the opposite of the distance) from the attained 
value to the target value, so that it can be formulated as a “less is better” (or “more is better”) objective. 
Therefore, this formulation permits us to deal with any problem involving any of the relevant types of 
objectives.  
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the same kind of calculations, i.e., the generic element ijf  is obtained by plugging 

( )jarg max f x  in ( )if x . 

 

Notice that the payoff matrix may not be unique since [1] could have alternative optima, 

and some of them could be inefficient. To illustrate this, assume there are two objectives 

and the feasible set is represented by the polygon OABCD in Figure 2. When optimizing 

objective 1 (2), we could obtain any point on segment CD (AB). Since we are interested 

in an interpretation in terms of efficiency, it is convenient to have efficient points as a 

reference. In Figure 2, the set of efficient solutions is given by segment BC, so we 

should select point C for the first column of the payoff matrix and B for the second 

column. We propose to do this by solving the following lexicographic problem for every 

objective 1i , ,q= … : 

  

( ) ( )i j j
j i

Lex max f x , f x

s.t. :
x F

≠

⎧ ⎫
⎨ ⎬
⎩ ⎭

∈

∑α

    [2] 

meaning that objective i  is maximized and, if some alternative optima exist, an arbitrary 

linear combination of the rest of objectives (with 0jα >  for all j i≠ ) is optimized without 

worsening the performance of objective i . For our purpose, the specific values of jα do 

not matter, as long as they are positive and, henceforth, they provide an efficient 

solution. In our application we calculate the payoff matrix using this procedure. Hence, 

from now on, we will assume that all the columns of the payoff are efficient by 

construction.  

Assume now that the researcher observes the decision made by a specific DM facing 

the decision problem described above. Using this information, the researcher aims at 

eliciting the weights given by the DM to each objective. Following Sumpsi et al. (1997) 

this elicitation can be done by solving the following system of 1q +  equations: 
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where if  is the observed value of the i th−  criterion and jw  measures the weight of the 

j th−  objective. Usually, a positive solution to system [3] does not exist, so that it is 

necessary to find the closest set of weights by solving the problem: 
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    [4] 

 

where in  ( ip ) is the negative (positive) deviation variable from the observed (real) value 

if . When solving [4], the observed point is projected onto another point that is 

constructed as a weighted sum of the elements of the payoff matrix. 

 

The first key insight of this paper is the strong parallelism of this methodology with DEA 

once it is guaranteed that the elements of the payoff matrix are efficient. Given that, by 

construction, the elements of the payoff matrix are efficient, the solution of [4] can be 

interpreted as projecting every observation onto a combination of efficient units. The 

main difference with respect to DEA is that the reference units are not “real” observed 

units, but potential (feasible) observations that could show up if the DM were interested 

in maximizing just one objective. A second difference is that, by construction, in this 

procedure, the approximation to the efficient frontier is linear (instead of piece-wise 

linear as it is usual in DEA). 

 

Figure 3 illustrates a problem with two objectives where the feasible set is defined by the 

polygon ABCDE. Problem [4] consists of finding a point on segment AB as close as 

possible to the observed vector x . Point x  could be projected on F or G depending on 

the slope of segment AB and on the observed value of 1f  and 2f . This is a 

consequence of using L1 (“Manhattan”) metric in [4]. Different metrics result in different 

projections. For example, the L2 or Euclidean metric (implemented by minimizing a 

combination of the squared deviation variables, instead of the variables themselves) 

would result in an orthogonal projection of x  on segment AB. 
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Another important insight is the fact that the jw  parameters resulting from problem [4] 

can be understood as representing the weight of each criterion in the preferences of the 

DM. The interpretation is the following: if an agent faces the decision problem depicted 

in Figure 3, he can choose among all the feasible points in ABCDE. If he chooses one 

specific point and discards all the rest, he is revealing which alternative he prefers. This 

follows a standard reasoning based on the Revealed Preference Theory (see, for 

example, Mas-Colell et al. 1995, chapter 1). 

 

In this case, we observe that the DM chooses point x , which seems to indicate that this 

point represents his most preferred option. Nevertheless, point x  itself cannot be 

understood as being the result of a rational decision making process since it is inefficient 

and we know that “Paretian efficiency is a necessary condition to guarantee the 

rationality of any solution provided by any MCDM approach” (Ballestero and Romero 

1998, p. 7). Once x  is projected onto (our approximation of) the efficient frontier, the 

resulting projection (in this case, point F or G) can be taken as a surrogate of the 

observed decision, i.e, that efficient point which is as close as possible to the observed 

one. The distance from x  to its projection can be interpreted as inefficiency of the DM 

and the projected point is, by construction, a convex linear combination of A and B. If the 

DM is concerned only about the first (second) objective, he should choose point B (A) or 

a point very close to it, so that we should obtain 1 1w = , 2 0w =  ( 1 0w = , 2 1w = ). 

