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Abstract

A social choice function is robustly implementable if there is a mechanism under which the

process of iteratively eliminating strictly dominated messages leads to outcomes that agree with

the social choice at every type profile. In an interdependent value environment, we identify a

strict contraction property on the preferences which together with strict ex post incentive com-

patibility and the strict single crossing property is sufficient to guarantee robust implementation

in the direct mechanism.

The contraction property essentially requires that the interdependence is not too large. In a

linear signal model, the contraction property is equivalent to an interdependence matrix having

an eigenvalue less than one. The contraction property is also necessary for robust implementation

in any mechanism.
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1 Introduction

The mechanism design literature provides a powerful characterization of which social choice func-

tions can be achieved when the designer has incomplete information about agents’ types. If we

assume a commonly known common prior over the possible types of agents, the revelation principle

establishes that if the social choice function can arise as an equilibrium in some mechanism, then

it will arise in a truth-telling equilibrium of the direct mechanism (where each agent truthfully

reports his type and the designer chooses an outcome assuming they are telling the truth). Thus

the Bayesian incentive compatibility constraints characterize whether a social choice function is

implementable in this sense.

But even if a truth-telling equilibrium of the direct mechanism exists, there is no guarantee

that there do not exist non truth-telling equilibria that deliver unacceptable outcomes. For this

reason, the literature on full implementation has sought to show the existence of a mechanism all of

whose equilibria deliver the social choice function. A classic literature on Bayesian implementation –

Postlewaite and Schmeidler (1986), Palfrey and Srivastava (1989) and Jackson (1991) - characterized

when this is possible: a Bayesian monotonicity1 condition is necessary for full implementation, in

addition to the Bayesian incentive compatibility conditions. Bayesian monotonicity and Bayesian

incentive compatibility are also “almost” sufficient for full implementation.2

This important literature has had a limited impact on the more applied mechanism design

literature, despite the fact that the problem of multiple equilibria is real. One difficulty is that the

key sufficient condition - Bayesian monotonicity - is hard to interpret. Another difficulty is that,

in general, positive results rely on complicated indirect, or “augmented,” mechanisms in which

agents report more that their types. Such mechanisms appear impractical to many researchers. We

believe that both difficulties arise because the standard formulation of the Bayesian implementation

problem - assuming common knowledge of a common prior on agents’ types and equilibrium as

solution concept - endows the planner with more information than would be available in practise.

The implementing mechanism and equilibrium then rely on that information in an implausible way.

In this paper, we characterize when a social choice function can be robustly implemented.

We fix a social choice environment including a description of the set of possible payoff types for

each agent. We ask when does there exist a mechanism with the property that every outcome

consistent with common knowledge of rationality agrees with the social choice function, making no

assumptions about agents’ beliefs and higher order beliefs about other agents’ payoff types. This
1The Bayesian monotonicity condition is an incomplete information analogue of the classic “Maskin monotonicity”

condition shown to be necessary and almost sufficient for complete information implementation by Maskin (1999).
2Jackson (1991) shows that they are sufficient in economic environments and a slight strengthening is sufficient in

non-economic environments.
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requirement gives rise to an iterative deletion procedure: fix a mechanism and iteratively delete

messages for each payoff type that are strictly dominated by another message for each payoff type

profile and message profile that has survived the procedure. This notion of robust implementation

is equivalent to requiring that every equilibrium on every type space corresponding to the social

choice environment delivers the right outcome.

This paper identifies a class of environments where there are easily understood and tight char-

acterizations of when robust implementation is possible. As always, there will be an incentive

compatibility condition that is necessary: strict ex post incentive compatibility is necessary for

robust implementation.3 We show that if, in addition, a contraction property - which we explain

shortly - is satisfied, robust implementation is possible in the direct mechanism. If strict ex post

incentive compatibility or the contraction property fail, then robust implementation is not possible

in any mechanism. Thus the “augmented” mechanisms used in the earlier complete information

and Bayesian full implementation literatures do not perform better than the simpler direct mech-

anisms. An intuition for this result is that the strong common knowledge assumptions used in

the complete information and Bayesian implementation literatures can be exploited via complex

augmented mechanisms. Thus an attractive feature of our approach is that the robustness require-

ment reduces the usefulness of complexity in mechanism design (without any ad hoc restrictions

on complexity).

In the case of private values, strict ex post incentive compatibility is equivalent to strict dom-

inant strategies incentive compatibility. Thus full implementation is obtained for free. It follows

that the contraction property must have bite only if there are interdependent values. In fact, the

contraction property requires exactly that there is not too much interdependence in players’ types.

The contraction property can be nicely illustrated in a class of interdependent preferences in which

the private types of the agents can be linearly aggregated. If θj is the type of agent j, then agent i’s

utility depends on θi + γ
∑
j 6=i

θj . Thus if γ 6= 0, there are interdependent values - agent j’s type will

enter agent i’s utility assessment - but each agent i cares differently about his own type than about

other agents’ types. In this example, the contraction property reduces to the requirement that

|γ| < 1/ (I − 1), where I is the number of agents. We provide characterizations of the contraction

property - all equivalent to the intuition that there is not too much interdependence - in more

general linear environments and when there is non-linear aggregation of agents’ types.

The results of this paper apply to environments where each agent’s type profile can be ag-

gregated into a one dimensional sufficient statistic for each player, where preferences are single
3Our earlier work on robust mechanism design, Bergemann and Morris (2005c), showed that ex post incentive com-

patibility was necessary and sufficient for partial robust implementation (i.e, ensuring that there exists an equilibrium

consistent with the social choice function).
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crossing with respect to that statistic. These restrictions incorporate many economic models with

interdependence in the literature: we illustrate our results with a public good example with lin-

ear aggregator described above; we also apply our results to the classic problem of allocating a

single private good with quasilinear utility (i.e., a single unit auction with interdependent utility).

While these restrictions are strong, we provide a simply informational story that would explain

environments with the properties we describe.

We focus in this paper on economically important environments and well behaved mechanisms

where we get clean and tight characterizations of the robust implementation problem with direct

or augmented mechanisms. An attractive feature of the methods and results is that they can be

derived as applications of the rather abstract arguments in Bayesian implementation literature.

Thus the contraction property is equivalent to the robust monotonicity condition that is necessary

and almost sufficient for full implementation in general environments. Robust monotonicity is

equivalent to requiring Bayesian monotonicity on all type spaces. We derive our results directly -

not in this insightful but more indirect way - in this paper.4 We discuss robust implementation in

general environments in section 8.

An important paper of Chung and Ely (2001) analyzed auctions with interdependent valuations

under elimination of weakly dominated strategies. In a linear and symmetric setting, they reported

sufficient conditions for direct implementation that coincide with the ones derived here. We show

that in the environment with linear aggregation, under strict incentive compatibility, the basic

insight extends from the single unit auction model to general allocations models, with elimination

of strictly dominated actions only (thus Chung and Ely (2001) require deletion of weakly dominated

strategies only because incentive constraints are weak). We also prove a converse result: if there

is too much interdependence, then neither the direct nor any augmented mechanism can robustly

implement the social choice function (this result will also hold with deletion of weakly dominated

strategies).

The ex post incentive constraints necessary for robust implementation are already strong (even

without the contraction property). Jehiel, Moldovanu, Meyer-Ter-Vehn, and Zame (2005) have

recently shown that in an environment with multi-dimensional signals, the ex post incentive con-

straints are “generically” impossible to satisfy with multi-dimensional signals. If ex post incentive

compatibility fails, our positive results are moot. While this provides a natural limit for our anal-

ysis, there are many interesting applications for which ex post equilibria do exist, among them

one-dimensional signal models (Dasgupta and Maskin (2000), Perry and Reny (2002), Bergemann

and Välimäki (2002)), models without allocative externalities (Bikhchandani (2005)) and other
4We pursued the indirect derivation of some of the results in this paper in an earlier working paper version,

Bergemann and Morris (2005b).
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models (see the recent survey Jehiel and Moldovanu (2006)) for many positive and negative re-

sults) to which our analysis applies.

The remainder of the paper is organized as follows. Section 2 describes the formal environment

and solution concepts. Section 3 considers a public good example that illustrates the main ideas

and results of the paper. Section 4 establishes necessary conditions for robust implementation in

the direct mechanism. Section 5 considers the preference environment with a linear aggregation

of the types and obtains sharp implementation results. Section 6 reports sufficient conditions for

robust implementation. Section 7 considers a single unit auction with interdependent values as a

second example of robust implementation. Section 8 concludes.

2 Setup

2.1 Payoff Environment

We consider a finite set of agents, 1, 2, ..., I. Agent i’s payoff type is θi ∈ Θi, where Θi is a compact

subset of the real line. We write θ ∈ Θ = Θ1 × · · · × ΘI . Let Y be a compact set of outcomes.

Let agent i’s utility if outcome y is chosen and agents’ type profile is θ be ui (y, θ). A social choice

function is a mapping f : Θ → Y .

