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1 Introduction

Debate among economists and policy makers on the existence of convergence
across countries and regions remains on the table. On the basis of the text-
book Solow model, a huge number of empirical studies have been carried out to
elucidate not only whether economic convergence exists but also which factors
should be identified as engines of growth. A relevant part of this literature is
motivated by the following questions: Will disparities in income per capita dis-
appear as time goes by? What is the speed at which this convergence process
takes place? Can governments follow adequate policies to increase growth rates
or, by contrast, are economies doomed to keep their positions in comparative
rankings?

The standard approach in growth empirics is running cross-section regres-
sions & la Barro. Barro and Sala-i-Martin (1992) and Mankiw et al. (1992)
detect convergence in several samples and estimate a speed of convergence of
about 2% a year. However, an important caveat has to be kept in mind when
assessing such results and those coming from subsequent literature: the analysis
is based on the assumption that steady states and speeds of convergence are the
same for all economies involved in the sample. Indeed, a seminal paper by Islam
(1995) showed the existence of a fixed effect bias arising from regressions that do
not control for heterogeneity across units. The main consequence of allowing for
such a degree of heterogeneity is a substantial increase in the convergence rates,
which achieve values of about 9%. This finding has been confirmed by other
papers such as Canova and Marcet (1995), Caselli et al. (1996) and Maddala
and Wu (2000).

On the other hand, De la Fuente (1998) has warned against an excessive
confidence in estimates stemming from panel data methods. His argument is
based on the difficulty of distinguishing between short-term fluctuations and
long-term growth dynamics when panel data are involved. He points out that
the use of (relatively) high frequency data is proved to generate misleadingly
high estimates of the speed of convergence as a result of a short-term noise in
the series.

In this article we follow the works by Canova and Marcet (1995), Maddala
and Wu (2000) and Canova (2004), who applied Bayesian techniques to the
analysis of the persistence in inequalities among European regions and OECD
countries. Particularly, we borrow from Canova and Marcet (1995) the idea
of exchangeability on some key parameters of the model. In turn, we slightly
extend their Bayesian technique in three directions. Firstly, the speeds of con-
vergence will be truncated on the unit circle, that is, the equations will be forced
to revert to a long run level. Secondly, we assume that the variance matrix of
the residuals is non-diagonal, due to the presence of cross correlations among the
equations of the system. Canova and Marcet (1995) instead assyme this matrix
to be diagonal and estimate it using maximum likelihood principles. Thirdly,
once the Bayes rule is applied, we will use the Gibbs sampling method to obtain
a numerical approximation of the marginal distributions of the parameters.

By extending the Bayesian techniques proposed by Canova and Marcet
(1995), one of the main aims of the paper is to investigate the persistence in
inequalities in the Spanish regions over the period 1980-2002. This covers the
eighties and nineties which are the years in which a sudden stop in regional con-
vergence has been detected in Spain (see, for instance, Lopez-Bazo et al., 1999).



This contrasts with the extended claim that convergence rates increase during
the expansionary stages of the cycle. Along these lines, this paper provides
additional evidence on this issue as our sample includes one of the lengthiest
expansionary period in decades.

Two main questions are taken on board in our analysis. Firstly, we check
whether a convergence analysis for the Spanish regions using standard cross-
section regressions appears to be contaminated by the fixed effects bias and, in
a complementary manner, whether panel data estimates report excessively high
speeds of convergence. In this regard, we study how the speed of convergence
varies once we gradually alter the precision of the prior distribution of the
parameters. At this point, we extend the contribution by Shioji (2004) by
using his forecasting exercise in order to select the best prior assumptions on
the distribution of relevant parameters. Secondly, we investigate the issue of
persistence in inequalities across the Spanish regions and its sensitivity to the a
priori econometric specification used. As a by-product, this will provide some
insight on whether convergence is conditional or absolute.

Our main findings are as follows. Firstly, we corroborate previous findings by
Canova and Marcet (1995) in the sense that the cross-section approach renders a
biased estimate of the speed of convergence. In that regard, when steady states
and speed of convergence parameters are not constrained to be common across
regions, we find a much higher speed of convergence. Secondly, we strongly
reject the hypothesis of unconditional convergence since regions are found to be
converging to their own steady states rather than to a common steady state.
Thirdly, we consistently find evidence of persistence in inequalities across the
Spanish regions, showing that income differences have hardly narrowed down
over the period under analysis. Thus initial conditions appear to be important in
determining the relative position in the distribution of estimated steady states.
These latter findings should be interpreted with caution since as stressed by De
la Fuente (1998), panel data methods may show high sensitivity in the estimation
of steady states depending on the length of the sample.

The rest of the paper is organized as follows. Section 2 describes the econo-
metric methodology employed in the study. Section 3 presents a brief description
of the data and the results of the analysis. A direct comparison of our approach
with that of Canova and Marcet (1995) is also presented. Section 4 deals with
the issue of persistence in inequalities and Section 5 presents the Montecarlo
experiment used to choose among different prior distributions. Finally, Section
6 puts forward some policy implications and concludes.

2 Econometric method

This section presents the Bayesian tools used in this paper. The model to
estimate is an N—equation Gaussian panel with an AR (1) structure. Let y,
denote (the log of) per capita income of region n (for n = 1,...N) at time ¢
relative to (the log of) the mean across regions in ¢, i.e.

N
1
Ynt = log (Ynt) — log (N nzl Ynt) ,



where Y,,; represents per capita income of region n at time ¢. The observation
Ynt is then generated by

Ynt = O + PpYni—1 + Unt, (1)

for t = 1,...T. For equation n, stationarity requires p, € (—1,1), then mean
reversion gives an equilibrium or steady state value for equation n equal to
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SSn - q

(2)
In a growth context, v, =1 — |p,,| is interpreted as the speed of convergence of
region n to the relative steady-state. As p,, gets closer to the limits of the unit
circle, the degree of mean reversion decreases. If p,, is equal to 0, any deviation
from the equilibrium value is automatically corrected, given that the data gen-
erating process (1) is white noise. Accordingly, the term S5, is interpreted as
the difference of the n—th region’s steady state from the national steady state.
Hence, a negative value for S.S,, means that the n—th region’s steady state is
below average, thereby implying that region n grows at a lower rate along the
balanced growth path than the average does.