Similarly, if the first (second) objective is more important than the second (first) one, the 

observed decision should be closer to B (A) than A (B). In general, when objective j  is 

very important (is not very important) for the DM, the observed vector of achieved 

objectives should be very close (not be very close) to jf  and therefore jw  should be 

very close to 1 (to 0). Using this method we are measuring revealed preferences, as 

opposed to declared preferences, which are typically obtained from direct surveys. For 

an application of this method to estimate preferences see, for example, Gómez-Limón 

and Berbel (2000) or Gómez-Limón and Riesgo (2004). 

 

4. Combining methodologies: using a modified DEA model to estimate the 
weights associated to each throughput 

Using the parallelism between the methodologies presented in section 2 and 3, our aim 

is to find a way to use DEA in such a way that it provides a measure of preference 
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parameters. Although DEA virtual multipliers iµ  and rv  from problem (BCCP-O) are 

associated to outputs and inputs respectively, they cannot be properly interpreted as 

preference parameters linked to these outputs and inputs, because they are affected by 

the technological structure of the activity under analysis and by the values of these 

throughputs for the other units. To get this point, assume a case with two outputs ( 1Y , 

2Y ) and consider a specific DMU focused on maximizing only 1Y  and not caring at all 

about 2Y . These preferences should be represented by a weight equal to one for 1Y  and 

zero for 2Y  ( 1 1w = , 2 0w = ). Nevertheless, it may well be the case that the feasible set 

is such that the minimum attainable value of 2Y  is strictly positive. As a consequence, 

we could observe that this DMU has a positive value for 2Y  and we may obtain a strictly 

positive value for the virtual multiplier associated to 2Y . However, this positive value 

should not be interpreted as a positive preference for output 2, as it is determined by 

technical issues, i.e., by the shape of the feasible set. 

 

Furthermore, in DEA, efficiency is measured in relative terms, in the sense that the 

efficiency score depends on the observations the unit under analysis is compared to, 

and the values of the virtual multipliers also depend on the reference set. Nevertheless, 

the preferences of a DM, as they are typically understood in economics or in decision 

theory, are privately given and do not depend on the rest of agents. 

 

In order to get a measure of preference parameters, we suggest using a modified BCCD-

O DEA model with the only difference that the reference set is not made up of all 

observations in the data set, but instead is made up of the elements of the payoff matrix, 

i.e., those extreme (virtual) units optimizing every criterion separately. We will call it 

modified DEA model. 

 

Therefore, the model would take the form: 
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where *Y  is a matrix which rows contain the value of the outputs (values of the 

objectives for maximising) for each of the elements in the payoff matrix. Similarly *X  is 

a matrix where in each row there are the values of the inputs (or criteria to be minimised) 

of a given unit of the payoff matrix. Therefore *Y  and *X  have the same amount of 

rows as the number of elements of the payoff matrix. The rest of the elements in 

problem [5] are the usual in a standard DEA model. 

 

By using this modified DEA model, the values of λ  associated to each unit of the payoff 

matrix have a particular meaning: they can be considered as estimates of the preference 

weights given to each objective (input/output). Note that we are projecting each 

observation on a convex combination of the elements of the payoff matrix, so that the 

values of λ  represent the degree of proximity of the observed unit to each of these 

virtual units associated to the maximization (or minimisation) of each of the different 

criteria. 

 

The rationale behind this procedure is the following: the elements of the payoff matrix 

explicitly recognize that, when optimizing just one objective (or equivalently, one output 

or input), each DMU may have to take a certain value of the rest of attributes for 

technological or feasibility reasons. When including these elements in the reference set, 

the resulting coefficients represent the importance that the unit under analysis gives to 

each of the criteria controlling for the feasibility constraints. Furthermore, as the 

reference elements are efficient by construction, the hyperplane connecting them can be 

taken as an approximation of the efficient frontier, and the distance from each DMU 

turns out to be an alternative efficiency measure with the property of being independent 

of any DMUs in the sample. 

 

Concerning the selection of the BCCD-O model, choosing an adequate version of DEA is 

not a trivial task. In this case, we aim at stressing the parallelism of DEA with the Sumpsi 

et al. methodology. There are at least two types of models that may be applied: additive 

models (Charnes et al., 1985 and Tone, 2001) or conventional radial models. For 

consistency, the former should be compared to the Sumpsi et al. model using a L1 norm 

while the latter should be compared to the Sumpsi et al. model using a L2 norm, given 

that a radial expansion to the frontier is generally closer to a L2 norm than to a L1 norm. 