We assume the existence of a monotonic aggregator hi (θ) for each i, which allows us to rewrite

the utility function of every agent i as:

ui (y, θ) ≡ vi (y, hi (θ)) , (1)

where hi : Θ → R is continuous, strictly increasing in θi and vi : Y × R → R is continuous.5 The

content of this assumption comes from the continuity requirement and the restrictions that we will

later impose on vi in section 4.1.
5We briefly discussed the impossibility results of ex post incentive compatibility with multi-dimensional signals, see

Jehiel, Moldovanu, Meyer-Ter-Vehn, and Zame (2005) in the introduction. In this context, note that the impossibility

results are obtained in a setting where the utility function is defined separately for every allocation y. The utility

function of every agent i at every allocation y, ui,y (·), is then assumed to be twice differentiable in the signal. Yet, no

continuity or monotonicity assumption are made across allocations. In our setting, the aggregation of private types

acts independently of the particular allocation. Yet, provided the existence of an aggregating function hi (θ), we

could allow the signal space of each agent i to be multi-dimensional without any further modification. Our analysis

uses the single-crossing condition and hence a systematic interaction between the set of allocations and signals and

provided that aggregation is possible, the dimensionality of the signal per se is not an issue.



Robust Implementation: The Case of Direct Mechanisms March 3, 2006 6

2.2 Mechanisms

A planner must choose a game form or mechanism for the agents to play in order the determine

the social outcome. Let Mi be a compact set of messages available to agent i. Let g (m) be the

outcome chosen if action profile m is chosen. Thus a mechanism is a collection:

M = (M1, ...,MI , g (·)) ,

where g : M → Y . The direct mechanism has the property that Mi = Θi for all i and g (θ) = f (θ).

2.3 Robust Implementation

In a fixed mechanism M, we call a correspondence S = (S1, ...., SI), with each Si : Θi → 2Mi
/

∅,

a message profile of the agents. In the direct mechanism a message profile S may be thought of as

a deception β = (β1, ..., βI), or

βi : Θi → 2Θi
/

∅, for all i.

A deception βi (θi) is a set of possible reports of agent i to the principal regarding his true type. We

shall assume without loss of generality that θi ∈ βi (θi) for all i and all θi. Let β∗ be the minimal

deception, specifically truthtelling, with β∗i (θi) = {θi} for all i and θi.

Next we define the process of iterative elimination of never best responses. We denote the belief

of agent i over message and payoff type profiles of the remaining agents by a Borel measure λi:

λi ∈ ∆ (M−i ×Θ−i) .

We initiate S0
i = Mi and define inductively:

Sk+1
i (θi) =


mi ∈Mi

∣∣∣∣∣∣∣∣∣∣∣
∃λi s.th.:

(1) λi

[{
(m−i, θ−i) , mj ∈ Sk

j (θj) , ∀ j 6= i;
}]

= 1

(2)

∫
ui (g (mi,m−i) , (θi, θ−i)) dλi ≥∫

ui (g (m′
i,m−i) , (θi, θ−i)) dλi, ∀m′

i ∈Mi.


. (2)

We observe that Sk
i is (weakly) decreasing in k. We denote the limit set by SM (θ), or

SM (θ) , lim
k→∞

Sk (θ) , for all θ ∈ Θ.

By compactness of the message sets, we have

SMi (θi) , ∩
k≥1

Sk
i (θi) .6

6Because of the compactness of the message set, this procedure is equivalent, by a standard duality argument, to

the iterated deletion of actions which are dominated by mixed strategies against all message type profiles that have

not yet been deleted.
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For brevity and for lack of a better expression, we refer to the messages mi ∈ SMi (θi) as

rationalizable messages. We call a social choice function f robust implementable if there exists

a mechanism M under which the social choice can be recovered through a process of iterative

elimination of never best responses.

Definition 1 (Robust Implementation)

Social choice function f is robustly implemented by mechanism M if m ∈ SM (θ) ⇒ g (m) = f (θ).

The set of rationalizable messages for mechanism M is equal to the set of messages that could

be played in a Bayesian equilibrium of the game generated by the mechanism M and some type

space. The basic logic of the argument follows the well-known argument of Brandenburger and

Dekel (1987) for complete information games, showing the equivalence of correlated rationalizable

actions and the set of actions that could be played in a subjective correlated equilibrium. Battigalli

and Siniscalchi (2003) describe the incomplete information extension of this observation. A formal

version of the equivalence is reported in Proposition 1 of our working paper, Bergemann and Morris

(2005b).

3 A Public Good Example

We precede the formal results with an example illustrating the main insights of the paper. At the

same time, the example facilitates a brief review of the key results in the implementation literature.

The example involves the provision of a public good with quasilinear utility. The utility of each

agent is given by:

ui (θ, y) =

θi + γ
∑
j 6=i

θj

 y0 + yi,

where y0 is the level of public good provided and yi is the monetary transfer to agent i. The utility

of agent i depends on his own type θi ∈ [0, 1] and the type profile of other agents, with γ ≥ 0. The

utility function of agent i has the aggregation property with

hi (θ) = θi + γ
∑
j 6=i

θj ,

but we notice the aggregator function hi (θ) depends on the agent i. In particular, a given type

profile θ leads to a different aggregation result for i and j, provided that θi 6= θj .

The cost of establishing the public good is given by c (y0) = 1
2y

2
0. The planner must choose

(y0, y1, ..., yI) ∈ R+ × RI to maximize social welfare, i.e., the sum of gross utilities minus the cost
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of the public good: (
(1 + γ (I − 1))

I∑
i=1

θi

)
y0 −

1
2
y2
0.

The socially optimal level of the public good is therefore equal to

f0 (θ) = (1 + γ (I − 1))
I∑

i=1

θi.

We choose the generalized Vickrey-Groves-Clark transfers, essentially unique up to a constant, that

give rise to ex post incentive compatibility:

fi (θ) = − (1 + γ (I − 1))

γθi

∑
j 6=i

θj +
1
2
θ2

i

 . (3)

It is useful to observe that the generalized VCG transfers given by (3) guarantee ex post incentive

compatibility for any γ ∈ R. Hence, ex post incentive compatibility per se does not impose any

constraint on the interdependence parameter γ.

Now we shall argue that if γ < 1
I−1 , the social choice function f is robustly implementable in

the direct mechanism where each agent reports his payoff type θi and the planner chooses outcomes

according to f on the assumption that agents are telling the truth. Consider an iterative deletion

procedure. Let β0 (θi) = [0, 1] and, for each k = 1, 2, ..., let βk (θi) be the set of reports that agent

i might send, for some conjecture over his opponents’ types and reports, with the only restriction

on his conjecture being that each type θj of agent j sends a message in βk−1 (θj).

Suppose that agent i has payoff type θi, but reports himself to be type θ′i and has a point

conjecture that other agents have type profile θ−i and report their types to be θ′−i. Then his

expected payoff is a constant (1 + γ (I − 1)) times:θi + γ
∑
j 6=i

θj

θ′i +
∑
j 6=i

θ′j

−

γθ′i∑
j 6=i

θ′j +
1
2
(
θ′i
)2 .

The first order condition with respect to θ′i is then

θi + γ
∑
j 6=i

θj − γ

∑
j 6=i

θ′j

− θ′i = 0,

so he would wish to set

θ′i = θi + γ
∑
j 6=i

(
θj − θ′j

)
. (4)

In other words, his best response to a misreport θ′−i by the other agents is to report a type so that

the aggregate type from his point of view is exactly identical to the true aggregate type generated
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by the true type profile θ. Note that the above calculation also verifies the strict ex post incentive

compatibility of f . The quadratic payoff / linear best response nature of this problem means that

we can characterize βk (θi) restricting attention to such point conjectures. In particular, we have

βk (θi) =
[
βk (θi) , β

k (θi)
]
,

where

β
k (θi) = min

1, θi + γ max
{(θ′−i,θ−i):θ′j∈βk(θj) for all j 6=i}

∑
j 6=i

(
θj − θ′j

)
= min

1, θi + γ max
θ−i

∑
j 6=i

(
θj − βk−1 (θj)

) .

Analogously,

βk (θi) = max

0, θi − γ max
θ−i

∑
j 6=i

(
β

k−1 (θj)− θj

) .

Thus

β
k (θi) = min

{
1, θi + (γ (I − 1))k

}
,

and

βk (θi) = max
{

0, θi − (γ (I − 1))k
}

.

Thus θ′i 6= θi ⇒ θ′i /∈ βk (θi) for sufficiently large k, provided that γ < 1
I−1 .

Now consider what happens when this condition fails, i.e., γ > 1
I−1 . In this case, it is possible to

exploit the large amount of interdependence to construct beliefs over the opponents’ types such that

all types are indistinguishable. In particular, suppose that every type θi ∈ [0, 1] has a degenerate

belief over the types of his opponents. In particular, type θi is convinced that each of his opponents

is of type θj given by:

θj =
1
2

+
1

γ (I − 1)

(
1
2
− θi

)
,

where the belief of i about j evidently depends on his type θi. In this case the aggregated type

profile is given by

θi + γ
∑
j 6=i

θj =
1
2

(1 + γ (I − 1)) ,

independent of θi. Thus in any mechanism, for each type, we can construct beliefs so that there

will be no differences across types of agent i in terms of the actions which get deleted at each round

of the process.

