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Abstract

This paper studies the role of bundling in the efficient provision of excludable public goods.

We show that bundling in the provision of unrelated public goods can enhance social welfare.

With a large number of goods and agents, first best can be approximated with pure bundling. For

a parametric class of problems with binary valuations, we characterize the optimal mechanism,

and show that bundling alleviates the free riding problem in large economies and decreases the

extent of use exclusions. Both results are related to the idea that bundling makes it possible to

reduce the incidence of exclusions because the variance in the relevant valuations decreases.
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1 Introduction

Bundling, the practice to package several goods in a bundle rather than providing them sepa-

rately, is a common phenomenon in many markets. Many of the goods that are provided in bundles

are more or less non-rival in consumption. An obvious example is cable TV. Technologically, the

local cable company could allow customers to choose whatever channels they are willing to pay for

without constraints. In practice, the basic pricing scheme usually consists of a limited number of

available packages. While some premium channels and pay-per-view programming are offered for

sale separately, the bundled channels are simply not available in any other way than through their

respective bundles. Another striking example is access to electronic libraries. Here, the typical con-

tractual arrangement is a site license that allows access to every journal in the electronic library.

While it is sometimes possible to download articles on a pay-per-download basis, this is usually

very expensive, and contracts that gives access to a subset of journals in the electronic library are

rare.

A third example, which was the initial motivation for this paper, is the casual observation that

governmental services are provided in bundles. For example, every resident in a municipality is

entitled to a bundle of public services provided by the local government including policing, highway

maintenance, fire fighting, public schools etc.. Clearly some of the public services in the bundle are

of no value at all for many residents. Why, then, cannot residents only subscribe to their desired

local public services?

Motivated by these examples, this paper studies the role of bundling in the efficient provision of

public goods. We ask a simple question: is there an efficiency rationale to provide unrelated public

goods in bundles rather than separately; and if so, why?

We consider an environment with m excludable public goods and a numeraire private good.1

Each consumer is characterized by a valuation for each of the public goods. The willingness to pay

for any subset of the goods is assumed to be the sum of the valuations for the individual goods

in the subset. This assumption rules out bundling arising from complementarities in the utility

function. Similarly, the cost of provision for each good is independent of which other goods are

provided. These separability assumptions on valuations and costs imply that the informationally

unconstrained efficient mechanism provides a public good if and only if the sum of all agents’

valuations for that particular good exceeds its provision cost, and excludes no consumer from

usage. Under perfect information there is thus no role for bundling.

This paper departs from the perfect information assumption, and assumes that preferences are
1The term “excludable public goods” refers to a good which is fully non-rival, but where it is possible to costlessly

exclude any consumer from usage.
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private information to the individuals. The provision mechanism must therefore be constructed so

that truthful revelation of preferences is consistent with equilibrium. Agents may also freely choose

whether to participate in the mechanism, and the provision mechanism must be self-financing.

Finally, we assume that the preference parameters are stochastically independent across individuals.

Under these restrictions, the (non-bundling) perfect information social optimum can no longer be

implemented.2

Ruling out trivial cases, use exclusions are always active in the constrained efficient mechanism.

Indeed, if the economy is large, use exclusions are essentially the only instruments available to

induce consumers to contribute a non-negligible amount to the public goods.

To gain intuition, we first consider the case where the number of public goods is large, and where

the valuation for all goods are stochastically independent. In this case, a pure bundling mechanism

can approximate the first best if both the number of goods and the number of consumers are large.

This is because the valuation for the average good in the bundle converges in probability to its

expectation. If necessary, the designer can therefore extract almost the full surplus from each agent.

This implies that, while the threat of exclusion is still what supports the incentives, it is possible

to exclude an agent with arbitrarily small probability and still raise enough revenue to provide all

goods. Finally, a large number of agents are needed for approximate efficiency because it is only

in a large economy that ex ante information is sufficient for an efficient provision decision. If the

number of agents are small, there will be a significant probability that a particular good should not

be provided at all, a consideration that disappears with many agents.

Intuitively, the desirability of bundling in the many good case comes from the fact that bundling

reduces the variance in the distribution of valuations. Whether goods are public or private is irrele-

vant for this. However, unlike the standard setup with private goods, non-rivalness in consumption

means that the society can give access to all goods at no additional costs. The desirability of pure

bundling thus relies crucially on the public good assumption.3

Next, we turn to a special case where we obtain an exact characterization of the constrained

efficient mechanism. This special case is when there are two public goods, valuations for each good

are binary, and the goods are symmetric both with respects to costs of provision and consumer val-

uations. While this is obviously a very special case, the results are suggestive, and the methodology
2All these restrictions are essential. Removing either the voluntary participation or the self-financing constraint

makes it possible to construct pivot-mechanisms that implement the first-best. If we allow correlation in valuations,

a version of the analysis in Cremer and McLean [6] can be used to implement the efficient outcome.
3Armstrong [3] considers a similar many good exercise for private goods. Due to similar law of large numbers

reasoning, a monopolist can extract almost the full consumer surplus. The mechanism is a two part tariff, where

consumers can pay a fixed fee for the right to purchase any good at marginal cost.
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may be useful for more general (symmetric) multidimensional screening problems.

There is an element of bundling in the constrained efficient mechanism for almost all parametriza-

tions of the model. This should be expected. We know from McAfee et al [13] that introducing the

bundling instrument increases the profits for a monopolist that is restricted to fixed-price mecha-

nisms. By results in Norman [17] we also know that, in the case with a single good, the constrained

efficient mechanism is near a fixed price mechanism of the form considered by McAfee et al [13]. Fi-

nally, the (single-dimensional) constrained welfare problem has a Lagrangian characterization (see

Hellwig [9] and Norman [17]). This problem may be interpreted as maximizing a weighted average

of social welfare and profits, where the relative weights come from the Lagrange multiplier on a

“zero profit constraint”. Given these links between constrained efficiency and a standard monopoly

problem it seems highly plausible that the insight in McAfee et al [13] should carry over to our

problem.

Concretely, bundling works as follows in the optimal mechanism. All agents get access to any

good for which he or she has a high valuation for. A “mixed type” is always more likely to get

access to his or her low-valuation good than is an agent with low valuations for both goods. In

some cases this differential treatment leads to a drastic improvement compared to the best that

can be achieved without bundling. For many parametrizations, the probability of provision tends

to zero if bundling is not used, whereas bundling makes it possible to provide with probability one.

It is important to note that, while the existing literature on bundling in private goods focuses

on how bundling relaxes the informational constraints and improves sellers’ revenue, we derive

a constrained efficient mechanism that involve bundling in the public good setting. Under the

typical assumption in the private good bundling literature that goods are produced at constant (or

increasing) marginal costs, bundling may enhance revenue, but will be dominated by marginal cost

pricing in terms of social efficiency.

The remainder of the paper is structured as follows. Section 2 presents the model and some

characterization results to be used later. In Section 3 we consider the case with a large number

of goods. Section 4 introduces the special case when valuations are binary and demonstrates by

example that a (pure) bundling mechanism may improve efficiency. Section 5 characterizes the

optimal mechanism for this special case, and compares our characterization with existing results in

the literature, and Section 6 concludes. All proofs are collected in the Appendix.
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2 The Model

There are m excludable public goods, labeled by j ∈ J = {1, ...,m} and n consumers, indexed
by i ∈ I = {1, ..., n}.4 All public goods are indivisible projects, and the cost of providing good j,
denoted by Cj (n), is independent of which of the other goods are provided. Notice here that n is

the size of the economy and not the number of users, so all goods are fully non-rival. The rationale

for indexing cost by the number of agents is to be able to analyze large economies, which makes it

necessary to normalize per capita costs to avoid trivializing the provision problem. We therefore

allow for the existence of cj > 0 such that limn→∞Cj (n) /n = cj > 0. There is no need to give

this assumption any particular economic interpretation, it is best viewed as a way to ensure that

the provision problem remains “significant” also with many agents.

Consumer i is fully described by a vector θi =
¡
θ1i , ..., θ

m
i

¢ ∈ Θ ⊂ Rm, where θji is interpreted
as i0s valuation for good j. Agent i has preferences represented by the utility function,X

j∈J
I
j
iθ
j
i − ti, (1)

where Iji is a dummy variable taking value 1 when i consumes good j and 0 otherwise, and ti is

the quantity of the numeraire good transferred from i to the mechanism designer. Preferences over

lotteries are of expected utility form. One could obviously imagine more general utility functions

than (1), but the linear formulation (which is also used by Adams and Yellen [1], McAfee et al [13],

and Manelli and Vincent [12]) has the advantage that it rules out bundling due to complementarities

in preferences.

The preference vector θi is private information to the agent, and we assume that preferences

are independently and identically distributed across agents. We denote by F the joint cumulative

distribution over θi. For brevity of notation, we let θ ≡ (θ1, ..., θn) ∈ Θ ≡ (Θ)n , which will be
referred to as a type profile. In the usual fashion, we let θ−i = (θ1, .., θi−1, θi+1, ...θn) and, with some

abuse of notation, we write F (θ) ≡ Πi∈IF (θi) and F (θ−i) ≡ Πk∈I\iF (θk) as the joint distribution
of θ and θ−i respectively.

2.1 Randomized Direct Mechanisms

In general, the outcome of any mechanism must determine: (1). Which goods, if any, should be

provided; (2). Who are to be given access to the goods that are provided; and (3). How to share

4There are two reasons for allowing use exclusions. It allows us to consider large economies, which aids tractability.

Moreover, it allows for a more intuitive form of bundling, since different consumers can consume different bundles

when exclusions are possible.
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the costs. The set of feasible pure outcomes is thus

A = {0, 1}m| {z }
provision/no provision

for each goods j

× {0, 1}m×n| {z }
inclusion/no inclusion

for each agent i and good j

× Rn| {z }
“taxes”

. (2)

By the revelation principle, we restrict attention to direct mechanisms for which truth-telling is a

Bayesian Nash equilibrium. A pure direct mechanism is simply a map from Θ to A. We represent

a randomized mechanism in analogy with the representation of mixed strategies in Aumann [4].

That is, let Ξ = [0, 1] , and think of ϑ ∈ Ξ as the outcome of a fictitious lottery, where, without
loss of generality, ϑ is uniformly distributed and independent of θ. A random direct mechanism is

then a measurable mapping G : Θ × Ξ → A. A conceptual advantage of this formalization of a

random mechanism is that it allows for a useful decomposition.5 That is, we may write G as a
(2m+ 1)-tuple, G = (©ζjª

j∈J ,
©
ωj
ª
j∈J , τ ) where,

ζj : Θ× Ξ→ {0, 1}
ωj : Θ× Ξ→ {0, 1}n (3)

τ : Θ→ Rn.

We refer to ζj as the provision rule for good j, and interpret EΞζ
j (θ,ϑ) as the probability of

provision given announcements θ. The rule ωj =
³
ωj1, ...,ω

j
n

´
is referred to as the inclusion rule for

good j, and EΞω
j
i (θ,ϑ) is interpreted as the probability that agent i gets access to good j when

announcements are θ, conditional on good j being provided. Finally, τ = (τ1, ..., τn) is referred

to as the cost-sharing rules, where τ i (θ) is the transfer from agent i to the mechanism designer

given announced valuations θ. In principle, transfers could also be randomized, but, agents are risk

neutral with respect to transfers, so there are no gains from this. The pure transfer rule in (3) is

therefore without loss of generality.

Because of the separability of the provision costs and the linear utility functions in (1), the

ex post efficient provision and inclusion rules are simple: provide public good j if and only ifP
i∈I θ

j
i ≥ Cj (n) and never exclude any consumer from usage when the good is provided. This is

exactly as if each good j were the only public good.

2.2 The Design Problem

Utility is transferable, so we can characterize the constrained efficient allocation rules as the

solution to a planning problem. A fictitious social planner seeks to maximize total surplus in the
5Because A is finite, there are no technical reasons for choosing this representation. It is chosen only because

it generates more convenient notation than either the “natural” representation or the “distributional approach” of

Milgrom and Weber [14].
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economy, subject incentive compatibility, feasibility, and participation constraints. Let E−i denote

the expectation operator with respect to (θ−i,ϑ) . Incentive compatibility, that is, the requirement

that truth-telling is a Bayesian Nash equilibrium in the revelation game induced by G, requires that

E−i

X
j∈J

ζj(θ,ϑ)ωji (θ,ϑ)θ
j
i − τ i(θ)

 ≥ E−i

X
j∈J

ζj(bθi, θ−i,ϑ)ωji (bθi, θ−i,ϑ)θji − τ i(bθi, θ−i)


∀i ∈ I, θ ∈Θ,bθi ∈ Θ. (4)

Next, we require that the project be self-financing. For simplicity, this is imposed as an ex ante

balanced-budget constraint:6

E

X
i∈I

τ i (θ)−
X
j∈J

ζj (θ,ϑ)Cj (n)

 ≥ 0. (5)

Finally, we require that a voluntary participation, or individual rationality, condition is satisfied.

Agents are assumed to know their own type, but not the realized types of the other agents, when

deciding on whether to participate. Individual rationality is thus imposed at the interim stage as,

E−i

X
j∈J

ζj(θ,ϑ)ωji (θ,ϑ)θ
j
i − τ i(θ)

 ≥ 0, ∀i ∈ I, θi ∈ Θ. (6)

A mechanism is incentive feasible if it satisfies (4), (5) and (6). A mechanism is constrained efficient

if it maximizes the expected social surplus,

X
j∈J

Eζj(θ,ϑ)

"X
i∈I

ωji (θ,ϑ)θ
j
i −Cj (n)

#
, (7)

over all incentive feasible mechanisms.

All these constraints are noncontroversial if the design problem is interpreted as a private

bargaining agreement, but, if the goods are government provided, the participation constraints (6)

may seem questionable. One defense in this context is that the participation constraint is a reduced

form of an environment where agents may vote with their feet (ignoring that the reservation utility

should then be endogenous).7

6The ex ante constraint (5) is literally relevant only when the designer can access fair insurance market against

budget deficits. However, adapting standard arguments (see Mailath and Postlewaite [11] and Cramton et al [5]), one

can show that any allocation implementable with transfers satisfying (5) is also implementable with a transfer rule

that satisfies the ex post balanced-budget constraint (i.e. feasibility for every realization of θ). The idea is simply

that, since agents are risk-neutral, the insurance against budget deficits can be provided by one or more of the agents

in the economy.
7Another defense of imposing voluntary participation in the context of government provided goods is to view this

as a reduced form for inequality aversion of the planner. See Hellwig [8].
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If preferences are observable, or if either (5) or (6) are ignored, the (non-bundling) ex post

efficient mechanism is implementable. As discussed above, the ex post efficient provision rule for

good j ignores the valuations for all other goods and no one is excluded. The ex post efficient

rule is therefore implementable if and only if a single non-excludable public good can be efficiently

provided under (4), (5) or (6). But, this is the exact setup of Mailath and Postlewaite [11], and

from their adaption of Myerson and Satterthwaite’s [16] impossibility result we know that the first

best efficiency is only possible in trivial cases. Our setup is therefore a second best problem.

2.3 Simple Anonymous Mechanisms

To simplify the problem, we first exploit the fact that all control variables enter linearly in both

the constraints and the objective function and that the problem is symmetric. This allows us to

reduce the dimensionality of the problem:

Definition 1 A mechanism is called a simple mechanism if it can be expressed as (2m+ 1)-tuple

g = (
©
ρj
ª
j∈J ,

©
ηj
ª
j∈J , t) where for each j ∈ J ,

ρj : Θ→ [0, 1]

ηj : Θ→ [0, 1] (8)

t : Θ→ R,

ρj is the provision rule for good j, ηj is the inclusion rule for good j (same for all agents), and t

is the transfer rule (also same for all agents).

There are a number of simplifications in (8) relative to (3): (1). Both the inclusion and the

transfer rules are the same for all agents; (2). Conditional on θ, the provision probability ρj (θ) is

stochastically independent from all other provision probabilities,
©
ρk (θ)

ª
k∈J\{i} , and all inclusion

probabilities; (3). The inclusion and transfer rules for any agent i are independent of the realization

of θ−i; (4). All agents are treated symmetrically in terms of the transfer and inclusion rules.

Symmetry in inclusion and transfer rules is built into the notion of a simple mechanism, but (8)

still allows asymmetric treatment of agents in the provision rules. We therefore need a definition

to express what it means for the index of the agent to be irrelevant:

Definition 2 A simple mechanism is called anonymous if ρj (θ) = ρj
¡
θ0
¢
for every j ∈ J , every

θ ∈ Θ, and every θ0 ∈ Θ that can be obtained from θ by permuting the indices of the agents.

We now show that focusing on simple anonymous mechanisms is without loss of generality:

7



Proposition 1 For any incentive feasible mechanism G of the form (3), there exists an anonymous
simple incentive feasible mechanism g of the form (8) that generates the same social surplus.