In the application presented below, we preferred to use an output oriented radial model 

to an additive model because, for comparison purposes, additive models present the 
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disadvantage that they maximize the slack variables (i.e., they maximize the L1 distance 

to the frontier, instead of minimizing this distance, as in the Sumpsi et al. methodology). 

For this reason we preferred the use of DEA radial models as they minimize the radial 

expansion (or contraction) to the efficient frontier. 

 

Specifically, in our application (see section 5) we have used a BCC output-oriented DEA 

model because, as discussed below, in the preferences of most DMs, profit 

maximization seems to be the key element and this appears to match with an output-

oriented approach. Furthermore, we consider super efficiency (i.e., we do not include the 

unit under analysis in the reference set) to guarantee that the projection of any point 

(originally below or above the frontier) is always a combination of the elements of the 

payoff matrix. 

 

Comparing methodologies 

 

Figure 4 compares the results from standard DEA, the Sumpsi et al. methodology and 

the modified DEA model proposed above. In standard DEA, the reference set contains 

all the observed DMUs (represented by black dots). The efficient frontier is constructed 

as the envelope of all these units (in Figure 4, FDJEI) and the efficiency of each unit is 

measured as the distance from it to the frontier when radially projected. In the Sumpsi et 

al. methodology the reference set consists only of the elements of the payoff matrix, 

which in Figure 4 correspond to points A and B (marked with a star) and the goal is to 

find a linear convex combination of these elements as close as possible to the observed 

units according to some metric (in the figure, we illustrate the L2 metric). We propose a 

combination of both methods by taking the payoff matrix as the reference set and 

projecting each unit radially on it. For example, unit C is projected on point C’’ when 

using the Sumpsi et al. methodology and it is projected on point C’ when using the 

modified DEA method (which, in this specific case, by coincidence, equals the standard 

DEA projection). A similar exercise is made for point E. Since E is efficient, it is projected 

on itself when using DEA, on E’’ when using the method developed by Sumpsi et al. and 

on E’ when using the modified DEA method. 

 

Compare, first, the results for modified DEA and Sumpsi et al. methods. In some cases, 

such as point D, both projections are virtually the same but in other cases (e.g. point E) 

there are some differences due to the different projection criteria used in both 

approaches: in the case of Sumpsi et al. it consists of minimizing the distance whereas, 
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by following DEA the projection aims at keeping the proportions of outputs unchanged. 

Obviously, the size of the difference depends on the specific example, but a priori they 

should not be very different for most cases and, specifically, they should be very similar 

for “average units” with a balanced combination of outputs (i.e., those units not very far 

from the 45-degrees line). In fact, the application in the case study shows very similar 

preference parameters from both approaches. 

 

Using the modified DEA approach, we also obtain an efficiency measure as the distance 

from each unit to the new frontier AB, so that we can compare this measure to standard 

DEA. For example, the efficiency score for point C is the same in a standard DEA 

approach and in the modified DEA method (being inefficient in both cases). Units D and 

E, which appear to be efficient in a standard DEA method, appear to be super-efficient in 

the modified DEA method. Nevertheless, in the application presented below it is shown 

that, although the numerical value of the efficiency scores can be different for standard 

and modified DEA model, the rankings of units tend to be rather similar 

 

Table 1 presents a summary of the key features of the three methods. The second, third 

and fourth columns display the information requirements for each method. All three 

procedures require information about inputs and outputs (objectives in MCDM 

terminology) for the DMU under analysis (DM in MCDM terminology). In standard DEA 

this information is required not only for the DMU under analysis, but for all the DMUs of 

the sample. Concerning information requirements, the modified DEA method is 

equivalent to the one by Sumpsi et al.. in the sense that it does not require any sample 

but does require the payoff matrix, which in turn typically requires information about the 

structure of the decision problem, i.e., the relevant objectives and the constraints faced 

by the DM. 

 

The fifth and sixth columns display the information provided as an output by each 

method. In this respect, DEA is basically aimed at providing just efficiency measures 

whereas the Sumpsi et al. methodology provides just preference weighting parameters. 

In this respect, the modified DEA approach amounts to a combination of both methods 

but giving both pieces of information. 

 

Finally, the last column underlines the criterion that is used to project each unit on the 

frontier. In the Sumpsi et al. method the projection is done by minimizing the distance 
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from the observed point to its projection. The modified DEA method follows the usual 

DEA spirit by using a radial projection. 