At the end of the paper we shall present an additional example, namely a single unit auction with

symmetric bidders. The generalized Vickrey-Groves-Clark mechanism for the single unit auction
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only satisfies weak rather than strict incentive compatibility constraints. We therefore propose an

ε-efficient allocation rule with strict ex post incentive constraints. The ε efficient allocation rule

can also be interpreted as the virtual implementation of the efficient rule. This rule can be robustly

implemented if there is not too much interdependence among the payoff types.

4 Robust Implementation

4.1 Strict Single Crossing Environment

The following strict version of the standard single crossing property is the key economic assumption

that we make about the environment in this paper:

Definition 2 (Strict Single Crossing)

The environment satisfies strict single crossing (SSC) if vi (y, φ) > vi (y′, φ) and vi

(
y, φ′

)
=

vi

(
y′, φ′

)
implies vi

(
y, φ′′

)
< vi

(
y′, φ′′

)
if either φ < φ′ < φ′′ or φ > φ′ > φ′′.

The property is defined relative to the aggregation of all agents’ types. So it is the combination

of monotonic aggregator representation of preferences with the strict single crossing condition that

drives our results. The public good model in the previous section satisfies the property and so will

many environments with interdependent preferences that have been studied in the literature.

How strong is this restriction on the environment? It requires that the payoff types of the players

can be aggregated into a variable that changes preferences in a monotonic way. To get some sense

of the strength of this restriction, we next consider two examples. The first example involves a

binary outcome space which naturally guarantees the aggregation property; the second example

uses an informational foundation by means of Bayes’ law to obtain the aggregation property.

In a quasi-linear environment one of two allocations, a or b, must be chosen. The outcome space

can be written as Y = [0, 1] × [−K,K]I , where y0 is the probability of allocation a (and 1 − y0 is

the probability of allocation b) and yi is the transfer to individual i. Now if vz
i (θ) is i’s utility from

allocation z when the type profile is θ, we have

ui (y, θ) = y0v
a
i (θ) + (1− y0) vb

i (θ) + yi.

An equivalent representation is

ui (y, θ) = y0

[
va
i (θ)− vb

i (θ)
]

+ yi.

Clearly, we can give this a monotonic aggregator representation by setting hi (θ) = va
i (θ) − vb

i (θ)

and vi (y, h (θ)) = y0h (θ) + yi, we have

ui (y, θ) = vi (y, hi (θ)) ,
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and now vi indeed satisfies the strict single crossing condition. So with quasilinear utility, the binary

allocation case automatically falls in our environment.7 But when we move beyond two allocation,

this would no longer necessarily be true. For example, if player i’s signal was more relevant for

ranking one pair of outcomes rather than another, then the aggregation property could fail.

A natural source of interdependence in preferences is informational, when an agent’s payoff type

corresponds to a signal which ends up being correlated with all agents’ expected values of a state. In

particular, suppose that each player’s utility depends on the expected value of an additive random

variable ω0 + ωi, where ω0 is a common value component and ωi is the private value component.

The random variables ω0, ω1, ω2 are assumed to independently and normally distributed with zero

mean and variance σ2
i . Let each agent observe one signal θi = ω0 + ωi + εi, where each εi is

independently normally distributed with mean 0 and variance τ2
i . We are thus assuming that each

agent observes only a one dimensional signal, θi, of both the common and idiosyncratic component.

Thus agent i is unable to distinguish with his noisy signal θi between the common and the private

value components. But naturally his own signal is more informative about his valuation than the

others’ signals because it contains his own idiosyncratic shock.

Now standard properties of the normal distribution (see DeGroot (1970)) imply that agent i’s

expected value of ω0 + ωi, given the vector of signals (θi, θj) is a constant

σ2
0τ

2
i + σ2

0τ
2
j + σ2

0σ
2
i + σ2

0σ
2
j + τ2

i τ
2
j + τ2

iσ
2
j + τ2

jσ
2
i + σ2

iσ
2
j

σ2
0τ

2
i + σ2

0σ
2
i + σ2

0σ
2
j + τ2

jσ
2
i + σ2

iσ
2
j

times

hi (θ) = θi +
σ2

0τ
2
i

σ2
0τ

2
j + σ2

0σ
2
i + σ2

0σ
2
j + τ2

jσ
2
i + σ2

iσ
2
j

θj . (5)

The calculations are reported in the appendix. Now if we assume each agent i’s preferences condi-

tional on hi (θ) satisfy strict single crossing with respect to hi (θ), then we have an informational

microfoundation for the strict single crossing environment of the paper. Moreover, in this example

the aggregator takes the linear form:

hi (θ) = θi + γijθj ,

with

γij =
σ2

0τ
2
i

σ2
0τ

2
j + σ2

0σ
2
i + σ2

0σ
2
j + τ2

jσ
2
i + σ2

iσ
2
j

.

This conclusion is quite intuitive. If the variance of the common component (σ2
0) is small or if the

noise in own’s own signal (τ2
i ) is small, then the interdependence goes away. But a reduction in

7A similar logic applies if there are two allocations and no transfers. Thus the voting example in Palfrey and

Srivastava (1989) fits our framework: since the contraction property fails, robust implementation is not possible in

any mechanism.
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variance of one’s own idiosyncratic component (σ2
i ), in one’s opponent’s idiosyncratic component

(σ2
j ) or in one’s opponent’s noise (τ2

j ) all tend to increase the interdependence.8

With this interpretation the single crossing property with respect to the aggregator reduces to

assuming that there is a one dimensional parameter whose expected value effects the preferences

and that there is a sufficient statistic for the vectors of signals that agents observe.

4.2 Main Positive Result

Before we state our first positive result, we introduce the incentive compatibility condition and the

contraction property as they appear in the necessary and sufficient condition for robust implemen-

tation. The standard condition for truthful implementation is:

Definition 3 (Ex Post Incentive Compatibility)

The social choice function f satisfies ex post incentive compatibility (EPIC) if

ui (f (θi, θ−i) , (θi, θ−i)) ≥ ui

(
f
(
θ′i, θ−i

)
, (θi, θ−i)

)
for all i, θ and θ′i.

In the subsequent analysis we use the strict version of the incentive constraints.

Definition 4 (Strict Ex Post Incentive Compatibility)

The social choice function f satisfies strict ex post incentive compatibility (strict EPIC) if

ui (f (θi, θ−i) , (θi, θ−i)) > ui

(
f
(
θ′i, θ−i

)
, (θi, θ−i)

)
for all i, θ and θ′i 6= θi.

The key property for our analysis is the following contraction property.

Definition 5 (Strict Contraction Property)

The aggregator functions h satisfy the strict contraction property if, for all β 6= β∗, there exists i

and θ′i ∈ βi (θi) with θ′i 6= θi, such that

sign
(
θi − θ′i

)
= sign

(
hi (θi, θ−i)− hi

(
θ′i, θ

′
−i

))
for all θ−i and θ′−i ∈ β−i (θ−i).

8The additive model with a private and a common component also appears in Hong and Shum (2003) to describe

the valuation of each bidder in an ascending single unit auction. Interestingly, they prove the existence and uniqueness

of an increasing bidding strategy by appealing to a dominant diagonal condition, which is implied by the contraction

proprty to be defined shortly.

The example of a normal distribution fails the compact type space assumoption of our model, but we use the

normal distribution here merely for its transparent updating properties.
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The strict contraction property essentially says that for some agent i the direct impact of his

private signal θi on the aggregator hi (θ) is always sufficiently strong such that the difference in the

aggregated value between the true type profile and the reported type profile always has the same

sign as the difference between the true and reported type of agent i by itself. A slightly weaker

version of the contraction property will emerge as a necessary condition for robust implementation.

Definition 6 (Contraction Property)

The aggregator functions h satisfy the contraction property if, for all β 6= β∗, there exists i and

θ′i ∈ βi (θi) with θ′i 6= θi, such that either

hi (θi, θ−i) = hi

(
θ′i, θ

′
−i

)
,

or

sign
(
θi − θ′i

)
= sign

(
hi (θi, θ−i)− hi

(
θ′i, θ

′
−i

))
,

for all θ−i and θ′−i ∈ β−i (θ−i).

The strict contraction property is a very slight strengthening of the contraction property.

Theorem 1 (Robust Implementation)

If strict EPIC and the strict contraction property are satisfied, then there is robust implementation

in the direct mechanism.

Proof. We argue by contradiction. Let β = SM and suppose that β 6= β∗. By the strict

contraction property, there exists i and θ′i ∈ βi (θi) such that

sign
(
θi − θ′i

)
= sign

(
hi (θi, θ−i)− hi

(
θ′i, θ

′
−i

))
.

for all θ−i and θ′−i ∈ β−i (θ−i). Let

δ , min
θ−i,θ

′
−i∈β−i(θ−i)

∣∣hi (θi, θ−i)− hi

(
θ′i, θ

′
−i

)∣∣ ,
where δ > 0 by the strict contraction property. Suppose (without loss of generality) that θi > θ′i.