Consequently, the remainder of this paper only considers simple anonymous mechanisms. The

intuition for why this class of mechanisms are sufficient is simple. Because of the risk neutrality,

agents only care about the perceived probability of consuming each public good and the expected

transfer. Therefore, there is nothing to gain from making transfers and inclusion probabilities

functions of θ−i , or by making inclusion and provision rules conditionally dependent. Mechanisms

of the form (8) are therefore sufficient. Moreover, from any non-anonymous incentive feasible

mechanism, one can always create a new incentive feasible mechanism that generates the same

social surplus by permuting the roles of the agents. There are n! permuted mechanisms, and from

these we can create an anonymous incentive feasible mechanism that generates the same surplus

by averaging over the n! permutations.8

2.4 Symmetric Treatment of the Goods

Our next result, on which we rely heavily in Sections 4 and 5, identifies conditions under which

it is without loss of generality to treat goods symmetrically. Obviously, the underlying environment

must be symmetric, and we formalize this by assuming that θi is an exchangeable random variable,

that is F (θi) = F
¡
θ0i
¢
whenever θ0i is a permutation of θi, and that there exists C (n) such that

Cj (n) = C (n) for all j.

The notion of symmetric mechanisms is intuitive, but we nevertheless provide a formal definition

for clarity. Given valuation profile θ and a one-to-one permutation mapping P : J → J of the set

of goods, let θPi denote the permutation of agent i0s type by changing the role of the goods in

accordance to P : that is, θPi =
³
θ
P−1(1)
i , θ

P−1(2)
i ..., θ

P−1(m)
i

´
, where P−1 denote the inverse of P .

For simplicity, write θP ≡ ¡θP1 , ..., θPn ¢ as the valuation profile obtained when the role of the goods
is changed in accordance to P for every i ∈ I.

Definition 3 Mechanism g is symmetric if for every θ and every permutation P : J → J :

1. ρP
−1(j) ¡θP ¢ = ρj (θ) for every j ∈ J ;

2. ηP
−1(j) ¡θPi ¢ = ηj (θi) for every j ∈ J ;

3. t
¡
θPi
¢
= t (θi) .

8The exact argument is slightly more complex than simply randomizing with equal probabilities over the n!

permutations. The reason is that inclusion and provision probabilities are potentially correlated since they both

depend on θi ∈ Θ.
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It is worth pointing out that, in defining the symmetric mechanism, we require that the

same permutation of goods be applied for all agents. As an example, suppose that there are

two agents and two goods, and that the valuation for each good is either h or l. In this case

Θ = {(h, h) , (h, l) , (l, h) , (l, l)}. One type profile in Θ is θ = ((h, l) , (l, h)) . Applying the only

non-identity permutation of the goods to all agents generates a type profile ((l, h) , (h, l)) . Defini-

tion 3 requires that the allocations for type profile ((l, h) , (h, l)) is the same as the allocation for

((h, l) , (l, h)) with goods relabeled, and that transfers are unchanged.9

The result is:

Proposition 2 Suppose that θi is an exchangeable random variable and that there exists C (n) such

that Cj (n) = C (n) for all j ∈ J . Then, for any simple anonymous incentive feasible mechanism g,
there exists an simple anonymous and symmetric incentive feasible mechanism that generates the

same surplus as g.

The idea of the proof is similar to that of Proposition 1, except that now it is the role of the

goods that are permuted. For concreteness, consider the case with two goods. Suppose that there

is an original mechanism, which possibly treats good 1 and 2 differently. We can reverse the role

of the goods and obtain an alternative mechanism that generates the same surplus. A symmetric

mechanism can be obtained by averaging over the original and the reversed mechanism.10 One can

show that it is also incentive feasible and generates the same surplus as the original mechanism.

Proposition 2 generalizes this procedure by permuting the roles of the goods (m! possibilities) and

creating a symmetric mechanism by averaging over these.

3 The Case with Many Independent Goods

A relatively straightforward case is when both the number of goods and the number of agents

are large. For reasons familiar from the multidimensional screening literature, finding an exactly

optimal mechanism is an intractable problem. However, using reasoning similar to Armstrong [3],

one can construct an approximately optimal mechanism for the case when both n and m are
9If we were to apply different permutations for the two agents, e.g., applying the identity permutation for agent

1 and the non-identiy permutation for agent 2, then we would obtain a profile ((h, l) , (h, l)), which is a qualitatively

different from either ((h, l) , (l, h)) or ((l, h) , (h, l)) . In the profile ((h, l) , (h, l)) , both agents have low valuations for

good 2 and high valuations for good 1, whereas, in the profiles ((h, l) , (l, h)) or ((l, h) , (h, l)) , one and only one agent

has high valuation for both goods.
10Provision probabilities and taxes are given by straightforward averaging, but since inclusion and provision prob-

abilities may be correlated the procedure is somewhat more involved for the inclusion rules.
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sufficiently large.11 This approximately optimal mechanism is a pure bundling mechanism.

The ex post efficient rule is to provide good j if and only if
Pn
i=1 θ

j
i ≥ Cj (n) and exclude

nobody from usage. What is the provision probability for good j under the ex post efficient rule?

Assuming that there exists finite numbers µ and σ2 such that Eθji ≤ µ and Varθji ≤ σ2 for each j,

we can appeal to law of large numbers reasoning to get a simple answer.12 Given these regularity

conditions,
Pn
i=1 θ

j
i/n converges in probability to Eθ

j
i , and the ex post efficient provision probability

converges to either zero or one depending on the relation between Eθji and C
j (n) /n :

Lemma 1 Suppose there are finite numbers µ and σ2 such that Eθji ≤ µ and Varθji ≤ σ2 for all j.

1. If there exists N and δ > 0 such that Eθji − Cj (n) /n ≥ δ when n ≥ N for all j, then

limn→∞ Pr
hPn

i=1 θ
j
i ≥ Cj (n)

i
= 1;

2. If there exists N and δ > 0 such that Cj (n) /n − Eθji ≥ δ when n ≥ N for all j, then

limn→∞ Pr
hPn

i=1 θ
j
i ≥ Cj (n)

i
= 0.

It is not hard to implement “never provide” , so only the first case is interesting. We therefore

assume that the first case applies for all j for the remainder of this section.13 Also note that if

Cj (n) /n has a limit, the only case not covered in Lemma 1 is when limn→∞Cj (n) /n = Eθji .

Let ε > 0 and consider the simple anonymous mechanism bg = ³©bρjªm
j=1

,
©bηjªm

j=1
,bt´, where

bρj (θ) = 1 for all j and all θ ∈ Θ (9)

bηj(θi) =

 1 if
P
j θ
j
i ≥

P
j
Cj(n)
n + εm

0 if
P
j θ
j
i <

P
j
Cj(n)
n + εm

j ∈ {1, ...,m}

bt(θi) =


P
j
Cj(n)
n + εm if

P
j θ
j
i ≥

P
j
Cj(n)
n + εm

0 if
P
j θ
j
i <

P
j
Cj(n)
n + εm.

The mechanism in (9) is a pure bundling mechanism. While expressed as a direct revelation mech-

anism, we can interpret it as a fixed mechanism where the full bundle is offered to anyone willing

to pay price
P
j
Cj(n)
n + εm. Clearly, truth-telling is a dominant strategy and the participation

11While containing no formal large numbers analysis, similar reasoning can also be found in Dana [7]. Jackson and

Sonnenschein [10] also show in a related setting that the welfare costs of incentive constraints completely disappear

when a large number of decisions are linked.
12A sufficient condition for the existence of the bounds µ and σ2 is that there exists an interval [a, b] such that

θji ∈ [a, b] for all j.
13If the first best probability of provision converges to one for some goods and zero for others, the analysis still

applies as long as there are sufficiently many goods that should be provided in a large economy according to the ex

post efficient rule. Goods for which the first best probability of provision converges to zero may simply be dropped

from the bundle and the rest of the analysis carries over.
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constraints are satisfied given such a mechanism. The only questions are: (1). when does (9)

satisfy the feasibility constraint (5)? (2). what are the optimality properties of (9)?

Proposition 3 Suppose uniform bounds µ <∞,σ2 <∞, δ > 0 exist such that Eθji ≤ µ,VARθji ≤
σ2 for every j, and Eθji −Cj (n) /n ≥ δ for every j and n ≥ N. Then:
(1) for any ε ∈ (0, δ) there exists M < ∞ such that bg is incentive feasible for any n and any m
such that n ≥ N and m ≥M ,
(2) for every ε ∈ (0, δ) there exists Nε and M (independent of ε) such that the difference in per

capita surplus between the ex post optimal mechanism and mechanism bg is less than ε for any

economy with n ≥ Nε and m ≥M.

In words, the simple pure bundling mechanism in (9) can approximate the outcome of the infor-

mationally unconstrained efficient mechanism arbitrarily well, provided that the number of goods

and the number of consumers are both sufficiently large. In contrast, if the bundling instrument is

not available, the probability of exclusion is always bounded away from zero for all agents (see Nor-

man [17]). The result thus illustrates that (pure) commodity bundling improves economic efficiency

in large economies with many public goods.

The intuition for the above “double infinity” (n and m both go to infinity) asymptotic results

is as follows. By selling usage of the goods only as a bundle, a consumer will buy the good if and

only if the average valuation exceeds the ratio of the price over the number of goods. The average

valuation converges almost surely to the expectation as the number of goods approach infinity,

implying that the probability of excluding an agent can be made negligible even if the “per good”

bundle price is near the expected average valuation. Hence, what is crucial for the implementability

of bg is the number of goods. Indeed, if Cj (n) = cjn for each j and n, the number of agents is

completely irrelevant for part 1 of the result. However, the number of agents play a crucial role for

the desirability of the pure bundling scheme. With a small number of agents, there is a significant

probability that a particular good should not be provided. If n is large, this probability is negligible,

implying that the pure bundling provision rule is near the efficient provision rule.

Independence among the elements in θi is of course a strong assumption. In many situations it

seems reasonable that there are correlations, for example due to all elements in θi being correlated

with wealth, age, or other “background variables.” But, if the variables that induce the correlation

are observable, this can easily been taken care of. That is, if (θi, z) follows some joint distribution

F, what is needed is that the elements in θi are conditionally independent given any realized z.
14

14If for each i, Fi is the cdf over θi and {Fi}ni=1 are independent, mechanism (9) still leads to approximate efficiency.
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3.1 What is Special About Public Goods?

It is instructive to compare our large numbers analysis with Armstrong [3], who studies of a

multi-product monopolist selling private goods. While Armstrong is concerned with profit maxi-

mization, he obtains an approximate full surplus extraction result when there is a large number

of stochastically independent goods, so the allocation is almost first best. The mechanism that

achieves this is a two part tariff. In essence, the monopolist sells the right to purchase goods at

marginal cost. With a large number of goods, the consumer surplus for the average good is near

the expected consumer surplus, so the monopolist can extract almost the full surplus.

A pure bundling scheme would not do particularly well when selling private goods. Unless the

marginal cost is zero, pure bundling would lead to a large numbers of goods being produced for

users who value the goods below cost. For the public goods case, however, the non-rivalness in

consumption means that this concern vanishes, and bundling can almost implement the first best.

4 The Model with Binary Valuations

We now turn to a case for which we can characterize the constrained efficient mechanism exactly.

Assume that there are two public goods, and that the valuation for good j can either be “high”

(θji = h) or “low” (θ
j
i = l). The individual type space is thus Θ = {(h, h) , (h, l) , (l, h) , (l, l)} . For

notational brevity we henceforth write θi = hh instead of (h, h) , θi = hl instead of (h, l) , and so

on. To facilitate comparisons with the non-bundling benchmark, we also assume that θ1i and θ
2
i are

independent with α = Pr[θ1i = h] = Pr[θ
2
i = h] ∈ (0, 1) , implying that the probability distribution

F over Θ is:15 n
α2,α (1− α) ,α (1− α) , (1− α)2

o
.

Finally, we assume that costs are given by C1 (n) = C2 (n) = cn. The most important simplification

here is that costs are the same for both goods. Together with the symmetric type space, this implies

that we can appeal to Proposition 2 and restrict attention to symmetric mechanisms. Keeping the

per capita costs constant simplifies notation, but is not necessary.

If h ≤ c, “never provide any good” is ex post optimal, which can be trivially implemented.

Symmetrically, if l ≥ c, “always provide both goods” is ex post optimal and can be implemented
by charging a constant tax equal to 2c. We therefore maintain the assumption that l < c < h in

order to keep the problem interesting.

15Independence across agents is a crucial assumption, but independence across goods is only for ease of comparison

with the no-bundling case. The analysis extends with minor modifications with a probability distribution of the form©
σhh,

σm
2 ,

σm
2 ,σll

ª
, where σm is the probability of a “mixed type”.
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Appealing to Propositions 1 and 2, we consider only simple anonymous mechanisms that treat

the two public goods symmetrically. For each θ ∈ Θ ≡ {hh, hl, lh, ll}n , let x ≡ (xhh, xhl, xlh, xll)
denote the number of agents announcing different types, and let

Xn =
n
x ∈ {0, ..., n}4 : xhh + xhl + xlh + xll = n

o
. (10)

be the set of possible values of x in an economy with n agents. Anonymity means that the provision

rule depends only on the number of agents who announce different valuation combinations. With

some notational abuse, it is thus without loss of generality to consider mechanisms on form

M =
³©

ρj, ηj
ª
j=1,2

, t
´
, j ∈ {1, 2} , (11)

where ρj : Xn → [0, 1] , ηj ≡ (ηjhh, ηjhl, ηjlh, ηjll) ∈ [0, 1]4 and t ≡ (thh, thl, tlh, tll) ∈ R4 satisfy

ρ1 (xhh, xhl, xlh, xll) = ρ2 (xhh, xlh, xhl, xll) , (12a)

η1hh = η2hh, η
1
hl = η2lh, η

1
lh = η2hl, η

1
ll = η2ll, thl = tlh. (12b)

4.1 Optimal Separate Provision Mechanisms

As a benchmark, this section derives the asymptotic provision probabilities of the two public

goods when the provision problem for each public good is considered in isolation. Proposition 1

applies also to the case with a single good, which for the binary case means that the provision

rule may be taken to depend only on the number of agents who announce a high valuation. To

emphasize that the solution depends on the size of the economy, we index the mechanism by n.

With some abuse of notation, we write a separate provision mechanism for good j in an economy

of size n as a triple (ρjn, η
j
n, t

j
n), where ρ

j
n : {1, ..., n}→ [0, 1] and ρjn (κ) denotes the probability of

provision if κ agents announce a high valuation for good j; ηjn ∈ [0, 1] is the inclusion probability
for type l and tjn = (t

j
n(h), t

j
n(l)) are the transfers.16

To find the best provision mechanism where goods are provided separately is formally the same

problem as finding the best provision mechanism when there is only a single good. Maximizing

social surplus subject to the single-good analogues of (4), (5) and (6) in Section 2.2 one obtains

the following characterization of the constrained optimal separate provision mechanism:

Proposition 4 Consider a sequence of economies of size {n}∞n=1 . Then,
(1) if αh < c, limn→∞Eρjn (κ) = 0 for any sequence of feasible separate provision mechanismsn
ρjn, η

j
n, t

j
n

o
;

16In principle, use exclusions of type h agents is of course also feasible. However, such exclusions never occur in an

optimal mechanism, since excluding type h tightens the downwards incentive constraint for h.
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(2) if αh > c, limn→∞ Eρ∗jn (κ) = 1 for any sequence of constrained optimal separate provision

mechanisms
n
ρ∗jn , η∗jn , t∗jn

o
. Moreover, any sequence of constrained optimal mechanisms satisfies

lim
n→∞ η∗jn =

αh− c
αh− l , lim

n→∞ t
∗j
n (l) =

αh− c
αh− l l, and lim

n→∞ t
∗j
n (h) =

·
1− αh− c

αh− l
¸
h+

αh− c
αh− l l.

The result is a two-type analogue to Propositions 2 and 3 in Norman [17] and the ideas are very

similar.17 Instead of a formal proof, we only provide a heuristic explanation of the result.18 The

key idea is that the incentive constraint

E
h
ρ∗jn (κ) |θji = h

i
h− t∗jn (h) ≥ E

h
ρ∗jn (κ) |θji = l

i
η∗jn h− t∗jn (l), (13)

may be replaced by

Eρ∗jn (κ)h− t∗jn (h) ≥ Eρ∗jn (κ) η∗jn h− t∗jn (l), (14)

since the probability that agent i is pivotal for the provision decision is negligible in a large economy.