 

5. Application to agricultural economics and a case study 

5.1. Framework 

A number of authors have pointed out that, contrary to the usual assumption in 

conventional economics, farmers are not only concerned with the maximization of profit, 

but other attributes such as risk, management complexity, leisure time, indebtedness, 

etc., are also involved in farmers’ decision making. See Gasson (1973), Smith and 

Capstick (1976) or Cary and Holmes (1982). More recently, Willock et al. (1999), Solano 

et al. (2001) have also stressed this point. 

 

Since farmers make their decisions trying to simultaneously optimize a range of 

conflicting objectives, we analyzed the behaviour of farmers under the MCDM paradigm. 

Specifically, we used the theoretical framework of multiatribute utility theory (MAUT). As 

pointed out by Herath (1981) or Hardaker et al. (1997, p. 162), the main drawback of this 

approach comes from the elicitation of the multi-attribute utility function (MAUF), 

including the mathematical shape of utility functions and the estimation of the weights of 

each attribute. Concerning the former issue, we assume an additive and linear MAUF. 

For a justification of this assumption, as well as its limitations, Gómez-Limón et al. 

(2003) and Gómez-Limón and Riesgo (2004) can be consulted. The resulting expression 

for the MAUF is 

( )
1

q
j

j
j j

w
U F x

k=

= ∑        [6] 

where U  is the utility obtained by the DM, jF  is the value of attribute j , jk  is a 

normalizing factor (usually the observed value of each attribute j), jw  is the weight of 

attribute j , and x  is the vector of decision variables. 

 

Weights for different objectives are widely used in MCDM but there is some vagueness 

about exactly how these weights should be interpreted. Using the MAUT approach gives 

us a precise interpretation for these weights as the marginal utility of each (normalized) 

attribute. More details about the MAUT approach can be found in Keeney and Raiffa 

(1976), Edwards (1977), Farmer (1987), Amador et al. (1998), Ballestero and Romero 

(1998) or Huirne and Hardaker (1998). 
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Concerning the estimation procedure, we are interested in comparing the Sumpsi et al. 

methodology -which has been successfully checked in a number of studies, such as 

Berbel and Rodríguez (1998), Arriaza et al. (2002), or Gómez-Limón and Riesgo (2004)- 

with the modified DEA approach suggested above. 

 

5.2. Case study and data set 

The case study is a sample of 61 farmers from the community of irrigators Canal 

General del Páramo, located in northern Spain. This area has 15,554 irrigated hectares 

(ha), divided among 5,950 landowners. It has a “mild Mediterranean” climate, 800 m 

above sea level, with long, cold winters and hot, dry summers. Rain falls mostly in spring 

and autumn. In decreasing order of importance, the normal crop mix is maize, winter 

cereals, beans and set-aside. All the data to feed the models were obtained both from 

official statistics and from a survey developed in the area under study during the 2000-

01 agricultural year. For more information about the survey see Gómez-Limón and 

Riesgo (2004). To simulate the decision-making process of farmers under the MAUT 

framework, we construct a mathematical model where farmers decide the value of some 

decision variables, being limited by certain constraints, in order to optimize various 

objectives: 

 

Decision variables. Each farmer has a vector ( )1 4

Tx x , ,x≡ …  of decision variables 

determining the crop distribution. Variable hx  ( 1 4h , ,= … ) measures the amount of land 

devoted to every particular crop, h , including winter cereals, maize, beans and set-

aside. To get a normalized solution, we assumed that total land size of a farmer is 100 

ha. 

 

Constraints. We identify the following constraints as applied to each farmer: 

 Land constraint. The sum of all crops must be equal to the total surface available to 

each farmer, which is normalized to 100 ha: 

∑
=

=
4

1
100

h
hx         [7] 

 Common Agricultural Policy (CAP) constraints. To fulfil the CAP requirements, we 

included 20% of set-aside for cereal, oilseed and protein crops. Any land devoted to set-
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aside greater than this percentage is excluded from EU subsidies, and this is taken as 

an invalid option in the model: 

Maximum set aside: )(%20 214 xxx +⋅≤     [8] 

 Rotational constraints. These were taken into account according to the criteria 

revealed by the farmers in the survey. For rotational conditions, farmers do not usually 

crop winter cereals during two consecutive years in the same land. To represent this 

constraint we assume that the maximum area devoted to winter cereals in a year is half 

the total surface available: 

100%501 ⋅≤x       [9] 

 

 

Objectives. After the survey developed in the area under study, we concluded that 

farmers take the following objectives into account: 

 Maximization of total gross margin (TGM), as a proxy of profit since, in the short run, 

the availability of structural productive factors (land, machinery, etc.) cannot be changed 

and financial viability of farms basically depends on gross margin. TGM data are 

obtained from the average crop margins in a time series of seven years (1993/1994 to 

1999/2000) in constant 2000 euros: 

∑ ⋅=
h

hh xGMTGM        [10] 

where GMh is a technical coefficient measuring the gross margin per unit of crop h. 