Let

ξ (ε) , max
θ′−i

{
hi

(
θ′i + ε, θ′−i

)
− hi

(
θ′i, θ

′
−i

)}
.

As hi (·) is strictly increasing in θi, we know that ξ (ε) is increasing in ε and by continuity of hi in

θi, ξ (ε) → 0 as ε→ 0.

Thus we have

hi (θi, θ−i)− hi

(
θ′i, θ

′
−i

)
≥ δ, (6)



Robust Implementation: The Case of Direct Mechanisms March 3, 2006 14

for all θ−i and θ′−i ∈ βi (θ−i); and

hi

(
θ′i, θ

′
−i

)
≥ hi

(
θ′i + ε, θ′−i

)
− ξ (ε) , (7)

for all θ′−i. By strict EPIC,

vi

(
f
(
θ′i, θ

′
−i

)
, hi

(
θ′i, θ

′
−i

))
> vi

(
f
(
θ′i + ε, θ′−i

)
, hi

(
θ′i, θ

′
−i

))
, (8)

for all ε > 0 and

vi

(
f
(
θ′i + ε, θ′−i

)
, hi

(
θ′i + ε, θ′−i

))
> vi

(
f
(
θ′i, θ

′
−i

)
, hi

(
θ′i + ε, θ′−i

))
, (9)

for all ε > 0. Now continuity of ui with respect to θ implies that for each ε > 0 and θ′−i, there

exists

φ∗
(
ε, θ′−i

)
≤ hi

(
θ′i + ε, θ′−i

)
, (10)

such that

vi

(
f
(
θ′i, θ

′
−i

)
, φ∗

(
ε, θ′−i

))
= vi

(
f
(
θ′i + ε, θ′−i

)
, φ∗

(
ε, θ′−i

))
;

and SSC implies that

vi

(
f
(
θ′i, θ

′
−i

)
, φ
)
< vi

(
f
(
θ′i + ε, θ′−i

)
, φ
)
,

for all φ > φ∗
(
ε, θ′−i

)
. Now fix any ε with

ξ (ε) < δ. (11)

Now for all θ′−i ∈ β−i (θ−i),

hi (θi, θ−i) ≥ hi

(
θ′i, θ

′
−i

)
+ δ, by (6)

≥ hi

(
θ′i + ε, θ′−i

)
− ξ (ε) + δ, by (7)

> hi

(
θ′i + ε, θ′−i

)
, by (11)

≥ φ∗
(
ε, θ′−i

)
, by (10).

So

vi

(
f
(
θ′i + ε, θ′−i

)
, hi (θi, θ−i)

)
> vi

(
f
(
θ′i, θ

′
−i

)
, hi (θi, θ−i)

)
,

for every θ−i and θ′−i ∈ β−i (θ−i). This contradicts our assumption that β = SM.

The surprising element in this result is that we do not need to impose any conditions on how

the social choice function varies with the type profile. In particular, it does not have to respond

to the reported profile θ in a manner similar to the response of any of the aggregators hi. Merely,

the strong single crossing condition is sufficient to make full use of the contraction property. In
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contrast to the classic results in Nash and Bayesian Nash implementation we do not have to impose

a condition on the number of agents, such as I > 2.

The argument is centered around the true type profile θ = (θi, θ−i) and a reported profile

θ′ =
(
θ′i, θ

′
−i

)
. Without loss of generality we may assume that θi > θ′i. We use the contraction

property to establish a positive lower bound on the difference h (θi, θ−i) − h
(
θ′i, θ

′
−i

)
for all θ−i

and θ′−i ∈ β−i (θ−i). With this positive lower bound, we then show that agent i is strictly better

off to move his misreport θ′i marginally upwards in the direction of θi, in other words to report

θ′i + ε. This is achieved by showing that there is an intermediate value φ∗ for the aggregator, with

hi

(
θ′i, θ

′
−i

)
< φ∗ < hi

(
θ′i + ε, θ′−i

)
, such that agent i with the utility profile corresponding to the

aggregator value φ∗ would be indifferent between the social allocations f
(
θ′i, θ

′
−i

)
and f

(
θ′i + ε, θ′−i

)
.

By choosing ε sufficiently small, we know that h (θi, θ−i) > φ∗ and strict single crossing then allows

us to assert that an agent with a true preference profile θ = (θi, θ−i) would also prefer to obtain

f
(
θ′i + ε, θ′−i

)
rather than f

(
θ′i, θ

′
−i

)
. But this yields the contradiction to θ′i ∈ βi (θi) being part

of the fixed point of the iterative elimination. Consequently we show that the misreport θ′i, which

established the same sign on the difference between private type profiles and aggregated public

profiles can be eliminated as a best response to the set of misreports of the remaining agents.

5 The Linear Model

In this section, we consider the special case in which the preference aggregator hi (θ) is linear for

each i and given by:

hi (θ) =
I∑

j=1

γijθj ,

with γij ∈ R for all i, j and γii > 0 for all i. Without loss of generality, we set γii = 1 for all i:

hi (θ) = θi +
∑
j 6=i

γijθj .

The parameters γij represent the influence of the signal of agent j on the value of agent i. With

the exception of γii > 0 for all i, we do not impose any further a priori sign restrictions on γij .

We denote the square matrix generated by the absolute values of γij , namely
∣∣γij

∣∣ , for all i, j with

i 6= j and zero entries on the diagonal by Γ:

Γ ,


0 |γ12| · · · |γ1I |

|γ21| 0
...

. . .

|γI1| 0

 .
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We refer to the matrix Γ as the interdependence matrix. The matrix Γ = 0 then constitutes the

case of pure private values.

5.1 Contraction Property

We shall first give necessary and sufficient conditions for the matrix Γ to satisfy the (strict) con-

traction property. We then use duality theory to give a dual characterization of the contraction

property, which is very useful to finally obtain necessary and sufficient conditions for the contraction

property in terms of the eigenvalue of the matrix Γ.

Lemma 1 (Linear Aggregator)

Linear aggregator functions h satisfy the strict contraction property if and only if, for all c ∈ RI
+

with c 6= 0, there exists i such that

ci >
∑
j 6=i

∣∣γij

∣∣ cj . (12)

Proof. We proof the contrapositive. Thus suppose there exists c ∈ RI
+ with c 6= 0, such that

for all i:

ci ≤
∑
j 6=i

∣∣γij

∣∣ cj .
We now show that this implies that the strict contraction property fails. Choose ε > 0 such that

2ciε < θi − θi for all i. Now consider deceptions of the form:

βi (θi) = [θi − εci, θi + εci] ∩Θi, (13)

for all i. Then for all i and all j 6= i, let θj = 1
2

(
θj + θj

)
and let θ′j = θj − εci if γij ≥ 0

and θ′j = θj + εci if γij < 0. By (13), we have θ′j ∈ βj (θj) for each j 6= i. Also observe that

γij

(
θj − θ′j

)
= ε

∣∣γij

∣∣ cj . Thus∑
j 6=i

γij

(
θj − θ′j

)
= ε

∑
j 6=i

∣∣γij

∣∣ cj ≥ εci.

Now if θ′i = θi + εci, θi − θ′i is strictly negative but

θi − θ′i +
∑
j 6=i

γij

(
θj − θ′j

)
,

is non-negative. A symmetric argument works if θi > θ′i. So the strict contraction property, which

says that for all β 6= β∗, there exists i and θ′i ∈ βi (θi) with θ′i 6= θi, such that

sign
(
θi − θ′i

)
= sign

(
hi (θi, θ−i)− hi

(
θ′i, θ

′
−i

))
= sign

θi − θ′i +
∑
j 6=i

γij

(
θj − θ′j

) , (14)
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for all θ−i and θ′−i ∈ β−i (θ−i) fails. This proves the necessity of condition (12) of Lemma 1.??.

(⇐) To show sufficiency, suppose that condition (12) of the lemma holds. Fix any deception β.

For all j, let:

cj = max
θ′j∈βj(θj)

∣∣θ′j − θj

∣∣ .
By hypothesis, there exists i such that ci >

∑
j 6=i

∣∣γij

∣∣ cj . Let

∣∣θi − θ′i
∣∣ = ci,

and suppose without loss of generality that θi > θ′i. Observe that for all θ−i and θ′−i ∈ β−i (θ−i),

γij

(
θj − θ′j

)
≤
∣∣γij

∣∣ cj and thus ∑
j 6=i

γij

(
θj − θ′j

)
≤
∑
j 6=i

∣∣γij

∣∣ cj ;
so (

θi − θ′i
)
−
∑
j 6=i

γij

(
θj − θ′j

)
= ci −

∑
j 6=i

γij

(
θj − θ′j

)
≥ ci −

∑
j 6=i

∣∣γij

∣∣ cj > 0,

and hence the strict contraction property, or (14), is satisfied.

The corresponding characterization for the contraction property is given by replacing the strict

inequality in (12) by a weak inequality. The absolute values of the matrix Γ are required to

guarantee that the linear inequality (12) implies the strict contraction property. We observe that

the condition (12) is only required to hold for a single agent i. In fact, for c � 0, the condition

(12) could hold for all i only in the case of pure private values, or Γ = 0.

