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Abstract
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reduce the incidence of exclusions because the variance in the relevant valuations decreases.

Keywords: Public Goods Provision; Bundling; Exclusion

JEL Classification Number: H41.

*We thank Mark Armstrong, Ted Bergstrom, Martin Hellwig, Larry Samuelson and Stephen Morris for comments
and helpful discussions. We also thank seminar participants at New York University, Ohio State University, Univer-
sity of Essex, University of Illinois, University of Pittsburgh, University of Wisconsin, Yale University, Society for
Economic Dynamics 2003 meetings in Paris, and SITE 2003 Summer Workshop in Stanford for useful comments.

The usual disclaimer applies.
tDepartment of Economics, Yale University, P.O. Box 208264, New Haven, CT 06520-8264. Email:

hanming.fang@yale.edu
tDepartment of Economics, University of Wisconsin-Madison, 1180 Observatory Drive, Madison, WI 53706-1393.

Email: pnorman@facstaff.wisc.edu



1 Introduction

Bundling, the practice to package several goods in a bundle rather than providing them sepa-
rately, is a common phenomenon in many markets. Many of the goods that are provided in bundles
are more or less non-rival in consumption. An obvious example is cable TV. Technologically, the
local cable company could allow customers to choose whatever channels they are willing to pay for
without constraints. In practice, the basic pricing scheme usually consists of a limited number of
available packages. While some premium channels and pay-per-view programming are offered for
sale separately, the bundled channels are simply not available in any other way than through their
respective bundles. Another striking example is access to electronic libraries. Here, the typical con-
tractual arrangement is a site license that allows access to every journal in the electronic library.
While it is sometimes possible to download articles on a pay-per-download basis, this is usually
very expensive, and contracts that gives access to a subset of journals in the electronic library are
rare.

A third example, which was the initial motivation for this paper, is the casual observation that
governmental services are provided in bundles. For example, every resident in a municipality is
entitled to a bundle of public services provided by the local government including policing, highway
maintenance, fire fighting, public schools etc.. Clearly some of the public services in the bundle are
of no value at all for many residents. Why, then, cannot residents only subscribe to their desired
local public services?

Motivated by these examples, this paper studies the role of bundling in the efficient provision of
public goods. We ask a simple question: is there an efficiency rationale to provide unrelated public
goods in bundles rather than separately; and if so, why?

We consider an environment with m excludable public goods and a numeraire private good.!
Each consumer is characterized by a valuation for each of the public goods. The willingness to pay
for any subset of the goods is assumed to be the sum of the valuations for the individual goods
in the subset. This assumption rules out bundling arising from complementarities in the utility
function. Similarly, the cost of provision for each good is independent of which other goods are
provided. These separability assumptions on valuations and costs imply that the informationally
unconstrained efficient mechanism provides a public good if and only if the sum of all agents’
valuations for that particular good exceeds its provision cost, and excludes no consumer from
usage. Under perfect information there is thus no role for bundling.

This paper departs from the perfect information assumption, and assumes that preferences are

The term “excludable public goods” refers to a good which is fully non-rival, but where it is possible to costlessly

exclude any consumer from usage.



private information to the individuals. The provision mechanism must therefore be constructed so
that truthful revelation of preferences is consistent with equilibrium. Agents may also freely choose
whether to participate in the mechanism, and the provision mechanism must be self-financing.
Finally, we assume that the preference parameters are stochastically independent across individuals.
Under these restrictions, the (non-bundling) perfect information social optimum can no longer be
implemented.?

Ruling out trivial cases, use exclusions are always active in the constrained efficient mechanism.
Indeed, if the economy is large, use exclusions are essentially the only instruments available to
induce consumers to contribute a non-negligible amount to the public goods.

To gain intuition, we first consider the case where the number of public goods is large, and where
the valuation for all goods are stochastically independent. In this case, a pure bundling mechanism
can approximate the first best if both the number of goods and the number of consumers are large.
This is because the valuation for the average good in the bundle converges in probability to its
expectation. If necessary, the designer can therefore extract almost the full surplus from each agent.
This implies that, while the threat of exclusion is still what supports the incentives, it is possible
to exclude an agent with arbitrarily small probability and still raise enough revenue to provide all
goods. Finally, a large number of agents are needed for approximate efficiency because it is only
in a large economy that ex ante information is sufficient for an efficient provision decision. If the
number of agents are small, there will be a significant probability that a particular good should not
be provided at all, a consideration that disappears with many agents.

Intuitively, the desirability of bundling in the many good case comes from the fact that bundling
reduces the variance in the distribution of valuations. Whether goods are public or private is irrele-
vant for this. However, unlike the standard setup with private goods, non-rivalness in consumption
means that the society can give access to all goods at no additional costs. The desirability of pure
bundling thus relies crucially on the public good assumption.?

Next, we turn to a special case where we obtain an exact characterization of the constrained
efficient mechanism. This special case is when there are two public goods, valuations for each good
are binary, and the goods are symmetric both with respects to costs of provision and consumer val-

uations. While this is obviously a very special case, the results are suggestive, and the methodology

2All these restrictions are essential. Removing either the voluntary participation or the self-financing constraint
makes it possible to construct pivot-mechanisms that implement the first-best. If we allow correlation in valuations,

a version of the analysis in Cremer and McLean [6] can be used to implement the efficient outcome.
3 Armstrong [3] considers a similar many good exercise for private goods. Due to similar law of large numbers

reasoning, a monopolist can extract almost the full consumer surplus. The mechanism is a two part tariff, where

consumers can pay a fixed fee for the right to purchase any good at marginal cost.



may be useful for more general (symmetric) multidimensional screening problems.

There is an element of bundling in the constrained efficient mechanism for almost all parametriza-
tions of the model. This should be expected. We know from McAfee et al [13] that introducing the
bundling instrument increases the profits for a monopolist that is restricted to fixed-price mecha-
nisms. By results in Norman [17] we also know that, in the case with a single good, the constrained
efficient mechanism is near a fixed price mechanism of the form considered by McAfee et al [13]. Fi-
nally, the (single-dimensional) constrained welfare problem has a Lagrangian characterization (see
Hellwig [9] and Norman [17]). This problem may be interpreted as maximizing a weighted average
of social welfare and profits, where the relative weights come from the Lagrange multiplier on a
“zero profit constraint”. Given these links between constrained efficiency and a standard monopoly
problem it seems highly plausible that the insight in McAfee et al [13] should carry over to our
problem.

Concretely, bundling works as follows in the optimal mechanism. All agents get access to any
good for which he or she has a high valuation for. A “mixed type” is always more likely to get
access to his or her low-valuation good than is an agent with low valuations for both goods. In
some cases this differential treatment leads to a drastic improvement compared to the best that
can be achieved without bundling. For many parametrizations, the probability of provision tends
to zero if bundling is not used, whereas bundling makes it possible to provide with probability one.

It is important to note that, while the existing literature on bundling in private goods focuses
on how bundling relaxes the informational constraints and improves sellers’ revenue, we derive
a constrained efficient mechanism that involve bundling in the public good setting. Under the
typical assumption in the private good bundling literature that goods are produced at constant (or
increasing) marginal costs, bundling may enhance revenue, but will be dominated by marginal cost
pricing in terms of social efficiency.

The remainder of the paper is structured as follows. Section 2 presents the model and some
characterization results to be used later. In Section 3 we consider the case with a large number
of goods. Section 4 introduces the special case when valuations are binary and demonstrates by
example that a (pure) bundling mechanism may improve efficiency. Section 5 characterizes the
optimal mechanism for this special case, and compares our characterization with existing results in

the literature, and Section 6 concludes. All proofs are collected in the Appendix.



2 The Model

There are m ezxcludable public goods, labeled by j € J ={1,...,m} and n consumers, indexed
byieZ=A{1,.., n}.4 All public goods are indivisible projects, and the cost of providing good j,
denoted by C7 (n), is independent of which of the other goods are provided. Notice here that n is
the size of the economy and not the number of users, so all goods are fully non-rival. The rationale
for indexing cost by the number of agents is to be able to analyze large economies, which makes it
necessary to normalize per capita costs to avoid trivializing the provision problem. We therefore
allow for the existence of ¢/ > 0 such that lim, ., C? (n) /n = ¢/ > 0. There is no need to give
this assumption any particular economic interpretation, it is best viewed as a way to ensure that
the provision problem remains “significant” also with many agents.

Consumer ¢ is fully described by a vector 0; = (911, ...,0;”) € O C R™, where 0? is interpreted
as i’s valuation for good j. Agent i has preferences represented by the utility function,

> e -t (1)

jedJ
where Ig is a dummy variable taking value 1 when ¢ consumes good j and 0 otherwise, and ¢; is
the quantity of the numeraire good transferred from i to the mechanism designer. Preferences over
lotteries are of expected utility form. One could obviously imagine more general utility functions
than (1), but the linear formulation (which is also used by Adams and Yellen [1], McAfee et al [13],
and Manelli and Vincent [12]) has the advantage that it rules out bundling due to complementarities
in preferences.

The preference vector 6; is private information to the agent, and we assume that preferences
are independently and identically distributed across agents. We denote by F' the joint cumulative
distribution over ;. For brevity of notation, we let § = (04,...,0,) € © = (0)", which will be
referred to as a type profile. In the usual fashion, we let 0_; = (01, ..,0;_1,0;41, ...0,) and, with some
abuse of notation, we write F (0) = IL;cz F' (0;) and F (0 ;) = [y i F (0)) as the joint distribution
of § and 0_; respectively.

2.1 Randomized Direct Mechanisms

In general, the outcome of any mechanism must determine: (1). Which goods, if any, should be

provided; (2). Who are to be given access to the goods that are provided; and (3). How to share

4There are two reasons for allowing use exclusions. It allows us to consider large economies, which aids tractability.
Moreover, it allows for a more intuitive form of bundling, since different consumers can consume different bundles

when exclusions are possible.



the costs. The set of feasible pure outcomes is thus

_ m mxn n
A= {01} x {01} x R" . 2)
—— ——— ~—~
. . . . . . “taxes”
provision/no provision inclusion/no inclusion
for each goods j for each agent i and good j

By the revelation principle, we restrict attention to direct mechanisms for which truth-telling is a
Bayesian Nash equilibrium. A pure direct mechanism is simply a map from ® to A. We represent
a randomized mechanism in analogy with the representation of mixed strategies in Aumann [4].
That is, let = = [0,1], and think of ¥ € = as the outcome of a fictitious lottery, where, without
loss of generality, ¢ is uniformly distributed and independent of 6. A random direct mechanism is
then a measurable mapping G : ® x = — A. A conceptual advantage of this formalization of a

random mechanism is that it allows for a useful decomposition.? That is, we may write G as a
(2m + 1)-tuple, G = ({Cj}jej , {wj}jej ,T) where,
¢ ®@xE—{0,1}
W @ xE—{0,1}" (3)
T : ©@—R"

We refer to ¢/ as the provision rule for good j, and interpret Ez¢’ (A,9) as the probability of

provision given announcements ¢. The rule w’ = <wj1 - w%) is referred to as the inclusion rule for

good j, and ngg (0,7) is interpreted as the probability that agent i gets access to good j when
announcements are #, conditional on good j being provided. Finally, 7 = (71,...,7,) is referred
to as the cost-sharing rules, where 7; () is the transfer from agent i to the mechanism designer
given announced valuations . In principle, transfers could also be randomized, but, agents are risk
neutral with respect to transfers, so there are no gains from this. The pure transfer rule in (3) is
therefore without loss of generality.

Because of the separability of the provision costs and the linear utility functions in (1), the
ex post efficient provision and inclusion rules are simple: provide public good j if and only if
Y oieT 0? > (Y (n) and never exclude any consumer from usage when the good is provided. This is

exactly as if each good j were the only public good.

2.2 The Design Problem

Utility is transferable, so we can characterize the constrained efficient allocation rules as the

solution to a planning problem. A fictitious social planner seeks to maximize total surplus in the

5Because A is finite, there are no technical reasons for choosing this representation. It is chosen only because
it generates more convenient notation than either the “natural” representation or the “distributional approach” of

Milgrom and Weber [14].



economy, subject incentive compatibility, feasibility, and participation constraints. Let E_; denote
the expectation operator with respect to (6_;, 7). Incentive compatibility, that is, the requirement

that truth-telling is a Bayesian Nash equilibrium in the revelation game induced by G, requires that

Eoi [ Y 0,910,900 —7:0)| > B | S ¢ (0:,0-,9)w](0:,0_:,9)0] — 74(0:,0_;)
jeJ JjeJ
Vi € 7,0€©,0;€0. (4)

Next, we require that the project be self-financing. For simplicity, this is imposed as an ex ante

balanced-budget constraint:®

E(Y mn@)-> 6,9 ()] >0. (5)
€T JjeJ
Finally, we require that a voluntary participation, or individual rationality, condition is satisfied.

Agents are assumed to know their own type, but not the realized types of the other agents, when

deciding on whether to participate. Individual rationality is thus imposed at the interim stage as,

B [ Y 0,900,900 —7:(0)| >0, VieI0;ce. (6)
JET
A mechanism is incentive feasible if it satisfies (4), (5) and (6). A mechanism is constrained efficient

if it maximizes the expected social surplus,

D EBC(0,9) | YWl (0,0)0] = 7 (n)|, (7)
JjeJ i€l
over all incentive feasible mechanisms.

All these constraints are noncontroversial if the design problem is interpreted as a private
bargaining agreement, but, if the goods are government provided, the participation constraints (6)
may seem questionable. One defense in this context is that the participation constraint is a reduced
form of an environment where agents may vote with their feet (ignoring that the reservation utility

should then be endogenous).”