 Minimization of risk (VAR). As noted by several authors, (see for example Just, 

1974, Young, 1979, and Gómez-Limón et al. 2003), farmers typically have a marked 

aversion to risk, so that risk is an important factor in agricultural activity. Following the 

classical Markowitz (1952) approach, risk is measured by the variance of TGM : 

[ ]TVAR x COV x= , where [ ]COV  is the variance-covariance matrix of the crop gross 

margins obtained from different crops, during the seven-year period. This classical 

approach has also been used in some recent works as Francisco and Ali (2006), 

Gómez-Limón and Martínez (2006) or Bazzani (2005). 

 Minimization of total labour input (TL ). This objective implies not only a cost 

reduction, but also an increase in leisure time and the reduction of managerial 

involvement, since labour-intensive crops require more technical supervision. Total labor 

requirements are calculated in the following way: 

∑ ⋅=
h

hh xLTL        [11] 
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where hL  represents the technical coefficient representing the labour needs (hours per 

hectare) for each crop h . 

 

To translate these objectives into DEA terminology, note that a "max" objective can be 

understood as an output (with the exception of “bad outputs”) whereas a "min" objective 

can be interpreted as an input or a bad output. There are several ways to deal with bad 

or undesirable outputs (see for example Scheel, 2001). In this application, we use an 

output-oriented DEA model where the criterion to be maximized (gross margin) is 

considered the only output and the criteria to be minimized are treated as inputs (see 

Doyle and Green, 1993, Steward, 1994, and Bouyssou, 1999). 

 

Using observed values of the crop distribution for every farmer, and the relevant 

technical coefficients (see equations [10] and [11]), we can compute the expected 

values for the objectives. Moreover, we introduced an artificial inefficiency component in 

the data so that we can test the ability of the model to measure efficiency by comparing 

the real (artificially introduced) efficiency rate with the estimated efficiency. We randomly 

generated 61 values iξ  ( i =1,…,61) from a normal distribution with mean 0.95 and 

standard error 0.10, and we multiplied the TGM of each farmer by the truncated version 

{ }0i imin ,ξ = ξ , so that we associated to each observation an efficiency score equal to 

the resulting (truncated) random number, with an average efficiency 0.913 and standard 

error 0.085. 

 

5.3. Results 

First, the estimated preference parameters using both the Sumpsi et al. methodology 

(with Euclidean metric) and the modified DEA approach are compared. Using the 

Sumpsi et al. approach, total gross margin (TGM ) turns out to have a weight, 1w , 

greater than 0.5 for approximately 82% of the farmers, while 9.01 >w  for some 12% of 

them. For risk (VAR ), the percentages are 18% and 0%, respectively. Total labour (TL ) 

appears as a relevant objective for only 16% of the sample. 

 

When estimating the weights (λ ) with the modified DEA method, we also obtain that 

TGM is the most important objective ( 5.01 >λ ) for 82% of farmers, whereas for 27% of 

the sample, the weight of this objective is 9.01 >λ . In the case of VAR , we observe that 
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18% of farmers attach a weight greater than 0.5. Finally, with respect to TL , none of 

farmers seem to regard total labour minimization as a relevant objective. 

 

Figures 5 and 6 show the cumulative distribution function of weights and Table 2 shows 

some descriptive statistics. We can see that the results from both approaches are very 

close. The correlation coefficient between weights using both methodologies is 98.5% 

for TGM  and 97.6% for VAR . With regard to TL , the weights are zero or very close to 

zero for most of the farmers with any of the methods. Table 2 also shows the average 

differences between the weights calculated by both methodologies: 0.05 for TGM , 0.03 

for VAR  and 0.03 for TL . We conclude that the elicitation of farmers’ preferences using 

Sumpsi et al. or the DEA modified version is virtually identical in this exercise. 