The proof of the contraction property is constructive. We identify for each player i an initial

deception of the form βi (θi) = [θi − ciε, θi + ciε] for some ε > 0, common across all agents. The

size of ci is therefore proportional to the size of the set of candidate reports by agent i. It can

be thought of as the set of rationalizable strategies at an arbitrary stage k. The inequality of the

contraction property then says that for any arbitrary set of deceptions, characterized by the vector

c, there is always an agent i whose set of deceptions is too large (in the sense of being rationalizable)

relative to the set of deceptions by the remaining agents. It then follows that the set of deceptions

for this agent can be chosen smaller than ci, allowing us to reduce the set of possible reports for a

given agent i with a given type θi. The inequality (12) asserts that for any given set of deceptions,

there is always at least one agent i whose deception βi represents a set too large to be rationalizable.

Moreover, if the set of deceptions by i is too large, then there is an “overhang” which can be “nipped
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and tucked”. In the appendix, we report a dual interpretation of the condition (12) which leads us

from the idea of the overhang directly to the contraction property. We use this dual interpretation

to derive the following simple test of the contraction property:

Theorem 2 (Contraction Property via Eigenvalue)

The matrix Γ has the contraction property if and only if its largest eigenvalue λ < 1.

Proof. See appendix.

5.2 Examples

By linking the contraction property to the eigenvalue of the matrix Γ, we can immediately ob-

tain necessary and sufficient condition for robust implementation for different classes of preference

environments.

Symmetric Preferences In the symmetric model, the parameters for interdependent values are

given by

γij =

{
1, if j = i,

γ, if j 6= i.

The eigenvalue λ of the resulting matrix satisfies:

1 + λ = 1 + γ (I − 1) ,

and hence from Theorem 2, we immediately obtain the necessary and sufficient condition:

γ <
1

I − 1
.

Cyclic Preferences A weaker form of symmetry is incorporated in the following model of cyclic

preferences. Here, the interdependence matrix is determined by the distance between i and j

(modulo I), or

γij = γ(i−j)mod I
.

In this case, the positive eigenvalue is given by:

1 + λ = 1 +
∑
j 6=i

γ(i−j),

and consequently a necessary and sufficient condition for robust implementation is given by:∑
j 6=i

γ(i−j) < 1.
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Two Bidders With two bidders, the matrix of interdependence, Γ, is given by

Γ =

[
1 γ12

γ21 1

]
.

The eigenvalue of the matrix Γ can again be immediately computed by requiring that

1 + λ = 1 +
√
γ12γ21,

or

γ12γ21 < 1.

Central Bidder Finally, we may consider a model in which each bidder only cares about his

own type and the type of bidder 1, the central or informed bidder. The matrix of interdependence

is then given by

γij =


1 if j = i,

γ if i 6= 1 and j = 1,

0 if otherwise.

In this case, the eigenvalue is given by:

1 + λ = 1 + 0,

and hence the contraction property holds vacuously for all γ, independent of I. The intuition in

this case is that bidder 1 has a private value utility model. In conjunction with the strict ex post

incentive constraints, this essentially means that agent 1 will always have a strict incentive to tell

the truth. But as the utility of all the other agents depends only their own utility and the utility of

agent 1, and agent 1 is known to tell the truth, all other agents will also want to report truthfully.

The linear model has the obvious advantage that the local conditions for contraction agree

with the global conditions for contraction as the derivatives of the mapping hi (θ) are constant and

independent of θ. In the appendix, we extend the idea behind the linear aggregator function to a

general nonlinear and differentiable aggregator function hi (θ), but with a gap between necessary

and sufficient conditions.

6 Necessity of Contraction Property

The contraction property appears to be a natural condition in the context of robust implementation.

In fact, we now show that the contraction property is necessary for robust implementation. In

particular, the necessity of the contraction property allows us to give a sharp impossibility result in
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the context of the linear model just discussed. The idea behind the necessity argument is to show

that the hypothesis of robust implementation leads inevitably to a conflict with a deception profile

β which fails to satisfy the contraction property.

Theorem 3 (Necessity)

If f is robustly implementable, then f satisfies strict EPIC and the contraction property.

Proof. The restriction to compact mechanisms ensures that SM is non-empty. It follows that

if mechanism M robustly implements f , then, for each i, there exists m∗
i : Θi →Mi such that

g (m∗ (θ)) = f (θ) and m∗ (θ) ∈ SM (θ) ,

we can simply let m∗
i (θi) be any element of SMi (θi).

We first establish strict EPIC. Suppose strict EPIC fails. Then there exists i, θ and θ′i such

that f
(
θ′i, θ−i

)
6= f (θi, θ−i) and

ui

(
f
(
θ′i, θ−i

)
, θ
)
≥ ui (f (θ) , θ) .

Now, for any message mi with

mi ∈ arg max
m′

i

ui

(
g
(
m′

i,m
∗
−i (θ−i)

)
, (θi, θ−i)

)
,

since m∗
−i (θ−i) ∈ S∞i (θ−i), we must have mi ∈ S∞i (θi) and thus g

(
mi,m

∗
−i

(
θ′−i

))
= f

(
θi, θ

′
−i

)
for all θ′−i. Thus let

m∗
i

(
θ′i
)
∈ arg max

m′
i

ui

(
g
(
m′

i,m
∗
−i (θ−i)

)
, (θi, θ−i)

)
,

and f
(
θ′i, θ

′
−i

)
= g

(
m∗

i

(
θ′i
)
,m∗

−i

(
θ′−i

))
= f

(
θi, θ

′
−i

)
for all θ′−i, a contradiction.

Now we establish the contraction property. The proof is by contradiction and we show that if

f is robustly implementable, then every β, with β 6= β∗, must satisfy the contraction property. To

this end, suppose β 6= β∗ does not satisfy the contraction property. Then for all i, θ′i ∈ βi (θi) with

θ′i 6= θi, there exists θ−i and θ′−i ∈ β−i (θ−i) such that:

sign
(
θi − θ′i

)
= − sign

(
hi (θi, θ−i)− hi

(
θ′i, θ

′
−i

))
.

Thus for θi > θ′i, there exists θ−i and θ′−i ∈ β−i (θ−i) such that

hi

(
θi, θ

′
−i

)
> hi

(
θ′i, θ

′
−i

)
> hi (θi, θ−i) .

Now, by single crossing, if

vi (y, hi (θi, θ−i)) > vi

(
f
(
θ′i, θ

′
−i

)
, hi (θi, θ−i)

)
(15)
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and

vi

(
y, hi

(
θ′i, θ

′
−i

))
≤ vi

(
f
(
θ′i, θ

′
−i

)
, hi

(
θ′i, θ

′
−i

))
,

then

vi

(
y, hi

(
θi, θ

′
−i

))
< vi

(
f
(
θ′i, θ

′
−i

)
, hi

(
θi, θ

′
−i

))
. (16)

In other words, there does not exist y such that:

vi

(
y, hi

(
θ′i, θ

′
−i

))
≤ vi

(
f
(
θ′i, θ

′
−i

)
, hi

(
θ′i, θ

′
−i

))
(17)

and

vi

(
y, hi

(
θi, θ̃−i

))
> vi

(
f
(
θ′i, θ

′
−i

)
, hi

(
θi, θ̃−i

))
, (18)

for all θ̃−i such that θ̃−i ∈ β−i (θ−i), as by hypothesis, θ−i, θ
′
−i ∈ β−i (θ−i) and hence both (15)

and (16) apply.

We now show that (15) and (16) are in conflict with the hypothesis of robust implementation.

Consider an arbitrary deception β 6= β∗. Let k̂ be the largest k such that for every i, θi and

θ′i ∈ βi (θi):

S∞i
(
θ′i
)
⊆ Sk

i (θi) .

We know that such a k̂ exists because S0
i (θi)∩S∞i

(
θ′i
)

= S∞i
(
θ′i
)
,and sinceM robustly implements

f , we must have S∞i (θi) ∩ S∞i
(
θ′i
)

= ∅.

Now we know that there exists i and θ′i ∈ βi (θi) such that

S
bk+1
i (θi) ∩ S∞i

(
θ′i
)
6= S∞i

(
θ′i
)
.

Let

m̂i ∈ S
bk
i (θi) ∩ S∞i

(
θ′i
)
,

and

m̂i /∈ S
bk+1
i (θi) ∩ S∞i

(
θ′i
)
.

Since message m̂i gets deleted for θi at round k̂ + 1, we know that for every λi ∈ ∆ (M−i ×Θ−i)

such that

λi (m−i, θ−i) > 0 ⇒ mj ∈ S
bk
j (θj) for all j 6= i,

there exists m∗
i such that∑

m−i,θ−i

λi (m−i, θ−i)ui (g (m∗
i ,m−i) , (θi, θ−i)) >

∑
m−i,θ−i

λi (m−i, θ−i)ui (g (m̂i,m−i) , (θi, θ−i)) .