5The ex ante constraint (5) is literally relevant only when the designer can access fair insurance market against
budget deficits. However, adapting standard arguments (see Mailath and Postlewaite [11] and Cramton et al [5]), one
can show that any allocation implementable with transfers satisfying (5) is also implementable with a transfer rule
that satisfies the ex post balanced-budget constraint (i.e. feasibility for every realization of 6). The idea is simply
that, since agents are risk-neutral, the insurance against budget deficits can be provided by one or more of the agents

in the economy.
7 Another defense of imposing voluntary participation in the context of government provided goods is to view this

as a reduced form for inequality aversion of the planner. See Hellwig [§].



If preferences are observable, or if either (5) or (6) are ignored, the (non-bundling) ex post
efficient mechanism is implementable. As discussed above, the ex post efficient provision rule for
good j ignores the valuations for all other goods and no one is excluded. The ex post efficient
rule is therefore implementable if and only if a single non-excludable public good can be efficiently
provided under (4), (5) or (6). But, this is the exact setup of Mailath and Postlewaite [11], and
from their adaption of Myerson and Satterthwaite’s [16] impossibility result we know that the first

best efficiency is only possible in trivial cases. Our setup is therefore a second best problem.

2.3 Simple Anonymous Mechanisms

To simplify the problem, we first exploit the fact that all control variables enter linearly in both
the constraints and the objective function and that the problem is symmetric. This allows us to

reduce the dimensionality of the problem:

Definition 1 A mechanism is called a simple mechanism if it can be expressed as (2m + 1)-tuple

g= ({pj}jej,{nj}jej,t) where for each j € 7,

P ©—0,1]
P 0—10,1] (8)
t : ©—R,

P’ is the provision rule for good j, 1’ is the inclusion rule for good j (same for all agents), and t

is the transfer rule (also same for all agents).

There are a number of simplifications in (8) relative to (3): (1). Both the inclusion and the
transfer rules are the same for all agents; (2). Conditional on 6, the provision probability p’ () is
stochastically independent from all other provision probabilities, {o* ()}, 7\ » and all inclusion
probabilities; (3). The inclusion and transfer rules for any agent i are independent of the realization
of 6_;; (4). All agents are treated symmetrically in terms of the transfer and inclusion rules.

Symmetry in inclusion and transfer rules is built into the notion of a simple mechanism, but (8)
still allows asymmetric treatment of agents in the provision rules. We therefore need a definition

to express what it means for the index of the agent to be irrelevant:

Definition 2 A simple mechanism is called anonymous if p/ (0) = p (9') for every j € J, every
0 € ©, and every 0 € O that can be obtained from 0 by permuting the indices of the agents.

We now show that focusing on simple anonymous mechanisms is without loss of generality:



Proposition 1 For any incentive feasible mechanism G of the form (8), there exists an anonymous

simple incentive feasible mechanism g of the form (8) that generates the same social surplus.

Consequently, the remainder of this paper only considers simple anonymous mechanisms. The
intuition for why this class of mechanisms are sufficient is simple. Because of the risk neutrality,
agents only care about the perceived probability of consuming each public good and the expected
transfer. Therefore, there is nothing to gain from making transfers and inclusion probabilities
functions of 6_; , or by making inclusion and provision rules conditionally dependent. Mechanisms
of the form (8) are therefore sufficient. Moreover, from any non-anonymous incentive feasible
mechanism, one can always create a new incentive feasible mechanism that generates the same
social surplus by permuting the roles of the agents. There are n! permuted mechanisms, and from
these we can create an anonymous incentive feasible mechanism that generates the same surplus

by averaging over the n! permutations.

2.4 Symmetric Treatment of the Goods

Our next result, on which we rely heavily in Sections 4 and 5, identifies conditions under which
it is without loss of generality to treat goods symmetrically. Obviously, the underlying environment
must be symmetric, and we formalize this by assuming that 0; is an ezchangeable random variable,
that is F'(6;) = F (0;) whenever 6] is a permutation of §;, and that there exists C (n) such that
CI (n) = C (n) for all j.

The notion of symmetric mechanisms is intuitive, but we nevertheless provide a formal definition
for clarity. Given valuation profile # and a one-to-one permutation mapping P : J — J of the set
of goods, let 67 denote the permutation of agent i’s type by changing the role of the goods in
accordance to P : that is, 67 = <9f71(1), 9?71(2)..., Hfil(m)> , where P~1 denote the inverse of P.

For simplicity, write 87 = (9{3 s, OF ) as the valuation profile obtained when the role of the goods

is changed in accordance to P for every ¢ € Z.

Definition 3 Mechanism g is symmetric if for every 6 and every permutation P : J — J :
1. pP7 0 (0F) = p7 (0) for every j € T;
2. nP D (9F) = 17 (6;) for every j € T;

3. t(0F) =t(0;).

8The exact argument is slightly more complex than simply randomizing with equal probabilities over the n!

permutations. The reason is that inclusion and provision probabilities are potentially correlated since they both

depend on 6; € O.



It is worth pointing out that, in defining the symmetric mechanism, we require that the
same permutation of goods be applied for all agents. As an example, suppose that there are
two agents and two goods, and that the valuation for each good is either h or [. In this case
© = {(h,h),(h,1),(l,h),(l,1)}. One type profile in © is § = ((h,l),(l,h)). Applying the only
non-identity permutation of the goods to all agents generates a type profile ((I,h), (h,1)). Defini-
tion 3 requires that the allocations for type profile ((I, ), (h,[)) is the same as the allocation for
((h,1), (1, h)) with goods relabeled, and that transfers are unchanged.”

The result is:

Proposition 2 Suppose that 0; is an exchangeable random variable and that there exists C (n) such
that C7 (n) = C (n) for all j € J. Then, for any simple anonymous incentive feasible mechanism g,
there exists an simple anonymous and symmetric incentive feasible mechanism that generates the

same surplus as g.

The idea of the proof is similar to that of Proposition 1, except that now it is the role of the
goods that are permuted. For concreteness, consider the case with two goods. Suppose that there
is an original mechanism, which possibly treats good 1 and 2 differently. We can reverse the role
of the goods and obtain an alternative mechanism that generates the same surplus. A symmetric
mechanism can be obtained by averaging over the original and the reversed mechanism.'® One can
show that it is also incentive feasible and generates the same surplus as the original mechanism.
Proposition 2 generalizes this procedure by permuting the roles of the goods (m! possibilities) and

creating a symmetric mechanism by averaging over these.

3 The Case with Many Independent Goods

A relatively straightforward case is when both the number of goods and the number of agents
are large. For reasons familiar from the multidimensional screening literature, finding an exactly
optimal mechanism is an intractable problem. However, using reasoning similar to Armstrong [3],

one can construct an approximately optimal mechanism for the case when both n and m are

Tf we were to apply different permutations for the two agents, e.g., applying the identity permutation for agent
1 and the non-identiy permutation for agent 2, then we would obtain a profile ((h,!), (h,!)), which is a qualitatively
different from either ((h,1), (I, h)) or ((I,h), (h,1)). In the profile ((h,l), (h,l)), both agents have low valuations for
good 2 and high valuations for good 1, whereas, in the profiles ((h,1), (I,h)) or ((I,h), (h,l)), one and only one agent

has high valuation for both goods.
10Provision probabilities and taxes are given by straightforward averaging, but since inclusion and provision prob-

abilities may be correlated the procedure is somewhat more involved for the inclusion rules.



sufficiently large.!' This approximately optimal mechanism is a pure bundling mechanism.

The ex post efficient rule is to provide good j if and only if » 7", 0{ > (7 (n) and exclude
nobody from usage. What is the provision probability for good j under the ex post efficient rule?
Assuming that there exists finite numbers p and o2 such that EQg < u and Var@{ < o2 for each j,
we can appeal to law of large numbers reasoning to get a simple answer.'? Given these regularity
conditions, Y 1, 9{ /m converges in probability to E0£, and the ex post efficient provision probability

converges to either zero or one depending on the relation between EHg and C7 (n) /n :
Lemma 1 Suppose there are finite numbers p and o? such that EGg < u and Vang < o2 for all j.

1. If there exists N and 6 > 0 such that E@g — C(n)/n > 6§ when n > N for all j, then
P [, > €3 )] 1

2. If there exists N and § > 0 such that C7 (n) /n — EHg > 6 when n > N for all j, then
limy o Pr |27, 07 2 C9 ()] = 0.

It is not hard to implement “never provide” , so only the first case is interesting. We therefore
assume that the first case applies for all j for the remainder of this section.'® Also note that if
C7 (n) /n has a limit, the only case not covered in Lemma 1 is when lim,, .o, C? (n) /n = E@g :

Let € > 0 and consider the simple anonymous mechanism g = <{ﬁ7 };n:l , {ﬁj };n:l ,f), where

7 (0) = 1foralljandalldec® (9)
A 1 S >y G
0;) = 20022 = hem )

: J Cj(n)
0 if 3,0, <>, =L~ +em
C;(n) . j Ci(n)
> +em 1fzj9iZZjT+6m
. 7 Ci(n
0 if >0,0] <>, =L~ +em.
The mechanism in (9) is a pure bundling mechanism. While expressed as a direct revelation mech-

anism, we can interpret it as a fixed mechanism where the full bundle is offered to anyone willing

to pay price Z]‘ Q@ + em. Clearly, truth-telling is a dominant strategy and the participation

"'While containing no formal large numbers analysis, similar reasoning can also be found in Dana [7]. Jackson and
Sonnenschein [10] also show in a related setting that the welfare costs of incentive constraints completely disappear

when a large number of decisions are linked.
127 sufficient condition for the existence of the bounds p and o is that there exists an interval [a,b] such that

67 € [a,b] for all j.

131f the first best probability of provision converges to one for some goods and zero for others, the analysis still
applies as long as there are sufficiently many goods that should be provided in a large economy according to the ex
post efficient rule. Goods for which the first best probability of provision converges to zero may simply be dropped

from the bundle and the rest of the analysis carries over.
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constraints are satisfied given such a mechanism. The only questions are: (1). when does (9)

satisfy the feasibility constraint (5)7? (2). what are the optimality properties of (9)?

Proposition 3 Suppose uniform bounds p < 0o,0% < 00,8 > 0 exist such that E@g < ,u,VARHg <
o2 for every j, and Eﬁg —C9(n) /n > 6 for every j and n > N. Then:

(1) for any € € (0,0) there exists M < oo such that g is incentive feasible for any n and any m
such that n > N and m > M,

(2) for every e € (0,0) there exists N. and M (independent of €) such that the difference in per
capita surplus between the ex post optimal mechanism and mechanism g is less than € for any

economy with n > Nz and m > M.

In words, the simple pure bundling mechanism in (9) can approximate the outcome of the infor-
mationally unconstrained efficient mechanism arbitrarily well, provided that the number of goods
and the number of consumers are both sufficiently large. In contrast, if the bundling instrument is
not available, the probability of exclusion is always bounded away from zero for all agents (see Nor-
man [17]). The result thus illustrates that (pure) commodity bundling improves economic efficiency
in large economies with many public goods.

The intuition for the above “double infinity” (n and m both go to infinity) asymptotic results
is as follows. By selling usage of the goods only as a bundle, a consumer will buy the good if and
only if the average valuation exceeds the ratio of the price over the number of goods. The average
valuation converges almost surely to the expectation as the number of goods approach infinity,
implying that the probability of excluding an agent can be made negligible even if the “per good”
bundle price is near the expected average valuation. Hence, what is crucial for the implementability
of g is the number of goods. Indeed, if C7 (n) = ¢/n for each j and n, the number of agents is
completely irrelevant for part 1 of the result. However, the number of agents play a crucial role for
the desirability of the pure bundling scheme. With a small number of agents, there is a significant
probability that a particular good should not be provided. If n is large, this probability is negligible,
implying that the pure bundling provision rule is near the efficient provision rule.

Independence among the elements in 6; is of course a strong assumption. In many situations it
seems reasonable that there are correlations, for example due to all elements in ; being correlated
with wealth, age, or other “background variables.” But, if the variables that induce the correlation
are observable, this can easily been taken care of. That is, if (0;, z) follows some joint distribution

F, what is needed is that the elements in 6; are conditionally independent given any realized z.'4

141f for each 4, F; is the cdf over #; and {F;}}_, are independent, mechanism (9) still leads to approximate efficiency.
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3.1 What is Special About Public Goods?

It is instructive to compare our large numbers analysis with Armstrong [3], who studies of a
multi-product monopolist selling private goods. While Armstrong is concerned with profit maxi-
mization, he obtains an approximate full surplus extraction result when there is a large number
of stochastically independent goods, so the allocation is almost first best. The mechanism that
achieves this is a two part tariff. In essence, the monopolist sells the right to purchase goods at
marginal cost. With a large number of goods, the consumer surplus for the average good is near
the expected consumer surplus, so the monopolist can extract almost the full surplus.

A pure bundling scheme would not do particularly well when selling private goods. Unless the
marginal cost is zero, pure bundling would lead to a large numbers of goods being produced for
users who value the goods below cost. For the public goods case, however, the non-rivalness in

consumption means that this concern vanishes, and bundling can almost implement the first best.

4 The Model with Binary Valuations

We now turn to a case for which we can characterize the constrained efficient mechanism exactly.
Assume that there are two public goods, and that the valuation for good j can either be “high”
(67 = h) or “low” (¢ =1). The individual type space is thus © = {(h,h), (h,1), (I,h),(l,1)} . For
notational brevity we henceforth write 6; = hh instead of (h,h), 6; = hl instead of (h,l), and so
on. To facilitate comparisons with the non-bundling benchmark, we also assume that 6} and 6? are
independent with o = Pr[d} = h] = Pr[#? = h] € (0,1), implying that the probability distribution
F over © is:'®

{a2,a(1—a),a(l—a),(l—a)2}.

Finally, we assume that costs are given by C* (n) = C? (n) = cn. The most important simplification
here is that costs are the same for both goods. Together with the symmetric type space, this implies
that we can appeal to Proposition 2 and restrict attention to symmetric mechanisms. Keeping the
per capita costs constant simplifies notation, but is not necessary.