Moreover, the participation constraint for the low type binds, and (again ignoring the effects of

being pivotal) this implies that t∗jn (l) ≈ Eρ∗jn (κ) η∗jn l. Because (13) binds in the optimal mechanism,
budget balance requires that, approximately,

Eρ∗jn (κ) c = αt∗jn (h) + (1− α) t∗jn (l) ≈ α
£
t∗jn (l) + Eρ

∗j
n (κ)h

¡
1− η∗jn

¢¤
+ (1− α) t∗jn (l)

= t∗jn (l) + αEρ∗jn (κ)h
¡
1− η∗jn

¢
= Eρ∗jn (κ)bηjnl +Eρ∗jn (κ)αh ¡1− η∗jn

¢
. (15)

Hence, η∗jn ≈ (αh− c) / (αh− l) follows from (15). Inspecting (15), it follows that limn→∞ Eρ∗jn (κ) =
0 if αh < c (since l < c by assumption). Otherwise the budget balance constraint must be violated

for large n. On the other hand, if αh > c, it is feasible to provide for sure (for any n) with the

transfers specified in Proposition 4, and inclusion probability η∗∞ ≡ (αh− c) / (αh− l) . Condi-
tional on this inclusion probability, the ex post efficient rule is to provide public good j whenever

κ
nh+

n−κ
n η∗∞l ≥ c. An application of Chebyshev’s inequality guarantees that

plim

µ
κ

n
h+

n− κ

n
η∗∞l

¶
= αh+ (1− α)

αh− c
αh− l l > αh > c.

Thus, the ex post efficient provision rule conditional on the given inclusion probability converges

towards “always provide.” Hence limn→∞ Eρ∗jn (κ) = 1 in the optimal mechanism. The limits for
17Strictly speaking, Proposition 4 is not a special case of the results in Norman [17], which deals with continuous

distributions satisfying the “increasing virtual valuation condition” familiar from Myerson [15] and others. Since

continuous approximations of discrete distributions violate this regularity condition, there are some qualitative dif-

ferences between the binary case and the “regular” continuously distributed case. In particular, the solution to the

binary case will generically involve randomizations.
18Details available on request from the authors.
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the transfers can then be obtained by substituting limn→∞ Eρ∗jn (κ) = 1 back into the incentive and

participation constraints.

The optimal separate provision mechanism characterized in Proposition 4 is bounded away from

first best efficiency. First of all, the asymptotic provision probability is zero when αh < c while

efficiency requires that the public good be provided whenever αh+ (1− α) l > c. Moreover, when

αh > c, there is still a distortion due to positive probability of exclusion of low valuation agents,

even though the public good is provided asymptotically with probability one.

4.2 Efficiency Gains From Bundling

Before deriving the constrained optimal mechanism, we consider an example that shows that

bundling can lead to provision for sure, even though the best separate provision mechanism has an

asymptotic provision probability equal to zero.

Suppose that αh + (1− α) l > c, so that provision is desirable in a large economy with a

probability near one. Consider mechanism

thh = thl = tlh = h+ l, and tll = 0

ηhh = ηhl = ηlh = 1, and ηll = 0 (16)

ρ1 (x) = ρ2 (x) = 1 for all x ∈ Xn.

That is, type-hh and type-hl agents are taxed the willingness to pay of the mixed type and consume

both goods for sure. Type-ll pays nothing and is excluded from usage from both goods.

All incentive and participation constraints are trivially satisfied by mechanism (16). The only

question is thus whether the feasibility constraint (5) is satisfied, that is, if

Pr [{hh, hl, lh}] (h+ l) = α (2− α) (h+ l) ≥ 2c, (17)

holds. It is easy to show that:

Claim 1 Given any c > 0 and α ∈ (0, 1) there exists pairs (h, l) with h > c > l such that (17) is
satisfied, where at the same time ah < c.

The expected utility in the best separate provision mechanism approaches zero for all agents

when provisions go to zero, whereas type-hh enjoys utility level h − l > 0 under mechanism (16).

The proposed bundling mechanism therefore improves efficiency. The construction of the values of

h and l for any c > 0 for which (16) outperforms the best separate provision mechanism is depicted

in Figure 1. The intuition for the improvement of bundling mechanism is as follows. The revenue

maximizing separate provision mechanism is to include only high valuation types. Hence, a fraction
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Figure 1: The Bundling Mechanism Outperforms Optimal Non-bundling Mechanism in the Shaded Region.

α of the agents contribute towards each good. In the bundling mechanism (16), only a fraction

(1− α)2 are excluded. While the contribution per agent decreases, the total revenue increases if l

is sufficiently close to c.

5 The Constrained Optimal Mechanism

5.1 The Mechanism Design Problem

For the binary model described in the previous section, we now set up the design problem to

maximize social surplus (7) subject to the incentive compatibility constraints in (4), the feasibility

constraint (5) and the participation constraints (6) in a tractable form.

The most involved part of the optimization problem is the provision rule. This is difficult to deal

with because ρj (x) is weighted by the ex ante probability that x occurs in the objective function

to the problem, while the relevant probabilities in the constraints are conditional probabilities. To

deal with this, we need to be explicit about the (multinomial) probability distribution of x, in order

to eventually be able to link the unconditional and conditional probabilities. Given n agents, we

denote the probability of outcome x ∈ Xn by an (x), which follows a multinomial with parameters³
n,α2,α (1− α) ,α (1− α) , (1− α)2

´
.

There are 12 incentive constraints to be satisfied. However, due to the symmetry, types are

naturally ordered as hh being the “highest type”, hl and lh being “middle types” and ll being
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the “lowest type”. We conjecture that only downwards incentive constraints are relevant and will

therefore ignore all upwards constraints as well as the constraints between type hl and lh. Once

the solution to the relaxed problem is fully characterized, we will verify that the other omitted

constraints are satisfied. Finally, it is easy to check that if type-hh is better off announcing her

true type than announcing hl, and type-hl is better off announcing her true type than announcing

ll, then there are no incentives for type-hh to announce ll. Together with the symmetry of the

mechanism (12), we are thus left with two distinct incentive constraints:

2η1hh
P
x∈Xn−1 an−1 (x) ρ

1 (xhh + 1, xhl, xlh, xll)h− thh ≥
η1hl
P
x∈Xn−1 an−1 (x)ρ

1(xhh, xhl + 1, xlh, xll)h

+η1lh
P
x∈Xn−1 an−1 (x) ρ

1(xhh, xhl, xlh + 1, xll)h− thl,
(18a)

η1hl
P
x∈Xn−1 an−1 (x)ρ

1(xhh, xhl + 1, xlh, xll)h

+η1lh
P
x∈Xn−1 an−1 (x)ρ

1(xhh, xhl, xlh + 1, xll)l − thl ≥
η1ll
P
x∈Xn−1 an−1 (x) ρ

1(xhh, xhl, xlh, xll + 1) (h+ l)− tll,
(18b)

where (18a) states that type-hh agents do not have incentives to mis-report as type hl; and (18b)

states that type-hl agents do not have incentives to mis-report as type ll.

Given that all downward incentive constraints and the participation constraint for type ll are

fulfilled, it follows by a standard argument that the participation constraints for types hh, hl and

lh are also fulfilled. The only relevant participation constraint is thus

2η1ll
X

x∈Xn−1
an−1 (x)ρ1(xhh, xhl, xlh, xll + 1)l − tll ≥ 0. (19)

Finally, the budget balance constraint can be simplified considerably due to the simple transfer

schemes and the constant per capita costs. That is, using the symmetry of (12) and breaking out

n from (5), we can express the feasibility constraint in per capita form as

α2thh + α (1− α) 2thl + (1− α)2 tll − 2c
X
x∈Xn

an (x) ρ
1 (x) ≥ 0. (20)

Again using the symmetry of (12), we can drop one of the goods, and express the relaxed program-

ming problem as:19

max
{ρ1,η1,t}

2
X
x∈Xn

an (x)ρ
1 (x)

"¡
η1hhxhh + η1hlxhl

¢
h+

¡
η1lhxlh + η1llxll

¢
l

n
− c
#

(21)

s.t. (18a)-(18b), (19) and (20),

η1θi ≥ 0, 1− η1θi ≥ 0 for each θi ∈ Θ, (22)

ρ1 (x) ≥ 0, 1− ρ1 (x) ≥ 0 for each x ∈ Xn, (23)
19The multiplicative constant 2 in the objective function is redundant, but it aids interpretations by keeping the

units in the objective function and the constraints comparable.
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where the social planner’s objective function is written in per capita form.

Lemma 2 There exists at least one optimal solution to (21).

The proof is standard by first compactifying the constraint set and then applying Weierstrass

Theorem. It can be shown that Slater’s condition for constraint qualification holds, so the Kuhn-

Tucker conditions are necessary for an optimum. Since a solution to (21) exists, these first order

conditions therefore provide a characterization of the optimal mechanism, provided that the con-

straints that we ignored when formulating (21) are satisfied at the candidate solution.

5.2 Relationship Between Multipliers

Taxes enter linearly into all constraints and are not constrained by boundaries. It is therefore

convenient to begin the analysis by taking first order conditions with respect to tθ. This allows us

to express the multiplier of any other constraint as a linear scaling of the multiplier of the feasibility

constraint.

The first order conditions with respect to t = (thh, thl, tll) are,

(w.r.t. thh) −λhh + Λα2 = 0,
(w.r.t. thl) λhh + λhl + Λ2α (1− α) = 0,

(w.r.t. tll) λhl − λll +Λ (1− α)2 = 0.

, (24)

where λhh and λhl are the multipliers associated with (incentive compatibility) constraints (18a)

and (18b), and λll is the multiplier associated with the (participation) constraint (19). Hence:

Lemma 3 In any solution to (21), the multipliers (λhh,λhl,λll,Λ) satisfy: λhh = α2Λ,λhl =¡
2α− α2

¢
Λ, and λll = Λ.

In all its simplicity, Lemma 3 is actually a key step in the solution of (21). Its role is similar to

the characterization of incentive compatibility and individual rationality in terms of a single integral

constraint in single-dimensional mechanism design problem (i.e., the approach in Myerson [15] and

others). In multidimensional problems, it is impossible to collapse all constraints into a single

constraint. Instead, Lemma 3 allows us to indirectly relate all optimality conditions to a single

constraint. The analysis is thus very much as if an objective function is maximized subject to a

single constraint.
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5.3 Optimal Inclusion Rules

We now characterize the optimal inclusion rules η1. To ease the statement of the result, we

define two linear functions G : [0, 1]→ R and H : [0, 1]→ R as

G (Φ) ≡ (1−Φ) 2l +Φ
·
2α− α2

α (1− α)
l − α2

α (1− α)
h

¸
, (25)

H (Φ) ≡ (1−Φ) 2l +Φ
·

2

(1− α)2
l − 2α− α2

(1− α)2
(h+ l)

¸
.

The result is:

Lemma 4 Let M = (ρ1, ρ2, η1, η2, t) be a symmetric solution to (21) and let Φ = Λ/ (1+ Λ) ,

where Λ is the associated multiplier on the resource constraint. Also, suppose that E
£
ρj (x) |θi

¤
> 0

for all θi ∈ Θ and j = 1, 2. Then,

1. η1hh = η2hh = η1hl = η2lh = 1;

2. η1lh = η2hl =


1 if G (Φ) > 0

y ∈ [0, 1] if G (Φ) = 0

0 if G (Φ) < 0;

3. η1ll = η2ll =


1 if H (Φ) > 0

y ∈ [0, 1] if H (Φ) = 0

0 if H (Φ) < 0.

To interpret the result, note that Φ = Λ/ (1+ Λ) ∈ [0, 1] , and G (Φ) ≥ 0 if and only if

Φ

Term 1z }| {£
α (2− α) l − α2h

¤
+(1−Φ)

Term 2z }| {
2α (1− α) l ≥ 0. (26)

To understand Term 1 in expression (26), consider two candidate inclusion rules. The first candidate

is η1lh = η2hl = η1ll = η2ll = 0, and η1hh = η2hh = η1hl = η2lh = 1. That is, an agent is given access

to good j if and only if her announced valuation for good j is h. Since high valuation agents

are willing to pay h for access to a good, the expected revenue from such an inclusion rule is at

most 2h × α2 + h × 2α (1− α) = 2αh from each agent. The second candidate inclusion rule is

η1lh = η2hl = η1hh = η2hh = η1hl = η2lh = 1 and η1ll = η2ll = 0. That is, an agent is given access to both

goods as long as one of her announced valuation is high. Under this inclusion rule, all agent types

except ll could be charged h+ l for access to both goods. This results in an expected revenue per

agent of at least
£
α2 + 2α (1− α)

¤
(h+ l) = α (2− α) (h+ l) . The change in revenue if increasing

η1lh and η2hl from 0 to 1 is thus

α (2− α) (h+ l)− α2h = α (2− α) l − α2h, (27)
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which is Term 1 in expression (26). Term 2 in expression (26), 2α (1− α) l, on the other hand,

captures the marginal increase in per capita surplus from increasing η1lh and η2hl from 0 to 1. In

sum, this means that G (Φ) is a weighted average of the optimality conditions for an unconstrained

social planner and a profit maximizing provider, where the weight on Term 1 — the effect on revenue

— is higher when the shadow price of revenue, namely, Λ, is higher.

Clearly, if both Term 1 and Term 2 are positive, then both the social planner and monopolistic

provider prefers setting η1lh = η2hl = 1. On the other hand, if Term 1 is negative, i.e. if α (2− α) l <

α2h, then some algebra on expression (26) shows that G (Φ) ≥ 0 if

Φ ≤ Φ∗lh =
(1− α) 2l

α (h− l) . (28)

Clearly, Φ∗lh > 0 but Φ∗lh < 1 only when α (2− α) l < α2h. That is, when there is a conflict of

interest between the surplus maximizing social planner and a revenue maximizing monopolistic

provider, η1lh = η2hl = 1 will be optimal only when Λ, or the shadow price of resources, is sufficiently

low. To summarize, item 2 of Lemma 4 could be restated as: there exists a critical value Φ∗lh ∈ (0, 1)
such that G (Φ) ≥ 0 if and only if Φ ≤ Φ∗lh.

Analogously, H (Φ) ≥ 0 if and only if

(1−Φ) (1− α)2 2l +Φ [2l − α (2− α) (h+ l)] ≥ 0. (29)

The term (1− α)2 2l is the gain in social surplus when η1ll and η
2
ll are increased from 0 to 1; and the

term 2l − α (2− α) (h+ l) is the revenue effect of such a change. Thus, H (Φ) is again a weighted

average of the optimality conditions for an unconstrained social planner and a profit maximizing

provider. If 2l − α (2− α) (h+ l) > 0, the H (Φ) > 0 for sure and η1ll = η2ll = 1 is optimal.

Otherwise, H (Φ) ≥ 0 if and only if

Φ ≤ Φ∗ll =
(1− α)2 2l

α (2− α) (h− l) . (30)

Note
Φ∗lh
Φ∗ll

=
2− α

1− α
> 1. (31)

This implies that type-hl or type-lh agents are always “first in line” to get access to the good

for which they have a low valuation in the following sense: if η1ll = η2ll > 0, then we know that

Φ ≤ Φ∗ll < Φ∗lh, thus η1lh = η2hl = 1; symmetrically, if η
1
lh = η2hl < 1, then we know Φ ≥ Φ∗lh > Φ∗ll,

then η1ll = η2ll = 0. We summarize the above discussion as:

Lemma 5 Suppose that E
£
ρj (x) |θi

¤
> 0 for all θi ∈ Θ and j = 1, 2. Let Φ = Λ/ (1+ Λ). There

exists Φ∗ll < Φ
∗
lh such that the optimal inclusion rule satisfies:

20



1. All agents with a high valuation for good j is included with probability one for using good j if

it is provided;

2. If Φ < Φ∗ll < Φ
∗
lh, then all agents get access to both public goods.

3. If Φ = Φ∗ll < Φ
∗
lh, then η1ll = η2ll ∈ [0, 1] and η1lh = η2hl = 1.

4. If Φ∗ll < Φ < Φ
∗
lh, then η1ll = η2ll = 0 and η

1
lh = η2hl = 1.

5. If Φ∗ll < Φ = Φ
∗
lh, then η1ll = η2ll = 0 and η

1
lh = η2hl ∈ [0, 1]

6. If Φ∗ll < Φ
∗
lh < Φ, then η1ll = η2ll = η1lh = η2hl = 0

While Λ is still unknown, we now possess a simple characterization of the optimal inclusions as

a function of the still unknown multiplier on the resource constraint.

5.4 Optimal Provision Rules

To discuss the optimal provision rules
©
ρj (x)

ª
j=1,2

, it is convenient to first define

Q1
³x
n
,Φ
´
≡ xhh

n
h+

xhl
n
h+

xlh
n

max {0, G (Φ)}
2

+
xll
n

max {0, H (Φ)}
2

− c. (32)

Q2
³x
n
,Φ
´
≡ xhh

n
h+

xlh
n
h+

xhl
n

max {0, G (Φ)}
2

+
xll
n
max

{0,H (Φ)}
2

− c.