 

To test the accuracy of these estimates, the following validation exercise is performed: 

substituting the estimated weights (we use those obtained from modified DEA model 

although the results are virtually the same when using Sumpsi et al.) and the 

mathematical expressions of the attributes in [6], we simulated the behaviour of farmers 

by maximizing farmers’ utility subject to the constraints. Then, we compared the 

simulated values of both the decision variables and the objectives to those in the real 

observed situation, as it is usually done in validation exercises (see, for example, 

Qureshi et al., 1999). As shown in Table 3, the deviation between the average values for 

the objectives and the decision variables is small enough to permit us to regard the 

estimated model as a good approximation to the actual decision-making process. 

 

Table 4 displays the results on efficiency measures. The modified DEA model provides a 

set of efficiency scores with mean 0.95 and standard error 0.075, so the DMUs appear 

to be slightly more efficient with our method as compared to the artificial inefficiency 

values and to standard DEA scores. This small difference can be understood as the 

effect of using a linear approximation to the efficient frontier. Nevertheless, the scores 

from modified DEA model turn out to be highly correlated (0.83) with the real inefficiency 

values and to those generated with standard DEA (0.83), so they seem to provide an 

acceptable inefficiency measure with the additional advantage of being independent on 

the set of DMUs in the sample. 

 

6. Conclusions and further research 
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This paper reports a further link between DEA and MCDM, apart from those previously 

reported in the literature. Specifically, we have pointed out the parallelism between DEA 

and the MCDM methodology proposed by Sumpsi et al. (1997) to estimate the weights 

of different objectives for the DMs. Firstly, we have shown that the Sumpsi et al. method 

has a close connection with DEA in the sense that it can be seen as projecting every 

observation on a linear combination of efficient units. To guarantee that this is an 

accurate statement, we have proposed to construct the payoff matrix by solving an 

auxiliary lexicographic problem. 

 

This connection can be exploited in order to suggest a modified version of DEA in order 

to measure preference weights. The main idea is to use DEA including the elements of 

the payoff matrix as the only units in the reference set and interpret the λ  parameters 

as the weights of each criterion or throughput. The purpose of this technique is to 

account for the effect of technological (feasibility) constraints in the decision making 

process. This way a single technique is capable of providing estimates of preference 

parameters and an alternative efficiency measure with the property of being independent 

of the DMUs in the sample. 

 

We have illustrated the suggested approach with an application to agricultural 

economics. The results show that the weights provided by the Sumpsi et al. 

methodology and the modified DEA model appear to be virtually identical and to provide 

a good approximation to actual decision making of the individuals in the sample. 

Moreover, the inefficiency measures provided by the modified DEA method turn out to 

be very close to the real values artificially introduced in the data, and also very close to 

the results obtained from a standard DEA approach. 

 

Taking into account the information in Table 1, we can clarify the practical contribution of 

the method for each user. For MCDM users we have shown a new way to understand 

the method suggested by Sumpsi et al. (1997) in terms of efficiency: the projected point 

can be seen as a combination of efficient units. Moreover, we have proposed a modified 

procedure to calculate the payoff matrix to guarantee that all its elements are efficient. 

Finally, we propose to estimate the weights by making a radial projection rather than 

minimizing the distance. This procedure has the property of keeping the objectives ratio 

unchanged, which, in some situations, could provide a better approximation for the true 

preferences. For DEA users, we have provided a modified DEA procedure which allows 

calculating weights which, by construction, can be understood as a sensible 
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approximation to the preferences of the DMU’s. Moreover, we provide an approximate 

measure of efficiency that depends only on the information related to each DMU, being 

independent of the rest of the units in the sample. The main drawback of the modified 

DEA model for DEA users is the calculation of the payoff matrix which usually requires 

full information about the decision problem that is faced by the DMU’s. In a further 

research, we are working on a way to avoid this difficulty. 

 

References 

Allen R, Athanassopoulos A, Dyson R G, Thanassoulis E. Weight restrictions and value 

judgements in Data Envelopment Analysis: evolution, development and future 

directions. Annals of Operational Research 1997; 73; 13-34. 

Amador F, Sumpsi J M, Romero C. A non-interactive methodology to assess farmers’ 

utility functions: an application to large farms in Andalusia, Spain. European 

Review of Agricultural Economics 1998; 25; 92-109. 

Andersen P, Petersen NC. A procedure for ranking efficient units in DEA. Management 

Science 1993; 39; 1261-1264. 

Arriaza M, Gómez-Limón J A, Upton M. Local water markets for irrigation in Southern 

Spain: A Multicriteria approach. Australian Journal of Agricultural and Resource 

Economics 2002; 46; 21-43. 

Ballestero E, Romero C. Multiple criteria decision making and its applications to 

economic problems. Kluwer Academic Publishers: Boston; 1998. 

Banker R D, Charnes A, Cooper W W. Some models for estimating technical and scale 

inefficiencies in DEA. Management Science 1984; 30; 1078-1092. 