If h < ¢, “never provide any good” is ex post optimal, which can be trivially implemented.
Symmetrically, if [ > ¢, “always provide both goods” is ex post optimal and can be implemented
by charging a constant tax equal to 2c. We therefore maintain the assumption that [ < ¢ < h in

order to keep the problem interesting.

15Independence across agents is a crucial assumption, but independence across goods is only for ease of comparison
with the no-bundling case. The analysis extends with minor modifications with a probability distribution of the form

{ohh, e, T cm} , where o, is the probability of a “mixed type”.
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Appealing to Propositions 1 and 2, we consider only simple anonymous mechanisms that treat
the two public goods symmetrically. For each § € ® = {hh, hi,lh,l1}", let © = (xpp, Th, Tin, Ti1)

denote the number of agents announcing different types, and let
X, = {.I'E {0,...,n}4 Z.I‘hh—F.I'hl—Fl'lh—i-l‘ll:n}. (10)

be the set of possible values of x in an economy with n agents. Anonymity means that the provision
rule depends only on the number of agents who announce different valuation combinations. With

some notational abuse, it is thus without loss of generality to consider mechanisms on form

M = <{pj777j}j:1’2 7t> WS {172}7 (11)
where p] Py — [07 1] 777j = (U?thnilﬂ?{hﬂﬂz) € {07 1]4 and ¢ = (thh7thl7tlh7tll) € R4 SatiSfy

P (Thhy Thty Tips ) = 02 (Thhs Tips Thi, T 5 (12a)

Mhi = s Mhe = Nihs M = Maps My = Mit> tht = tin- (12b)

4.1 Optimal Separate Provision Mechanisms

As a benchmark, this section derives the asymptotic provision probabilities of the two public
goods when the provision problem for each public good is considered in isolation. Proposition 1
applies also to the case with a single good, which for the binary case means that the provision
rule may be taken to depend only on the number of agents who announce a high valuation. To
emphasize that the solution depends on the size of the economy, we index the mechanism by n.
With some abuse of notation, we write a separate provision mechanism for good j in an economy
of size n as a triple (pl, 75, t5), where pl : {1,...,n} — [0,1] and pJ, (k) denotes the probability of
provision if x agents announce a high valuation for good j; 77% € [0,1] is the inclusion probability
for type [ and #, = (#,(h), #%,()) are the transfers.'®

To find the best provision mechanism where goods are provided separately is formally the same
problem as finding the best provision mechanism when there is only a single good. Maximizing
social surplus subject to the single-good analogues of (4), (5) and (6) in Section 2.2 one obtains

the following characterization of the constrained optimal separate provision mechanism:

Proposition 4 Consider a sequence of economies of size {n},-, . Then,
(1) if ah < ¢,limy, oo Ep% (k) = 0 for any sequence of feasible separate provision mechanisms
{ s th}:

161n principle, use exclusions of type h agents is of course also feasible. However, such exclusions never occur in an

optimal mechanism, since excluding type h tightens the downwards incentive constraint for h.
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(2) if ah > ¢, limy oo Ep? (k) = 1 for any sequence of constrained optimal separate provision

mechanisms { o i tnj} . Moreover, any sequence of constrained optimal mechanisms satisfies

ah —c¢ lim t:j(l): ah —c

n—oo n _ah—l7 n—oo « —l n—oo

Y _ah—c ah—c
[, and lim t77(h) [1 o h+ah—ll'

The result is a two-type analogue to Propositions 2 and 3 in Norman [17] and the ideas are very

similar.'” Instead of a formal proof, we only provide a heuristic explanation of the result.'® The

key idea is that the incentive constraint
B o (1) 103 = h| h— 67 (h) = B0 () 03 = 1] i — £ 1), (13)

may be replaced by
Bof? () h— 653 (h) > B () b — 1790, (14

since the probability that agent 7 is pivotal for the provision decision is negligible in a large economy.
Moreover, the participation constraint for the low type binds, and (again ignoring the effects of
being pivotal) this implies that ¢7 (1) ~ Epl (k) n}?1. Because (13) binds in the optimal mechanism,

budget balance requires that, approximately,

Bpil (5)e = atid(h) + (1= )t () = a [t (1) + Epif (5) b (1= ;)] + (1= a) 7 (D)
= /(1) +aEp (k) h (1 —n;7) = Ep) (w) L+ Ep7 (v) ah (1 —m)7). (15)

Hence, n}? ~ (ah — ¢) / (ah — 1) follows from (15). Inspecting (15), it follows that lim, .o Epf? (k) =
0 if ah < ¢ (since | < ¢ by assumption). Otherwise the budget balance constraint must be violated
for large n. On the other hand, if ah > ¢, it is feasible to provide for sure (for any n) with the
transfers specified in Proposition 4, and inclusion probability n%, = (ah —c¢)/(ah —1). Condi-
tional on this inclusion probability, the ex post efficient rule is to provide public good j whenever

~h+ -n5,l > c. An application of Chebyshev’s inequality guarantees that

h—c¢

L ll>ah>c.

n

plim (Eh + n&l) =ah+(1-a) a
n ah —

Thus, the ex post efficient provision rule conditional on the given inclusion probability converges

towards “always provide.” Hence lim, Ep:}j (k) = 1 in the optimal mechanism. The limits for

17Strictly speaking, Proposition 4 is not a special case of the results in Norman [17], which deals with continuous
distributions satisfying the “increasing virtual valuation condition” familiar from Myerson [15] and others. Since
continuous approximations of discrete distributions violate this regularity condition, there are some qualitative dif-
ferences between the binary case and the “regular” continuously distributed case. In particular, the solution to the

binary case will generically involve randomizations.
18Details available on request from the authors.
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the transfers can then be obtained by substituting lim, s Ep:}j (k) = 1 back into the incentive and
participation constraints.

The optimal separate provision mechanism characterized in Proposition 4 is bounded away from
first best efficiency. First of all, the asymptotic provision probability is zero when ah < ¢ while
efficiency requires that the public good be provided whenever ah + (1 — ) I > ¢. Moreover, when
ah > ¢, there is still a distortion due to positive probability of exclusion of low valuation agents,

even though the public good is provided asymptotically with probability one.

4.2 Efficiency Gains From Bundling

Before deriving the constrained optimal mechanism, we consider an example that shows that
bundling can lead to provision for sure, even though the best separate provision mechanism has an
asymptotic provision probability equal to zero.

Suppose that ah + (1 — «)l > ¢, so that provision is desirable in a large economy with a

probability near one. Consider mechanism

thh = tw=t,=h+1, andty =0

M = M =My =1, and 7y =0 (16)
pt(x) = p*(x)=1forall z € X,.

That is, type-hh and type-hl agents are taxed the willingness to pay of the mixed type and consume
both goods for sure. Type-ll pays nothing and is excluded from usage from both goods.
All incentive and participation constraints are trivially satisfied by mechanism (16). The only

question is thus whether the feasibility constraint (5) is satisfied, that is, if
Pr[{hh,hl,lh}](h+1)=a(2—a)(h+1) > 2, (17)
holds. It is easy to show that:

Claim 1 Given any ¢ > 0 and o € (0,1) there exists pairs (h,l) with h > ¢ > | such that (17) is

satisfied, where at the same time ah < c.

The expected utility in the best separate provision mechanism approaches zero for all agents
when provisions go to zero, whereas type-hh enjoys utility level A — [ > 0 under mechanism (16).
The proposed bundling mechanism therefore improves efficiency. The construction of the values of
h and [ for any ¢ > 0 for which (16) outperforms the best separate provision mechanism is depicted
in Figure 1. The intuition for the improvement of bundling mechanism is as follows. The revenue

maximizing separate provision mechanism is to include only high valuation types. Hence, a fraction
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Figure 1: The Bundling Mechanism Outperforms Optimal Non-bundling Mechanism in the Shaded Region.

a of the agents contribute towards each good. In the bundling mechanism (16), only a fraction
(1 — a)? are excluded. While the contribution per agent decreases, the total revenue increases if I

is sufficiently close to c.

5 The Constrained Optimal Mechanism

5.1 The Mechanism Design Problem

For the binary model described in the previous section, we now set up the design problem to
maximize social surplus (7) subject to the incentive compatibility constraints in (4), the feasibility
constraint (5) and the participation constraints (6) in a tractable form.

The most involved part of the optimization problem is the provision rule. This is difficult to deal
with because p’ () is weighted by the ex ante probability that x occurs in the objective function
to the problem, while the relevant probabilities in the constraints are conditional probabilities. To
deal with this, we need to be explicit about the (multinomial) probability distribution of x, in order
to eventually be able to link the unconditional and conditional probabilities. Given n agents, we
denote the probability of outcome = € A}, by a,, (z), which follows a multinomial with parameters
(n,aQ,a(l —a),a(l—a),(1 —a)2> .

There are 12 incentive constraints to be satisfied. However, due to the symmetry, types are

naturally ordered as hh being the “highest type”, hl and lh being “middle types” and Il being
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the “lowest type”. We conjecture that only downwards incentive constraints are relevant and will
therefore ignore all upwards constraints as well as the constraints between type hl and [h. Once
the solution to the relaxed problem is fully characterized, we will verify that the other omitted
constraints are satisfied. Finally, it is easy to check that if type-hh is better off announcing her
true type than announcing hl, and type-hl is better off announcing her true type than announcing
ll, then there are no incentives for type-hh to announce ll. Together with the symmetry of the

mechanism (12), we are thus left with two distinct incentive constraints:

20hn D owex, s An—1 (€) p' (xhn + 1, pt, 2o, k) b — thy >
77;1” erXn—l an—1 (z) p' (Thh, T + 1, 2, )b (18a)

+n3, > wex, , an—1(T) P (Thh, Tty i + 1, 2y)h — th,

M >ozex, ; an—1 (x) pH(Thn, Thr + 1, 2i, xu)h
+1i, eranl an—1 () pH(Thn, Thi, Tin + 1, o)l — th > (18b)
M Yowex, , an—1 () P (Thh, ot Tin, xu + 1) (B + 1) — ty,
where (18a) states that type-hh agents do not have incentives to mis-report as type hl; and (18b)
states that type-hl agents do not have incentives to mis-report as type II.

Given that all downward incentive constraints and the participation constraint for type [l are
fulfilled, it follows by a standard argument that the participation constraints for types hh, hl and
lh are also fulfilled. The only relevant participation constraint is thus

20h > an-1(2) p" (@hns Thty Tiny xu + 1)1 =ty > 0, (19)
z€Xn_1

Finally, the budget balance constraint can be simplified considerably due to the simple transfer
schemes and the constant per capita costs. That is, using the symmetry of (12) and breaking out
n from (5), we can express the feasibility constraint in per capita form as

Ptpn +a(l—a) 2t + (1 — )ty — 2¢ Z a, (z) p' (z) > 0. (20)
TEX,
Again using the symmetry of (12), we can drop one of the goods, and express the relaxed program-

ming problem as:!?

1 1 1 1
Thh + Ny Tht) b+ T + )l

max 2 an () p' (2) (Mhnnn + Nhyn) (i + myu) e (21)

ettty = n

s.t. (18a)-(18b), (19) and (20),

néi >0,1- néi > 0 for each 6; € O, (22)
p' (x) > 0,1 — p! (z) >0 for each € X, (23)

19The multiplicative constant 2 in the objective function is redundant, but it aids interpretations by keeping the

units in the objective function and the constraints comparable.
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where the social planner’s objective function is written in per capita form.
Lemma 2 There exists at least one optimal solution to (21).

The proof is standard by first compactifying the constraint set and then applying Weierstrass
Theorem. It can be shown that Slater’s condition for constraint qualification holds, so the Kuhn-
Tucker conditions are necessary for an optimum. Since a solution to (21) exists, these first order
conditions therefore provide a characterization of the optimal mechanism, provided that the con-

straints that we ignored when formulating (21) are satisfied at the candidate solution.

5.2 Relationship Between Multipliers

Taxes enter linearly into all constraints and are not constrained by boundaries. It is therefore
convenient to begin the analysis by taking first order conditions with respect to tg. This allows us
to express the multiplier of any other constraint as a linear scaling of the multiplier of the feasibility
constraint.

The first order conditions with respect to t = (txp, th, ti) are,

(w.r.t. tpp) —Anh + Aa? = 0,
(w.r.t. tn) A+ A+ A2a (1 —a) =0, , (24)
(w.r.t. ty) A — A +A(1— 04)2 =0.

where A\pp and Ap; are the multipliers associated with (incentive compatibility) constraints (18a)

and (18b), and Ay is the multiplier associated with the (participation) constraint (19). Hence:

Lemma 3 In any solution to (21), the multipliers (Apn, Ani, \it, A) satisfy: Anp, = o?A, Ay =
(2a — a2) A, and Ny = A.

In all its simplicity, Lemma 3 is actually a key step in the solution of (21). Its role is similar to
the characterization of incentive compatibility and individual rationality in terms of a single integral
constraint in single-dimensional mechanism design problem (i.e., the approach in Myerson [15] and
others). In multidimensional problems, it is impossible to collapse all constraints into a single
constraint. Instead, Lemma 3 allows us to indirectly relate all optimality conditions to a single
constraint. The analysis is thus very much as if an objective function is maximized subject to a

single constraint.
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5.3 Optimal Inclusion Rules

We now characterize the optimal inclusion rules n'. To ease the statement of the result, we

define two linear functions G : [0,1] — R and H : [0,1] — R as

200 — a? a?
G®) = (1¢)2l+¢{a(1—a)la(l—a)h}’ (25)
Oé*a2
H (@) = (1—<I>)2l+<1>{(12a)21—(21a)Q(thl)}

The result is:

Lemma 4 Let M = (p', p%,nt,n%t) be a symmetric solution to (21) and let ® = A/(1+A),
where A is the associated multiplier on the resource constraint. Also, suppose that E[p7 () |01] >0

for all 8; € © and j = 1,2. Then,

1 .2 .1 .2 1.
L Mo =M =M =M = 1

1 if G(®) >0
2oy =np =9 yel0,1] ifG(®) =0
0 if G () < 0;
1 if H(®) >0
Somp=mnp=4 yel01] fH(@® =0
0 if H(®) < 0.