These functions have a natural interpretation. To see this, first consider the case where Φ = 0, in

which case [see definitions in (25)] G (0) = H (0) = 2l. The value of Qj (x/n, 0) is thus simply the

social surplus generated if good j is provided and nobody is excluded. Similarly, as discussed in the

previous section, G (1) is the gain or loss in revenue if mixed types are allowed to consume their

low valuation good.20 We can thus think of Qj (x/n,Φ) as a weighted average of social surplus and

net revenue if the good is provided when the state is x.

The constrained optimal provision rule can be fully described in terms of these two functions:

Lemma 6 Let M be an optimal solution to (21) and Φ = Λ/ (1+Λ) where Λ is the multi-

plier associated with the constraint (20) at the optimal solution. Then, (1) ρj (x) = 1 whenever

Qj (x/n,Φ) > 0; and (2) ρj (x) = 0 whenever Qj (x/n,Φ) < 0.

To summarize, we have characterized the optimal inclusion and provision rules for any given

value of the Lagrange multiplier Λ associated with the feasibility constraint. Such characterization

20The same is true about H (Φ) , but given the non-triviality assumptions on the problem, giving access to type ll

always reduces revenue.
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provides some partial information regarding the asymptotic provision probability in the optimal

mechanism with bundling. For example, the above characterization tells us that αh > c is a

sufficient but not necessary condition for the provision probability to converge to one.21 In contrast,

in the model without bundling, αh > c is the necessary and sufficient for asymptotic probability one

provision. To see this, write µ =
³
α2,α (1− α) ,α (1− α) , (1− α)2

´
as the asymptotic proportions

of agents with different valuation combinations hh, hl, lh, and ll; and write Φn = Λn/ (1+ Λn) where

Λn is the associated multiplier on the resource constraint in the optimal solution when the number

of agents in the economy is n. By continuity of Qj,

lim
n→∞Q

j
³x
n
,Φn

´
= Qj (µ,Φ)

= αh+ α (1− α)max {0, G (Φ)}+ (1− α)2max {0,H (Φ)}− c (33)

where Φ = limn→∞Φn. Thus, αh > c is a sufficient condition for Qj (µ,Φ) > 0 (and hence for

asymptotic provision with probability 1).

5.5 The Main Result

In this section, we provide a full characterization of the asymptotic properties of a sequence of op-

timal mechanisms. We index the mechanisms by the size of the economy and write
n
ρjn, η

j
n, tn

o2
j=1

,

where ρjn : Xn → [0, 1] is the provision rule for good j, and η1n =
¡
η1n (lh) , η

1
n (ll)

¢
are the prob-

abilities that type-lh and ll agents are allowed access to good 1 conditional on provision, and

η2n =
¡
η2n (hl) , η

2
n (ll)

¢
are the probabilities that type-hl and ll agents are allowed access to good 2

conditional on provision; and tn is the transfer rule. Note that, by Lemma 4, the other types are

included with probability 1 in any optimal mechanism. Our main result is:

Proposition 5 Let
n
ρjn, η

j
n, tn

o2
j=1

be a sequence of optimal mechanism. Then, the following holds:

1. if max {2αh,α (2− α) (h+ l)} > 2c, then limn→∞ Eρjn (x)→ 1 for j = 1, 2;

2. if max {2αh,α (2− α) (h+ l)} < 2c, then limn→∞ Eρjn (x)→ 0 for j = 1, 2;

3. if α (2− α) (h+ l) > 2c, then there exists N < ∞ such that η1n (lh) = η2n (hl) = 1 for every

n ≥ N , η1n (ll) = η2n (ll) for every n and

lim
n→∞ η1n (ll) = lim

n→∞ η2n (ll) = η∗ll,
21Recall that in the example in Section 4.2, the proposed bundling mechanism achieves provision with probability

one for cases when αh < c.
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BundlingÂExclusion No Exclusion Exclusion

No Bundling

Eρj∗n → 0

(Mailath and

Postlewaite [11])

Eρj∗n → 0, if αh < c

Eρj∗n → 1, if αh > c
(Norman [17])

Bundling Allowed

Eρj∗n → 0

(Mailath and

Postlewaite [11])

Eρj∗n → 0,

if max {2αh,α (2− α) (h+ l)}< 2c;
Eρj∗n → 1,

if max {2αh,α (2− α) (h+ l)}> 2c
(This Paper)

Table 1: The Asymptotic Provision Probability under Different Bundling and Exclusion Possibilities.

where

η∗ll =
α (2− α) (h+ l)− 2c
α (2− α) (h+ l)− 2l ∈ (0, 1) ;

4. If 2αh > 2c > α (2− α) (h+ l) ,then there exists N <∞ such that η1n (ll) = η2n (ll) = 0 for all

n ≥ N and η1n (lh) = η2n (hl) for every n and

lim
n→∞ η1n (lh) = lim

n→∞ η2n (hl) = η∗lh

where

η∗lh =
2αh− 2c

2αh− α (2− α) (h+ l)
∈ (0, 1) .

Allowing for bundling improves efficiency in two dimensions. First, in some cases, public goods

that are not feasible to provide separately can be provided with probability one when bundling is

allowed. This is shown in Table 1, which also illustrates the need for studying excludable public

goods when considering large economies.22

Secondly, even for public goods that can be provided without bundling, the optimal bundling

mechanism still improves efficiency by increasing the probability of inclusion for low-valuation

agents. Specifically, suppose that αh > c so that both public goods will be asymptotically provided

with probability one with or without bundling. From Proposition 4, we know that under the best

separate provision mechanism, the ex ante probability for access is

α+ (1− α)
αh− c
αh− l , (34)

22Mailath and Postlewaite [11] considers a single-dimensional problem. However, the probabilities of provision in

a multidimensional setting can be bounded from above by a single-dimensional problem, where the valuation is the

maximum of the individual good valuations.
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where α is the probability of a high valuation, in which case the consumer gets access for sure, 1−α
is the probability of a low valuation, in which case the inclusion probability is (αh− c)/(αh− l)).
In contrast, Proposition 5 implies that the ex ante probability for access in the bundling regime in

the case where in the case where 2c > α (2− α) (h+ l) is

α+ (1− α)α
2αh− 2c

2αh− α (2− α) (h+ l)
. (35)

Again, consumers with high valuations get access for sure, while low valuation consumers get

access with probability (2αh− 2c) / [2αh− α (2− α) (h+ l)] . Simple algebra shows that (35) is

larger than (34).23 Fewer consumers are thus excluded in the optimal bundling mechanism. A

similar calculation applies to the case where 2c < α (2− α) (h+ l) .

6 Conclusion

This paper studies the role of bundling in the optimal provision of multiple excludable public

goods in large economies. We show that bundling in the provision of unrelated public goods can

enhance social welfare. For a parametric class of examples with binary valuations, we characterize

the optimal mechanism and show that allowing for bundling alleviates the well-known free riding

problem in large economies and increases the probability of public good provision. The basic

intuition, which we formalized in the case with many goods, is that bundling reduces the variance

of valuations, and that, due to the non-rivalness, there are no direct efficiency losses from providing

goods to agents with a low willingness to pay. Bundling therefore leads to fewer exclusions, which

in turn implies an increase in revenue. In our simplistic model this will in some cases change

the probability of provision from zero to one when allowing the designer to bundle. In a richer

environment with a quantity dimension, this should translate to increasing the provision levels.

We believe that there are two interesting directions in which the model of this paper could be

extended. First, can we characterize the optimal mechanism for the provision of multiple public

goods when the valuation distributions are more general? We believe that this is possible. In

particular, as long as all goods are binary and the problem is symmetric, a natural ordering of the

types exist no matter how many goods there are. While still very simplistic, this extension would

allow an analysis of how many different bundles would be offered, and one could also address to

what extent the mixing in the current paper is an artefact of the minimal type space. Secondly, it

23The difference between the two access probabilities is (1− α) multiplied by

2αh− 2c
2h− (2− α) (h+ l)

− αh− c
αh− l =

α (αh− c) (h− l)
[2h− (2− α) (h+ l)] [αh− l] > 0.
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does not seem crucial to have non-rivalness in all goods. One could therefore use our setup to ask

to what extent public provision of a private good could be rationalized as a way to alleviate the

free-riding problem in public good provision.
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A Appendix: Proofs

Proof of Proposition 1.

Claim A1 For any incentive feasible mechanism G of the form (3), there exist an incentive feasible
mechanism

G =

µ³
ρj , ηj1, ..., η

j
n

´
j∈J

, (ti)i∈I

¶
, (A1)

that generates the same social surplus, where ρj : Θ → [0, 1] is the provision rule for good j,

ηji : Θ → [0, 1] is the inclusion rule for agent i and good j,and ti : Θ → R is the transfer rule for

agent i.

Proof. Consider an incentive feasible mechanism G. Pick k ∈ [0, 1] arbitrarily and define,

ρj (θ) = EΞζ
j (θ,ϑ) =

Z 1

0
ζj (θ,ϑ) dϑ (A2)

ηji (θi) =


E−iζj(θ,ϑ)ωji (θ,ϑ)

E−iζj(θ,ϑ)
=

R
Θ−i

R 1
0 ζj(θ,ϑ)ωji (θ,ϑ)dϑdF(θ−i)R

Θ−i
R 1
0 ζj(θ,ϑ)dϑdF(θ−i)

if
R
Θ−i

R 1
0 ζ

j (θ,ϑ) dϑdF (θ−i) > 0

k if
R
Θ−i

R 1
0 ζ

j (θ,ϑ) dϑdF (θ−i) = 0

ti (θi) = E−iτ (θ) =
Z
Θ−i

τ (θ)dF (θ−i) ,

for each θ ∈ Θ, j ∈ J and i ∈ I. This is a mechanism of the form in (A1), and we will call it G.

Use of the law of iterated expectations on ρj (θ) and ti (θi) shows that the feasibility constraint (5)

is unaffected when switching from G to G. It remains to show that the surplus is unchanged, and
that (4) and (6) continue to hold under G. The utility of agent i of type θi ∈ Θ who announces
θ̂i ∈ Θ is

E−i

X
j∈J

ζj
³
θ̂i, θ−i,ϑ

´
ωji

³
θ̂i, θ−i,ϑ

´
θi − τ

³
θ̂i, θ−i

´ in mechanism G (A3)

E−i

X
j∈J

ρj
³
θ̂i, θ−i

´
ηji

³
θ̂i

´
θi − ti

³
θ̂i

´ in mechanism G. (A4)

If
R
Θ−i

R 1
0 ζ

j
³
θ̂i, θ−i,ϑ

´
dϑdF (θ−i) = 0, we trivially have that

E−iρj
³
θ̂i, θ−i

´
ηji

³
θ̂i

´
θi = 0 = E−i

h
ζj
³
θ̂i, θ−i,ϑ

´
ωji

³
θ̂i, θ−i,ϑ

´
θi

i
; (A5)

whereas if
R
Θ−i

R 1
0 ζ

j
³
θ̂i, θ−i,ϑ

´
dϑdF (θ−i) > 0, we have that

E−iρj
³
θ̂i, θ−i

´
ηji

³
θ̂i

´
θi = E−iζj

³
θ̂i, θ−i,ϑ

´ E−iωji ³θ̂i, θ−i,ϑ´ ζj ³θ̂i, θ−i,ϑ´
E−iζj

³
θ̂i, θ−i,ϑ

´ (A6)

= E−iωji
³
θ̂i, θ−i,ϑ

´
ζj
³
θ̂i, θ−i,ϑ

´
θi.
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Trivially, E−iti (θi) = ti (θi) = E−iτ (θ) , which combined with (A5) and (A6) implies that the

payoffs in (A3) and (A4) are identical. Since the equality between (A3) and (A4) were established

for any i, θi and θ̂i, it follows that all incentive and participation constraints (4) and (6) hold for

mechanism G given that they are satisfied in mechanism G. Moreover, [again by (A5) and (A6)]

E−i

X
j∈J

ρj (θ) ηji (θi) θi

 = E−i
X
j∈J

ωji (θ,ϑ) ζ
j (θ,ϑ) θi

 , (A7)

so it follows by integration over Θ and summation over i that

E

X
i∈I

X
j∈J

ρj (θ) ηji (θi) θi

 = E
X
i∈I

X
j∈J

ζj (θ,ϑ)ωji (θ,ϑ) θi

 , (A8)

By construction, we also have that ρj (θ) = EΞζ
j (θ,ϑ) for every θ. Thus E

£
ρj (θ)Cj (n)

¤
=

E
£
ζj (θ,ϑ)Cj (n)

¤
, implying that

X
j∈J

Eρj (θ)

"X
i∈I

ηji (θi) θi −Cj (n)
#
=
X
j∈J

Eζj (θ,ϑ)

"X
i∈I

ωji (θ,ϑ) θi −Cj (n)
#
. (A9)

Hence, G and G generate the same social surplus.

Claim A2 For every incentive feasible mechanism of the form (A1), there exists an anonymous

simple incentive feasible mechanism g of the form (8) that generates the same surplus.

Proof. Consider an incentive feasible simple mechanism G on form (A1). For k ∈ {1, ...., n!} ,
let Pk : I → I denote the k-th permutation of the set of agents I. Note that P−1k (i) gives the

index of the agent who takes agent i0s position in permutation Pk. Moreover, for any given θ ∈Θ,
let θPK =

³
θP−1k (1), ..., θP−1k (n)

´
∈ Θ denote the corresponding k-th permutation of θ.24 For each

k ∈ {1, ..., n!} , let Gk =
µ³

ρjk, η
j
k1, ..., η

j
kn

´
j=1,2

, tk1, ..., tkn

¶
be given by

ρjk (θ) = ρj
¡
θPk
¢ ∀ θ ∈ Θ, j ∈ J , (A10)

ηjki (θi) = ηj
P−1k (i)

(θi) ∀ θi ∈ Θ, j ∈ J , i ∈ I,
tki (θi) = tP−1k (i)(θi) ∀ θi ∈ Θ, i ∈ I,

24To illustrate, suppose n = 3,m = 2, θ = (θ1, θ2, θ3) = ((1, 2) , (3, 2) , (2, 1)) . Consider, for example, pur-

mutation k given by Pk (1) = 2, Pk (2) = 1, Pk (3) = 3. Then P−1k (1) = 2, P−1k (2) = 1, P−1k (3) = 3 and

θPk =
³
θ
P−1
k

(1)
, θ
P−1
k

(2)
, θ
P−1
k

(3)

´
= (θ2, θ1, θ3) = ((3, 2) , (1, 2) , (2, 1)) .
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and let g =

µ³eρj ,eηj1, ...,eηjn´
j=1,2

,et1, ...,etn¶ be given by
eρj (θ) =

1

n!

n!X
k=1

ρjk (θ) ∀ θ ∈Θ, j ∈ J (A11)

eηji (θi) =

Pn!
k=1 E−i

h
ρjk (θ)

i
ηjki (θi)Pn!

k=1 E−i
h
ρjk (θ)

i ∀ θi ∈ Θ, i ∈ I, j ∈ J

eti (θi) =
1

n!

n!X
k=1

tki (θi) ∀ θi ∈ Θ, i ∈ I.

We now note that: (1) for each j ∈ J , eρj (θ) = eρj ¡θ0¢ if θ0 is a permutation of θ. This is immediate
since the sets

n
ρjk (θ)

on!
k=1

=
©
ρj (Pk (θ))

ªn!
k=1

and
n
ρjk
¡
θ0
¢on!

k=1
=
©
ρj
¡
Pk
¡
θ0
¢¢ªn!

k=1
are the same;

(2) for j ∈ J and each pair i, i0 ∈ I,eηji (·) = eηji0 (·) . That is, the inclusion rules are the same
for all agents. To see this, consider agent i and i0, and suppose that θi = θi0 . We then have

that
n
E−i

h
ρjk (θ)

i
ηjki (θi)

on!
k=1

and
n
E−i0

h
ρjk (θ)

i
ηjki0 (θi0)

on!
k=1

are identical and that E−i
£eρj (θ)¤ =

E−i0
£eρj (θ)¤; and (3) for each pair i, i0 ∈ I,eti (·) = eti0 (·) , which is obvious since the sets {tki (θi)}n!k=1

and
©
tki
¡
θ0i
¢ªn!
k=1

are identical. Together, (1), (2) and (3) establishes that g is anonymous and

simple.