At any time ¢, residuals across equations are assumed to be serially uncorre-
lated and are distributed according to u; = (u1y, ..., un¢) ~ i.i.d.Ny[0,%], for
all ¢, where X : N x N, is non-diagonal.

e Assumption 1: The data y, = (Yn1,..-,Yn1)’ are generated by equation
(1), forn=1,...N.

e Assumption 2: The value of p, lies inside the unit circle, i.e., p, €
(—=1,1), for n = 1,...N. Formally, p,, € S (p), for all n =1,...N, where

S(p):{pn: |1_pnz|7é07 Vz € [_1’1]} (3)

Given these conditions and assumptions, the system of equations (1) can be
reduced to the following expression

y=Xp+u, (4)

with u ~ Ny1 (OnT, 2 ® I1), and matrices in (4) have the form: y = (y, ...yN)/ :
NT x 1,
X =[(Iy®17),diag (y1,-1,---yn,—1)] : NT x 2N, (5)

with y,, _1 denoting the one-period lagged matrix for region n, 7' x 1. Matrix
diag (y1,—1, ---yn,—1) is block diagonal, NT x N, and 5 = (a1, ...an, p1, on)
2N x 1. This implies that the likelihood function is y|5,X = p(y|5,X2) =
Nyt [XB,E ®IT].

2.1 Priors

Two blocks of parameters are to be estimated,  and Y. We borrow from Canova
and Marcet (1995) the idea of exchangeability for 3, with a slight variation,
namely, all the slopes p,, will be truncated into the stationarity set S (p) defined
in (3). In addition, we differ from Canova and Marcet (1995) in the prior set for
Y. In their work, a diagonal matrix for ¥ = s27 is proposed, where the scalar s>



is derived from maximum likelihood estimation. In turn, the prior probability
for the estimated s? is assumed to be 1. From a Bayesian perspective, this
implies that Canova and Marcet (1995) pose an absolute confidence that the
ML estimate of s? is the true value. This allows to directly extract the relevant
posterior distribution for /.

In our case, we will not assume a diagonal prior on ¥ nor employ maximum
likelihood techniques for the choice of its value. Instead, we propose a Wishart
distribution as prior for X, and then exploit the Bayes rule to compute the poste-
rior for 8 and 3. These posterior distributions, however, have the uncomfortable
form that 3 is conditional on ¥ and, at the same time, that the distribution of %
appears conditional on 8. In an attempt to overcome this problem, we will use a
Montecarlo integration technique, i.e. the Gibbs sampling method, to produce
a numerical approximation of the marginal (not conditional) distributions of /3
and Y. We shall now explain the priors.

[B]: Parameters. Priors are said to be exchangeable if equations are sharing
a common value of parameters, regardless the ordinality of equations. In our
model (1), if equation n is assumed to have the same intercept and slope than
some other given equation m, no matter if n < m, then under normality one
may write

Qp ‘a'm ~ N [Odm, ] vn 7é m, (6)
Pl ~ N [pp,02]. ¥n#m. (7)

Expression (6) says that when equation m is given, equation n is expected to
have the same intercept as m, with a precision represented by 1/02, i.e. the
inverted prior variance. As long as o2 approaches 0, an econometrician reveals
to feel extremely confident about such a belief, the precision tends to zero, and
intercepts are fully exchangeable between equations n and m in the system. The
opposite happens when o2 tends to infinity. The prior for the slope parameter
in (7) has an identical interpretation.

Canova and Marcet (1995) show that this is equivalent to imposing a prior
on the difference of these parameters (see their appendix 3), that is

Op —Qy ~ N [0,0’i] , Vn # m, (8)
Pn = Pm N [070-/2)] . Vn 7& m. (9)

where 02 and o2 are assumed to be given.
For the 2N f—parameters in the system, we shall assume a Gaussian prior,
truncated to the set S (p) in (3)

(I ® R) B~ Nn—1)2 [0(v—1)2, (D@ D)] - S (p), (10)
where R: (N — 1) x N, is a difference matrix given by
R(n,n)
R(n,n —j)
R(n,n+j)

= —R(n,n+1)=1,
0, for any 57 > 1.

= 0, for any j > 2.

The variance matrix is D ® €,

2
D:[% 02};(2><2),
Tp



with Q: (N —1) x (N —1) and

Q(n’n) = 17
Qn,n+1) = Qn+1,n)=-1/2,
Qn,m+j7) = Q(n,n—j)=0, for any j > 2.

Matrix 2 is so designed to prevent parameters from having variances that in-
crease with the order of equations (see appendix 3 of Canova and Marcet (1995),
where they show that matrix  makes the order totally neutral).
[X]: Cross correlations. A Wishart distribution will be assumed for the prior
of 71,
S~ Wy [vo, So) - (11)

vg and Sy are assumed to be known. If vg = 0 and Sal = Onx N, One imposes a
non-informative prior for !, where the posterior distributions will be led by
the information content in the data set.

e Assumption 3: The prior distribution for the whole set of hyper para-
meters is given by

[8,%] = Niv-1)2 [0v—1)2, (D @ Q)] - S (p) x W [vo, So] -

2.2 Posterior distributions and the Gibbs sampling

Under assumptions 1, 2 and 3,' the posterior for 3, given ¥ and the data set
information, is 3 |y, X ~ Nay [ﬁl,Bfl] - S (p), where

By = (DT'@RQ'R)+X' (7' wlIr) X, (12)
B, = BI'X'(2'elr)y. (13)

The posterior for ¥, given 8 and the data set information, is X7 1|y, ~
-1

Wi [vo + T, S1], where S1 = [Sg' 4+ S,] , with S, = [s%,] : N x N for

n,m=1,..N, and

SvuL,m = (Yn — an — Pnyn,—l)/ (Ym — Om — PmYm,—1)

Notice that B|y,¥ and X~!|ly, 3 are conditional posterior distributions,
that is, they both require some given conditional value from the other block.
However, as we are rather concerned with the joint posterior distributions of
£ and X, these unconditional distributions can be obtained through the Gibbs
sampling method. Here we provide a very basic description of this numerical
algorithm.? Consider a sequence of steps labeled as ¢ = 1,...I. Then, for a given
collection of initial conditions for {3, X}, which we denote Y0y, set j =1 and
start the process as follows:

1. Draw ﬁ(j) from g ’y,Z(j_l).

2. Draw X710 from -1 |y, 3.

IProof is available from the authors upon request.
2For a detailed description of this algorithm, see Casella and George (1992).