To interpret the result, note that ® = A/ (1+ A) € [0,1], and G (®) > 0 if and only if

Term 1 Term 2
N — e
Pla(2—a)l—a’h]+(1-@)2a (1 —a)l > 0. (26)

To understand Term 1 in expression (26), consider two candidate inclusion rules. The first candidate
is nh, =2, =0y =nh =0, and 0, =02, = ni, = n5 = 1. That is, an agent is given access
to good j if and only if her announced valuation for good j is h. Since high valuation agents
are willing to pay h for access to a good, the expected revenue from such an inclusion rule is at
most 2k x a? + h x 2a/ (1 — @) = 2ah from each agent. The second candidate inclusion rule is
Nk =m2, =nt, =n2, =nt, =n% =1 and nj; = n3 = 0. That is, an agent is given access to both
goods as long as one of her announced valuation is high. Under this inclusion rule, all agent types
except Il could be charged h + [ for access to both goods. This results in an expected revenue per
agent of at least [o® +2a (1 — )] (h+1) = a(2—a)(h+1). The change in revenue if increasing

nY, and %, from 0 to 1 is thus

a2—a)(h+1)—a2h=a(2—a)l—a’h, (27)
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which is Term 1 in expression (26). Term 2 in expression (26), 2a (1 — «) [, on the other hand,
captures the marginal increase in per capita surplus from increasing 7711h and n%l from 0 to 1. In
sum, this means that G (®) is a weighted average of the optimality conditions for an unconstrained
social planner and a profit maximizing provider, where the weight on Term 1 — the effect on revenue
— is higher when the shadow price of revenue, namely, A, is higher.

Clearly, if both Term 1 and Term 2 are positive, then both the social planner and monopolistic
provider prefers setting nllh = 77;2” = 1. On the other hand, if Term 1 is negative, i.e. if & (2 — @)l <
a?h, then some algebra on expression (26) shows that G (®) > 0 if

(1—a)21

=D

(28)

Clearly, ®}, > 0 but @}, < 1 only when o (2 — )l < o?h. That is, when there is a conflict of
interest between the surplus maximizing social planner and a revenue maximizing monopolistic
provider, 7711h = 77;2” = 1 will be optimal only when A, or the shadow price of resources, is sufficiently
low. To summarize, item 2 of Lemma 4 could be restated as: there exists a critical value ®}, € (0,1)
such that G (®) > 0 if and only if ® < &5 .

Analogously, H (®) > 0 if and only if

(1-®)(1—a)?*20+d20 —a(2—a)(h+1)]>0. (29)

The term (1 — )® 21 is the gain in social surplus when n}, and n? are increased from 0 to 1; and the
term 2] — a (2 — «) (h +1) is the revenue effect of such a change. Thus, H (®) is again a weighted
average of the optimality conditions for an unconstrained social planner and a profit maximizing
provider. If 2l — (2 — ) (h+1) > 0, the H(®) > 0 for sure and 7}, = 7% = 1 is optimal.
Otherwise, H (®) > 0 if and only if

i (1—a)?2l
d < P = . 30
=T a@2—a)(h—1) (30)
Note
—th 2 — 51, 1
o 1-a (31)

This implies that type-hl or type-lh agents are always “first in line” to get access to the good
for which they have a low valuation in the following sense: if 77111 = 77[2[ > 0, then we know that
d < P} < @}y, thus nfy, = 12, = 1; symmetrically, if nj, = n?, < 1, then we know ® > &% > &%,

then n}; = n% = 0. We summarize the above discussion as:

Lemma 5 Suppose that E[p’ (x)|60;] > 0 for all 0; € © and j =1,2. Let ® = A/ (14 A). There

exists ®f) < @} such that the optimal inclusion rule satisfies:
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1. All agents with a high valuation for good j is included with probability one for using good j if

1t is provided;
2. If ® < &}, < @55, then all agents get access to both public goods.
3. If @ = @} < Oy, then nj; =n% € [0,1] and 0}, =03, = 1.
4. If ), < ® < @, then 77111 = 7712l =0 and nllh = n%l =1.
5. If ¥} < ® = @}, then nj, =n% =0 and 0}, = n3, € [0,1]
6. If } < @}, < @, thennjy =n% =ny, =n3, =0

While A is still unknown, we now possess a simple characterization of the optimal inclusions as

a function of the still unknown multiplier on the resource constraint.

5.4 Optimal Provision Rules

To discuss the optimal provision rules { o (x)}jzl o+ it is convenient to first define
o' <£,<I>> _ @h+wh+%max{O,G(¢)}+ﬂmax{O,H(q>)}_C' (32)
n n n 2 n 2
Q2 (gq)) _ why @y owmax{0.G(®)} an o {OH(®)}
n n n n 2 n 2

These functions have a natural interpretation. To see this, first consider the case where ® = 0, in
which case [see definitions in (25)] G (0) = H (0) = 2. The value of Q7 (x/n,0) is thus simply the
social surplus generated if good j is provided and nobody is excluded. Similarly, as discussed in the
previous section, G (1) is the gain or loss in revenue if mixed types are allowed to consume their
low valuation good.2’ We can thus think of Q7 (x/n, ®) as a weighted average of social surplus and
net revenue if the good is provided when the state is x.

The constrained optimal provision rule can be fully described in terms of these two functions:

Lemma 6 Let M be an optimal solution to (21) and ® = A/ (1+ A) where A is the multi-
plier associated with the constraint (20) at the optimal solution. Then, (1) p? (x) = 1 whenever
Q7 (x/n,®) > 0; and (2) p’ (x) = 0 whenever @’ (x/n,®) < 0.

To summarize, we have characterized the optimal inclusion and provision rules for any given

value of the Lagrange multiplier A associated with the feasibility constraint. Such characterization

20The same is true about H (®), but given the non-triviality assumptions on the problem, giving access to type I

always reduces revenue.
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provides some partial information regarding the asymptotic provision probability in the optimal
mechanism with bundling. For example, the above characterization tells us that ah > c is a
sufficient but not necessary condition for the provision probability to converge to one.?! In contrast,
in the model without bundling, ah > c is the necessary and sufficient for asymptotic probability one
provision. To see this, write p = <a2, a(l—a),a(l—a),(1- a)2) as the asymptotic proportions
of agents with different valuation combinations hh, hl, lh, and Il; and write ®,, = A,/ (1 + A,) where
A, is the associated multiplier on the resource constraint in the optimal solution when the number

of agents in the economy is n. By continuity of Q7,

lim Q7 (2,0,) = @ (n9)
= ah+a(l—a)max{0,G(®)} + (1 —a)’max{0,H (®)} —c  (33)

where ® = lim,, oo ®,. Thus, ah > c is a sufficient condition for Q7 (u, ®) > 0 (and hence for

asymptotic provision with probability 1).

5.5 The Main Result

In this section, we provide a full characterization of the asymptotic properties of a sequence of op-
o 2
timal mechanisms. We index the mechanisms by the size of the economy and write {pﬁ, M, tn}

where pl, : X, — [0,1] is the provision rule for good j, and 7} = (. (th) ,my; (11)) are the pjro;)-
abilities that type-lh and Il agents are allowed access to good 1 conditional on provision, and
na = (nZ (hl),n? (I)) are the probabilities that type-hl and Il agents are allowed access to good 2
conditional on provision; and ¢, is the transfer rule. Note that, by Lemma 4, the other types are

included with probability 1 in any optimal mechanism. Our main result is:

Proposition 5 Let {p%,, 7)%, t"}j’_l be a sequence of optimal mechanism. Then, the following holds:
1. if max {2ah, o (2 — @) (h+ 1)} > 2¢, then lim, .o Ep), () — 1 for j =1,2;
2. if max {2ah, o (2 — a) (h+1)} < 2¢, then lim, o Epl, (z) — 0 for j =1,2;

3. if a(2—a) (h+1) > 2¢, then there exists N < co such that % (Ih) = n2 (hl) = 1 for every
n > N, nk (11) = n2 (Il) for every n and

lim n, (1) = lim n2 (1) = nj;,

21Recall that in the example in Section 4.2, the proposed bundling mechanism achieves provision with probability

one for cases when ah < c.
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Bundling\ Exclusion No Exclusion Exclusion
Eplf— 0 Eplf— 0, if ah < ¢
No Bundling (Mailath and Epl — 1,if ah > ¢
Postlewaite [11]) (Norman [17])
Eph'— 0,
Epli— 0 if max{2ah,a(2—a)(h+1)} < 2¢;
Bundling Allowed (Mailath and Egh — 1,
Postlewaite [11]) if max {2ah,a(2—a)(h+10)}> 2c
(This Paper)

Table 1: The Asymptotic Provision Probability under Different Bundling and Exclusion Possibilities.

where
., a2—a)(h+1)—2c

= a2—a)(h+1)—21 €(0.1);

4. If 2ah > 2¢ > a (2 — ) (h + 1) ,then there exists N < oo such that n (1) = n2 (Il) = 0 for all
n > N and n} (Ih) = n2 (hl) for every n and
lim 7, (1h) = lim n;, (hl) = nj,

where
2ah — 2¢

mh:Qah—a@—a)(thl)

€(0,1).

Allowing for bundling improves efficiency in two dimensions. First, in some cases, public goods
that are not feasible to provide separately can be provided with probability one when bundling is
allowed. This is shown in Table 1, which also illustrates the need for studying excludable public
goods when considering large economies.??

Secondly, even for public goods that can be provided without bundling, the optimal bundling
mechanism still improves efficiency by increasing the probability of inclusion for low-valuation
agents. Specifically, suppose that ach > ¢ so that both public goods will be asymptotically provided
with probability one with or without bundling. From Proposition 4, we know that under the best
separate provision mechanism, the ex ante probability for access is

ah —c

ah—1’

22Mailath and Postlewaite [11] considers a single-dimensional problem. However, the probabilities of provision in

a+(1—a) (34)

a multidimensional setting can be bounded from above by a single-dimensional problem, where the valuation is the

maximum of the individual good valuations.
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where « is the probability of a high valuation, in which case the consumer gets access for sure, 1 —«
is the probability of a low valuation, in which case the inclusion probability is (ah — ¢)/(ah —I)).
In contrast, Proposition 5 implies that the ex ante probability for access in the bundling regime in

the case where in the case where 2¢ > « (2 — «) (h +1) is

2ah — 2¢

e e (it D)

(35)

Again, consumers with high valuations get access for sure, while low valuation consumers get
access with probability (2ah — 2¢) /[2ah — a (2 — «) (h+1)]. Simple algebra shows that (35) is
larger than (34).23 Fewer consumers are thus excluded in the optimal bundling mechanism. A

similar calculation applies to the case where 2¢ < a (2 — ) (h+1).

6 Conclusion

This paper studies the role of bundling in the optimal provision of multiple excludable public
goods in large economies. We show that bundling in the provision of unrelated public goods can
enhance social welfare. For a parametric class of examples with binary valuations, we characterize
the optimal mechanism and show that allowing for bundling alleviates the well-known free riding
problem in large economies and increases the probability of public good provision. The basic
intuition, which we formalized in the case with many goods, is that bundling reduces the variance
of valuations, and that, due to the non-rivalness, there are no direct efficiency losses from providing
goods to agents with a low willingness to pay. Bundling therefore leads to fewer exclusions, which
in turn implies an increase in revenue. In our simplistic model this will in some cases change
the probability of provision from zero to one when allowing the designer to bundle. In a richer
environment with a quantity dimension, this should translate to increasing the provision levels.

We believe that there are two interesting directions in which the model of this paper could be
extended. First, can we characterize the optimal mechanism for the provision of multiple public
goods when the valuation distributions are more general? We believe that this is possible. In
particular, as long as all goods are binary and the problem is symmetric, a natural ordering of the
types exist no matter how many goods there are. While still very simplistic, this extension would
allow an analysis of how many different bundles would be offered, and one could also address to

what extent the mixing in the current paper is an artefact of the minimal type space. Secondly, it

23The difference between the two access probabilities is (1 — o) multiplied by

2ah — 2¢ ah—c a(ah—c)(h—1) 0
h—2-a)(htl) ah—1 PRh-2-a)(htDljah—1 =
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does not seem crucial to have non-rivalness in all goods. One could therefore use our setup to ask

to what extent public provision of a private good could be rationalized as a way to alleviate the

free-riding problem in public good provision.
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A Appendix: Proofs

Proof of Proposition 1.

Claim A1 For any incentive feasible mechanism G of the form (8), there exist an incentive feasible

mechanism
G = <<ﬂ7:77?1: (L) 77%) . 3 (tl)l€Z> y (Al)
JjeET
that generates the same social surplus, where p? : @ — [0,1] is the provision rule for good j,
77{ : © — [0, 1] is the inclusion rule for agent i and good j,and t; : © — R is the transfer rule for

agent 1.