Let

m̂j ∈ S∞j
(
θ′j
)
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for all j 6= i. Now the above claim remains true if we restrict attention to distributions λi putting

probability 1 on m̂−i. Thus for every ψi ∈ ∆ (Θ−i) such that

ψi (θ−i) > 0 ⇒ m̂j ∈ S
bk
j (θj) for all j 6= i,

there exists m∗
i such that∑

θ−i

ψi (θ−i)ui (g (m∗
i , m̂−i) , (θi, θ−i)) >

∑
θ−i

ψi (θ−i)ui (g (m̂i, m̂−i) , (θi, θ−i)) .

But m̂ ∈ S∞
(
θ′
)
, so (since M robustly implements f), g (m̂i, m̂−i) = f

(
θ′
)
. Also observe that if

θ′−i ∈ β−i (θ−i), then m̂−i ∈ S
bk
−i (θ−i). Thus for every ψi ∈ ∆

(
β−1
−i

(
θ′−i

))
, there exists m∗

i such

that ∑
θ−i

ψi (θ−i)ui (g (m∗
i , m̂−i) , (θi, θ−i)) >

∑
θ−i

ψi (θ−i)ui

(
f
(
θ′
)
, (θi, θ−i)

)
. (19)

We also observe that the message profile m∗
i (and the associated allocation g (m∗

i , m̂−i)) which

eliminates θ̂i must be strictly dominated by the social choice function at the type profiles
(
θ̃i, θ

′
−i

)
for all θ̃i ∈ Θi, or

ui

(
f
(
θ̃i, θ

′
−i

)
,
(
θ̃i, θ

′
−i

))
> ui

(
g (m∗

i , m̂−i) ,
(
θ̃i, θ

′
−i

))
, ∀θ̃i ∈ Θi. (20)

The argument here is by contradiction. Suppose the ex post incentive inequalities, (20), are not

satisfied strictly, and hence:

ui

(
g (m∗

i , m̂−i) ,
(
θ̃i, θ

′
−i

))
≥ ui

(
f
(
θ̃i, θ

′
−i

)
,
(
θ̃i, θ

′
−i

))
,

for some θ̃i ∈ Θi. Now, for any

mi ∈ arg max
m′

i

ui

(
g
(
m′

i, m̂−i

)
,
(
θ̃i, θ

′
−i

))
, (21)

since m̂−i ∈ S∞i
(
θ′−i

)
, we must have mi ∈ S∞i

(
θ̃i

)
and thus g (mi, m̂−i) = f

(
θi, θ

′
−i

)
. Thus from

(21) we also know that m∗
i achieves the maximum:

m∗
i ∈ arg max

m′
i

ui

(
g
(
m′

i, m̂−i

)
,
(
θ̃i, θ

′
−i

))
and, for all θ̃i, if

ui

(
g (m∗

i , m̂−i) ,
(
θ̃i, θ

′
−i

))
≥ ui

(
f
(
θ̃i, θ

′
−i

)
,
(
θ̃i, θ

′
−i

))
,

then g (m∗
i , m̂−i) = f

(
θ̃i, θ

′
−i

)
.
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Now setting y ≡ g (m∗
i , m̂−i), we have established that for each θ′−i ∈ β−i (θ−i) and ψi ∈

∆
(
β−1
−i

(
θ′−i

))
, there exists y such that

ui

(
f
(
θ̃i, θ

′
−i

)
,
(
θ̃i, θ

′
−i

))
> ui

(
y,
(
θ̃i, θ

′
−i

))
, ∀θ̃i ∈ Θi, (22)

and ∑
θ−i

ψi (θ−i)ui (y, (θi, θ−i)) >
∑
θ−i

ψi (θ−i)ui

(
f
(
θ′
)
, (θi, θ−i)

)
. (23)

But now we arrive at the desired contradiction as the inequalities (22)-(23), coming from robust

implementation, and the inequalities (17)-(18), coming from the failure of the contraction property

cannot be true simultaneously. A symmetric argument works if θi < θ′i.

We briefly sketch the idea of the necessity part of the proof. The proof is by contradiction.

We start with the hypothesis of robust implementation and consider a deception β for which the

contraction property fails to be satisfied. The failure of the contraction property in the single

crossing environment is then shown to imply that for all i, θ′i ∈ βi (θi) and some θ−i, θ
′
−i with

θ′i ∈ βi (θi) we cannot find an allocation y such that it weakly dominated if θ′ is the true type

profile, or

ui

(
f
(
θ′
)
, θ′
)
≥ ui

(
y, f

(
θ′
))

, (24)

but is preferred over f
(
θ′
)

if agent i is of type θi:

ui

(
y,
(
θi, θ̃−i

))
> ui

(
f
(
θ′
)
,
(
θi, θ̃−i

))
, (25)

for all θ̃−i ∈ β−i (θ−i).

Yet, if we start the iterative process, then for f to be robustly implementable, it must be that

there is a first time, denoted by stage k̂, such that for some i and some θi:

θ′i ∈ S
bk
i (θi)

but then in stage k̂ + 1:

θ′i /∈ S
bk+1
i (θi) .

The question then arises what is a necessary condition for θ′i to be eliminated if all misreports

feasible by β (θ) are still possible candidate strategies at stage k̂. The answer is simply that there

must be some allocation y, induced by a report θ∗i of agent i, or y = f
(
θ∗i , θ

′
−i

)
such that

ui

(
y,
(
θi, θ̃−i

))
> ui

(
f
(
θ′
)
,
(
θi, θ̃−i

))
,

but of course f
(
θ∗i , θ

′
−i

)
would still have to satisfy incentive compatibility relative to a truthful

report of θ′i (if and when the true type is indeed θ′i), or

ui

(
f
(
θ′
)
, θ′
)
≥ ui

(
y, f

(
θ′
))
.



Robust Implementation: The Case of Direct Mechanisms March 3, 2006 24

But now we observe that the necessary condition for θ′i to be eliminated from Sk
i (θi) in stage k̂+1,

is precisely the condition which fails to hold if the contraction property fails to hold, leading to the

desired conclusion.

The above inequalities, (24) and (25) in fact describe a condition, termed robust monotonicity, in

Bergemann and Morris (2005b). There it shown that robust monotonicity is a necessary and almost

sufficient condition if we want to guarantee Bayesian equilibrium implementation for all possible

priors. In Bergemann and Morris (2005b), the notion of Bayesian equilibrium implementation

for all possible priors allows the use of complicated augmented mechanism. In contrast, here we

focus on robust implementation in the direct mechanism, yet as the argument shows the robust

monotonicity condition emerges again as necessary condition for implementation.

For the linear model discussed in the previous section, with

hi (θ) =
∑

j

γijθj ,

we have an impossibility result as an immediate consequence of Theorem 3.

Corollary 1 (Impossibility of Robust Implementation)

If the contraction property fails, i.e. there exists c ∈ R+\ {0} such that for all i:

ci <
∑
j 6=i

∣∣γij

∣∣ cj,
then robust implementation fails.

7 Single Unit Auction

We conclude our analysis with a second example, namely a single unit auction with symmetric

bidders. The model has I agents and agent i’s payoff type is θi ∈ [0, 1]. If the type profile is θ,

agent i’s valuation of the object is

θi + γ
∑
j 6=i

θj , (26)

where 0 ≤ γ ≤ 1.

An allocation rule in this context is a function q : Θ → [0, 1]I , where qi (θ) is the probability

that agent i gets the object and so
∑
i
qi (θ) ≤ 1. The symmetric efficient allocation rule is given

by:

q∗i (θ) =

{
1

#{j:θj≥θk for all k} , if θi ≥ θk for all k,

0, if otherwise.
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Maskin (1992) and Cremer and McLean (1985) have shown that the efficient allocation can be

truthfully implemented in a generalized Vickrey-Clark-Groves mechanism, according to which the

monetary transfer of the winning agent i is given by

yi (θ) = max
j 6=i

θj + γ
∑
j 6=i

θj .

We observe that the winning probability qi (θ) and the monetary transfer are piecewise constant.

The generalized VCG mechanism therefore does not satisfy the strict ex post incentive compatibility

conditions which we assumed as part of our analysis. We therefore modify the generalized VCG

mechanism to a symmetric ε-efficient allocation rule given by:

q∗∗i (θ) = ε
θi

I
+ (1− ε) q∗i (θ) .

Under this allocation rule, the object is not allocated with probability ε
2 .9 We then argue that

the symmetric ε−efficient allocation rule can be robustly implemented if γ < 1
I−1 . Alternatively,

we can say that the generalized VCG mechanism itself is virtually and robustly implementable if

γ < 1
I−1 .

It is easy to verify that the resulting generalized VCG transfers satisfy strict ex post incentive

compatibility and show that this ε-efficient allocation is robustly implementable. The corresponding

essentially unique ex post transfer rule is:

yi (θ) =
ε

2I
(θi)

2 +
εγ

I

∑
j 6=i

θj

 θi + (1− ε)

max
j 6=i

θj + γ
∑
j 6=i

θj


 q∗i (θ) .

The first two components of the transfers guarantee incentive compatibility with the respect to the

linear probability assignment and the third component with respect to the efficient allocation rule.

The best response of agent i for misreport θ′−i of the remaining agents at a true type profile θ is

given as the public good example by:

θ′i = θi + γ
∑
j 6=i

(
θj − θ′j

)
.