3. Cally;) = {ﬁ(j), E(j)}, replace the step-index by j+1 < J, and go again
to step 1 in the process. Otherwise, for j = J + 1, stop the sampling.

This process should be iterated for J large, say J = 15,000, and after re-
moving a “reasonable” number of initial draws on 1 ;, say Jo = 1,000, the rest
of draws can be used for inference and calculation of relevant moments, which
are computed as follows:

5 - 1 <
61 - J_JO j:.z](;rlﬂ ) (14)
~_ 1 J G % G /
B =g X (89 = B,) (89 -B,) . (15)
J

~ 1 .
_ )
2= > x0). (16)

J
0 j=Jo+1

By using the weak version of the law of large numbers, for J — oo, these mo-
ments converge to the moments of the relevant marginal and joint distributions.

3 Results

3.1 Data

Our data set consists of per capita output series for the 17 Spanish regions
over the period 1980-2002. More specifically, we use PPP per inhabitant gross
domestic product at NUTS level 2 which is retrieved from the Regio data set
of Eurostat. As it is well-known, the use of data defined at NUTS-2 level is
preferable to a more aggregated definition as implied by NUTS-1 level data,
which usually define broad regions comprising territories that are very different
in terms of economic and socio-cultural structures. It is important to note that
there has been a change in the base in 1995 and data are provided from 1980
to 1994 following ESAT9, while data from 1995 onwards follows ESA95. Since
that change may give rise to a break in the series, we have extended backwards
the ESA95 series from 1994 to 1980 using the growth rates of per capita GDP
calculated with the ESAT9 series.

3.2 A helicopter tour

If a non-informative prior for ¥ is assumed (i.e. Sy ! = 0), the only priors that
remain to be chosen is the pair (ai, 02p). Assuming that 02 = ai = 0, we force
the equations in the panel to share the same intercept and slope, that is, both
parameters are fully exchangeable across equations. The system is then viewed
as a single equation. If one sets Uf, = 0 together with o2 increasing, there is
only full exchangeability for the p! s across equations. As long as prior variances
in D = diag (Ji, oi) have values different from zero, both intercepts and slopes
will start differing. Under the non-informative prior that (0,21 — 00, 0?7 — oo),
whatever resemblance among the o’s and the p’s across equations is a dictum
from the data.



Figure 1 represents the positive orthant for the (O’ o ) hyper-parameter
space. The choice of (O’ a?)) is crucial for the estimation of the speed of con-
vergence and steady state parameters. Under our Bayesian framework, three
polar standard approaches can be written in terms of some specific priors: the
cross-section (CS), the least square dummy variables (LSDV) and the seemingly
unrelated (SUR) case. Empirical studies on growth and convergence usually
adopt at least one of these three corner approaches. When both (02,07) ap-
proach 0, the system tends to be associated with the CS case, where all the
equations in the system are forced to have the same intercept and the same
speed of Convergence When the speed is set close to zero, thereby increasing
the value 02 one gradually moves from CS to LSDV (i.e., 02 — 00 and O’ =0).
Assuming a value of 02 tending to infinity, as long as the pl"lOI‘ 0'/2) is enlarged
one moves from LSDV to the SUR case where (02 — 00, O' — oo)

A grid of distributions will be presented where values for (02 02) are picked
within an interval that goes from 1076 up to 10. The goal is to analyze how
robust the estimate set 8 is along this tour.

Figure 1 about here

3.3 Speed of convergence to the steady states

In tables 1-3 we present the estimates of the speed of convergence for different
models characterized by a broad range of values of 02 and o7. In the three
panels of table 1, we show the estimates for the three corner cases: CS, LSDV
and SUR. The first of them restricts both the a, and p, parameters to be
the same across regions as in the cross-section approach. Not surprisingly, the
estimate of a common speed of convergence towards a common steady state
appears very low (lower than 1%, nearly a unit root).

We then allow the intercepts to vary across regions (case where o2 = 10°
and Up = 1079) as in those studies employing a fixed effects or LSDV estlrnator
(see Islam (1995) and Caselli et al. (1996)). This renders a much higher speed
of convergence to region-specific steady states as held by the conditional con-
vergence hypothesis. The speed of convergence appears of the order of 40% a
year, which seems to be an extraordinarily high value as compared to previous
studies employing the LSDV estimator that rendered a speed not higher than
20%. In this regard, three issues are noteworthy. Firstly, as noted by Canova
and Marcet (1995), when we do not appropriately account for the heterogeneity
of intercepts across regions, the estimates of p are overstated (fixed effects bias),
since the estimate of the parameter is pooled towards the cross-sectional mean,
thus yielding low speeds of convergence. Secondly, we have found that the esti-
mate of p is very sensitive to the number of iterations employed in estimating
the variance-covariance matrix.> In fact, when the FGLS estimator with only
two iterations is used the value of p substantially increases, and consequently
a convergence rate close to 20% is found. And thirdly, these extraordinarily
high speeds of convergence may be related to the issue pointed out by De la
Fuente (1998) concerning the influence of short-term noise on long-term growth
dynamics.