Proof. Consider an incentive feasible mechanism G. Pick k € [0, 1] arbitrarily and define,

1
PO = E=C(0.0)= [ (0,09 (A2)
0
B0 (0,0 (09)  Jo_, Jo ¢ 09)w](0.0)d0dF0) 1. .
7 (0:) = 000 Je io@nmme 1 Je.Jo ¢ (6.9)dIdF (6-) >0

k if [g . Jo¢7(0,9)d9dF (0_;) =0
L(0) = BT (0) = /@ ()R (6,

for each 6§ € ©,j € J and ¢ € Z. This is a mechanism of the form in (Al), and we will call it G.
Use of the law of iterated expectations on p/ (6) and t; (6;) shows that the feasibility constraint (5)
is unaffected when switching from G to G. It remains to show that the surplus is unchanged, and
that (4) and (6) continue to hold under G. The utility of agent ¢ of type §; € ©® who announces
0; € ©is

' (0,0 7(0:,0-4,9) 0; — 7 (0:,0-) | i I
E_; _jezjgj (91,071,19) wj (0 0 19)0 T<0 0 )] in mechanism G (A3)

E_; _Z P <9l, 9_i) ng <él> 0; —t; (él>] in mechanism G. (A4)

jeT
If fo . fg ¢ (0 0_;, 19) d9dF (0_;) = 0, we trivially have that
E_ip (9 9%) ng’ (9) 0, =0=F_; [gj (9 0, 19) Wl (e 0, 19) el} : (A5)
whereas if [ | Jy ¢7 (01 0-i,0) dddF (0-;) > 0, we have that
E_w] (9 0, 19) ¢ (9 0_, 19)
E_i() (9 0, 19)
= E_u! (e e_i,ﬁ) ¢ (e e_i,ﬁ) 0;.

E_;p’ (91',94) ! (@) 0; = E_¢ (91'794,19)
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Trivially, E_;t; (0;) = t;(0;) = E_;7(0), which combined with (A5) and (A6) implies that the
payoffs in (A3) and (A4) are identical. Since the equality between (A3) and (A4) were established
for any i, 6; and 6;, it follows that all incentive and participation constraints (4) and (6) hold for

mechanism G given that they are satisfied in mechanism G. Moreover, [again by (A5) and (A6)]

E_i |0 (0)n] (0)0;| =E_; | > w!(0,9)¢ (0,9)0;] (A7)

JjeJ JjeJ

so it follows by integration over ©® and summation over ¢ that

EINS @)l 006 =E SN (0,9)w] (0,9)6:] , (A8)

€T jeTJ 1€T jeTJ

By construction, we also have that p/ (§) = E=¢’ (6,9) for every 6. Thus E (07 (0) C7 (n)] =
E [Cj (0,9) C7 (n)] , implying that

> B (0) | nl (0:)0; — C7 (n)] =Y E¢ (0,0) [Z Wl (6,9)60; — C7 (n)] . (A9)

JjeTJ i€ JjeTJ i€l

Hence, G and G generate the same social surplus. |

Claim A2 For every incentive feasible mechanism of the form (A1), there exists an anonymous

simple incentive feasible mechanism g of the form (8) that generates the same surplus.

Proof. Consider an incentive feasible simple mechanism G on form (Al). For k € {1,...,n!},
let Py : T — I denote the k-th permutation of the set of agents 7. Note that P, L (i) gives the
index of the agent who takes agent #’s position in permutation Pg. Moreover, for any given 6 € ©,

let 67K = <9 Py 9P;1 (n)> € © denote the corresponding k-th permutation of 6.4 For each

ke{l,..,nl}, let Gy = ((p{;,nil, ...,nin>j_12 ,tkl,...,tkn> be given by

ﬂljg(@) = pj(GPk) Voe®, jeJ, (A10)
nii(ei) = U;fl(i)(@') Vo, €0, jeTJ,iel,

k
tri (01) = tpgl(l)(&) Vo, e @,i e,
2470 illustrate, suppose n = 3,m = 2,0 = (01,02,03) = ((1,2),(3,2),(2,1)). Consider, for example, pur-
mutation k given by Py (1) = 2,P.(2) = 1,P.(3) = 3. Then P, ' (1) = 2,P,'(2) = 1,P,'(3) = 3 and
oFr — <9P;1(1)70P,;1(2)7eplzl(s)) = (02791793) = ((372) ) (172) ) (27 1)) .
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and let g = ﬁj,ﬁj,...,ﬁj 1, ..., tn | be given by
1 nj.

)

70 = %Zp{;(e) Vhc®, jeg (A11)

W) = leE[p?“[%}(:)’T ! V0, €0,icT, jeJ

1 (0;) = %Ztki(ei) Vo, €0,iel.

We now note that: (1) f?r eachj € J, 7 (0) =7 (0) if 0 is a permutation of 6. This is immediate
since the sets {pi: (9)}::1 = {p (Py (9))}:;1 and {pi: (6" }::1 = {p’ (P (9’))}2':1 are the same;
(2) for j € J and each pair i,7 € Z,7 (-) = 7, (-). That is, the inclusion rules are the same
for all agents. To see this, consider agent 7 and i/, and suppose that 6; = 0;;. We then have
that { — [,0,2 } nlﬂ )}:':1 and {E_i/ [pfc (9)} n{ﬂ., (Hi/)}:!zl are identical and that E_; [’ﬁj 0)] =
E_y [pj (0)]; and (3) for each pair 4,7’ € T,t; (-) = ty (-) , which is obvious since the sets {t; (6;) lel
and {tx; (6}) }Z':l are identical. Together, (1), (2) and (3) establishes that ¢ is anonymous and
simple.

Now we show that g is incentive feasible and generates the same expected surplus as GG. First,

since G and G}, are identical except for the permutation of the agents, we have, for k =1, ...,n!,

ZE{P% [Zﬁk el (n)] } = ZE{ﬂ’ (0) [Z?ﬁ (6:) 6] — € (n)] } (A12)

jeJ 1€l JjeT i€l

Hence,

}

> E {ﬁj (0) [Z 7 (0:) 607 — C7 (n)

€T i€l

= ZZE(L{ ,ZE zpk ﬁkz Z}—E[mzpi(g) CI (n)

JET €T
= ,ZZE{pk )[Zr]ii(e)ﬁ— n) }_ZE{Pj(e) |:Z7Ig(9i)9z—cj(n)
JjE€T i€

k=1j€J i€

|- sefi s ao[s Bardonn, o,

JET et r Eoipl (0)

} | (A1)

where the last equality follows from (A12). Hence the surplus generated by ¢ is identical to that
by original mechanism G. To show that ¢ is incentive feasible we first note that Epi (0) = Ep? (9)

and E) ;7 tri (0:;) = EY ;7 ti (0;) for all k, since the agents’ valuations are drawn from identical
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distributions and G, and G only differ in the index of the agents. Thus

EY ti(6) - Y EF (0)C7(n) = BY — Ztm i) ZE—Zfﬂc

€L JjedJ zeZ k=1 jedJ k=1
= EY i(6:) =Y _EQ(6)C (n), (A14)
i€l jedJ

so g is feasible if the original mechanism G is. Second, we note that incentive compatibility holds

for any permuted mechanism, i.e.,

E_i > pl(0)n; (0:) 0] — tii(05) > E_y > pl(0:,0_i (03, 0-5)07 — t1i(0;,0_;) (A15)
JjeET JjeJ

for all ¢ € 7, and Giﬁi € ©. Hence,

AL 0i)p; 1 itki (6:)

B S PO (000 - 700 = Eiz{%zpm

n! j i
jeT jeT k=1 k=1 B—i [Pi (9)] n! k=1
n! n!
1 1 . ~
’ JEJ k 1 ]ej
1 n! ] R
- B Z Zpk 01,00, 0:,0-)0 — — > ta(0:,0-) = Y B (61,6 (e) 0/ —%(0:), (A16)
jea ™ k=1 k=1 jeg

where the inequality follows from (A15). Hence g is incentive compatible. Finally, g also satisfies
the participation constraints because (see the second line in (A16)) all the permuted mechanisms

satisfy participation constraints. Proposition 1 follows by combining Claims Al and A2. |

Proof of Proposition 2.

Notation:  This proof requires us to be explicit about the coordinates of the vector 8 when
permuting J. We therefore need some extra notation for this proof (only). We write 6, I =
(9}, vy 9{ 71, 9{“, ...,9}”) for a type vector where good j has been removed. Analogously, =7 =
(ij ,...,9#) stands for the type profile with good j coordinate removed for all agents and
67 = (9{, ...,9%) is the vector collecting the valuations for good j for all agents. Furthermore,
9:{ = <9fj,... 6, 1,9#1,...,9;7') and 9j = (9{,. ,91 1,91+1 9%) are used for the vectors ob-
tained respectively from 077 and #/ by removing agent i. These conventions are used also on the
distributions, so, for example, F:g denotes the cumulative distribution of 9:{ . Conditional distri-
butions are denoted in the natural way: for example F:g <] 9{ ) denotes the joint distribution of
9:{ conditional on 9{ . Since no integrals are taken over subsets of the range of integration, we also
conserve space and write [, h (6) dF (6) rather than [,_g h(0)dF (6) when integrating a function
h over 6 and similarly for integrals over various components of 6.

Proof. Consider a simple anonymous incentive feasible mechanism g. For k € {1, ..., m!}, write with

. . P, P(1) P (m)
some abuse of notation Py, : J — J as the k-th permutation of 7, andlet 0;* = ( 6,* 7/, ...,0.* €
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© denote the permutation of 6; when the goods are permuted according to Py. Write 07 =

(GP’“, ...,QTILDk) € O denote the corresponding permutation of 0.25 For each k € {1,...,m!} define
mechanism g = ({pi}jej , {ni}jej ,tr), where for every 0 € ©;

1. pl(0) = pP ) (67%) for every j € J;%

2. ni; (0;) = nplzl(j) <9f’“> for every j € J;%7

3.t (0;) =t <9fk> .

By construction, each g is simple. Each g is also anonymous by the anonymity of g. Using
the definition of g; and manipulating the result by observing that the labeling of the variables is
irrelevant, we get:28

B O 0)0] = [ A0 0000 0) fact ot g/ = [ T (6) "7 (01) 0laF ()
€
PG (g ) PO (9P ) giam (079 | g7 ]dFj o A17
LUt (o) ot (o) aws (07| ) | aw () (A17)
' PIYG) gy P @) gy pPr @) i -\ P ) i (gPit@)
/ﬂlm |:/(0j)Pkp 6)n )0 Dar (9 ) 0 dF (9 )

j-th argument

/relabel/

where we recall,

(69)™ = (9351(1), o PG PG ...,9P121<n>) . (A18)

By exchangeability, we have
ari | (677)"™ g5 U) (A19)
j-th (vector) argument

= dF7/ <9PI;1(1), ...,Qplzl(j*l),eplzl(jﬂ), ...,9Pl;1(”) |7-th (vector) argument = 9P;1(j)>

= dF7J <9_j|j—th (vector) argument = 9P1:1(j))

dF—Fi " 0) <9*P’:1(j)|Pk_1 (j)-th (vector) argument = ngl(j)> ;

and

ar (6570) = dp?" (07'0). (A20)

25To illustrate, suppose n = = 3, and 6 = (01,02) = ((1,2,0),(3,2,1)). Consider, for example, pur-
= 1,P.(3) = 3. Then P, ' (1) = 2,P,'(2) = 1,P,'(3) = 3 and

(2)
1 —1 —1 —1 —1 —1
gfk _ e‘lpk (1),ka (2)79519 G\ _ (27170)’95% _ (QQPk (1)79?@ (2),92Pk (3)) = (2,3, 1)7‘9P;C _ (9{%7951@) _

2,m
mutation k given by Py (1) = 2, Pk
((2,1,0),(2,3,1)). )

26This implies that p,}:’;l(j) (0p’€) = p? () for every j € J.
2"This implies that nkp’gl(j) (Gf’“) =17 (0;) for every j € J.
28Tt is important to point out that, in reaching the fourth equality in (A17), we can relabel the integrating varibles

(since they are dummies) but not the integrating functions.
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Using (A17), (A19) and (A20), we have that

Ep} (0)n(6:)6! (A21)

= Lo | ] T @O w00 Var (07)" | g0 ) | aw (0750
oT () | J(g=7)Fr S———r

j-th argument

- / / PO () PO (0 08 D gEFitO) [ g )] gRt ) ol (67'0)
ngfl(j) (97].)}:]C a N——

Plzl(j)—th argument

- /pPEI(J’) () npgl(j) (0,) gfgl(j)dp 0) = Eppil(j) () nP;;l(j)(gi)ef’z;l(j).
0

Moreover, exchangeability implies that Ety (6;) = Et <0f ’“) = Et (6;) . The ex ante utility,

E[S ol @m0 - (0)| = |3 ES D@05 D@65 V| —Ee(6) (A22)
j=1 =1
Same elements in J and [ m . A .
1 1 = Z Ep] (0) 77] (07«)05 —Et (91) ’
{Pk (1),.... Py (m)} | j=1

is thus unchanged when changing from g to gx. The same steps as in (A17) through (A21) (only
somewhat simpler) establishes that Ep{C (0) = Eplx 'G) for every j, implying that

BIY AOCm) =3 0| = |[COEY p(0)=D Bte(0)|  (A23)
= [CMEY F(O) =3 Et0)| = E|> FO)CMm) =3 t0:)],

so the feasibility constraint is unaffected when changing from g to gx. Next, write Write U(6;, 0}; g)
and U (0, 0%; g) for the expected utility from announcing 6} when the true type is 6; in mechanisms

g and g respectively. Next, by a calculation in the same spirit as (A17) through (A21):

E_ipl (0-i,0}) = / A (0-5,07) 4P~ (0-3) faet of ] = /9 N Y ((0-i,00) ™) dF s (0-)
/9 Us o0 (00 ) B (073 0%,)

/relabel/ = /9.P151<‘7.) [/g.fklw pP;Jl(j) (97“9;@) dF ((0:{)%
/9.’331(” [/e;fk1<j> o (9*"’9;&) dF:?I(j) (G:f)gl(j)

/9 o D (05,07 ) dF i (0-0) = Bip™ O (6-,0,7)

dF7 (9{ ) (A24)

QP,;lm) JF (QP,;lm)

gzj,;lm) aF (ezj,;lm)

/exchangeability /
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That is, the perceived probability of getting j when announcing #; in mechanism g, is the same as

the perceived probability of getting good P, ( /) when announcing (9 )P’c , so that
U0 0;:95) = Ey Zpﬂ (04, 05) m,(0)67 — . (605) (A25)

- an ((0; Pk)gJE_Zp ') (9_,.,9;1’1«) —t((eg)P’“>,
whereas

U0:i,059) = Y L (0)0E _ip], (0-5,0;) —t (0;) = (A26)
j=1

U0 059)| gmgre = ;nmez)’% 0r VB o (05, 05) — 1 (0)")
0,=0, * -

—1

= an’; (j)((%)P’“)&?E_mkP’“ 2 (9—1',9213’“) —t ((%)Pk) = U(0:,0;; gr),
j=1

which establishes that type 6; who announces 6} in mechanism g, gets the same utility as type Gf k

P

who announces (0;) in mechanism g. Hence incentive compatibility and individual rationality

of g follows from incentive compatibility and individual rationality of g. Now, construct a new

mechanism g = ({F }jej , {?77 }jej ,1) by letting

7)) = % AR % SR (g (A27)
" k=1 C k=1
Zk 177]; ( )E zpk (9) Zk 177 1(]) <9Pk> E_ ip P (J) (@Pk)

- _Zpi( ) m' E ip Pt () (QPk)
P0) = %tk (00) = -t (6

let P:J — J be an arbitrary perturbation of the set of goods. Then,

m!