We can therefore exactly repeat our earlier argument in the context of the public good and get

robust implementation in the direct mechanism if γ < 1
I−1 .

9At the cost of some additional algebra, we could modify the allocation rule q∗∗i (θ) to be:

ε
θiP

j

θj
+ (1 − ε) q∗i (θ) ,

which in turn allocates the object with probability 1.
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The implementation conditions here are substantially different from the average crossing con-

dition of Krishna (2003), the generalized single crossing conditions of Birulin and Izmalkov (2003)

and the dominant effect property identified by Echenique and Manelli (2004). The average crossing

condition provides sufficient while the generalized single crossing conditions provide necessary and

sufficient conditions for the existence of an efficient equilibrium in an English auction for a single

object.10 In our linear and symmetric environment, see (26), their necessary and sufficient condi-

tion reduces to the condition of γ < 1, independent of the number of agents, I. Echenique and

Manelli (2004) present a dominant effect property which guarantees the existence of an efficient ex

post equilibrium without further continuity and differentiability conditions. However in our linear

and symmetric environment, their condition again reduces to γ < 1, independent of the number of

agents, I.

8 Discussion

8.1 Relation to Partial and Ex Post Implementation

The results in this paper concern full implementation. An earlier paper of ours, Bergemann and

Morris (2005c), addresses the analogous questions of robustness to rich type spaces, but looking at

the question of truthtelling in the direct mechanism. In the literature, this is frequently referred to as

partial implementation. The notion of partial implementation asks whether there exist a mechanism

such that some equilibrium under that mechanism implements the social choice function. By

the revelation principle, it is then sufficient to look at truthtelling in the direct mechanism. In

Bergemann and Morris (2005c), we showed that a social choice function robustly satisfies the

interim incentive constraints, i.e. satisfies the interim incentive constraints for any type space, if

and only if the ex post incentive constraints are satisfied.

It is important to note, however, that robust implementation is not equivalent to full ex post

implementation, i.e., the requirement that every ex post equilibrium delivers the right outcome.

Often ex post implementation will be possible - because there are no bad ex post equilibria - even

though there exist type spaces and interim equilibria that deliver bad outcomes. In Bergemann

and Morris (2005a), we identify the ex post monotonicity that is necessary and sufficient for full ex

post implementation. It is much weaker than robust monotonicity and the contraction property.
10Their conditions generalize earlier results by Maskin (1992) for two bidders. The novel issue with many bidders

is that a marginal change in the signal profile should favor one of the currently winning bidders over a currently

loosing bidder. With many bidders, a pairwise condition comparing the effect of signal θi on i and j is not sufficient

anymore.
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8.2 Robust and Virtual Implementation in General Environments

The existing Bayesian implementation literature - Postlewaite and Schmeidler (1986), Palfrey and

Srivastava (1989) and Jackson (1991) - has shown that on a fixed type space with a common

knowledge common prior, Bayesian incentive compatibility and a Bayesian monotonicity condition

are necessary and almost sufficient for full implementation. The proof of the sufficiency part of the

result relies on complex augmented mechanisms.

In a working paper version of this paper, Bergemann and Morris (2005b), we developed the

results in this paper as a special case of a general approach to robust implementation. The results

reported in this section appear in that working paper.

Our robust implementation notion is equivalent to requiring Bayesian implementation on all

type spaces. Ex post incentive compatibility is equivalent to Bayesian incentive compatibility on all

type spaces. It is possible to define a notion of robust monotonicity which is equivalent to Bayesian

monotonicity on all type spaces. Ex post incentive compatibility and robust monotonicity are thus

necessary and almost sufficient for full implementation. However, this result relies on allowing

complex augmented mechanisms including integer games. If we restrict attention to well-behaved

mechanisms - with the compact message space assumption of this paper - then strict ex post

incentive compatibility is also necessary.

The contraction property is an implication of robust monotonicity in the environment studied

in this paper. The robust monotonicity condition requires the existence of allocations that can be

used to reward individuals for reporting deceptions from desirable equilibria. In the environment

of this paper, we are able to show that we can always use rewards from misreports in the direct

mechanism.

In our treatment of the single good auction example, we noted that since the efficient allocation

failed ex post incentive compatibility, robust implementation of the efficient allocation would surely

not be possible. However, we were able to show that virtual implementation was possible. However,

this begs the question of how much can be achieved in general with virtual implementation.11

However, one can show that when the contraction property fails, robust virtual implementation is

not possible in any mechanism either.

8.3 Interdependent Valuations

In this paper we considered implementation in an environment with interdependent valuations. We

provided conditions for full implementation which did not depend on the prior or posterior belief
11Abreu and Matsushima (1992a) and Abreu and Matsushima (1992b) show very permissive results about virtual

implementation in complete and incomplete environments, respectively.
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of the agents. More precisely, we provided conditions under which the social choice function can

be implemented in the direct mechanism by iteratively eliminating strictly dominated reports.

In contrast to much of the recent literature on implementation which relies heavily on com-

plicated augmented mechanisms to achieve full implementation, here we pursued implementation

in the direct mechanism without relying on augmented mechanisms. The resulting sufficient and

almost necessary condition for robust implementation, the contraction property, was shown to es-

sentially require that there is not too much interdependence in the valuation of each agent across

signals received by the agents. In the important case of the linear model in signals, the contraction

property was shown to reduce to a single condition on the eigenvalue of the interdependence matrix.

The nature of the contraction property also highlighted that robust implementation is consid-

erably more demanding than ex post truthful implementation. Finally, the example of the efficient

single unit auction suggested that the dividing line between positive and negative robust imple-

mentation results might also be the exact dividing line for the more permissive notion of virtual

implementation.

8.4 Contraction Property

The robust implementation argument rested essentially on the single crossing property and the

contraction property. The single crossing is essentially symmetric in allocation and type. It there-

fore would have been possible to impose the contraction property on the outcome function rather

than on the preference aggregator. In fact, given that the misreports can only alter the outcome

function, but certainly not the preferences, one might have thought it would be more natural to

impose the contraction property on the outcome function rather than on the preference aggrega-

tor.12 The advantage of using the contraction property on the aggregator function arises from the

single crossing condition. The true type θ and the misreported types θ′ can potentially be very far

from each other. Consequently, the preferences at the type profiles θ and θ′ over a pair allocations,

in particular f
(
θ′i, θ

′
−i

)
and f

(
θ′i + ε, θ−i

)
, can be very different. With the contraction property on

the preference aggregator, it suffices to compare the allocations, f
(
θ′i, θ

′
−i

)
and f

(
θ′i + ε, θ−i

)
for a

type profile near θ′ =
(
θ′i, θ

′
−i

)
and then extend the ranking to be valid for θ through the existence

of an aggregator hi and the single crossing property. Without the aggregator hi but a contraction

property on the social choice function, we would be forced to rank the allocations f
(
θ′i, θ

′
−i

)
and

f
(
θ′i + ε, θ−i

)
for some preferences near the true type profile θ = (θi, θ−i). In particular, in order

to be able to use the single crossing condition fruitfully, it would have to be the case that the allo-
12In fact, the contraction property has been employed successfully in games with complete information and linear

best responses to prove the uniqueness of the Nash equilibrium, see Luenberger (1978) and Gabay and Moulin (1980).
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cations f
(
θ′i, θ

′
−i

)
and f

(
θ′i + ε, θ−i

)
would also arise as the equilibrium allocation for some reports

θ∗i , θ
∗∗
i of agent i given the truthful report θ−i of the remaining agents. But such a “full support”

requirement is rather strong. In particular, it will rarely be satisfied in models with quasilinear

utilities, where each agent has preferences over a two-dimensional object, the allocation and the

monetary transfer.

8.5 The Common Prior Assumption and Strategic Substitutes/Complements

The definition of robust implementation in this paper is equivalent to requiring that every equilib-

rium on every type space delivers outcomes consistent with the social choice function. By “very

type space”, we are allowing for multiple copies of the same payoff type with different beliefs over

the types of others. And we are allowing for non common prior type spaces. An interesting ques-

tion is what happens when we look at an intermediate notion of robustness: allowing all possible

common prior type spaces. This interesting question goes beyond the scope of this paper but we

can use our leading example to illustrate why it is interesting.

Consider the public good example in the case where there is negative interdependence in valu-

ations, i.e., γ < 0. Recall the ex post best response function in that example: if type θi is sure that

his opponents have type profile θ−i and is sure that they will report themselves to be type profile

θ′−i, his best response is to report himself to be type

θ′i = θi + γ
∑
j 6=i

(
θj − θ′j

)
.

We see that there are strategic complements in misreporting strategies (if others misreport upwards,

I have an incentive to misreport upwards). This means that when we carry out the iterated deletion

procedure, the profile of largest and smallest misreports that survive must constitute an ex post

equilibrium of the game (Milgrom and Roberts (1990)). Thus a failure of robust implementation

also implies that there exists a bad equilibrium on any common prior type space.