Now we show that g is incentive feasible and generates the same expected surplus as G. First,

since G and Gk are identical except for the permutation of the agents, we have, for k = 1, ..., n!,

X
j∈J

E

(
ρjk (θ)

"X
i∈I

ηjki (θi) θ
j
i −Cj (n)

#)
=
X
j∈J

E

(
ρj (θ)

"X
i∈I

ηji (θi) θ
j
i −Cj (n)

#)
. (A12)

Hence,

X
j∈J

E

(eρj (θ)"X
i∈I

eηj (θi) θji − Cj (n)
#)

=
X
j∈J

E

(
1

n!

n!X
k=1

ρjk (θ)

"X
i∈I

Pn!
k=1 E−iρ

j
k (θ) η

j
ki (θi)Pn!

k=1 E−iρ
j
k (θ)

θji − Cj (n)
#)

=
X
j∈J

X
i∈I

Eθi

(
1

n!

n!X
k=1

E−iρ
j
k (θ) η

j
ki (θi) θ

j
i

)
− E

"
1

n!

n!X
k=1

ρjk (θ)

#
Cj (n)

=
1

n!

n!X
k=1

X
j∈J

E

(
ρjk (θ)

"X
i∈I

ηjki (θi) θ
j
i − Cj (n)

#)
=
X
j∈J

E

(
ρj (θ)

"X
i∈I

ηji (θi) θ
j
i − Cj (n)

#)
, (A13)

where the last equality follows from (A12). Hence the surplus generated by g is identical to that

by original mechanism G. To show that g is incentive feasible we first note that Eρjk (θ) = Eρ
j (θ)

and E
P
i∈I tki (θi) = E

P
i∈I ti (θi) for all k, since the agents’ valuations are drawn from identical
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distributions and Gk and G only differ in the index of the agents. Thus

E
X
i∈I
eti (θi)−X

j∈J
Eeρj (θ)Cj (n) = E

X
i∈I

1

n!

n!X
k=1

tki (θi)−
X
j∈J

E
1

n!

n!X
k=1

ρjk (θ)C
j (n)

= E
X
i∈I

ti (θi)−
X
j∈J

Eρj (θ)Cj (n) , (A14)

so g is feasible if the original mechanism G is. Second, we note that incentive compatibility holds

for any permuted mechanism, i.e.,

E−i
X
j∈J

ρjk(θ)η
j
ki (θi) θ

j
i − tki(θi) ≥ E−i

X
j∈J

ρjk(
bθi, θ−i)ηjki(bθi, θ−i)θji − tki(bθi, θ−i) (A15)

for all i ∈ I, and θi,bθi ∈ Θ. Hence,
E−i

X
j∈J

eρj(θ)eηj (θi) θji − et(θi) = E−iX
j∈J

"
1

n!

n!X
k=1

ρjk (θ)

# Pn!
k=1 E−i

£
ρjk (θ)

¤
ηjki (θi)Pn!

k=1 E−i
£
ρjk (θ)

¤ θji −
1

n!

n!X
k=1

tki (θi)

=
1

n!

n!X
k=1

"
E−i

X
j∈J

ρjk (θ) η
j
ki (θi) θ

j
i − tki (θi)

#
≥ 1

n!

n!X
k=1

"
E−i

X
j∈J

ρjk(
bθi, θ−i)ηjki(bθi, θ−i)θji − tki(bθi, θ−i)

#

= E−i
X
j∈J

1

n!

n!X
k=1

ρjk(
bθi, θ−i)ηjki(bθi, θ−i)θji − 1

n!

n!X
k=1

tki(bθi, θ−i) =X
j∈J

E−ieρj(bθi, θ−i)eηji ³bθi´ θji − et(bθi), (A16)
where the inequality follows from (A15). Hence g is incentive compatible. Finally, g also satisfies

the participation constraints because (see the second line in (A16)) all the permuted mechanisms

satisfy participation constraints. Proposition 1 follows by combining Claims A1 and A2.

Proof of Proposition 2.

Notation: This proof requires us to be explicit about the coordinates of the vector θ when

permuting J . We therefore need some extra notation for this proof (only). We write θ−ji =³
θ1i , ..., θ

j−1
i , θj+1i , ..., θmi

´
for a type vector where good j has been removed. Analogously, θ−j =³

θ−j1 , ..., θ
−j
n

´
stands for the type profile with good j coordinate removed for all agents and

θj =
³
θj1, ..., θ

j
n

´
is the vector collecting the valuations for good j for all agents. Furthermore,

θ−j−i =
³
θ−j1 , ..., θ

−j
i−1, θ

−j
i+1, ..., θ

−j
n

´
and θj−i =

³
θj1, ..., θ

j
i−1, θ

j
i+1..., θ

j
n

´
are used for the vectors ob-

tained respectively from θ−j and θj by removing agent i. These conventions are used also on the

distributions, so, for example, F−j−i denotes the cumulative distribution of θ
−j
−i . Conditional distri-

butions are denoted in the natural way: for example F−j−i
³
·| θji

´
denotes the joint distribution of

θ−j−i conditional on θji . Since no integrals are taken over subsets of the range of integration, we also

conserve space and write
R
θ h (θ)dF (θ) rather than

R
θ∈Θ h (θ) dF (θ) when integrating a function

h over θ and similarly for integrals over various components of θ.

Proof. Consider a simple anonymous incentive feasible mechanism g. For k ∈ {1, ...,m!} , write with
some abuse of notation Pk : J → J as the k-th permutation of J , and let θPki =

µ
θ
P−1k (1)
i , ..., θ

P−1k (m)
i

¶
∈
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Θ denote the permutation of θi when the goods are permuted according to Pk. Write θPk =³
θPk1 , ..., θ

Pk
n

´
∈ Θ denote the corresponding permutation of θ.25 For each k ∈ {1, ...,m!} define

mechanism gk = (
n
ρjk

o
j∈J

,
n
ηjk

o
j∈J

, tk), where for every θ ∈ Θ;

1. ρjk (θ) = ρP
−1
k (j)

¡
θPk
¢
for every j ∈ J ;26

2. ηjk (θi) = ηP
−1
k (j)

³
θPki

´
for every j ∈ J ;27

3. tk (θi) = t
³
θPki

´
.

By construction, each gk is simple. Each gk is also anonymous by the anonymity of g. Using

the definition of gk and manipulating the result by observing that the labeling of the variables is

irrelevant, we get:28

Eρjk (θ) η
j
k(θi)θ

j
i =

Z
θ

ρjk (θ) η
j
k(θi)θ

j
idF (θ) /def of gk/ =

Z
θ∈Θ

ρP
−1
k (j)

³
θPk

´
ηP
−1
k (j)

³
θ
Pk
i

´
θjidF (θ)

=

Z
θj

·Z
θ−j

ρP
−1
k

(j)
³
θPk

´
ηP
−1
k

(j)
³
θPki

´
θjidF

−j
³
θ−j

¯̄̄
θj
´¸
dFj

³
θj
´

(A17)

/relabel/ =

Z
θ
P−1
k

(j)

Z
(θ−j)Pk

ρP
−1
k (j) (θ) ηP

−1
k (j) (θi) θ

P
−1
k (j)

i dF−j

³θ−j´Pk ¯̄̄̄ θP
−1
k (j)| {z }

j-th argument

 dFj ³θP−1k (j)
´

where we recall, ¡
θ−j
¢Pk ≡ ³θP−1k (1), ..., θP

−1
k (j−1), θP

−1
k (j+1), ..., θP

−1
k (n)

´
. (A18)

By exchangeability, we have

dF−j
¡θ−j¢Pk ¯̄̄ θP

−1
k (j)| {z }

j-th (vector) argument

 (A19)

= dF−j
³
θP

−1
k (1), ..., θP

−1
k (j−1), θP

−1
k (j+1), ..., θP

−1
k (n)|j-th (vector) argument = θP

−1
k (j)

´
= dF−j

³
θ−j|j-th (vector) argument = θP

−1
k (j)

´
= dF−P

−1
k (j)

³
θ−P

−1
k (j)|P−1k (j) -th (vector) argument = θP

−1
k (j)

´
;

and

dFj
³
θP

−1
k (j)

´
= dFθ

P−1
k

(j)
³
θP

−1
k (j)

´
. (A20)

25To illustrate, suppose n = 2,m = 3, and θ = (θ1, θ2) = ((1, 2, 0) , (3, 2, 1)) . Consider, for example, pur-

mutation k given by Pk (1) = 2, Pk (2) = 1, Pk (3) = 3. Then P−1k (1) = 2, P−1k (2) = 1, P−1k (3) = 3 and

θ
Pk
1 =

µ
θ
P
−1
k (1)

1 , θ
P
−1
k (2)

1 , θ
P
−1
k (3)

1

¶
= (2, 1, 0) , θ

Pk
2 =

µ
θ
P
−1
k (1)

2 , θ
P
−1
k (2)

2 , θ
P
−1
k (3)

2

¶
= (2, 3, 1) , θPk =

³
θ
Pk
1 , θ

Pk
2

´
=

((2, 1, 0) , (2, 3, 1)) .

26This implies that ρ
P
−1
k (j)

k

¡
θPk

¢
= ρj (θ) for every j ∈ J .

27This implies that η
P−1k (j)

k

³
θ
Pk
i

´
= ηj (θi) for every j ∈ J .

28It is important to point out that, in reaching the fourth equality in (A17), we can relabel the integrating varibles

(since they are dummies) but not the integrating functions.
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Using (A17), (A19) and (A20), we have that

Eρjk (θ) η
j
k(θi)θ

j
i (A21)

=

Z
θ
P
−1
k

(j)

Z
(θ−j)Pk

ρP
−1
k (j) (θ) ηP

−1
k (j) (θi) θ

P−1k (j)

i dF−j

³θ−j´Pk ¯̄̄̄ θP
−1
k (j)| {z }

j-th argument

 dFj ³θP−1k (j)
´

=

Z
θ
P
−1
k

(j)

Z
(θ−j)Pk

ρP
−1
k

(j) (θ) ηP
−1
k

(j) (θi) θ
P−1k (j)

i dF−P
−1
k

(j)

θ−P
−1
k

(j)| θP
−1
k

(j)| {z }
P−1k (j)-th argument


 dFP

−1
k

(j) ³
θP
−1
k

(j)
´

=

Z
θ

ρP
−1
k

(j) (θ) ηP
−1
k

(j) (θi) θ
P−1k (j)

i dF (θ) = EρP
−1
k

(j) (θ) ηP
−1
k

(j)(θi)θ
P−1k (j)

i .

Moreover, exchangeability implies that Etk (θi) = Et
³
θPki

´
= Et (θi) . The ex ante utility,

E

 mX
j=1

ρjk (θ) η
j
k(θi)θ

j
i − tk (θi)

 =

 mX
j=1

EρP
−1
k (j) (θ) ηP

−1
k (j)(θi)θ

P−1k (j)
i

− Et (θi) (A22)
,

Same elements in J and©
P−1k (1) , ..., P−1k (m)

ª ,
=

 mX
j=1

Eρj (θ) ηj(θi)θ
j
i

− Et (θi) ,
is thus unchanged when changing from g to gk. The same steps as in (A17) through (A21) (only

somewhat simpler) establishes that Eρjk (θ) = Eρ
P−1k (j) for every j, implying that

E

 mX
j=1

ρjk (θ)C
j (n)−

X
i

tk (θi)

 =

C (n)E mX
j=1

ρjk (θ)−
X
i

Etk (θi)

 (A23)

=

C (n) E mX
j=1

ρj (θ)−
X
i

Et (θi)

 = E

 mX
j=1

ρj (θ)C (n)−
X
i

t (θi)

 ,
so the feasibility constraint is unaffected when changing from g to gk. Next, write Write U(θi, θ

0
i; g)

and U(θi, θ
0
i; gk) for the expected utility from announcing θ

0
i when the true type is θi in mechanisms

g and gk respectively. Next, by a calculation in the same spirit as (A17) through (A21):

E−iρ
j
k

¡
θ−i, θ

0
i

¢
=

Z
θ−i

ρjk
¡
θ−i, θ

0
i

¢
dF−i (θ−i) /def of gk/ =

Z
θ−i

ρP
−1
k (j)

³¡
θ−i, θ

0
i

¢Pk´ dF−i (θ−i)
=

Z
θ
j
−i

"Z
θ
−j
−i

ρP
−1
k (j)

³¡
θ−i, θ

0
i

¢Pk´ dF−j−i ³ θ−j−i ¯̄̄ θj−i´
#
dFj−i

³
θj−i
´

(A24)

/relabel/ =

Z
θ
P−1
k

(j)

−i

"Z
θ
−P−1

k
(j)

−i
ρP
−1
k

(j)
³
θ−i, θ

0Pk
i

´
dF−j−i

µ³
θ−j−i

´Pk ¯̄̄̄
θ
P−1k (j)

−i

¶#
dFj−i

µ
θ
P−1k (j)

−i

¶

/exchangeability/ =

Z
θ
P−1
k

(j)

−i

"Z
θ
−P−1

k
(j)

−i
ρP
−1
k (j)

³
θ−i, θ

0Pk
i

´
dF
−P−1k (j)

−i

µ
θ
−P−1k (j)

−i

¯̄̄̄
θ
P−1k (j)

−i

¶#
dFj−i

µ
θ
P−1k (j)

−i

¶
=

Z
θ−i

ρP
−1
k

(j)
³
θ−i, θ

0Pk
i

´
dF−i (θ−i) = E−iρ

P−1
k

(j)
³
θ−i, θ

0Pk
i

´
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That is, the perceived probability of getting j when announcing θ0i in mechanism gk is the same as

the perceived probability of getting good P−1k (j) when announcing
¡
θ0i
¢Pk , so that

U(θi, θ
0
i; gk) = E−i

mX
j=1

ρjk
¡
θ−i, θ0i

¢
ηjk(θ

0
i)θ

j
i − tk

¡
θ0i
¢

(A25)

=
mX
j=1

η
P−1k (j)

k (
¡
θ0i
¢Pk)θjiE−iρP−1k (j)

³
θ−i, θ0Pki

´
− t

³¡
θ0i
¢Pk´ ,

whereas

U(θi, θ
0
i; g) =

mX
j=1

ηjk(θ
0
i)θ

j
iE−iρ

j
k

¡
θ−i, θ0i

¢− t ¡θ0i¢⇒ (A26)

U(θi, θ
0
i; g)

¯̄
θi=θ

Pk
i

θ0i=θ
0Pk
i

=

mX
j=1

ηjk(
¡
θ0i
¢Pk)θP−1k (j)

i E−iρjk
³
θ−i, θ0Pki

´
− t

³¡
θ0i
¢Pk´

=

mX
j=1

η
P−1k (j)

k (
¡
θ0i
¢Pk)θjiE−iρP−1k (j)

k

³
θ−i, θ0Pki

´
− t

³¡
θ0i
¢Pk´

= U(θi, θ
0
i; gk),

which establishes that type θi who announces θ
0
i in mechanism gk gets the same utility as type θ

Pk
i

who announces
¡
θ0i
¢Pk in mechanism g. Hence incentive compatibility and individual rationality

of gk follows from incentive compatibility and individual rationality of g. Now, construct a new

mechanism eg = (©eρjª
j∈J ,

©eηjª
j∈J ,et) by letting

eρj (θ) =
1

m!

m!X
k=1

ρjk (θ) =
1

m!

m!X
k=1

ρP
−1
k (j)

¡
θPk
¢

(A27)

eηj (θi) =

Pm!
k=1 η

j
k (θi)E−iρ

j
k (θ)Pm!

k=1E−iρ
j
k (θ)

=

Pm!
k=1 η

P−1k (j)
³
θPki

´
E−iρP

−1
k (j)

¡
θPk
¢

Pm!
k=1 E−iρ

P−1k (j)
¡
θPk
¢

et (θi) =
1

m!
tk (θi) =

1

m!
t
³
θPki

´
let P : J → J be an arbitrary perturbation of the set of goods. Then,

eρP−1(j) ¡θP ¢ = 1

m!

m!X
k=1

ρP
−1
k (P

−1(j))
³¡
θP
¢Pk´ = 1

m!

m!X
k=1

ρP
−1
k (j)

¡
θPk
¢
= eρj (θ) , (A28)

since the sets
n
ρP

−1
k (P

−1(j))
³¡
θP
¢Pk´om!

k=1
and

n
ρP

−1
k (j)

¡
θPk
¢om!

k=1
are identical. Furthermore

eηP−1(j) ¡θPi ¢ =

Pm!
k=1 η

P−1k (P
−1(j))

k

³¡
θPi
¢Pk´E−iρP−1k (P

−1(j))
k

³¡
θP
¢Pk´

Pm!
k=1 E−iρ

P−1k (P−1(j))
k

³¡
θP
¢Pk´ (A29)

=

Pm!
k=1 η

P−1k (j)
³
θPki

´
E−iρP

−1
k (j)