-p 1 1, »
P (o7) = m.Zp D(N") =g e =70, 4
since the sets {p H(PT) ( >} and {pP AE) (9P k)}ml are identical. Furthermore
m! P (P71(0) P (PTH()
o e ) (<0P>Pk) B O (07)")

7tlu) (6F)

o 1(]))((9 : > (A29)

Sty (epk) Bipfs V) (0)
mB_pf 0) (67)
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for the same reason. It is obvious that %V(Qf) = t(0;), which together with (A28) and (A29)
establishes that ¢ is symmetric. To complete the proof we need to show that g is incentive feasible

and generates the same surplus as g. We note that

E%ﬁ(e)ﬁj(ei)ez:i,im(e) = 1”'? E-ipi (0 g (A30)
m: : —mi()
D ke 177é lﬂi
) lm o
- EZ [”p“j (0)77 (0;) 67 — } ZE {Z’? 0) 07 — 1, (ei)]
t(0

E_ip}, (0)

J=1 k=1 j=1
/(A21) & (A22)/ = E {Z” 0) 67 — ]
7j=1

which establishes that the ex ante utility from g and g are the same for all agents. Moreover,

[ Srocin-Sio| ~elewhSn0- S5 duw|
=1 : j=1 k=1 =1 k=1
T
T k=

m! m n m n
1 , .

= B[O A 6) - D 60|/ (423) {Zwe)cmzt(ei)]
k=1 j=1 i=1 j=1 i=1

= E[D /O (n)=> t0:)],
j=1 i=1

so the budget balance constraint is unaffected. All incentive compatibility constraints hold since,
U(0;,0;;9) = Zﬁj(eg)QgE,[ﬁ (6-:,6;) —t(67) (A32)
j=1

Z 77 / ij 07“9; 1 m! ' 1 m!
= o 1m$ ( ) =i ( )Efi poor kZPZ; (0,6 | — oo Ztk (67)
—1

zpk (9717 9;) T k=1

m!
1 | |
= i 2 [k (0 B (0-1.07) — 1 (6
" k=1
S m!
1 . )
/ (A25)/ = m! ;U(9i70;§gk) < / 1IC for each k/ ooy ;U(@;gk) = U(6:9).

By the same calculation, U(60;g) = % Z?;l U(6;gx) > 0, since all participation constraints hold
for each k. This completes the proof. [ |

Proof of Lemma 1.
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Proof. [Part 1] Pick an arbitrary ¢ > 0 and assume that there exists 6 > 0 and N < oo such that

E@g — C79 (n) /n > 6 for every n > N. Applying Chebyshev’s inequality, we have

Pr [ieg < I (n)] < Pr ieggn(Eeg;a) (A33)

i=1 Li=1

=Pr [Z 9{ — nE@{ < —nd

i=1

Var (ZZ 9{ > o2

s P n262 ~ né?

> nd

zn: 0 — nE6] =

=1

Hence, for every € > 0 we can find some N’ such that the probability that the ex post efficient rule
provides good j is at least 1 — e, which establishes part 1 of the claim. [Part 2] The argument is

symmetric and omitted. |

Proof of Proposition 3.
Proof. [Part 1] Let € € (0,6) . Since we assume that there exists N such that E@g —CV(n)/n>6

for each j and n > N we have that

; : ™ ; m :
1-Ep/(6;) = Pr Zeg<ZCT(”)+sm <Pr|Y 67 <) E# —bém+em
| =1 ‘

J Jj=1

VAN

Pr(|d 0/ -> E6l| <m(6—¢), (A34)
|| J j=1

for every n > N. By the assumption that Var@f < o2 for every j we can apply Chebyshev’s

inequality to conclude that

, Var <Zj 9{) o2
1 —E7; (6:) < <

< 3 < 5— —0asm — oo (A35)
(6—e)*m? ~ (6—¢)"m

Hence, there exists M such that Eﬁz (0;) >1— m for every m > M. It follows that

¢ (n)

&
(]
~
D
|
NE
Q
S
IV
3
-
N
gm
o
N—
NE
3

+em | — i C7 (n) (A36)
j=1

S ne n 2+« - nme [t >0
——mpu+n|———|em=——"—= ,
= e 2 (1 +¢) 2(n+e)

for m < M, so (5) is satisfied. The remaining constraints hold trivially, so g is incentive feasible.
[Part 2] Let p* = {p*/ };n:l denote the ex post efficient provision rules (transfers are irrelevant

for efficiency and we no consumer is excluded from usage). Let A7 = {0 €O 1 0{ - (n)}
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denote the set of type profiles for which the ex post efficient rule provides good j. The per capita

surplus generated by p* may this be written as

. y 6] i _Cin
s EZ/ 9 (0) [Z;— S Z/ [ n( M aF0).  (A37)
jeg /€@ i€T jeg/oed iz ™
Define B; = {Qi €00 Z )+ €m} .We note that
/ > W (0:) 01dF (0 / > 0ldF (0;) > Pr (B / > 0ldF (6, (A38)
JjeJ B jeJ 0 E@jej
Since Z]e 7 7> Zje 7 ng when 6; € B; and 0, ¢ B;. The per capita surplus generated by

mechanism g can then be decomposed as

JjeET

— /zeai /QiEBzZ —LdF (6;) dF _; (g_i)_zcjn(n)

dF (0) (A39)

i€ JjeT JjeJ
CI (n CI (n
> Z/ > % 0 Z# —(1=Pr[B]) Y n()
icz 10€0 o7 jeT jeT
J j
— Pr[B Z/ [ C()dF 0) + Pr (B Z/ —fc(") dF (6)
jeT oeAs zEI JjeTJ 0eO\AI zEI n

~a-pr(m) Y P s peme - [eeim) e (a0)] 4 (- e ) Y S0

JjeTJ JjeJ

By applications of Chebyshev’s inequality Pr [B;] — 1 and Pr (A7) — 1 as n — oo, which implies

that § — s* as n — oo. m.

Proof of Lemma 2.
Proof. For each x € X,,j = 1,2,0; € © we have that p’ () € [0,1] ,ngi € [0,1]. Next, we note

that if ¢;; < 0 and all constraints are satisfied, then a deviation where taxes are changed from ¢ to
t' = (thn, thi, tin, 0) and where inclusion and provision rules are unchanged will satisfy all constraints

in the relaxed program (21). Similarly, if all constraints hold and ¢;;, < —I — h the deviation
t = (thhs thi, —l — h,max (0,;;)) (A40)

satisfies all constraints (in the relaxed program). A symmetric argument restricts tp; > —h — [.

Finally, if t,, < —3h — [, then a deviation to
t/ = (—3h — l, max (thb -l - h) , Imax (tlh, -l - h) , Imax (0, tll)) (A41)
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Constraint Multiplier
Type hh IC (18a) Y

Type hl (lh) IC (18b) | Ap

Type Il IR (19) i
Feasibility (20) A

15,> 0 Yo,
1—15,>0 e,
pl(x)>0 7 (@)
1-p'(z)>0 ¢ (x)

Table 2: Notation of multipliers.

will leave all constraints satisfied. We conclude that there is a lower bound ¢ > —oo such that for
any mechanism where ¢y, < ¢ for some 0;, there exists an alternative mechanism that supports the
same allocation (and therefore generates the same surplus) where tg, > t. Also, if tg, > ¢ = 2h for
some 0; then at least one constraint in (21) must be violated. We therefore conclude that there is no
loss in generality to restrict ¢y, to be a number in [L, ﬂ . All constraints and the objective function
are linear in the choice variables and therefore continuous, so we conclude that the optimization
problem has a compact feasible set and a continuous objective. It is easy to check that the feasible

set is non-empty, which proves the claim by appeal to the Weierstrass Theorem. [

Notation for optimality conditions to program (21).

The proofs that follow make direct use of the Kuhn-Tucker conditions to the optimization
problem (21). For easy reference, Table 2 summarizes our notation for the multipliers associated

with each constraint.

Proof of Lemma 4.
Proof. [Step 1]Consider first the Kuhn-Tucker optimality conditions with respect to 77}11;1- They are

given by
xhhh
2 Z a, (7) pl (x) — + 2\nh Z an—1 () pl(xhh + 1, 2pp, i, xu) b+ Y, — Opp, = 0
reXn, r€EXn_1
Yintin = 0, (1= 0jp) = 0,735 = 0, épy, > 0. (A42)

All terms except v, — @p, in the first order condition are strictly positive, so v, — épn < 0.
The only possibility for this is that ¢,; > 0, which requires that 77;11}1 = 1 for the complementary

slackness constraint to be fulfilled. n%h = 1 follows from proposition 2.
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[Step 2] The first order condition with respect to 7}, reads

T
2 an(@)p' @h=" =X Y an1 (@) (@nny o + Lo zn) b (A43)
TEXy reX, 1
+ M Y a1 (@) p (@hhswh + 1w, wu) h+ i — d = 0.
xeanl
One checks that a,, (z) = x—hla (1 — ) an—1 (Tph, T — 1, 23, 25) holds for any x such that xp > 1

by using the functional form of the multinomial. Hence

x n x
San@pt @h= = Y —a(l-a)an (@m0 — Lo, au) o (z) A
n Thi n
zeXn, xEXnZl'hlzl
= a(l-a)h Z an—1 (Thh, T — 1, 2y, 1) p* ()
:BEXn::rh121
= a(l—a)h > an 1 (@) p" (@rnwn + 1, i, xu) - (A44)
r€Xy 1

By assumption, Zwexn,l an_1 () p* (Thn, Th + 1, 200, 1) > 0, S0

~1 Yhi

= >0 A45
Thi Zwexnﬂ an—1 () pr (Tphs Th + 1, 2in, 21) ( )
~1
o) P > 0.

Zmexn,l an—1 () p* (Thh, Tht + 1, Tin, 211)

Substituting (A44) into (A43) and using Lemma 3, we obtain the condition

JURPS| JURPS|
20 (1 —a)h— Auph+ Ah+ 3y — o = 2a(1—a)h—a?Ah+a(2—a)Ah + 7y — dpy
= 2a(1—a)h+2aAh+7), — Gy, = 0. (A46)

By (A45), the “rescaled multipliers” are well-defined, weakly positive, and equal to zero if and
only if the “original multiplier” is equal to zero. Since 2« (1 — a) h + 2aAh > 0, we conclude that
qAZ),lll > 0. Hence n}Ll = 1 for all x by the complementarity slackness condition. By Proposition 2,
n?%, =1 follows. Steps 1 and 2 thus proves part (1) of the lemma.

[Step 3] To economize on derivations, we immediately observe that

> an 1 (@) p @mmznn i + Lan) = Y an-1(@wn Thsim — Lan)p'(z),  (A47)

rEX, 1 l’eXanthI

and write the optimality condition for nllh as

23 e, an (@) p1 () P21 = Non Dy 2 >1 =1 (Thns Tty 2in — 1, x) pt ()

(A48)
T Y we gy =1 An—1(Thi, Thts T — 1 2u) pH (@)1 + vy, — ¢y, = 0.
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Since a,, () = 2o (1 — a) ap—1 (Tph, Thi, Tip — 1, ) holds for x;, > 1 we have

Tk
1 Tih, 1 Lih
> an (z)p" (x) L= > an(x)p (x) o (A49)
TEX, TE€EXp T >1
n Llh
= Z —a (1 —a)an—1(Thh, Thi, Tin — 1, 70) Pl (x) —I
Tip n
:EEXn::L'lh21
= a(l —a)l Z aAn—1 (:I:hhyxhl?'rlh - 1,$ll) pl (.’13)
:EGXn::L'lh21

Substituting into (A48) and simplifying, one obtains

0 = 2a(l—a)l—Awnh+ Al + 3 — by = 2a (1 — @) L — a®hA + (2a — o®) AL+, — by,

(2a — az) a? Bl Yin — %h }

a(ba)l*a(ua) (1+A)a(l—a)

= oz(loz)(1+A){(1<I>)2l+<I>

= a(l—a)(1+A) (1+AN)a(l—a)

G (®) + n O ] (A50)

where 7y, (z) and o, (z) are respectively 7y, () and ¢y, (x) multiplied by 1/E [p! (2) |0; = k] . We
thus conclude that G (®) > 0 must imply that alh > 0, hence by complementary slackness, 7711h =1
Symmetrically, G (®) < 0 must imply that 7, > 0, hence n}, = 0. If G (®) = 0, then the value
of both multipliers must be zero, which imposes no restrictions on 7711h- Proposition 2 implies that
n2, = nj,, which completes the proof of part (2) of the lemma.