Bazzani G M. An integrated decision support system for irrigation and water policy 

design: DSIRR. Environmental Modelling Software 2005; 20; 153-163. 

Belton V, Vickers S. Demystifying DEA. A Visual Interactive Approach Based on Multiple 

Criteria Analysis. Journal of  Operational Research Society 1993; 44; 883-896. 

Berbel J, Rodríguez A. An MCDM approach to production analysis: An application to 

irrigated farms in Southern Spain. European Journal of Operational Research 

1998; 107; 108-118. 

Bouyssou D. Using DEA as a tool for MCDM: some remarks. Journal of Operational 

Research Society 1999; 50; 974-978. 

Cary J W, Holmes W E. Relationships among farmers’ goals and farm adjustment 

strategies: some empirics of a multidimensional approach. Australian Journal of 

Agricultural Economics 1982; 26; 114-130. 

Charnes A, Cooper W W, Golany B, Seiford L, Stutz J. Foundations of DEA for Pareto-



 
 

 
 
 

 
http://www.upo.es/econ 

 21

Koopmans efficient empirical production functions. Journal of Econometrics 

1985; 30; 91-107. 

Charnes A, Cooper W W and Rhodes E (1978). Measuring the efficiency of decision 

making units. European Journal of Operational Research 2: 429-444. 

Cooper W W, Seiford L M, Tone K. Data Envelopment Analysis. A comprehensive text 

with models, applications, references and DEA-Solver Software. Kluwer 

Academic Publishers: Boston; 2000. 

Doyle J, Green R. Data Envelopment Analysis and multiple criteria decision making. 

Omega 1993; 21; 713-715. 

Edwards W. Use of multiattribute utility measurement for social decision making. In: Bell 

DE, Keeney RL and Raiffa H (Eds) Decisions. John Wiley & Sons: Chichester; 

1977. 

Farmer P C. Testing the robustness of multiattribute utility theory in an applied setting. 

Decision Sciences 1987; 18; 178-193. 

Francisco S R, Ali M. Resource allocation tradeoffs in Manila’s peri-urban vegetable 

production systems: An application of multiple objective programming. 

Agricultural Systems 2006;  87; 147–168. 

Gasson, R. Goals and values of farmers. Journal of Agricultural Economics 1973; 24; 

521-537. 

Gómez-Limón J A, Arriaza M, Riesgo L. A MCDM analysis of agricultural risk aversion. 

European Journal of Operational Research 2003; 151; 569-585. 

Gómez-Limón J A, Martínez Y. Multi-criteria modelling of irrigation water market at basin 

level: A Spanish case study. European Journal of Operational Research 2006; 

173; 313-336. 

Gómez-Limón J A, Berbel J. Multicriteria analysis of derived water demand functions: a 

Spanish case study. Agricultural Systems 2000; 63(1); 49-72. 

Gómez-Limón J A and Riesgo L. Water pricing: Analysis of differential impacts on 

heterogeneous farmers. Water Resources Research 2004; 40, Art. No. W07S05. 

Hardaker J B, Huirne R B M, Anderson J R. Coping with risk in agriculture. CAB 

International: Oxon, UK; 1997. 

Herath H M G. An empirical evaluation of multiattribute utility theory in peasant 

agriculture. Oxford Agrarian Studies 1981; 10; 240-254. 

Huirne R B M, Hardaker J B. A multi-attribute model to optimize sow replacement 

decisions. European Review of Agricultural Economics 1998; 25; 488-505. 

Joro T, Korhonen P, Wallenius J. Structural Comparison of Data Envelopment Analysis 

and Multiple Objective Linear Programming. Management Science 1998; 44; 



 
 

 
 
 

 
http://www.upo.es/econ 

 22

962-970.  

Just R E. An investigation of the importance of risk in farmers’ decisions. American 

Journal of Agricultural Economics 1974; 56; 14-25. 

Keeney R L, Raiffa H. Decisions with Multiple Objectives: Preferences and Value Trade 

Offs. John Wiley & Sons: New York;1976. 

Markowitz H. Portfolio selection. Journal of Finance 1952; 7; 77-91. 

Mas-Colell A, Whinston W D, Green J R. Microeconomic Theory. Oxford University 

Press: New York; 1995. 

Qureshi M E, Harrison S R, Wegener M K. Validation of multicriteria analysis models. 

Agricultural Systems 1999; 62; 105-116. 

Rosen D, Schaffnit C, Paradi C J. Marginal Rates and two dimensional level curves in 

DEA. Journal of Productivity Analysis 1998; 9; 205-238. 