¡
θPk
¢

Pm!
k=1 E−iρ

P−1k (j)
¡
θPk
¢ = eηj (θi)
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for the same reason. It is obvious that et ¡θPi ¢ = et (θi) , which together with (A28) and (A29)
establishes that eg is symmetric. To complete the proof we need to show that eg is incentive feasible
and generates the same surplus as g. We note that

Eeρj (θ)eηj (θi) θji = 1

m!

m!X
k=1

Eρjk (θ)

Pm!
k=1 η

j
k (θi) E−iρ

j
k (θ)Pm!

k=1 E−iρ
j
k (θ)

θji (A30)

=
1

m!
Eθi

m!X
k=1

"
E−iρjk (θ)

Pm!
k=1 η

j
k (θi)E−iρ

j
k (θ)Pm!

k=1 E−iρ
j
k (θ)

θji

#
=
1

m!
E

"
m!X
k=1

ηjk (θi) ρ
j
k (θ) θ

j
i

#

⇒ E
nX
j=1

heρj (θ)eηj (θi) θji − et (θi)i = 1

m!

m!X
k=1

E

 mX
j=1

ηjk (θi) ρ
j
k (θ) θ

j
i − tk (θi)


/(A21) & (A22)/ = E

 mX
j=1

ηj (θi) ρ
j (θ) θji − t (θi)

 ,
which establishes that the ex ante utility from eg and g are the same for all agents. Moreover,

E

 mX
j=1

eρj (θ)Cj (n)− nX
i=1

et (θi)
 = E

C (n) mX
j=1

1

m!

m!X
k=1

ρjk (θ)−
nX
i=1

m!X
k=1

1

m!
tk (θi)

 (A31)

=
1

m!

m!X
k=1

E

C (n) mX
j=1

ρjk (θ)−
nX
i=1

tk (θi)

 / (A23)/ = 1

m!

m!X
k=1

E

 mX
j=1

ρj (θ)C (n)−
nX
i=1

t (θi)


= E

 mX
j=1

ρj (θ)Cj (n)−
nX
i=1

t (θi)

 ,
so the budget balance constraint is unaffected. All incentive compatibility constraints hold since,

U(θi, θ
0
i; eg) =

mX
j=1

eηj(θ0i)θjiE−ieρj ¡θ−i, θ0i¢− et ¡θ0i¢ (A32)

=

Pm!
k=1 η

j
k

¡
θ0i
¢
E−iρjk

¡
θ−i, θ0i

¢Pm!
k=1 E−iρ

j
k

¡
θ−i, θ0i

¢ E−i

"
1

m!

m!X
k=1

ρjk
¡
θ−i, θ0i

¢#− 1

m!

m!X
k=1

tk
¡
θ0i
¢

=
1

m!

m!X
k=1

h
ηjk
¡
θ0i
¢
E−iρjk

¡
θ−i, θ0i

¢− tk ¡θ0i¢i
/ (A25)/ =

1

m!

m!X
k=1

U(θi, θ
0
i; gk) ≤ / IC for each k/

1

m!

m!X
k=1

U(θ; gk) = U(θ; eg).
By the same calculation, U(θ; eg) = 1

m!

Pm!
k=1U(θ; gk) ≥ 0, since all participation constraints hold

for each k. This completes the proof.

Proof of Lemma 1.
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Proof. [Part 1] Pick an arbitrary ε > 0 and assume that there exists δ > 0 and N <∞ such that

Eθji −Cj (n) /n ≥ δ for every n ≥ N. Applying Chebyshev’s inequality, we have

Pr

"
nX
i=1

θji ≤ Cj (n)
#
≤ Pr

"
nX
i=1

θji ≤ n(Eθji − δ)

#
= Pr

"
nX
i=1

θji − nEθji ≤ −nδ
#

(A33)

≤ Pr

"¯̄̄̄
¯
nX
i=1

θji − nEθji
¯̄̄̄
¯ ≥ nδ

#
=
Var

³P
i θ
j
i

´
n2δ2

≤ σ2

nδ2
.

Hence, for every ε > 0 we can find some N 0 such that the probability that the ex post efficient rule

provides good j is at least 1− ε, which establishes part 1 of the claim. [Part 2] The argument is

symmetric and omitted.

Proof of Proposition 3.

Proof. [Part 1] Let ε ∈ (0, δ) . Since we assume that there exists N such that Eθji −Cj (n) /n ≥ δ

for each j and n ≥ N we have that

1− Ebηji (θi) = Pr

X
j

θji <
mX
j=1

Cj (n)

n
+ εm

 ≤ Pr
X

j

θji <
mX
j=1

Eθji − δm+ εm


≤ Pr

¯̄̄̄¯̄X
j

θji −
mX
j=1

Eθji

¯̄̄̄
¯̄ < m (δ − ε)

 , (A34)

for every n ≥ N. By the assumption that Varθji ≤ σ2 for every j we can apply Chebyshev’s

inequality to conclude that

1− Ebηji (θi) ≤ Var
³P

j θ
j
i

´
(δ − ε)2m2

≤ σ2

(δ − ε)2m
→ 0 as m→∞ (A35)

Hence, there exists M such that Ebηji (θi) ≥ 1− ε
2(µ+ε) for every m ≥M. It follows that

E
nX
i=1

bt (θi)− mX
j=1

Cj (n) ≥ n

µ
1− ε

2 (µ+ ε)

¶ mX
j=1

Cj (n)

n
+ εm

− mX
j=1

Cj (n) (A36)

= − nε

2 (µ+ ε)

mX
j=1

Cj (n)

n
+ n

µ
1− ε

2 (µ+ ε)

¶
εm

≥ − nε

2 (µ+ ε)
mµ+ n

µ
2µ+ ε

2 (µ+ ε)

¶
εm =

nmε

2 (µ+ ε)
[µ+ ε] > 0,

for m ≤M, so (5) is satisfied. The remaining constraints hold trivially, so bg is incentive feasible.
[Part 2] Let ρ∗ =

©
ρ∗j
ªm
j=1

denote the ex post efficient provision rules (transfers are irrelevant

for efficiency and we no consumer is excluded from usage). Let Aj =
n
θ ∈ Θ|Pi∈I θ

j
i −Cj (n)

o
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denote the set of type profiles for which the ex post efficient rule provides good j. The per capita

surplus generated by ρ∗ may this be written as

s∗ ≡
X
j∈J

Z
θ∈Θ

ρ∗j(θ)

"X
i∈I

θji
n
− C

j (n)

n

#
dF (θ) =

X
j∈J

Z
θ∈Aj

"X
i∈I

θji
n
− C

j (n)

n

#
dF (θ) . (A37)

Define Bi ≡
n
θi ∈ Θ|

P
j θ
j
i ≥

P
j
Cj(n)
n + εm

o
.We note thatZ

Θ

X
j∈J

bηj (θi) θjidF (θi) = Z
Bi

X
j∈J

θjidF (θi) ≥ Pr (Bi)
Z
θi∈Θ

X
j∈J

θjidF (θi) , (A38)

Since
P
j∈J θji >

P
j∈J θ0ji when θi ∈ Bi and θ0i /∈ Bi. The per capita surplus generated by

mechanism bg can then be decomposed as
bs =

X
j∈J

Z
θ∈Θ

"X
i∈I

bηj (θi) θji
n

− C
j (n)

n

#
dF (θ) (A39)

=
X
i∈I

Z
θ−i∈Θ−i

Z
θi∈Bi

X
j∈J

θji
n
dF (θi) dF−i (θ−i)−

X
j∈J

Cj (n)

n

≥ Pr [Bi]

X
i∈I

Z
θ∈Θ

X
j∈J

θji
n
dF (θ)−

X
j∈J

Cj (n)

n

− (1− Pr [Bi])X
j∈J

Cj (n)

n

= Pr [Bi]
X
j∈J

Z
θ∈Aj

"X
i∈I

θji
n
− C

j (n)

n

#
dF (θ) + Pr [Bi]

X
j∈J

Z
θ∈Θ\Aj

"X
i∈I

θji
n
− C

j (n)

n

#
dF (θ)

− (1− Pr [Bi])
X
j∈J

Cj (n)

n
≥ Pr [Bi] s

∗ − £Pr [Bi] £1− Pr ¡Aj¢¤+ (1− Pr [Bi])¤X
j∈J

Cj (n)

n
.

By applications of Chebyshev’s inequality Pr [Bi]→ 1 and Pr
¡
Aj
¢ → 1 as n → ∞, which implies

that bs→ s∗ as n→∞. .

Proof of Lemma 2.

Proof. For each x ∈ Xn, j = 1, 2, θi ∈ Θ we have that ρj (x) ∈ [0, 1] , ηjθi ∈ [0, 1] . Next, we note
that if tll < 0 and all constraints are satisfied, then a deviation where taxes are changed from t to

t0 = (thh, thl, tlh, 0) and where inclusion and provision rules are unchanged will satisfy all constraints

in the relaxed program (21). Similarly, if all constraints hold and tlh < −l − h the deviation

t0 = (thh, thl,−l − h,max (0, tll)) (A40)

satisfies all constraints (in the relaxed program). A symmetric argument restricts thl ≥ −h − l.
Finally, if thh < −3h− l, then a deviation to

t0 = (−3h− l,max (thl,−l − h) ,max (tlh,−l − h) ,max (0, tll)) (A41)
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Constraint Multiplier

Type hh IC (18a) λhh

Type hl (lh) IC (18b) λhl

Type ll IR (19) λll

Feasibility (20) Λ

η1θi≥ 0 γθi

1− η1θi≥ 0 φθi

ρ1 (x)≥ 0 γ (x)

1− ρ1 (x)≥ 0 φ (x)

Table 2: Notation of multipliers.

will leave all constraints satisfied. We conclude that there is a lower bound t > −∞ such that for

any mechanism where tθi < t for some θi, there exists an alternative mechanism that supports the

same allocation (and therefore generates the same surplus) where tθi ≥ t. Also, if tθi > t = 2h for
some θi then at least one constraint in (21) must be violated. We therefore conclude that there is no

loss in generality to restrict tθi to be a number in
£
t, t
¤
. All constraints and the objective function

are linear in the choice variables and therefore continuous, so we conclude that the optimization

problem has a compact feasible set and a continuous objective. It is easy to check that the feasible

set is non-empty, which proves the claim by appeal to the Weierstrass Theorem.

Notation for optimality conditions to program (21).

The proofs that follow make direct use of the Kuhn-Tucker conditions to the optimization

problem (21). For easy reference, Table 2 summarizes our notation for the multipliers associated

with each constraint.

Proof of Lemma 4.

Proof. [Step 1]Consider first the Kuhn-Tucker optimality conditions with respect to η1hh. They are

given by

2
X
x∈Xn

an (x)ρ
1 (x)

xhhh

n
+ 2λhh

X
x∈Xn−1

an−1 (x)ρ1(xhh + 1, xhl, xlh, xll)h+ γhh − φhh = 0

γhhη
1
hh = 0,φhh(1− η1hh) = 0, γhh ≥ 0,φhh ≥ 0. (A42)

All terms except γhh − φhh in the first order condition are strictly positive, so γhh − φhh < 0.

The only possibility for this is that φhh > 0, which requires that η
1
hh = 1 for the complementary

slackness constraint to be fulfilled. η2hh = 1 follows from proposition 2.
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[Step 2] The first order condition with respect to η1hl reads

2
X
x∈Xn

an (x) ρ
1 (x)h

xhl
n
− λhh

X
x∈Xn−1

an−1 (x) ρ1 (xhh, xhl + 1, xlh, xll)h (A43)

+ λhl
X

x∈Xn−1
an−1 (x) ρ1 (xhh, xhl + 1, xlh, xll)h+ γhl − φhl = 0.

One checks that an (x) =
n
xhl

α (1− α)an−1 (xhh, xhl − 1, xlh, xll) holds for any x such that xhl ≥ 1
by using the functional form of the multinomial. HenceX

x∈Xn
an (x) ρ

1 (x)h
xhl
n

=
X

x∈Xn:xhl≥1

n

xhl
α (1− α)an−1 (xhh, xhl − 1, xlh, xll)ρ1 (x)hxhl

n

= α (1− α)h
X

x∈Xn:xhl≥1
an−1 (xhh, xhl − 1, xlh, xll)ρ1 (x)

= α (1− α)h
X

x∈Xn−1
an−1 (x) ρ1 (xhh, xhl + 1, xlh, xll) . (A44)

By assumption,
P
x∈Xn−1 an−1 (x) ρ

1 (xhh, xhl + 1, xlh, xll) > 0, so

bγ1hl =
γhlP

x∈Xn−1 an−1 (x) ρ
1 (xhh, xhl + 1, xlh, xll)

> 0 (A45)

bφ1hl =
φhlP

x∈Xn−1 an−1 (x) ρ
1 (xhh, xhl + 1, xlh, xll)

> 0.

Substituting (A44) into (A43) and using Lemma 3, we obtain the condition

2α (1− α)h− λhhh+ λhlh+ bγ1hl − bφ1hl = 2α (1− α)h− α2Λh+ α(2− α)Λh+ bγ1hl − bφ1hl
= 2α (1− α)h+ 2αΛh+ bγ1hl − bφ1hl = 0. (A46)

By (A45), the “rescaled multipliers” are well-defined, weakly positive, and equal to zero if and

only if the “original multiplier” is equal to zero. Since 2α (1− α)h+ 2αΛh > 0, we conclude thatbφ1hl > 0. Hence η1hl = 1 for all x by the complementarity slackness condition. By Proposition 2,

η2lh = 1 follows. Steps 1 and 2 thus proves part (1) of the lemma.

[Step 3] To economize on derivations, we immediately observe thatX
x∈Xn−1

an−1 (x) ρ1(xhh, xhl, xlh + 1, xll) =
X

x∈Xn:xlh≥1
an−1(xhh, xhl, xlh − 1, xll)ρ1(x), (A47)

and write the optimality condition for η1lh as

2
P
x∈Xn an (x) ρ

1 (x) xlhn l − λhh
P
x∈Xn:xlh≥1 an−1(xhh, xhl, xlh − 1, xll)ρ1(x)h

+λhl
P
x∈Xn:xlh≥1 an−1(xhh, xhl, xlh − 1, xll)ρ1(x)l + γlh − φlh = 0.

(A48)
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Since an (x) =
n
xlh

α (1− α)an−1 (xhh, xhl, xlh − 1, xll) holds for xlh ≥ 1 we haveX
x∈Xn

an (x)ρ
1 (x)

xlh
n
l =

X
x∈Xn:xlh≥1

an (x) ρ
1 (x)

xlh
n
l (A49)

=
X

x∈Xn:xlh≥1

n

xlh
α (1− α)an−1 (xhh, xhl, xlh − 1, xll)ρ1 (x) xlh

n
l

= α (1− α) l
X

x∈Xn:xlh≥1
an−1 (xhh, xhl, xlh − 1, xll) ρ1 (x)

Substituting into (A48) and simplifying, one obtains

0 = 2α (1− α) l − λhhh+ λhll + bγlh − bφlh = 2α (1− α) l − α2hΛ+
¡
2α− α2

¢
Λl + bγlh − bφlh

= α (1− α) (1+ Λ)

(
(1−Φ) 2l +Φ

"¡
2α− α2

¢
α (1− α)

l − α2

α (1− α)
h

#
+

bγlh − bφlh
(1+ Λ)α (1− α)

)

= α (1− α) (1+ Λ)

"
G (Φ) +

bγlh − bφlh
(1+Λ)α (1− α)

#
(A50)

where bγlh (x) and bφlh (x) are respectively γlh (x) and φlh (x) multiplied by 1/E £ρ1 (x) |θi = lh¤ .We
thus conclude that G (Φ) > 0 must imply that bφlh > 0, hence by complementary slackness, η1lh = 1.
Symmetrically, G (Φ) < 0 must imply that bγlh > 0, hence η1lh = 0. If G (Φ) = 0, then the value

of both multipliers must be zero, which imposes no restrictions on η1lh. Proposition 2 implies that

η2hl = η1lh, which completes the proof of part (2) of the lemma.

[Step 4] Finally, we consider the optimality condition for η1ll. Using an identity similar to (A47),

we can write the first order condition for η1ll as

2
X

x∈Xn:xll≥1
an (x)ρ

1 (x)
xll
n
− λhl

X
x∈Xn:xll≥1

an−1(xhh, xhl, xlh, xll − 1)ρ1(x) (h+ l)

+λll
X

x∈Xn:xll≥1
an−1(xhh, xhl, xlh, xll − 1)ρ1(x)2l + γll − φll = 0. (A51)

Using the multinomial identity an (x) =
n
xll
(1− α)2 an−1 (xhh, xhl, xlh, xll − 1) we can rewrite the

first order condition as

0 = (1− α)2 2l + Λ
£
2l − ¡2α− α2

¢
(h+ l)

¤
+ bγll − bφll (A52)

= (1− α)2 (1+ Λ)

(
1

1+ Λ
2l +

Λ

1+ Λ

"
2

(1− α)2
l −

¡
2α− α2

¢
(1− α)2

(h+ l)

#
+

bγll − φ

(1− α) 2 (1+ Λ)

)

= (1− α)2 (1+ Λ)

·
H (Φ) +

bγll − φ

(1− α) 2 (1+ Λ)

¸
.

where bγll and bφll are respectively γll and φll multiplied by 1/E
£
ρ1 (x) |θi = ll

¤
. Arguing as in the

previous case completes the proof.
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Proof of Lemma 6.