[Step 4] Finally, we consider the optimality condition for 7};. Using an identity similar to (A47),

we can write the first order condition for 7711l as

x

2 Z a, (z) pt (z) ﬁ — A Z an—1(Thh, Tht, T, vy — 1)p" () (h+1)
rEXn:x;>1 TEX Xy >1

A\ D a1 (@ Ths T, wn — 1)p ()20 + vy — éy = 0. (A51)

rEX,x>1

Using the multinomial identity a,, (z) = xi” (1-— a)2 an—1 (Thh, Thi, Tin, Ty — 1) We can rewrite the

first order condition as

0 = (1—a)?20+A[2— (2a—0a?) (h+D)] +7Fy — du (A52)

_ 2 1 A 2 (20— a?) Yu— ¢
= (1=a) (1+A){1+A2l+1+A G aap Y +(1a)2(1+A)}

Yu—¢
= (1-—a)’(1+A) [H(‘I’H(l_al)lQ(HA)]‘

where 7, and ¢, are respectively v, and ¢, multiplied by 1/E [p' (x)|0; = U] . Arguing as in the

previous case completes the proof. [ |
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Proof of Lemma 6.

Proof. Without loss, we only consider good 1. The first order condition with respect to p! (z) is

1 1 h 1 1 1
2a, (ZL‘) (Whhxhh-i-??hlwhl)n+(771hxzh+771ﬂ»’ll) —cl + >\hh [277}11han—1 (l‘hh — 1, LThls Llh, :L'll) h]

—Abh [Mhan—1 (Thh, T — 1, Zin, ) b — npyan—1 (Tpn, Ta, 2n — 1, an) b
+Xn [Mh8n—1 (Thhs T — 1, @i, 2u) B+ 0jpan—1 (@kh, Thi, Tn — 1, 2) 1 (A53)
—Ant [(Mhan—1 Tk, Thts Tins 2 — 1) (h+ 1] + Mu2njan—1 (Thh, The, in, oy — 1)1
—Aa, (z)2c+v(x) — ¢ (x) =0,
where the convention is that a,_1 (xpn — 1, 2, xip, o) = 0 if xpp = 0, and so on. Using the

following identities between multinomials,

an(T) an(r) x

a1 (Thn — 1, Thi, Tin, T0) = _a(z )—Zh, an 1 (Thh, Tt — 1, Tin, Tu) = —a(l(_a))ﬁ (A54)
alr) x 1 x

an—1 (Thh, Thi, Tin — 1, ) = a(l(_)a) b an—1 (Thhs This Tin, Ty — 1) = TS

exploiting the relationships between multipliers in Lemma 3, and substituting 77}11}1 = 77;115 =1 due

to Lemma 4, we can simplify (A53) to

n

9 l:(xhh'f‘whl)h+(7711h13lh+77111xll)l B C:| (1- @)

+a2q>[2”hhh— L zup mha(fa)ﬁh}

a(l-a) n o
+o (2 — a) { (1I—a) xnzh + nlh (1 ) 7l — nlll(l—la) Ty (h + l)}
+®2n;; U] — §2c + % —0,

(A55)

(1—a)2
where ® = A/ (1 + A). This condition can be interpreted as a weighted average of surplus (the
term multiplied by 1 — ®) and profit maximization (the terms multiplied by ®). Collecting terms
in (A55) and simplifying we get

G(®)
pmunp 1 omuh 904 gt {(1_@yor 0| A2 o,
n n n Hih a(l-a) a(l—-a)
H(®) (A56)

2 2 2)—d(a
+%ghm1l{(1 )2+ D [(1 7a)2zf (E‘l(a)g f}L’ (h+l)} } + ool

/(32) [ =2 (2,0) + Aot

7

where the equality uses (from Lemma 4) that 7}, = 0 if G(®) < 0 and nj, = 0 if H (®) < 0. The

result follows. m

Proof of Proposition 5.

Lemma A1 For any ¢ > 0 there exists N such that Pr (’Ql (%,@n) — Q' (u, @n)’ > e) < € for
everyn > N.
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Proof. Fix an arbitrary € > 0. Let Y; (6;; ®,,) be a transformation of the random variable 6; given
by
h—c if 0; € {hh, hl}
Y; (0i;®n) =< max{0,G(®,)} —c¢  if6;=1n . (A57)
max {0, H (®,)} — ¢ ito;, =1l
Since Y; (6;; ®,,) has bounded support, there exists 02 < oo such that the variance of Y; (6;; ®,,) is
less than o2 for any ®,, € [0,1]. Moreover, {Y (6;; ®,)}"_, is a sequence of i.i.d. random variables

and
Eo,Y: (0;; @) = ah4a (1 — a)max {0, G (®,)}+(1 — a)? max {0, H (&)} —c = Q' (u, By) . (A5S)

Since for any sequence of realizations {y; (0;; @)},

"y (05;®,)  an T Tin xy e
N YRTE T Thh Py T max {0, G (@)} + L max {0, H (®4)} — e = Q' (2, 8y ,
2 o h p h p ax{0,G (®,)} ax{0,H (®,)} — ¢ <n >

n n

(A59)
we can apply Chebyshev’s inequality to obtain
1 (% 1 S yi (05; Pr)
i - >e) = JTH ) Ry Y (6; >
Pr(‘Q (n,@n) Q' (1, @0)| = ¢) Pr<; - B, Y; (0:; ®,)| > €
Var [Y; (0;;®,)] _ o2

< —. A60
- ne2 ~ ne? (AGO)
Hence, Pr (’Ql (%,@n) — Q' (u, @n)’ > e) <eforalln> N =%/ < oo. ]

Lemma A2 Let Y be a random variable with Binomial (n,p) distribution. For any € > 0 and

p € (0,1) there exists N < oo such that the binomial distribution with parameters p,n satisfies

n!
Y =vy) =" (1-p)"¥ <

for everyn > N and y € {0, ...,n}.
Proof. Omitted. [ ]

Lemma A3 For every € > 0 there exists N such that ‘pll (0;) — pll(ﬁg)‘ < € for every 0;,0; € © in

any truth-telling mechanism for any economy where n > N.

Proof. Omitted. |

The implication of Lemma A3 is as follows: as n — oo, the perceived provision probability
of public goods are little affected by agent ¢'s own announcement; thus such perceived provision

probability must be near the ex ante probability of providing the good.
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Lemma A4 For every ¢ > 0, there exists N such that, for all n > N,

Ep! (x) — p} (6)] < ¢ for

all 6; € © in any truth-telling mechanism.

Proof. Fix € > 0 arbitrarily. Let N be such that |p} (6;) — p}(8;)| < € for every n > N, 0;,0; € ©.
Then

B! (x) — o} (6:) (A61)
%0} (hh) + o (1 — @) p} (1) + (1~ ) p} (1h) + (1 — a?) p} (1) — p}(8)

o |p} (hh) = p(6)] + (1~ a) [} (k1) — p}(8)

(1 - a)|pl (1h) — o} ()] + (1 — a)? |o} (1) — }(8)

eta(l—a)eta(l—a)e+(1—a)e=e

IN

IN

(Proof of Proposition 5, continued). Now we use the above lemmas to prove Proposition 5. We
prove the four parts of the proposition in order.

(PART 1) We first prove part 1. Note from (33), we know that Q' (u, ®,) > ah — c for
any ®, € [0,1], hence lim, . Q' (1, ®,) > ah — c. Thus if ah > ¢, part 1 of the proposition
immediately follows from Lemmas 6 and Al. Suppose instead that a (2 — ) (h+1) > 2¢ > 2ah.
Then,

Q' (1, ®,) = ah+a(l—a)max{0,G(®,)}+ (1 —a)*max{0,H (®,)} —c (A62)
> ah—c+a(l—a)G(P,)
Oé*Oz2 042
_ ah—c—|—a(1—a){l(1—<1>n)—0—<1>n[22(1a)l—Qa(la)h}}

= (1-®)[oh+a(l—a)l—d+ o, {Q(Q—a)(ﬂh) _C]'

2
Observe that

a(2—042)(l+h)+%2(h_l)>a(2_O;)(l+h). (A63)

ah+a(l—a)l=

Hence, Q' (11, ®,,) > % —c>0if a(2—a)(h+1) > 2¢, then for all &, € [0,1], implying
that lim, e Q' (1, ®,) > 0. Thus by Lemmas 6 and A1, lim, EpZL (r) — 1 for j = 1,2. This
proves Part 1.

(PART 2) We now prove part 2. Suppose to the contrary that there exists a (sub) sequence
of optimal incentive compatible, balanced-budget voluntary mechanism with provision rules for

public good 1, pl (x), such that lim,_. Ep. (z) = p > 0. We will now derive a contradiction that

the mechanism can not have a balanced budget.
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Now we can use the definition of pz (0;) in (B95) to re-write the incentive compatibility constraint

(18b), after using the characterization of inclusion rule in Lemma 5, as
pi (hD) bt pi (Ih) iyl — ta > py (W) gy (h 1) — tu > o (W) (= 1), (A64)

where the second inequality comes from the participation constraint (19). Pick an arbitrary e > 0.

Then, by Lemma A4, there exists finite IV such that for every n > N; and each 0; € ©, for j = 1,2,

€

7 (0) —Eph (a)]| < e = - (A65)

Substituting (A65) into (A64), we obtain that for all n > Ny,

[Eop (2) +e1] (h+nil) — tw > [Eph (x) —ex] niy (h— 1), (A66)
which implies that
tw < Epp (@) [h(1=mny) + (nin +mp) U] + ex [h+ il +myy (R = 1)]
< Epn (@) [h (1 =m) + (i +m) 1] + 3hey, (A67)

€

Similarly, incentive constraints (18a) can be rewritten as:
thn < 2p; (Rh) h = [p; (hl) + pi (IR) i) b+ tha. (A68)

Again, by Lemma A4, there exist No such that for all n > No,

the < 2[Eph(x)]h—Epk(x) (L+nh) b+t +e
= Epp () (L—ny) h+tu+e
< Ep, (@) (L=nfy) h+Epp (@) [ (1 —nh) + (0 + 1) 1] +
= Epy, (@) [(2—mi —mip) b+ (i +mi) 1] + €. (A69)

Finally, from the participation constraint (19), there exists N3 such that for all n > Nj,
ty < 2Epk (2) niyl + €. (A70)
Now consider two cases:
CASE 1: 7}, =n} =0 and nj, = n, = n,, € (0,1). In this case, we have ¢; = 0 from type-
Il's participation constraint. Using (A67)-(A70), we can bound the total expected tax revenue as
follows:
&Pty + a (L= a) (ty +tin) + (1 — a)’ ty (AT1)
< o®{Epy (2) [(2 = ) b+ 0pnl] + €} +2a (1 — ) {Ep, () (h+ 1p,0) + €}
= Ep, (z {[a22 Nym) +2a(1—a)]h+[o¢ +2a (1 — )| n,l} +€
= Ep, (@) {[*2-nn)+2a(1—-a)|h+a(2—a)n,l} +¢€

-~

=Z1 (M)
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Note that
aZl (nm)
Ny,

Zl(nm)<{ Z(1) =a@—a)(h+1) ‘if2ah§a(2—a)(h+l)
Z (0) = 2ah if 2ah >a(2—a)(h+1),

=a(2—a)l—a’h=[a(2—a)(h+1)] - 2ah. (A72)
Therefore,

(A73)

which implies that
Ptpn + o (1 — ) (b + tin) + (1 — @)? ty < Ep,, (x) max {20h,a (2 —a) (h+ 1)} + €. (AT4)

Thus if max {2ah, « (2 — a) (h+1)} < 2¢, then the budget balance condition can not be satisfied
when n is sufficiently large.
CASE 2: n, =n3 =mn; € (0,1),n} =n?, = 1. We can again use (A67)-(A70) to bound the total
expected tax revenue as follows:
a2thh + o (1 — a) (thl + tlh) + (1 — a)2 tu (A75)
< o {Ep, (@) [((1=m) h+ (L +n) [ + e} + a1l —a)2Ep, () {[h (1 —m) + (L +n) ] + ¢}
+(1—a)® [2Ep,, (x) ml + €]
= Ep, (z { a? +2a(1 —oz)] (L—m) h+ [a2+2a(1—0z)] (1+m)l+2(1—o¢)2ml} + €

= Ep, (@) [a@—a)A—n)h+a—a)A+n)l+2(1—a)*nl| +e
Zzz%z)
Note that Z3 (0) = (2 —a) (h+1) and Z (1) = 2a(2— )l +2(1 —a)*1 = 21. Since Zs (n;) is

linear in 7;, we have
Zy (m) <max{Z2(0),Z2 (1)} =max{a(2—«a)(h+1),2l}. (A76)

If max{2ah,a(2—a)(h+1)} < 2¢, then max{a (2 —«a)(h+1),2l} < 2¢ since by assumption
[ < c. Therefore there exists N’ such that for all n > N’, the budget balance condition will not be
satisfied under any incentive compatible voluntary mechanism.

(PART 3)  Suppose to the contrary that there does not exist N such that n., (1h) =72 (hl) =1
for all n > N. Then, taking a subsequence if necessary, we have that nl (Ih) = n2 (hl) < 1 for all
n, which, by Lemma 5, implies that 77% (Il) = 0 for all n in the sequence. The per capita surplus
generated by the optimal mechanism M,, in the n** economy in the sequence, denoted by S (M,,),

is then
S (My) B 2EpL (z) [(xhh +xp) h+ (n}L (Ih) 2y, +nk (1) xll) [ — cn] (A7)
n n
2E [(zhh + @pt) h + zinl — py, (@) en]

- =2[ah+a(l—a)l] —2Ep (z)c

44



From Part 2, we know Epl (x) — 1 as n — co. Thus each € > 0 there exists N such that

S(M”)SQ[ah—i—a(l—a)l—C]—i-s. (AT8)

n

Now we show that M, can be dominated by an alternative mechanism as n — oo. Consider a

—~ o0
sequence of mechanisms {Mn} , where, for each n,
1

n=

= R (h) =1 (AT79)
o . a@-—a)h+l] -2
B 77727’(”)_77”_a(2—o¢)[h+l]—2l

T (IR)
)

tn (hh) = tn(hl) =1, (Ih) = (1 —n3) (h+1) + 021
)
)

Tin (Il

to (1l
o (x

= 2l
= 1lforall x € X,

We observe that the participation constraint for type Il holds with equality since

E i > ph (@), (1)1 — o (1) = 2051 — 20l = 0. (A80)
7j=1,2

The downward incentive constraint for type hl also holds with equality since

B [pn () 1 (1) b+ D ()77 (h) L=t (M)] = hi+1 — & (h) (A81)
hot =1 =mgp) (h 4 1) + 2] = gy (h+ 1) — ;2

B [7h (@) 7 (i) b+ 72 (@) 7 (hi) L~ (D) 6; = 11].