Once we lift any restriction on the «,, and p,, parameters (SUR case where
02 = a% = 10°), we obtain an average speed of convergence of around 35% which

3Results are available from the authors upon request.



is a bit higher than the 29% estimated by Lee et al. (1997) and substantially
higher than the 23% estimated by Canova and Marcet (1995) for the European
regions. Our estimates range from a low convergence speed of around 12% for
Castile-La Mancha and Madrid to an extremely high value of almost 90% for
Andalusia. This thus indicates that Andalusia adjusts almost instantaneously
to any deviation of current income levels from steady state values. If we cluster
the regions on the basis of their speed of convergence towards their steady states,
we find that Castile-La Mancha, Castile-Leon, Madrid and Murcia appear to
converge at a speed lower than 20% per annum. Regions with a convergence
speed in the range of 20 — 40% are Asturias, Baleares, Cantabria, Catalonia,
Canary Islands, Extremadura, La Rioja and Valencia. The Basque Country,
Aragon and Galicia appear to converge at a rate between 40 and 60%, and
Navarra and Andalusia converge at a rate above 60%.

In table 2, we further explore how the speed of convergence behaves in a
range of intermediate cases between the cross-section and the LSDV cases. We
do that by setting Uf, = 107% and gradually increasing 02 from 107° to 1. We
observe that the speed of convergence gradually increases from a low 0.5% when
02 =107° to 40% when o2 = 1, which is pretty much similar to the case when
02 = 105. In table 3 we explore the intermediate cases between the LSDV and
the SUR approach by setting o2 = 10°, and gradually increasing the value of 0/2,
from 1075 to 1. We find that the average speed of convergence takes on a value
of 40% when U% = 10~ and decreases to about 32% when Jf) =10"% =102,
and again increasing to about 41% when 0;2) =1.

Taken as a whole, we find evidence of the fixed effect bias associated with the
cross-section approach, which tends to pull the estimated speed of convergence
to a very low value. Once we allow the intercepts and slope coefficients to
vary, we find overwhelming evidence that the average speed of adjustment is
much higher than that previously found in the literature based on cross-section
regressions. An average speed of convergence of around 35% a year implies that
regions quickly adjust to any shock leading current income levels to deviate from
their expected steady state values. It could also be the case that short-term
cyclical fluctuations lead to excessively high speed of convergence estimates.

Tables 1, 2 and 3 about here

3.4 A comparison of strategies

In this subsection we present an evaluation on the gains from using our bayesian
methodology with respect to that introduced by Canova and Marcet (1995). In
their work, the posterior mean has the standard form

fou = (D@ ROTR) + X' (2 @ 1) X] X (8T @ fr)y,  (7)

where the matrix ¥ is assumed to be diagonal, ¥ = s2I. The remaining matrices
D, R and (), are defined as before. Notice that this posterior mean is now a
function of the scalar s2, 3oy, = B (32). The log-likelihood function can be
expressed as

logl (s%) = —g log (27s?) — %u (52)/u (s%), (18)
with u (32) = y—XBoyuy=y—X0B (52) .



Suppose that s? is selected so as to maximize function log ¢ (52) in (18), and in
turn the prior probability for the estimated s3,; is assumed to be 1,

s3. = argmaxlogf(sQ),
prior(sﬁ/[L) = 1

Then, (17) takes the form of an unconditional exact posterior mean.

Table 4 reports calculations according to this strategy for the same stream
of priors used in previous subsections. Thus, the central panel of the table
reports the estimate of s2, as well as the log-likelihood and the speed of con-
vergence as averaged accross the regions. Provided that these speeds coincide
with those reported by Canova and Marcet (1995), we shall be able to repro-
duce their results. Yet, the rightmost panel reports the log-likelihood according
to our Gibbs-bayesian strategy as well as the speed of convergence, collected
in previous tables. This log-likelihood has been computed using the posterior
unconditional means computed by the Gibbs sampler (see expressions (14) to
(16)). As this log-likelihood is always higher than that of Canova and Marcet,
we believe that this serves to justify that the strategy proposed in this paper
presents an improvement of this method in terms of likelihood. Provided that
twice this difference is distributed as x? with d.f. = N (N +1) /2 = 153, the
null hypothesis that matrix ¥ is of the form s? x I, is strongly rejected.* In-
terestingly, note also that there are sensible differences in the estimates of the
speeds of convergence, mainly when we move away from the region of CS-alike
priors. Indeed, within the region of LSDV priors, our estimates of the speed of
convergence double those estimated according to Canova and Marcet strategy
(20% versus 40%)).

Table 4 about here

4 Persistence in inequalities

Table 5 and Figure 2 provide some descriptive evidence that will be helpful
in supporting one of our arguments, i.e. the persistence in inequalities in the
Spanish regions. Two different sources of Spanish relative per capita income are
confronted: that of BBVA for 1955 and 1979 (a widely used biannual data source
of Spanish income) versus that of Eurostat (actually used in this paper) for 1980
and 2002. Indeed, as was pointed out in the Introduction, we verify that an
important stop in the convergence process took place in the late seventies. While
the standard deviation of relative income per capita of 1955 achieved a value
of 0.3690, this statistic takes a value of around 0.2209 in 1979, and it remains
at this level over the next two decades (the average value is o, = 0.2127).
This stability exhibited by the standard deviation leads to the statement that
inequalities may have remained unaltered throughout 1980-2002.

In addition, in a more rigurous attempt to establish whether or not there
is persistence in inequalities across the Spanish regions, we examine whether
region-specific steady states are determined by initial conditions. For that pur-
pose, we estimate simple OLS regressions of the type: S5, = a+ byn, 1980 + &,

4Results not shown here. The likelihood in (18) assumes N (N + 1) /2 = 153 restrictions
on X (call it log¢gr). In our log-likelihood X is instead unrestricted (call it log ¢y ). Hence

2 (logly — loglr) ~ x%53.



where S5, is the estimated steady state defined in (2) and yy,, 1980 stands for
the log of relative per capita output at the beginning of the period. We are
particularly interested in the size of b, since the closer its value to 1, the more
evidence there is for persistence in inequalities.’