Proof. Without loss, we only consider good 1. The first order condition with respect to ρ1 (x) is

2an (x)

·
(η1hhxhh+η

1
hlxhl)h+(η

1
lhxlh+η

1
llxll)l

n − c
¸
+ λhh

£
2η1hhan−1 (xhh − 1, xhl, xlh, xll)h

¤
−λhh

£
η1hlan−1 (xhh, xhl − 1, xlh, xll)h− η1hlan−1 (xhh, xhl, xlh − 1, xll)h

¤
+λhl

£
η1hlan−1 (xhh, xhl − 1, xlh, xll)h+ η1lhan−1 (xhh, xhl, xlh − 1, xll) l

¤
−λhl

£
η1llan−1 (xhh, xhl, xlh, xll − 1) (h+ l)

¤
+ λll2η

1
llan−1 (xhh, xhl, xlh, xll − 1) l

−Λan (x) 2c+ γ (x)− φ (x) = 0,

(A53)

where the convention is that an−1 (xhh − 1, xhl, xlh, xll) = 0 if xhh = 0, and so on. Using the

following identities between multinomials,

an−1 (xhh − 1, xhl, xlh, xll) = an(x)
α2

xhh
n , an−1 (xhh, xhl − 1, xlh, xll) = an(x)

α(1−α)
xhl
n

an−1 (xhh, xhl, xlh − 1, xll) = a(x)
α(1−α)

xlh
n , an−1 (xhh, xhl, xlh, xll − 1) = 1

(1−α)2
xll
n ,

(A54)

exploiting the relationships between multipliers in Lemma 3, and substituting η1hh = η1hl = 1 due

to Lemma 4, we can simplify (A53) to

2

·
(xhh+xhl)h+(η1lhxlh+η

1
llxll)l

n − c
¸
(1−Φ)

+α2Φ
h
2 1
α2
xhh
n h− 1

α(1−α)
xhl
n h− η1lh

1
α(1−α)

xlh
n h
i

+α (2− α)Φ
h

1
α(1−α)

xhl
n h+ η1lh

1
α(1−α)

xlh
n l − η1ll

1
(1−α)2

xll
n (h+ l)

i
+Φ2η1ll

1
(1−α)2

xll
n l −Φ2c+ γ(x)−φ(x)

an(x)
= 0,

(A55)

where Φ = Λ/ (1+ Λ) . This condition can be interpreted as a weighted average of surplus (the

term multiplied by 1− Φ) and profit maximization (the terms multiplied by Φ). Collecting terms
in (A55) and simplifying we get

2xhhn h+ 2
xhl
n h− 2c+ xlh

n η1lh

G(Φ)z }| {½
(1−Φ) 2l +Φ

·
α (2− α)

α (1− α)
l − α2

α (1− α)
h

¸¾

+xlh
n η1ll

H(Φ)z }| {½
(1−Φ) 2l +Φ

·
2

(1− α)2
l − α (2− α)

(1− α)2
xll
n
(h+ l)

¸¾
+ γ(x)−φ(x)

an(x)

/(32) / = 2Q1
¡
x
n ,Φ

¢
+ γ(x)−φ(x)

an(x)
= 0,

(A56)

where the equality uses (from Lemma 4) that η1lh = 0 if G (Φ) < 0 and η1ll = 0 if H (Φ) < 0. The

result follows.

Proof of Proposition 5.

Lemma A1 For any ² > 0 there exists N such that Pr
¡¯̄
Q1
¡
x
n ,Φn

¢−Q1 (µ,Φn)¯̄ ≥ ²¢ ≤ ² for

every n ≥ N.
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Proof. Fix an arbitrary ² > 0. Let Yi (θi;Φn) be a transformation of the random variable θi given

by

Yi (θi;Φn) =


h− c if θi ∈ {hh, hl}

max {0,G (Φn)}− c if θi = lh

max {0,H (Φn)}− c if θi = ll

. (A57)

Since Yi (θi;Φn) has bounded support, there exists σ
2 <∞ such that the variance of Yi (θi;Φn) is

less than σ2 for any Φn ∈ [0, 1] . Moreover, {Y (θi;Φn)}ni=1 is a sequence of i.i.d. random variables

and

EθiYi (θi;Φn) = αh+α (1− α)max {0, G (Φn)}+(1− α)2max {0,H (Φn)}−c = Q1 (µ,Φn) . (A58)

Since for any sequence of realizations {yi (θi;Φn)}ni=1
nX
i=1

yi (θi;Φn)

n
=
xhh
n
h+

xhl
n
h+

xlh
n
max {0,G (Φn)}+ xll

n
max {0,H (Φn)}− c = Q1

³x
n
,Φn

´
,

(A59)

we can apply Chebyshev’s inequality to obtain

Pr
³¯̄̄
Q1
³x
n
,Φn

´
−Q1 (µ,Φn)

¯̄̄
≥ ²
´
= Pr

Ã¯̄̄̄
¯
nX
i=1

yi (θi;Φn)

n
− EθiYi (θi;Φn)

¯̄̄̄
¯ ≥ ²

!

≤ Var [Yi (θi;Φn)]

n²2
≤ σ2

n²2
. (A60)

Hence, Pr
¡¯̄
Q1
¡
x
n ,Φn

¢−Q1 (µ,Φn)¯̄ ≥ ²¢ ≤ ² for all n ≥ N = σ2/²3 <∞.

Lemma A2 Let Y be a random variable with Binomial (n, p) distribution. For any ² > 0 and

p ∈ (0, 1) there exists N <∞ such that the binomial distribution with parameters p, n satisfies

Pr (Y = y) =
n!

y! (n− y!)p
y (1− p)n−y ≤ ²

for every n ≥ N and y ∈ {0, ..., n} .

Proof. Omitted.

Lemma A3 For every ² > 0 there exists N such that
¯̄
ρ1i (θi)− ρ1i (θ

0
i)
¯̄ ≤ ² for every θi, θ0i ∈ Θ in

any truth-telling mechanism for any economy where n ≥ N .

Proof. Omitted.

The implication of Lemma A3 is as follows: as n → ∞, the perceived provision probability
of public goods are little affected by agent i0s own announcement; thus such perceived provision

probability must be near the ex ante probability of providing the good.
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Lemma A4 For every ² > 0, there exists N such that, for all n ≥ N, ¯̄Eρ1 (x)− ρ1i (θi)
¯̄ ≤ ² for

all θi ∈ Θ in any truth-telling mechanism.

Proof. Fix ² > 0 arbitrarily. Let N be such that
¯̄
ρ1i (θi)− ρ1i (θ

0
i)
¯̄ ≤ ² for every n ≥ N, θi, θ0i ∈ Θ.

Then ¯̄
Eρ1 (x)− ρ1i (θi)

¯̄
(A61)

=
¯̄
α2ρ1i (hh) + α (1− α) ρ1i (hl) + α (1− α)ρ1i (lh) +

¡
1− α2

¢
ρ1i (ll)− ρ1i (θi)

¯̄
≤ α2

¯̄
ρ1i (hh)− ρ1i (θ

0
i)
¯̄
+ α (1− α)

¯̄
ρ1i (hl)− ρ1i (θi)

¯̄
+α (1− α)

¯̄
ρ1i (lh)− ρ1i (θi)

¯̄
+ (1− α)2

¯̄
ρ1i (ll)− ρ1i (θi)

¯̄
≤ α2²+ α (1− α) ²+ α (1− α) ²+ (1− α)2 ² = ².

(Proof of Proposition 5, continued). Now we use the above lemmas to prove Proposition 5. We

prove the four parts of the proposition in order.

(Part 1) We first prove part 1. Note from (33), we know that Q1 (µ,Φn) ≥ αh − c for
any Φn ∈ [0, 1] , hence limn→∞Q1 (µ,Φn) ≥ αh − c. Thus if αh > c, part 1 of the proposition

immediately follows from Lemmas 6 and A1. Suppose instead that α (2− α) (h+ l) > 2c ≥ 2αh.
Then,

Q1 (µ,Φn) = αh+ α (1− α)max {0,G (Φn)}+ (1− α)2max {0,H (Φn)}− c (A62)

≥ αh− c+ α (1− α)G (Φn)

= αh− c+ α (1− α)

½
l (1−Φn) +Φn

·
2α− α2

2α (1− α)
l − α2

2α (1− α)
h

¸¾
= (1−Φn) [αh+ α (1− α) l − c] +Φn

·
α (2− α) (l + h)

2
− c
¸
.

Observe that

αh+ α (1− α) l =
α (2− α) (l + h)

2
+

α2

2
(h− l) > α (2− α) (l + h)

2
. (A63)

Hence, Q1 (µ,Φn) ≥ α(2−α)(l+h)
2 − c > 0 if α (2− α) (h+ l) > 2c, then for all Φn ∈ [0, 1] , implying

that limn→∞Q1 (µ,Φn) > 0. Thus by Lemmas 6 and A1, limn→∞Eρjn (x) → 1 for j = 1, 2. This
proves Part 1.

(Part 2) We now prove part 2. Suppose to the contrary that there exists a (sub) sequence

of optimal incentive compatible, balanced-budget voluntary mechanism with provision rules for

public good 1, ρ1n (x) , such that limn→∞ Eρ1n (x) = ρ > 0. We will now derive a contradiction that

the mechanism can not have a balanced budget.
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Now we can use the definition of ρji (θi) in (B95) to re-write the incentive compatibility constraint

(18b), after using the characterization of inclusion rule in Lemma 5, as

ρ1i (hl)h+ ρ1i (lh) η
1
lhl − thl ≥ ρ1i (ll) η

1
ll (h+ l)− tll ≥ ρ1i (ll) η

1
ll (h− l) , (A64)

where the second inequality comes from the participation constraint (19). Pick an arbitrary ² > 0.

Then, by Lemma A4, there exists finite N such that for every n ≥ N1 and each θi ∈ Θ, for j = 1, 2,¯̄̄
ρji (θi)− Eρ1n (x)

¯̄̄
< ²1 ≡ ²

3h
. (A65)

Substituting (A65) into (A64), we obtain that for all n ≥ N1,£
Eρ1n (x) + ²1

¤ ¡
h+ η1lhl

¢− thl ≥ £Eρ1n (x)− ²1¤ η1ll (h− l) , (A66)

which implies that

thl ≤ Eρ1n (x)
£
h
¡
1− η1ll

¢
+
¡
η1lh + η1ll

¢
l
¤
+ ²1

£
h+ η1lhl + η1ll (h− l)

¤
< Eρ1n (x)

£
h
¡
1− η1ll

¢
+
¡
η1lh + η1ll

¢
l
¤
+ 3h²1|{z}

²

. (A67)

Similarly, incentive constraints (18a) can be rewritten as:

thh ≤ 2ρ1i (hh)h−
£
ρ1i (hl) + ρ1i (lh) η

1
lh

¤
h+ thl. (A68)

Again, by Lemma A4, there exist N2 such that for all n > N2,

thh < 2
£
Eρ1n (x)

¤
h− Eρ1n (x)

¡
1+ η1lh

¢
h+ thl + ²

= Eρ1n (x)
¡
1− η1lh

¢
h+ thl + ²

< Eρ1n (x)
¡
1− η1lh

¢
h+Eρ1n (x)

£
h
¡
1− η1ll

¢
+
¡
η1lh + η1ll

¢
l
¤
+ ²

= Eρ1n (x)
£¡
2− η1ll − η1lh

¢
h+

¡
η1lh + η1ll

¢
l
¤
+ ². (A69)

Finally, from the participation constraint (19), there exists N3 such that for all n > N3,

tll < 2Eρ
1
n (x) η

1
lll + ². (A70)

Now consider two cases:

CASE 1: η1ll = η2ll = 0 and η1lh = η2hl = ηm ∈ (0, 1) . In this case, we have tll = 0 from type-

ll0s participation constraint. Using (A67)-(A70), we can bound the total expected tax revenue as

follows:

α2thh + α (1− α) (thl + tlh) + (1− α)2 tll (A71)

< α2 {Eρn (x) [(2− ηm)h+ ηml] + ²}+ 2α (1− α) {Eρn (x) (h+ ηml) + ²}
= Eρn (x)

©£
α2 (2− ηm) + 2α (1− α)

¤
h+

£
α2 + 2α (1− α)

¤
ηml

ª
+ ²0

= Eρn (x)
©£
α2 (2− ηm) + 2α (1− α)

¤
h+ α (2− α) ηml

ª| {z }
≡Z1(ηm)

+ ²0
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Note that
∂Z1 (ηm)

∂ηm
= α (2− α) l − α2h = [α (2− α) (h+ l)]− 2αh. (A72)

Therefore,

Z1 (ηm) <

 Z (1) = α (2− α) (h+ l) if 2αh ≤ α (2− α) (h+ l)

Z (0) = 2αh if 2αh > α (2− α) (h+ l) ,
(A73)

which implies that

α2thh + α (1− α) (thl + tlh) + (1− α)2 tll < Eρn (x)max {2αh,α (2− α) (h+ l)}+ ²0. (A74)

Thus if max {2αh,α (2− α) (h+ l)} < 2c, then the budget balance condition can not be satisfied
when n is sufficiently large.

CASE 2: η1ll = η2ll = ηl ∈ (0, 1) , η1lh = η2hl = 1. We can again use (A67)-(A70) to bound the total

expected tax revenue as follows:

α2thh + α (1− α) (thl + tlh) + (1− α)2 tll (A75)

< α2 {Eρn (x) [(1− ηl)h+ (1+ ηl) l] + ²}+ α (1− α) 2Eρn (x) {[h (1− ηl) + (1+ ηl) l] + ²}
+(1− α)2 [2Eρn (x) ηll + ²]

= Eρn (x)
n£
α2 + 2α (1− α)

¤
(1− ηl)h+

£
α2 + 2α (1− α)

¤
(1+ ηl) l + 2(1− α)2 ηll

o
+ ²

= Eρn (x)

α (2− α) (1− ηl)h+ α (2− α) (1+ ηl) l + 2 (1− α)2 ηll| {z }
Z2(ηl)

+ ²
Note that Z2 (0) = α (2− α) (h+ l) and Z2 (1) = 2α (2− α) l + 2 (1− α)2 l = 2l. Since Z2 (ηl) is

linear in ηl, we have

Z2 (ηl) ≤ max {Z2 (0) , Z2 (1)} = max {α (2− α) (h+ l) , 2l} . (A76)

If max {2αh,α (2− α) (h+ l)} < 2c, then max {α (2− α) (h+ l) , 2l} < 2c since by assumption

l < c. Therefore there exists N 0 such that for all n > N 0, the budget balance condition will not be

satisfied under any incentive compatible voluntary mechanism.

(Part 3) Suppose to the contrary that there does not exist N such that η1n (lh) = η2n (hl) = 1

for all n ≥ N. Then, taking a subsequence if necessary, we have that η1n (lh) = η2n (hl) < 1 for all

n, which, by Lemma 5, implies that ηjn (ll) = 0 for all n in the sequence. The per capita surplus

generated by the optimal mechanismMn in the nth economy in the sequence, denoted by S (Mn) ,

is then

S (Mn)

n
=
2Eρ1n (x)

£
(xhh + xhl)h+

¡
η1n (lh)xlh + η1n (ll)xll

¢
l − cn¤

n
(A77)

≤ 2E
£
(xhh + xhl)h+ xlhl − ρ1n (x) cn

¤
n

= 2 [αh+ α (1− α) l]− 2Eρ1n (x) c
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From Part 2, we know Eρ1n (x)→ 1 as n→∞. Thus each ε > 0 there exists N such that

S (Mn)

n
≤ 2 [αh+ α (1− α) l − c] + ε. (A78)

Now we show that Mn can be dominated by an alternative mechanism as n → ∞. Consider a
sequence of mechanisms

nfMn

o∞
n=1

, where, for each n,

eη1n (lh) = eη2n (hl) = 1 (A79)

eη1n (ll) = eη2n (ll) = η∗ll =
α (2− α) [h+ l]− 2c
α (2− α) [h+ l]− 2letn (hh) = etn (hl) = etn (lh) = (1− η∗ll) (h+ l) + η∗ll2letn (ll) = 2η∗llleρjn (x) = 1 for all x ∈ Xn

We observe that the participation constraint for type ll holds with equality since

E−i
X
j=1,2

eρjn (x)eηjn (ll) l − etn (ll) = 2η∗lll − 2η∗lll = 0. (A80)

The downward incentive constraint for type hl also holds with equality since

E−i
£eρ1n (x)eη1n (hl)h+ eρ2n (x)eη2n (hl) l − etn (hl)¤ = h+ l − etn (hl) (A81)

= h+ l − [(1− η∗ll) (h+ l) + η∗ll2l] = η∗ll (h+ l)− η∗ll2l

= E−i
£eρ1n (x)eη1n (hl)h+ eρ2n (x)eη2n (hl) l − etn (hl)¯̄ θi = ll¤ .