Similarly, the downward incentive constraints and participation constraints for all other types of
agents also hold. Finally, /T/l/n is also budget balanced for all n since, with some algebra, one can

show that

> tn(0:) = > P (x)en | =0. (A82)

ieT j=1,2
Now, the expected per capita surplus generates by Mvn is
S (M)

a?2h +2a (1 —a) (h+1) + (1 — )’ nj2l — 2¢ (A83)
n

= 2[ah+a(l—a)l—d+ (1 —a)n2
Let ¢ = (1 — a)? n;l > 0, we know from (A78) that there exists N < oo such that

S(j?\z/ln)§2[ah+a(1—a)l—c]+5:@—€<Ljpv (A84)

which implies that mechanisms M,, could not be optimal for n > N, a contradiction.
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Now we have concluded that in the sequence {My}, nL (Ih) = n2 (hl) = 1 for every n > N.
What is left to show is that n}, (i) does converge to 7} in the sequence {M,,}. Suppose first that
there exists a subsequence such that nl (II) — 7' < ;- An argument as the one above shows that,

for every € > 0, there exists N < oo such that
S (M,)

<2 ah+a(1—a)l+(1—a)277’l—c}+6. (AS5)

Again consider the alternative sequence of mechanisms {Mn} constructed above. Pick ¢ =

(1 — ) (3, — ), we find that

S (M) 5(My)

n n

>(1—a) (g —n)2—e=1-a) @ —n)>0. (A86)

thus again contradicts the optimality of the mechanism M,, is better when n is sufficiently large.
Finally, suppose there is a subsequence such that 7)% (il) — 7' > nj;. We now argue that such a

mechanism could not be budget balanced. Let

0 )@= a) (h+ D) — 20
4(1+a)

Then, since n} (11) + n2 (I1) — 27’ it follows that to satisfy the participation constraint for type Il

> 0. (A87)

for all n there must be some Ny such that ¢, (1) < 21/l + ¢ for all n > N;. Moreover, there exists
Ny such that nl (1h) = n2 (hl) = 1for n > N,. Thus the incentive constraint that type hl does not

imitate type Il reduces to
Pin (AL) e+ 97y (h) L=t (hl) > piy (W) 3, (W) bt 3, (W) (W) L=t (1) (ASS)
= tn (hl) < tn (1) + [pjn (A1) = pi, (1) 10, (ID)] P+ [, (RD) = i, (1) 177, (ID)] 1
By Lemma A3, lim, . pfn (hl) = limp—co pfn (hl) = lim, o0 Ep}, (z) = 1. This, together with the
assumption that lim, . 7} (II) = 7/, implies that there exists N3 such that

b (WD) <t () + (1 —n') (R +1) +e. (AR9)
Similarly, the incentive constraint that type hh does not announce hl implies that ¢,, (hh) < t,, (hl)+
€. Hence, the expected per capita revenue of the mechanism satisfies
o2ty (hh) + 200 (1 — @)ty (Al) + (1 — @) t,, (1) (A90)
[0® +2a (1 — a)] t, (Bl) + a%e + (1 — @) t, (1)
< [@2+2a(1— Q)] [ta () + QX —1) (h+1) +e] + (1 —a)’t, () +a’
tn () + [0® +2a(1—a)] (L=7) (h+1) +2ae

I ANVAN

IA

2l+e+ [a®+2a(1—a)] (1—7) (h+1)+ 20
= n2A+(1-1)a@-a)(h+1)+ec(1+2a).
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Since there exists Ny < oo such that E [p}, (x) + p3 (z)] ¢ > 2¢ — ¢, we have

tn (hh) +2a (1 — @)t (hl) + (1 — @)* t, (1) — E [ph (2) + p2 (z)] ¢ (A91)

= (’7_’771)(21—a —a)(h+1)+2(1+a)
= (0 —mp) 2l—a(2 )(h+l))+(77Uu)[a(QQa)(h+l)2l]
W= [ 2@)(h+l)2l]<0‘

Hence, the mechanism must violate the balanced-budget constraint for n > max { N1, Na, N3, N4}.
We conclude that there can be no subsequence of optimal mechanisms such that 77% (i) =" #ny,

proving the claim.

(PART 4) This part is proved analogous to Part 3. Suppose to the contrary that in the
sequence of mechanisms {M,,}, there exists no N such that nl (iI) = 72 (Il) = 0 for all n > N.
Then there must be a subsequence where 1., (11) = n2 (i) > 0, which from Lemma (5) we know that
nt (Ih) = n2 (hl) = 1 for all n along the subsequence. Hence lim,, oo 0} (Ih) = lim, o 2 (hl) =
1 and limy, oo (1) = limy 0o 2 (1) = 1/ > 0. Let

_2c—a( a)(h+1)

10 +a) > 0. (A92)

We can then use the same calculations as in Part 3 to conclude that there exists N < oo such that

the revenues collected satisfy

2ty (hh) + 200 (1 — @)ty (A) + (1 — )t (1) < 521+ (1-7)a@—a)(h+1)+e(1+2a)
<a@—-a)h+1)+e(l+20). (A93)

Moreover, there exists Ny such that E [p}, (z) + p2 ()] ¢ > 2¢ — €, hence
oty (hh) +2a (1 — a) t, (hl) + (1 — a)’t, () — E [pl (z) + p2 (2)] € (A94)
2c—a(2—a)(h+1)

< a@—-a)(h+)+e(2420) —2c=— 5

<0,

violating the balanced-budget constraint. Establishing that limy,, ..o 7} (1h) = limy, .o 2 (k) = 1},

proceeds along the same lines as those in Part 3. [
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B Omitted Proofs

Lemma A2 Let Y be a random variable with Binomial (n,p) distribution. For any € > 0 and
p € (0,1) there exists N < oo such that the binomial distribution with parameters p,n satisfies
n!

Priy=y) = yl(n—y!)

p(1—p)"Y <e

for for every n > N and y € {0,...,n}.

Proof. Fix an arbitrary € > 0. The most probable value for y is the unique integer y* (n) satisfying
np — 1 <y*(n) < np+ 1, and the corresponding probability is

Pr(y* (n) = o

T (n)]!py*(n) (1— p)n—y*(n) '

Let
al

s(r) = ————-.
(r) V2me—Trr+1/2
By Stirling’s Formula, for every € > 0 there exists R (€) such that |s(r) — 1| < € for all » > R (e).

Observing that

n! = s(n)\/27re_”n"+%,

v = s () Vame v Uy () (0
=y I = s(n—y" (m) Vame VO [yt ()" 0TS,
we obtain
n!

s(n) V2me ™ ”+%
s(y*(n))s(n—y*(n)) V2mey “()y* (n n)+3 V2re—(n—y* [ —y* (n)]nfy*(n)Jr%
() o
s(*(n))s(n—y* (n)) \ary* (n)?" M F2 [ — o (n)]n—y*(n)%'
Note that for any p € (0,1),
N < oo such that y* (n) > R (e) and n—y* (n) > R (¢), implying that s (n) < 1+e€, s (y* (n)) > 1—¢,

and s (n —y*(n)) > 1 — e. We can thus bound the probability of y* (n) by.

limy, 00 ¥* (1) = 00 and lim,, o [ — y* (n)] = 0o. Hence, there exists

Pr(y* (n))
= s (n) n"ts pv () (1— p)n*y*(n)
s(y*(n))s(n—y*(n)) \/ﬁy (n )y*(")Jr% [n — y* (n)]nfy*(nH%
< (1 + 6)2 lnn+§ : py*(n) (1 B p)nfy*(n)
(1—¢) V2ry* (n)y*(n)-Irg [ — y* (n)]n—y*(n)+5
(1+¢€) pu () (1 — p)n—y*(n)
- (1-— 6)2 N [y*nn T/*(n)-&-% {n_zﬁgn)}n—y*(n)—&-% )

1



Since y* (n) /n = argmaxpe(o 1] p¢" (M (1= p)" ¥ ™ we know that

“(n) (1 — )y ()
[L(,i} y*(n()l[é)*(n)y} n—y*(n) =

n n

Therefore,
" 1+e¢ 1
Py (n) < 49 . .
(1—¢) Norr [y*(n)}2 [nfy*(n)}2
(1+¢€) 1

— 0 asn — oco.

(=" oum (p—3) (19— 1)
Hence, there exists N’ < oo such that

(1+¢) 1

(1= \fonr (p— ) (12— 3)

Implying that Pr(y* (n)) < € for any n > max {N, N’} . Since € was arbitrary the result follows. m

<e.

Now let

Pl (0;) = E [ (2) 6] (B95)

be agent i’s perceived probability that public good j will be provided when agent ¢ announces
type 6;. The following lemma shows that as n — oo, agent #’s announcement would not affect
the perceived probability of provision, i.e., the probability of any individual agent being pivotal
approaches zero as n — 00 :

Lemma A3 For every e > 0 there exists N such that |p} (6;) — p} (0;)] < € for every 6;,0; €
O in any truth-telling mechanism for any economy where n > N.
Proof. We only prove the result for (6;,6,) = (hh,ll). The proof for other type combinations

proceed step by step in the same way and are left to the reader. Using the now-standard recursive

formula for multinomial probability mass function, we have

pi (Bh) = " an 1 () [p"(@mn + 1w, 2in, 1)
X1
le i) = Z an—1 () [Pl(fEhh,iEhl,iBZh,xu + 1)] .
X1

Let p' maximize the difference between p} (hh) and p} (1) and let p} (hh) and p; (I1) be the perceived

provision probabilities when the provision rule is p*. That is,

7 carg ! )r(nax[o 1] Z an—1 () [p" (Thn + 1, Tt Tn, 2) — P (@hns Thts i v + 1)), (BI6)
Plin—l01] S



It is clear that the solution to (B96) is given by

1 ifa, 1(xzpy — 1,28, 211, 211) > ap_1(Thh, Thi, Tin, X1 — 1
5 (2) = | n—1(Thn — 1, Zp1, Tip, T1) > An—1(Thi, This Tin, T — 1) (B97)
0 if ap—1(zpn — 1, xhs, i, 2y) < @—1(Xpn, Thi, Tip, Ty — 1).

Using the explicit formula for a, 1 (z), we can express (B97) as
1 lf Lhh > Tl

a2 = )2
7t (x) = 0 if o (1-e) (B98)
1 ( a)'

Fix an arbitrary € > 0 and let m = xp; + 27, < n — 1. Since m is a binomial random variable with
parameters p = 2« (1 — «) and n — 1, we know, by law of large numbers, that there exists N < oo

such that

Pr(nm122a(1a)+ ><§ (B99)

for every n > N. Moreover, conditional on m, xp, is binomially distributed with parameters
p=a?/[1-2a(l —a)] and n — 1 —m. Thus, we know from (B98) that, conditional on m, there
exists a single value Ty, (m) such that p*(Txp (M) +1, 21, 20, 737) = 1 and 5 (Twn (M) , o1, 2in, o5 +
1) = 0; and for all other realizations the of xpj, the provision probability is unaffected by agent i’s

announcement. Lemma A2 implies that there exists N’ < oo such that

(B100)

NGRS

Pr (zpn = Tpn (m)|m) <

for all n such that n — 1 —m > N'.

Now let n* = max{N,#LaH—l—l} < 00. Then, N' < (n—1)[1 —2a (1 — «) — ¢] for all

n > n*. Hence, for all n > n*,
<Prim>n—-1)—(n—-1)[1-2a(1—a)—¢€] (B101)

where the last equality follows from (B99). Hence, for n > n*, n — 1 —m < N’ with probability of
at least 1 — €/2. Thus, for n > n*,

p; (hh) = o (1) = > pcx, , @n1 () [P (@nn + 1, Zpt, 2o, T1) — B (Thh, Tty Tin, T + 1)

= S04 Pr(m) Pr (24 = Thp (m)| m)
_Zn 1 N’ r(m) (l'hhzihh (m)|m) Zm N’ (m) Pr(xthEhh (m)|m)
<> 1 NPr(m) Zm N P (m)

=5sPrin—1-m>N]4+Prln—-1-m<N'|<e
(B102)



where the second equality follows from the definition of Zpp (m) ; the first inequality follows from
(B100); and the last inequality follows from (B101).
Similarly, let Bl solve

p' € arg Xmir[lo 1] > a1 (@) [pM@hn + 1, w0 2ins xu) — pH(@hny Thy T xn + 1)), (B103)
pretn= 10 rEXy 1

and let B; (hh) and B; (1) be the associated perceived provision probabilities when the provision

rule p'. A solution to (B103) is

1 1 lf l(')?zh (1flé)2
p(x) = . A (B104)
O 1 a2 = (1—04)27

which is just reversing of provision rule p'. Hence, conditional on m, Bl (Tpn (M) +1, 2y, 21, 2y5) = 0
and Bl (Thn (M), Tpy, 21p, 2y + 1) = 15 and for all other values for zpy, agent i’s announcement does

not affect the provision probability. It thus immediately follows from out previous calculations that
n—1
1 1 _ =
pr (hh) = pr (1) = =Y Pr(m) Pr(apn = Tan (m)| m) > —e. (B105)
m=0

It follows from (B102) and (B105) that, for any conceivable provision rule,

—e < p! (hh) — p! (1) < p} (hh) = p} (1) < 7} (hh) B} (1) < e.