Table 6 shows the results. The first specification uses as dependent variable
the steady states estimated for the case of a common value for the a/,s and p! s
across regions. This renders a statistically insignificant estimate of b of around
0.38, which implies that regional differences in income levels will not persist
forever and eventually disappear. However, the fit of the CS specification is
quite poor with an R? below 10%. As we move from the cross-section approach
towards the LSDV case, the size of b increases up to a statistically significant
value of about 0.95 which implies almost perfect persistence in inequalities across
the Spanish regions. The fit of the regressions is very good with R*s of almost
90%. 1If we further let the slope coefficient vary across regions, the average
estimate of b slightly falls to 0.94 but remains significant at the 1% level and
the R? remains about 85%. This again indicates the existence of almost perfect
persistence in inequalities, with only a small reduction in income inequality
occurring in the limit.

These findings should be interpreted with some caution, since as pointed out
by De la Fuente (1998), the analysis of persistence in inqualities is problematic
under a panel data framework. More specifically, De la Fuente (1998) finds that
the estimated steady-states are either too erratic or tend to replicate the end-
of-sample values of the income per capita series. Our results are consistent with
this latter possibility, since the standard deviation of relative income per capita
in 2002 is about 0.2059, while the same statistic computed for the estimated
steady states under the assumption of a fixed effect model yields a value of
0.2100.

This fact leads to the reconsideration of the use of panel data estimates as
a way to test the existence of conditional or unconditional convergence, since
LSDV estimates do not seem to be very reliable to ground absolute convergence
analyses due to the biased estimate of the steady-states. By contrast, other
estimators such as the usual OLS may be more appropriate for dealing with
this issue. So in line with De la Fuente (1998), we cannot totally rule out the
possibility that our evidence of the persistence of regional disparities is not due
to the use of panel data estimation methods.

Tables 5 and 6 and Figure 2 about here

5 Too many priors?

Following partially Shioji (2004), we have carried out a simple simulation ex-
ercise in order to select which prior distribution gets a better fit to the actual
data generating process. The data point of BBVA regional per capita income for
1955 is considered to be a referential initial point. We use this reference point in
order to check which of the available fifteen models defined for a different set of
priors (as shown in tables 1, 2 and 3) displays the best accuracy for predicting

5A value of b equal to 1 would indicate that the position of the distribution of regional
steady states has remained unchanged, and those regions beginning with a low steady state
relative to national levels will not improve their relative position.
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the first observed period in the Eurostat series, 1980. For each prior, we use the
posterior marginal distributions (14), (15) and (16) to generate random draws of

1980 }N:”

{an, Pr> 0/ (1= pn) s [Unt]; 1056 . This step is repeated 15000 times, for

~(h,j) _ (A(m N=17

n=

any of which we calculate projections for 1980 yj955 = (¥, 1980 , where
e

the superindex (h, ) stands for the particular iteration (for h = 1,...15000) and
(+,4) labels the model (j = 1,...15). Then, we calculate the following distance

to the observations in 1980, Y1980 = (¥n,1980),,_;

pomworydn o )
a0, _ L (A 9y ) )
(4, y1980) 15000 2 [171; Yn, 1980 — Yn,1980

This represents the root of the mean square errors. Model (j) is said to better
fit y1980 than model (5') if d (4, y1080) < d(j',91980), that is, if the projections
from model (j) are closer to 1980 than the projections from (j’). In a similar
manner we also calculate a measure of the distance of the projections to the
steady states, d (j,55).

Table 7 shows that the prior distribution providing the best matching is that
of 02 = 10° and af, = 107%, that is, a distribution based on a prior close to
the underlying assumption in LSDV estimation. It corresponds to a mean value
for p of 0,5394, that is, a speed of convergence of 46,06%. Again, due to the
underlying heterogeneous value of « across regions, this high speed has to be
interpreted as the adjustment of regional economies to their own steady states.

In terms of d(j,y19s0), it is also interesting to show how the matching ca-
pability decreases by a higher extent when the model specification is closer to
the assumptions of cross-section analysis than when a more flexible probability
distribution for the relevant parameters is considered. Note that the distance d
is about three times higher under a cross-section approach than with LSDV esti-
mates. In line with previous contributions and the results presented above, this
is a clear argument in favor of taking into account a high degree of heterogeneity
especially in terms of steady states.

When comparing columns for d (4, y19s0) and d (4, SS), a lower value for the
latter is found provided one goes from CS to SUR through LSDV. Shioji (2004)
uses US state output data and also concludes that LSDV projections are closer
to steady states than to actual observations. He thus interprets this result as
a symptom that LSDV tend to overestimate the speed of convergence. In our
view, this is a natural consequence of using the high speed convergence model
as implied by the LSDV assumptions, i.e. the degree of mean reversion is so
high that regions need no more than two years to correct deviations from their
long run positions. So, in 25 years, from 1955 up to 1980, regions may have
crossed over their steady state lines for about 10 to 12 times. However, a 2%
speed would require 35 years for a half of the initial gap to vanish.’

Table 7 about here

6 Anyway, the results show in the column heading by d (4, SS) must be interpreted with
caution, as long as the estimated steady states might be biased (De la Fuente, 1998).
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6 Concluding remarks

In this article we have applied bayesian techniques to the analysis of the persis-
tence in inequalities among the Spanish regions over the period 1980-2002. As
mentioned above, our methodology tries to overcome the difficulties posed by
the standard cross-section approach which neglects the within variation of the
data and forces the speed of convergence to be the same across units. Our analy-
sis thus allows for a high degree of heterogeneity across units, thus rendering
estimates of region-specific steady state and speed of convergence parameters.

Our study has dealt with two main questions. Firstly, we have checked
for the existence of a non-negligible fixed effects bias in cross-section regressions
and whether panel data estimates report excessively high speeds of convergence.
Second, we have investigated the issue of persistence in inequalities across the
Spanish regions by determining to what extent steady state income levels are
or not determined by initial conditions.