Scheel H. Undesirable Outputs in Efficiency Valuations. European Journal of 

Operational Research 2001; 132; 400-410. 

Smith B, Capstick D F. Establishing priorities among multiple management goals. 

Southern Journal of Agricultural Economics 1976; 2; 37-43. 

Solano C, León H, Pérez E, Herrero M. Characterising objective profiles of Costa Rican 

dairy farmers. Agricultural Systems 2001; 67; 153-179. 

Steward T J. Data Envelopment Analysis and multiple criteria decision making: a 

response. Omega 1994; 22; 205-206. 

Steward T J. Relationships between Data Envelopment Analysis and Multicriteria 

Decision Analysis. Journal of Operational Research Society 1996; 47; 654-665. 

Sumpsi J M, Amador F, Romero C. On Farmers' Objectives: A Multi-Criteria Approach. 

European Journal of Operational Research 1997; 96; 64-71. 

Tone K. A Comparative Study on AHP and DEA. International Journal of Policy 

Information 1989; 13; 57-63. 

Tone K. A Consensus Making Method for Group Decisions. Proposals at the Committee 

Meeting, National Land Agency: Japan; 1999. 

Tone K. A slacks-based measure of efficiency in data envelopment analysis. European 

Journal of Operational Research 2001; 130; 498-509. 

Willock J, Deary I J, Edwards-Jones G, Gibson G J, McGregor M J, Sutherland A, Dent 

J B, Morgan O, Grieve R. The role of attitudes and objectives in farmer decision 

making: business and environmentally-oriented behaviour in Scotland. Journal of 

Agricultural Economics 1999; 50; 286-303. 

Young D L. Risk preferences of agricultural producers: their use in extension and 

research. American Journal of Agricultural Economics 1979; 61; 1063-1070. 



 
 

 
 
 

 
http://www.upo.es/econ 

 23

FIGURES 

 

 

Figure 1. Output oriented BCC model and projection on the frontier 

 

 

 

 

 

 

 

 

Figure 2. Example of feasible set 
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Figure 3. Geometric interpretation of problem [4] 

 

 

Figure 4. Comparing Sumpsi et al., DEA and modified DEA models 
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Figure 5. Probability distributions of the weights (wi) Sumpsi et al. methodology 
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Figure 6. Probability distributions of the weights (λi) using modified DEA model  
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TABLES 

 

Table 1. Basic features of methods 

Required information Provided information  
 

Observed 
point 

Payoff 
matrix Sample Preference 

weights Efficiency 

 

Projection 
criterion 

Sumpsi  X X  X  Min distance 

DEA X  X  X Radial 

M. DEA X X  X X Radial 

 

 

 

Table 2. Statistical data about the Sumpsi et al. and modified DEA model weights 

 Weights Mean Variance Maximum Minimum Median Mode 

TGM 0.681 0.027 0.928 0.328 0.689 0.928 

VAR 0.294 0.037 0.672 0 0.311 0 
Sumpsi et 
al. 
approach 

TL 0.025 0.004 0.268 0 0 0 

TGM 0.729 0.042 1 0.321 0.709 1 

VAR 0.271 0.042 0.679 0 0.291 0 
Modified 
DEA 
approach TL 0 0 0 0 0 0 

TGM 0.051 

VAR 0.034 
Mean of the absolute deviation between the weights obtained by both 
methodologies 

TL 0.025 
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Table 3. Validation using weights estimated by modified DEA method 

OBJECTIVES 
Average observed  

Values  

Average predicted  

Values  
Average 
deviation 

Deviation 
(%) 

TGM (€/ha⋅year) 1,170.90 1,068.94 169.21 12.60

VAR (€2/ha⋅year) 36,302.01 34,511.56 8,705.02 27.85

TL (hours/ha⋅year) 35.77 31,77 4.99 15.73

Decision  

Variables (ha) 

Average observed 

 crop mix 

Average predicted  

crop mix 
Deviation (ha) 

Wheat  6.30 16.25 13.22 

Maize  82.59 69.51 15.54 

Beans  7.08 8.55 7.47 

Set-aside 4.18 5.70 6.15 

 

 

Table 4. Comparing standard DEA and modified DEA model to measure 

efficiency 

 iξ  (truncated) 
perturbation 

Efficiency measure 
Standard DEA 

Efficiency measure 
Modified DEA 

Mean 0.913 0.907 0.950 
Standard Error 0.085 0.083 0.075 

Correlation with iξ  1.000 0.974 0.827 
Correlation with (standard) 

DEA 0.974 1.000 0.832 

 

 

 