On the other hand, in the standard case with positive interdependence, i.e., γ > 0, there is

strategic substitutability in misreports and this argument does not go through. In fact, one can

show in the example that even when the contraction property fails (i.e., γ > 1
I−1), every equilibrium

on any common prior type space delivers the right outcome.

8.6 Informational Foundation of Interdependence

In the discussion of the single crossing condition in Section 4 we presented a statistical model of

noisy signals which naturally lead to the aggregation property of private signals by means of Bayes
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law. There is a possible criticism of using an informational justification for interdependent prefer-

ences like this one at the same time as insisting on a stringent robust implementation criterion.13

This informational microfoundation for the environment depends on the common knowledge of the

distribution of signals about the environment - among the agents and the planner. Thus there is

common knowledge of a true distribution over the vectors of signals θ. However, we can show that if

we allowed that each agent i might receive additional, conditionally independent information - not

necessarily consistent with a common prior - about others’ signals θ−i, so that the information did

not change his expectation of ω0 +ωi, conditional on the vector θ, then our robust implementation

results would remain unchanged. Thus there is an admittedly stark story that reconciles the robust

implementation environment with an informational justification of the reduced form representation

of interdependent preferences.

13We thank Ilya Segal for prompting us to think about this in the context of robust implementation.
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9 Appendix

The appendix contains the arguments and proofs missing in the main text.

Informational Foundation for Interdependence The vector of the random variables
ω0 + ω1

θ1

θ2


is normally distributed with mean zero and variance matrix

σ2
0 + σ2

1 σ2
0 + σ2

1 σ2
0

σ2
0 + σ2

1 σ2
0 + σ2

1 + τ2
1 σ2

0

σ2
0 σ2

0 σ2 + σ2
2 + τ2

2


By a standard property of the multivariate normal distribution, see DeGroot (1970), this implies

that the expectation of ω0 + ω1 conditional on θ1 and θ2 is given by:

(
σ2

0 + σ2
1 σ2

0

)( σ2
0 + τ2

1 + σ2
1 σ2

0

σ2
0 σ2

0 + σ2
2 + τ2

2

)−1(
θ1

θ2

)
,

which equals (
σ2

0τ
2
2 + σ2

0σ
2
1 + σ2

0σ
2
2 + τ2

2σ
2
1 + σ2

1σ
2
2

)
θ1 + σ2τ2

1θ2

σ2
0τ

2
1 + σ2

0τ
2
2 + σ2

0σ
2
1 + σ2

0σ
2
2 + τ2

1τ
2
2 + τ2

1σ
2
2 + τ2

2σ
2
1 + σ2

1σ
2
2

.

If we multiply the above expression by the constant

σ2
0τ

2
1 + σ2

0τ
2
2 + σ2

0σ
2
1 + σ2

0σ
2
2 + τ2

1τ
2
2 + τ2

1σ
2
2 + τ2

2σ
2
1 + σ2

1σ
2
2

σ2
0τ

2
2 + σ2

0σ
2
1 + σ2

0σ
2
2 + τ2

2σ
2
1 + σ2

1σ
2
2

,

we obtain:

θ1 +
σ2τ2

1

σ2
0τ

2
2 + σ2

0σ
2
1 + σ2

0σ
2
2 + τ2

2σ
2
1 + σ2

1σ
2
2

θ2,

as reported in (5).

Dual Characterization of the Contraction Property The following lemma gives a dual rep-

resentation of the strict contraction property for the linear case. In turn, it allows us to characterize

the contraction property in terms of the eigenvalue of the interdependence matrix Γ.

Lemma 2 (Duality)

The following two properties of Γ are equivalent:
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1. for all c ∈ RI
+ with c 6= 0, there exists i such that:

ci >
∑
j 6=i

∣∣γij

∣∣ cj; (27)

2. there exists d ∈ RI
+ such that:

di >
∑
j 6=i

∣∣γji

∣∣ dj , (28)

for all i.

Proof. Consider the following contrapositive restatement of condition (27): there does not

exist c ∈ RI
+ such that

I∑
i=1

ci > 0, (a)

and ∑
j 6=i

∣∣γij

∣∣ cj − ci ≥ 0 for each i. (b)

Writing µ for the multiplier of constraint (a) and di for the i multiplier of constraint (b), Farkas’

lemma states that such a c does not exist if and only if there exist d ∈ RI
+ and µ ∈ R+ such that

µ− di +
∑
j 6=i

∣∣γji

∣∣ dj = 0 for all i, (a’)

and

µ > 0. (b’)

But this is true if and only if condition (28) of the lemma holds.

An analogous exercise leads to the duality result for the contraction property, where the strict

inequalities in (27) and (28) are simply replaced by weak inequalities.

Proof of Theorem 2. If we try to find a solution for the strict inequalities (28):

di >
∑
j 6=i

∣∣γji

∣∣ dj , for all i (29)

with the assistance of a contraction constant λ < 1, or

diλ =
∑
j 6=i

∣∣γji

∣∣ dj ,

then by the Froebenius-Perron Theorem for nonnegative matrices (see Minc (1988), Theorem 1.4.2),

there exists a positive right and a left eigenvector, both with the same positive eigenvalue λ. The
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associated eigenvector is positive as well. We can use the above dual property to establish that

clearly a (λ, d) solution exists for:

λdi =
∑
j 6=i

∣∣γji

∣∣ dj ,

but from the duality relationship (28), we know that for every d > 0,

di >
∑
j 6=i

∣∣γji

∣∣ dj ,

so it follows that λ < 1. �

Nonlinear Conditions The linear model has the obvious advantage that the local conditions for

contraction agree with the global conditions for contraction as the derivatives of the mapping hi (θ)

are constant and independent of θ. Conversely, with a nonlinear model, we can present weak local

conditions for every θ and stronger global conditions. With this we can extend the idea behind

the linear aggregator function to a general nonlinear and differentiable aggregator function hi (θ)

as follows.

Definition 7 (Local and Global Contraction Property)

1. The aggregator function hi satisfies the local contraction property if for all c ∈ RI
+ and θ ∈

int (Θ), there exists i such that

ci
∂hi (θ)
∂θi

>
∑
j 6=i

cj

∣∣∣∣∂hi (θ)
∂θj

∣∣∣∣ . (30)

2. The aggregator function hi satisfies the global contraction property if for all c ∈ RI
+, there

exists i such that,

ci
∂hi (θ)
∂θi

>
∑
j 6=i

cj

∣∣∣∣∂hi (θ)
∂θj

∣∣∣∣ (31)

for all θ.

Proposition 1 (Local and Global Contraction Property)

1. If hi satisfies the strict contraction property, then it satisfies the local contraction property.

2. If hi satisfies the global contraction property, then it satisfies the strict contraction property.
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Proof. (1.) The proof is by contradiction. The strict contraction property requires that if, for

all β 6= β∗, there exists i and θ′i ∈ βi (θi) with θ′i 6= θi, such that

sign
(
θi − θ′i

)
= sign

(
hi (θi, θ−i)− hi

(
θ′i, θ

′
−i

))
,

for all θ−i and θ′−i ∈ β−i (θ−i). Fix any c ∈ RI
+ and choose small ε > 0. Now consider deceptions

of the form

βi (θi) = [θi − εci, θi + εci] ∩Θi.

If for some θ ∈ int (Θ),

ci
∂hi (θ)
∂θi

≤
∑
j 6=i

cj
∂hi (θ)
∂θj

.

for all i, then if θ′i ∈ βi (θi) and (wlog) θ′i > θi, then θi − θ′i is negative. Now choose θ′−i such that

θ′j = θj − εcj . Now

hi (θi, θ−i)− hi

(
θ′i, θ

′
−i

)
ε

→ −ci
∂hi (θ)
∂θi

+
∑
j 6=i

cj
∂hi (θ)
∂θj

≥ 0,

as ε→ 0. This contradicts the strict contraction property.

(2.) Fix any deception. Let

cj = max
θ′j∈βj(θj)

∣∣θ′j − θj

∣∣ .
There exists i

ci
∂hi (θ)
∂θi

>
∑
j 6=i

cj

∣∣∣∣∂hi (θ)
∂θj

∣∣∣∣ ,
for all θ. Let ∣∣θi − θ′i

∣∣ = ci

and suppose wlog that θi > θ′i. Now fix any θ′−i ∈ β−i (θ−i), we can then write the difference

hi (θi, θ−i)− hi

(
θ′i, θ

′
−i

)
as:

1∫
t=0

I∑
j=1

∂hi

(
tθ + (1− t) θ′

)
∂θj

(
θj − θ′j

)
dt

=

1∫
t=0

∂hi

(
tθ + (1− t) θ′

)
∂θi

(
θi − θ′i

)
dt+

1∫
t=0

∑
j 6=i

∂hi

(
tθ + (1− t) θ′

)
∂θj

(
θj − θ′j

)
dt

≥
1∫

t=0

∂hi

(
tθ + (1− t) θ′

)
∂θi

cidt−
1∫

t=0

∑
j 6=i

∣∣∣∣∣∂hi

(
tθ + (1− t) θ′

)
∂θj

∣∣∣∣∣ cjdt
> 0,

where the last inequality comes from the hypothesis of the global contraction property. This

establishes the claim.
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