Our main findings have been the following. First, we have corroborated
previous findings by Canova an Marcet (1995) in that the CS approach renders
a biased estimate of a homogenous speed of convergence below 1% a year, which
would be consistent with a Solow model with a very high capital share leading
to a very slow adjustment along the transitional growth path. Second, when
steady states and speed of convergence parameters are not constrained to be
common across regions, we have found a much higher speed of convergence.
Our estimates of the speed of convergence have appeared to range from a “low”
value of around 12% a year for Castile-La Mancha and Madrid to almost 90%
for Andalusia. This indicates that the latter has been permanently on its steady
state.

Third, we have rejected the hypothesis of unconditional convergence since
steady states have been found to significantly differ across regions. Fourth, our
Gibbs-based bayesian approach has produced a larger likelihood than the ap-
proach suggested by Canova and Marcet (1995). Differences have also appeared
in terms of the estimates for the slopes and intercepts.

Fifth, we have provided consistent evidence of persistence in inequalities
across the Spanish regions, showing that income differences have hardly nar-
rowed down over the period under analysis. Thus initial conditions have been
the most important determinant of the relative position in the distribution of
estimated steady states. At this point, a word of caution is necessary when
interpreting our results, since as stressed by De la Fuente (1998) panel data
methodology may render estimated steady states which are very sentitive to the
features of the sample. Finally, replication of Shioji’s experiment has revealed
that the best performance is achieved when one uses a prior distribution whithin
the LSDV-alike prior, i.e. equal speeds of convergence although different inter-
cepts across equations. Regions are found to converge at a speed of 40% — 46%
to extremely different relative steady state levels.

The main results of the paper are consistent with previous contributions. In
particular, high convergence rates have been also reported in Cuadrado (1998)
-between 27% and 35% for the Spanish regions over 1980-1995- and De la Fuente
(2002) -between 25% and 39% for 99 EU regions in the period 1980-1994. Along
these lines, our results back up the finding of extremely high speeds of conver-
gence towards region-specific steady states. These high convergence rates are
compatible with a low share of private capital over output, with perfect private
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capital mobility across regions, and with a very close position of economies to
their steady states.

Taken as a whole, our results may point to the failure of EU regional policies
instrumented through Cohesion and Structural Funds as a means for correcting
regional disparities in Spain over the last decades. The absence of convergence
has taken place despite the fact that growing resources have been allocated to
the reduction of territorial income differences. Indeed, financial resources aimed
at promoting convergence now account for over 30% of total EU budget, more
than twice the share they represented in 1988. This lack of convergence casts
doubts on the effectiveness of European development policies precisely when the
EU enlargement leads to new challenges in the recipient territories. Therefore,
our study also contributes by adding new arguments to the debate on the impact
of regional policies.
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Table 1: Corner cases

CS (0, =10°, 0,> = 10°)

LSDV (o,” = 10°, 0,2 = 10°)

SUR (o,” = 10°, 0,2 = 10°)

a P a/(1-p) 1-p a P a/(1-p) 1-p a P a/(1-p) 1-p
Galicia -0,0005  0,9979 -0,2597 0,21%| -0,0844 0,5970 -0,2095  40,30%| -0,0976 0,5324 -0,2087 46,76%
Asturias -0,0007  0,9978 -0,3312 0,22%| -0,0451 0,5970 -0,1120  40,30%| -0,0318 0,7397 -0,1222 26,03%
Cantabria 0,0004  0,9976 0,1599 0,24%| -0,0199 0,5968 -0,0492  40,32%| -0,0132 0,7532 -0,0537 24,68%
Pais Vasco 0,0005  0,9979 0,2139 0,21% 0,0834 0,5971 0,2071  40,29% 0,1120 0,4591 0,2071 54,09%
Navarra -0,0003  0,9978 -0,1581 0,22% 0,0898 0,5971 0,2228  40,29% 0,1438 0,3564 0,2234 64,36%
Rioja -0,0002  0,9978  -0,0965 0,22% 0,0597 0,5970 0,1481  40,30% 0,0540 0,6323 0,1470 36,77%
Aragén 0,0007  0,9980 0,3533 0,20% 0,0215 0,5970 0,0534  40,30% 0,0300 0,4197 0,0518 58,03%
Madrid 0,0016  0,9983 0,9552 0,17% 0,1064 0,5972 0,2642  40,28% 0,0367 0,8793 0,3041 12,07%
Castilla-Ledn 0,0002  0,9979 0,0799 0,21%| -0,0294 0,5971 -0,0729  40,29%| -0,0124 0,8411 -0,0780 15,89%
Castilla-La Mancha 0,0000 0,9979 -0,0134 0,21%| -0,0877 0,5970 -0,2175  40,30%| -0,0264 0,8838 -0,2274 11,62%
Extremadura 0,0001  0,9978 0,0594 0,22%| -0,1919 0,5970 -0,4763  40,30%| -0,1013 0,7815 -0,4634 21,85%
Catalufia -0,0005  0,9979 -0,2386 0,21% 0,0696 0,5971 0,1726  40,29% 0,0650 0,6248 0,1734 37,52%
Valencia -0,0007  0,9978 -0,3027 0,22%| -0,0062 0,5971 -0,0155  40,29%| -0,0055 0,6715 -0,0166 32,85%
Baleares 0,0002  0,9980 0,0954 0,20% 0,0882 0,5970 0,2189  40,30% 0,0770 0,6481 0,2188 35,19%
Andalucia -0,0006  0,9979 -0,2743 0,21%| -0,1143 0,5970 -0,2837  40,30%| -0,2471 0,1207 -0,2810 87,93%
Murcia -0,0002  0,9979 -0,0921 0,21%| -0,0671 0,5971 -0,1667  40,29%| -0,0323 0,8089 -0,1692 19,11%
Canarias -0,0004  0,9980 -0,1944 0,20%| -0,0145 0,5973 -0,0360  40,27%| -0,0039 0,7999 -0,0195 20,01%




Table 2: Intermediate cases (between CS and LSDV)

PRIOR O, o, Oq o, O, o, O, o, O, o, O, o,
107° 10°® 10™ 10°® 1073 10°® 1072 10°® 10! 10°® 10°®
a p a p a p a p a p a p

Galicia -0,0020  0,9949| -0,0083  0,9613| -0,0226 0,8960| -0,0431 0,7990| -0,0754 0,6414| -0,0844 0,5979
Asturias -0,0034  0,9948| -0,0079  0,9613| -0,0158 0,8960| -0,0260  0,7991| -0,0409 0,6414| -0,0451 0,5979
Cantabria 0,0010 0,9946| -0,0027 0,9611| -0,0068 0,8958| -0,0113  0,7989| -0,0180 0,6412| -0,0198 0,5978
Pais Vasco 0,0017  0,9949| 0,0063 0,9613| 0,0203 0,8961 0,0414  0,7991 0,0743 0,6415 0,0833 0,5981
Navarra -0,0012  0,9949| 0,0034 0,9614| 0,0207 0,8961 0,0439  0,7991 0,0797 0,6415 0,0896 0,5981
Rioja -0,0011  0,9949| 0,0001  0,9614 0,0105 0,8961 0,0270  0,7991 0,0524 0,6414 0,0595 0,5979
Aragén 0,0026  0,9950| 0,0066  0,9615| 0,0087 0,8961 0,0122  0,7991 0,0195 0,6414 0,0215 0,5980
Madrid 0,0056  0,9951 0,0138  0,9615| 0,0312 0,8962 0,0563  0,7992 0,0955 0,6416 0,1062 0,5981
Castilla-Ledn 0,0005 0,9949| 0,0009 0,9614| -0,0057 0,8961| -0,0147  0,7992| -0,0262 0,6415| -0,0293 0,5980
Castilla-La Mancha -0,0011  0,9950| -0,0055  0,9614| -0,0216 0,8961| -0,0441 0,7991| -0,0780 0,6414| -0,0873 0,5980
Extremadura 0,0009 0,9949| -0,0046  0,9615| -0,0387 0,8961| -0,0913  0,7991| -0,1699 0,6415| -0,1913 0,5980
Catalufia 0,0009  0,9951 0,0079 0,9616| 0,0197 0,8962 0,0363  0,7991 0,0623 0,6415 0,0695 0,5980
Valencia -0,0022  0,9949| -0,0041  0,9614| -0,0041 0,8961| -0,0043  0,7991| -0,0058 0,6415| -0,0062 0,5980
Baleares 0,0006 0,9950| 0,0064 0,9615| 0,0221 0,8962 0,0440  0,7992| 0,0783 0,6415 0,0878 0,5980
Andalucia -0,0021  0,9949| -0,0107  0,9614| -0,0305 0,8960| -0,0580  0,7990| -0,1019 0,6414| -0,1141 0,5979
Murcia -0,0015  0,9949| -0,0092  0,9614| -0,0205 0,8961| -0,0345  0,7991| -0,0599 0,6415| -0,0671 0,5980
Canarias -0,0002  0,9951 0,0017 0,9615| 0,0008 0,8962| -0,0039  0,7993| -0,0121 0,6417| -0,0143 0,5982




Table 3: Intermediate cases (between LSDV and SUR)

PRIOR O, o, Oq o, O, o, O, o, O, o, O, o,
10° 107° 10 10™ 10° 1073 10 1072 10° 10! 10
a p a p a p a p a p a p

Galicia -0,0852  0,5934| -0,0974 0,5336| -0,0726 0,6554| -0,0837  0,6007| -0,0982 0,5296| -0,1129 0,4578
Asturias -0,0454  0,5935| -0,0530  0,5126| -0,0384 0,6680| -0,0398  0,6548| -0,0306 0,7527| -0,0295 0,7643
Cantabria -0,0201  0,5919| -0,0229  0,5250( -0,0165 0,6760| -0,0158  0,6948| -0,0142 0,7322| -0,0167 0,6714
Pais Vasco 0,0840  0,5951 0,0950 0,5417| 0,0585 0,7180 0,0850  0,5903| 0,1019 0,5084 0,1186 0,4277
Navarra 0,0902  0,5951 0,0992  0,5548| 0,0673 0,6974 0,1166  0,4776 0,1510 0,3244 0,1756 0,2149
Rioja 0,0602 0,5936| 0,0678 0,5462| 0,0455 0,6852 0,0525  0,6418 0,0679 0,5453 0,0600 0,5950
Aragén 0,0217 0,5938| 0,0254  0,5162| 0,0211 0,6053 0,0279  0,4634| 0,0345 0,3264 0,0352 0,3117
Madrid 0,1069 0,5953| 0,1215 0,5362| 0,0890 0,6677 0,0765  0,7185  0,0586 0,7908 0,0636 0,7703
Castilla-Ledn -0,0294  0,5948| -0,0330  0,5448| -0,0211 0,7165| -0,0132  0,8292| -0,0113 0,8578| -0,0168 0,7788
Castilla-La Mancha -0,0883  0,5937| -0,1024  0,5280| -0,0545 0,7521| -0,0385  0,8274| -0,0225 0,9017| -0,0268 0,8820
Extremadura -0,1935  0,5939| -0,2080  0,5643| -0,1198 0,7435| -0,1093  0,7652| -0,0660 0,8533| -0,1006 0,7826
Catalufia 0,0699  0,5948| 0,0751  0,5631 0,0488 0,7231 0,0516  0,7064| 0,0523 0,7021 0,0503 0,7138
Valencia -0,0063  0,5944| -0,0069  0,5380| -0,0054 0,6691| -0,0065  0,5766| -0,0056 0,6602| -0,0062 0,5957
Baleares 0,0887  0,5940| 0,1037  0,5251 0,0662 0,6977 0,0689  0,6853| 0,0697 0,6814 0,0968 0,5570
Andalucia -0,1153  0,5935 -0,1338  0,5273| -0,0960 0,6627| -0,0913  0,6794| -0,1776 0,3699| -0,2826  -0,0069
Murcia -0,0676  0,5947| -0,0767  0,5393| -0,0535 0,6807| -0,0567  0,6604| -0,0458 0,7271|  -0,0447 0,7342
Canarias -0,0145  0,5965| -0,0157  0,5728| -0,0072 0,7355| -0,0021 0,8326| -0,0019 0,8370| -0,0031 0,8146




Table 4: A comparison with Canova-Marcet's approach

Prior Canova-Marcet This paper
o, o0, |ow log-likelihood mean(1 - p) |log-likelihood mean(1 - p)
10°  10°| 4,87E-04 892,5 0,65% 1155,4 0,21%
10° 10| 4,92E-04 894,4 0,79% 1169,7 0,51%
10*  10°| 4,83E-04 900,7 2,10% 1179,0 3,86%
10° 10| 4,09E-04 915,9 10,28% 1190,1 10,39%
102 10°| 4,05E-04 923,0 18,69% 1191,9 20,09%
10" 10| 4,06E-04 923,3 20,39% 1193,0 35,85%
1 10°% 4,06E-04 923,3 20,57% 1193,3 40,20%
10"  10°| 4,06E-04 923,3 20,60% 1193,3 40,29%
10"  10°| 4,06E-04 923,3 20,60% 1194,0 40,58%
10 10™| 4,05E-04 923,4 20,62% 1221,6 46,06%
10" 10°| 4,34E-04 923,9 20,78% 1219,6 30,86%
10"  10%| 4,23E-04 927,4 21,93% 1238,4 32,91%
10 107" 3,90E-04 932,4 25,03% 1248,4 34,70%
1O+6_ 1{ 3,90E-04 933,5 26,82% 1241,5 40,79%
10" 10™| 3,90E-04 933,5 27,16% 1247,5 35,57%
Table 5: Relative income per capita
BBVA Eurostat
1955 1979 1980 2002
Galicia -0,3945 -0,2192 -0,1467 -0,2000
Asturias 0,0319 0,0124 0,0061 -0,1579
Cantabria 0,0549 0,0416 0,0379 -0,0248
Pais Vasco 0,4633 0,1507 0,2272 0,2305
Navarra 0,0522 0,0964 0,2386 0,2247
Rioja -0,0151 0,0712 0,2115 0,1026
Aragén -0,0582 0,0454 0,0076 0,0565
Madrid 0,6388 0,2640 0,1640 0,3158
Castilla-Ledn -0,3381 -0,1533 -0,0234 -0,0531
Castilla-La Mancha -0,6025 -0,2656 -0,1838 -0,2187
Extremadura -0,6681 -0,4999 -0,5552 -0,4189
Catalufia 0,3802 0,2198 0,1187 0,1922
Valencia 0,0603 0,0275 0,0002 -0,0416
Baleares 0,2592 0,3473 0,1544 0,1616
Andalucia -0,3619 -0,2968 -0,2328 -0,2770
Murcia -0,3677 -0,1559 -0,1587 -0,1790
Canarias -0,2369 -0,0651 -0,1933 -0,0481
Standard Deviation 0,3690 0,2209 0,2083 0,2059




Table 6: Persistence in inequalities

Prior SS, = a + b*ygg,,
o 06,> |aos t-statistic |bo.s t-statistic |R* mean(p)
10°  10°| 0,0047 0,06| 0,3762 0,99 6,1% 0,9979
10°  10°| 0,0011 0,01| 0,5041 0,97 5,9% 0,9949
10*  10°| 0,0021 0,06| 0,5468 3,07| 38,6% 0,9614
10°  10%| -0,0019 -0,08| 0,8433 6,95| 76,3% 0,8961
102 10°| -0,0026 -0,13| 0,9269 9,15/ 84,8% 0,7991
10" 10°| -0,0025 -0,13| 0,9437 10,30 87,6% 0,6415
1 10°| -0,0025 -0,13| 0,9454 10,47| 88,0% 0,5980
10" 10°| -0,0025 -0,14| 0,9459 10,48| 88,0% 0,5971
10*®  10°| -0,0025 -0,13| 0,9458 10,49| 88,0% 0,5942
10" 10™| -0,0023 -0,13| 0,9461 10,64| 88,3% 0,5394
10" 10%| -0,0021 -0,11| 0,9380 9,98/ 86,9% 0,6914
10  10?| -0,0012 -0,06| 0,9355 9,65 86,1% 0,6709
10** 10| -0,0007 -0,03| 0,9262 9,25 85,1% 0,6530
10*® 1| -0,0013 -0,07| 0,9356 9,57| 85,9% 0,5921
10*® 10| -0,0003 -0,01| 0,9433 9,34| 85,3% 0,6443
Table 7: Too many priors?
Prior
j o0s° 0,® |d(,yse) d(j,SS) |mean(p)
1 10° 10°| 0,2413 0,9864| 0,9979
2 10° 10° 0,2472 10,7918 0,9949
3 10" 10° 0,1745 0,1312| 0,9614
4 10° 10° 0,1186 0,0516] 0,8961
5 102 10°l 0,0934 0,0369| 0,7991
6 10" 10°l 0,0799 0,0296| 0,6415
7 1 10° 0,0781 0,0288| 0,5980
8 10" 10° 0,0781 0,0289| 0,5971
9 10" 10° 0,0781 0,0290| 0,5942
10 10" 10*| 0,0760 0,0278] 0,5394
11 10" 10® 0,0830 0,0314| 0,6914
12 10" 10% 0,0854 0,0320] 0,6709
13 10" 10"l 0,0925 0,0390] 0,6530
14 10'® 1| 0,0864 0,0322| 0,5921
15 10" 10" 0,0915 0,0341| 0,6443