Similarly, the downward incentive constraints and participation constraints for all other types of

agents also hold. Finally, fMn is also budget balanced for all n since, with some algebra, one can

show that

E

X
i∈I
etn (θi)− X

j=1,2

eρjn (x) cn
 = 0. (A82)

Now, the expected per capita surplus generates by fMn is

S
³fMn

´
n

= α22h+ 2α (1− α) (h+ l) + (1− α)2 η∗ll2l − 2c (A83)

= 2 [αh+ α (1− α) l − c] + (1− α)2 η∗ll2l

Let ε = (1− α)2 η∗lll > 0, we know from (A78) that there exists N <∞ such that

S (Mn)

n
≤ 2 [αh+ α (1− α) l − c] + ε =

S
³fMn

´
n

− ε <
S
³fMn

´
n

, (A84)

which implies that mechanismsMn could not be optimal for n ≥ N, a contradiction.
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Now we have concluded that in the sequence {Mn} , η1n (lh) = η2n (hl) = 1 for every n ≥ N.
What is left to show is that η1n (ll) does converge to η

∗
ll in the sequence {Mn} . Suppose first that

there exists a subsequence such that η1n (ll)→ η0 < η∗ll. An argument as the one above shows that,

for every ε > 0, there exists N <∞ such that

S (Mn)

n
≤ 2

h
αh+ α (1− α) l + (1− α)2 η0l − c

i
+ ε. (A85)

Again consider the alternative sequence of mechanisms
nfMn

o
constructed above. Pick ε =

(1− α)2 (η∗ll − η0) l, we find that

S
³fMn

´
n

− S (Mn)

n
≥ (1− α)2

¡
η∗ll − η0

¢
2l − ε = (1− α)2

¡
η∗ll − η0

¢
l > 0. (A86)

thus again contradicts the optimality of the mechanismMn is better when n is sufficiently large.

Finally, suppose there is a subsequence such that ηjn (ll)→ η0 > η∗ll. We now argue that such a

mechanism could not be budget balanced. Let

ε =
(η0 − η∗ll) [α (2− α) (h+ l)− 2l]

4 (1+ α)
> 0. (A87)

Then, since η1n (ll) + η2n (ll)→ 2η0 it follows that to satisfy the participation constraint for type ll

for all n there must be some N1 such that tn (ll) ≤ 2η0l + ε for all n ≥ N1. Moreover, there exists
N2 such that η

1
n (lh) = η2n (hl) = 1for n ≥ N2. Thus the incentive constraint that type hl does not

imitate type ll reduces to

ρ1in (hl)h+ ρ2in (hl) l − tn (hl) ≥ ρ1in (ll) η
1
n (ll)h+ ρ2in (ll) η

2
n (ll) l − tn (ll) (A88)

⇒ tn (hl) ≤ tn (ll) +
£
ρ1in (hl)− ρ1in (ll) η

1
n (ll)

¤
h+

£
ρ2in (hl)− ρ2in (ll) η

2
n (ll)

¤
l

By Lemma A3, limn→∞ ρjin (hl) = limn→∞ ρjin (hl) = limn→∞ Eρ
j
n (x) = 1. This, together with the

assumption that limn→∞ η1n (ll) = η0, implies that there exists N3 such that

tn (hl) ≤ tn (ll) +
¡
1− η0

¢
(h+ l) + ε. (A89)

Similarly, the incentive constraint that type hh does not announce hl implies that tn (hh) ≤ tn (hl)+
ε. Hence, the expected per capita revenue of the mechanism satisfies

α2tn (hh) + 2α (1− α) tn (hl) + (1− α)2 tn (ll) (A90)

≤ £
α2 + 2α (1− α)

¤
tn (hl) + α2ε+ (1− α)2 tn (ll)

≤ £
α2 + 2α (1− α)

¤ £
tn (ll) +

¡
1− η0

¢
(h+ l) + ε

¤
+ (1− α)2 tn (ll) + α2ε

= tn (ll) +
£
α2 + 2α (1− α)

¤ ¡
1− η0

¢
(h+ l) + 2αε

≤ 2η0l + ε+
£
α2 + 2α (1− α)

¤ ¡
1− η0

¢
(h+ l) + 2αε

= η02l +
¡
1− η0

¢
α (2− α) (h+ l) + ε (1+ 2α) .
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Since there exists N4 <∞ such that E
£
ρ1n (x) + ρ2n (x)

¤
c ≥ 2c− ε, we have

α2tn (hh) + 2α (1− α) tn (hl) + (1− α)2 tn (ll)− E
£
ρ1n (x) + ρ2n (x)

¤
c (A91)

≤ ¡
η0 − η∗ll

¢
(2l − α (2− α) (h+ l)) + 2ε (1+ α)

=
¡
η0 − η∗ll

¢
(2l − α (2− α) (h+ l)) +

(η0 − η∗ll) [α (2− α) (h+ l)− 2l]
2

= −(η
0 − η∗ll) [α (2− α) (h+ l)− 2l]

2
< 0.

Hence, the mechanism must violate the balanced-budget constraint for n ≥ max {N1,N2,N3, N4}.
We conclude that there can be no subsequence of optimal mechanisms such that ηjn (ll)→ η0 6= η∗ll,

proving the claim.

(Part 4) This part is proved analogous to Part 3. Suppose to the contrary that in the

sequence of mechanisms {Mn} , there exists no N such that η1n (ll) = η2n (ll) = 0 for all n ≥ N.
Then there must be a subsequence where η1n (ll) = η2n (ll) > 0, which from Lemma (5) we know that

η1n (lh) = η2n (hl) = 1 for all n along the subsequence. Hence limn→∞ η1n (lh) = limn→∞ η2n (hl) =

1 and limn→∞ η1n (ll) = limn→∞ η2n (ll) = η0 ≥ 0. Let

ε =
2c− α (2− α) (h+ l)

4 (1+ α)
> 0. (A92)

We can then use the same calculations as in Part 3 to conclude that there exists N <∞ such that

the revenues collected satisfy

α2tn (hh) + 2α (1− α) tn (hl) + (1− α)2 tn (ll) < η02l +
¡
1− η0

¢
α (2− α) (h+ l) + ε (1+ 2α)

≤ α (2− α) (h+ l) + ε (1+ 2α) . (A93)

Moreover, there exists N2 such that E
£
ρ1n (x) + ρ2n (x)

¤
c ≥ 2c− ε, hence

α2tn (hh) + 2α (1− α) tn (hl) + (1− α)2 tn (ll)− E
£
ρ1n (x) + ρ2n (x)

¤
c (A94)

≤ α (2− α) (h+ l) + ε (2 + 2α)− 2c = −2c− α (2− α) (h+ l)

2
< 0,

violating the balanced-budget constraint. Establishing that limn→∞ η1n (lh) = limn→∞ η2n (hl) = η∗lh
proceeds along the same lines as those in Part 3.
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B Omitted Proofs

Lemma A2 Let Y be a random variable with Binomial (n, p) distribution. For any ² > 0 and

p ∈ (0, 1) there exists N <∞ such that the binomial distribution with parameters p, n satisfies

Pr (Y = y) =
n!

y! (n− y!)p
y (1− p)n−y ≤ ²

for for every n ≥ N and y ∈ {0, ..., n} .
Proof. Fix an arbitrary ² > 0. The most probable value for y is the unique integer y∗ (n) satisfying

np− 1 ≤ y∗ (n) ≤ np+ 1, and the corresponding probability is

Pr (y∗ (n)) =
n!

y∗ (n)! [n− y∗ (n)]!p
y∗(n) (1− p)n−y∗(n) .

Let

s (r) =
r!√

2πe−rrr+1/2
.

By Stirling’s Formula, for every ² > 0 there exists R (²) such that |s (r)− 1| < ² for all r ≥ R (²) .
Observing that

n! = s (n)
√
2πe−nnn+

1
2 ,

y∗ (n)! = s (y∗ (n))
√
2πe−y

∗(n)y∗ (n)y
∗(n)+ 1

2 ,

[n− y∗ (n)]! = s (n− y∗ (n))√2πe−(n−y∗(n)) [n− y∗ (n)]n−y∗(n)+ 1
2 ,

we obtain

n!

y∗ (n)! [n− y∗ (n)]!

=
s (n)

s (y∗ (n)) s (n− y∗ (n))
√
2πe−nnn+

1
2

√
2πe−y∗(n)y∗ (n)y

∗(n)+ 1
2
√
2πe−(n−y∗(n)) [n− y∗ (n)]n−y∗(n)+ 1

2

=
s (n)

s (y∗ (n)) s (n− y∗ (n))
nn+

1
2

√
2πy∗ (n)y

∗(n)+ 1
2 [n− y∗ (n)]n−y∗(n)+ 1

2

.

Note that for any p ∈ (0, 1) , limn→∞ y∗ (n) =∞ and limn→∞ [n− y∗ (n)] =∞. Hence, there exists
N <∞ such that y∗ (n) ≥ R (²) and n−y∗ (n) ≥ R (²) , implying that s (n) ≤ 1+², s (y∗ (n)) ≥ 1−²,
and s (n− y∗ (n)) ≥ 1− ². We can thus bound the probability of y∗ (n) by.

Pr (y∗ (n))

=
s (n)

s (y∗ (n)) s (n− y∗ (n))
nn+

1
2

√
2πy∗ (n)y

∗(n)+ 1
2 [n− y∗ (n)]n−y∗(n)+ 1

2

py
∗(n) (1− p)n−y∗(n)

≤ (1+ ²)

(1− ²)2
nn+

1
2

√
2πy∗ (n)y

∗(n)+ 1
2 [n− y∗ (n)]n−y∗(n)+ 1

2

py
∗(n) (1− p)n−y∗(n)

=
(1+ ²)

(1− ²)2
py
∗(n) (1− p)n−y∗(n)

√
2nπ

h
y∗(n)
n

iy∗(n)+ 1
2
h
n−y∗(n)

n

in−y∗(n)+ 1
2

.

1



Since y∗ (n) /n = argmaxp∈[0,1] py
∗(n) (1− p)n−y∗(n) , we know that

py
∗(n) (1− p)n−y∗(n)h

y∗(n)
n

iy∗(n) h
n−y∗(n)

n

in−y∗(n) ≤ 1.
Therefore,

Pr (y∗ (n)) ≤ (1+ ²)

(1− ²)2
1

√
2nπ

h
y∗(n)
n

i 1
2
h
n−y∗(n)

n

i 1
2

≤ (1+ ²)

(1− ²)2
1q

2nπ
¡
p− 1

n

¢ ¡
1− p− 1

n

¢ → 0 as n→∞.

Hence, there exists N 0 <∞ such that

(1+ ²)

(1− ²)2
1q

2nπ
¡
p− 1

n

¢ ¡
1− p− 1

n

¢ ≤ ².
Implying that Pr (y∗ (n)) ≤ ² for any n ≥ max {N,N 0} . Since ² was arbitrary the result follows.

Now let

ρji (θi) = E
£
ρj (x) |θi

¤
(B95)

be agent i0s perceived probability that public good j will be provided when agent i announces

type θi. The following lemma shows that as n → ∞, agent i0s announcement would not affect
the perceived probability of provision, i.e., the probability of any individual agent being pivotal

approaches zero as n→∞ :

Lemma A3 For every ² > 0 there exists N such that
¯̄
ρ1i (θi)− ρ1i (θ

0
i)
¯̄ ≤ ² for every θi, θ

0
i ∈

Θ in any truth-telling mechanism for any economy where n ≥ N .
Proof. We only prove the result for (θi, θ

0
i) = (hh, ll) . The proof for other type combinations

proceed step by step in the same way and are left to the reader. Using the now-standard recursive

formula for multinomial probability mass function, we have

ρ1i (hh) =
X

x∈Xn−1
an−1 (x)

£
ρ1(xhh + 1, xhl, xlh, xll)

¤
ρ1i (ll) =

X
x∈Xn−1

an−1 (x)
£
ρ1(xhh, xhl, xlh, xll + 1)

¤
.

Let ρ1 maximize the difference between ρ1i (hh) and ρ
1
i (ll) and let ρ

1
i (hh) and ρ

1
i (ll) be the perceived

provision probabilities when the provision rule is ρ1. That is,

ρ1 ∈ arg max
ρ1:Xn→[0,1]

X
x∈Xn−1

an−1 (x)
£
ρ1(xhh + 1, xhl, xlh, xll)− ρ1(xhh, xhl, xlh, xll + 1)

¤
, (B96)

2



It is clear that the solution to (B96) is given by

ρ1 (x) =

 1 if an−1(xhh − 1, xhl, xlh, xll) ≥ an−1(xhh, xhl, xlh, xll − 1)
0 if an−1(xhh − 1, xhl, xlh, xll) < a−1(xhh, xhl, xlh, xll − 1).

(B97)

Using the explicit formula for an−1 (x), we can express (B97) as

ρ1 (x) =

 1 if xhh
α2
≥ xll

(1−α)2

0 if xhh
α2
< xll

(1−α)2 .
(B98)

Fix an arbitrary ² > 0 and let m = xhl + xlh ≤ n− 1. Since m is a binomial random variable with

parameters p = 2α (1− α) and n− 1, we know, by law of large numbers, that there exists N <∞
such that

Pr

µ
m

n− 1 ≥ 2α (1− α) + ²

¶
≤ ²

2
(B99)

for every n ≥ N. Moreover, conditional on m, xhh is binomially distributed with parameters

p0 = α2/ [1− 2α (1− α)] and n− 1−m. Thus, we know from (B98) that, conditional on m, there

exists a single value xhh (m) such that ρ
1(xhh (m)+1, xhl, xlh, xll) = 1 and ρ

1(xhh (m) , xhl, xlh, xll+

1) = 0; and for all other realizations the of xhh, the provision probability is unaffected by agent i
0s

announcement. Lemma A2 implies that there exists N 0 <∞ such that

Pr (xhh = xhh (m)|m) ≤ ²

2
(B100)

for all n such that n− 1−m ≥ N 0.

Now let n∗ = max
n
N, N 0

1−2α(1−α)−² + 1
o
< ∞. Then, N 0 ≤ (n− 1) [1− 2α (1− α)− ²] for all

n ≥ n∗. Hence, for all n ≥ n∗,

Pr [n− 1−m ≤ N 0] = Pr [m ≥ (n− 1)−N 0]

≤ Pr [m ≥ (n− 1)− (n− 1) [1− 2α (1− α)− ²]]
= Pr

h
m
n−1 ≥ 2α (1− α) + ²

i
≤ ²

2

(B101)

where the last equality follows from (B99). Hence, for n ≥ n∗, n− 1−m ≤ N 0 with probability of

at least 1− ²/2. Thus, for n ≥ n∗,

ρ1i (hh)− ρ1i (ll) =
P
x∈Xn−1 an−1 (x)

£
ρ1(xhh + 1, xhl, xlh, xll)− ρ1(xhh, xhl, xlh, xll + 1)

¤
=
Pn−1
m=0Pr (m)Pr (xhh = xhh (m)|m)

=
Pn−1−N 0
m=0 Pr (m)Pr (xhh = xhh (m)|m) +

Pn−1
m=n−N 0 Pr (m) Pr (xhh = xhh (m)|m)

≤Pn−1−N 0
m=0 Pr (m) ²2 +

Pn−1
m=n−N 0 Pr (m)

= ²
2 Pr [n− 1−m ≥ N 0] + Pr [n− 1−m ≤ N 0] ≤ ²

(B102)
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where the second equality follows from the definition of xhh (m) ; the first inequality follows from

(B100); and the last inequality follows from (B101).

Similarly, let ρ1 solve

ρ1 ∈ arg min
ρ:Xn→[0,1]

X
x∈Xn−1

an−1 (x)
£
ρ1(xhh + 1, xhl, xlh, xll)− ρ1(xhh, xhl, xlh, xll + 1)

¤
, (B103)

and let ρ1
i
(hh) and ρ1

i
(ll) be the associated perceived provision probabilities when the provision

rule ρ1. A solution to (B103) is

ρ1 (x) =

 1 if xhh
α2
< xll

(1−α)2

0 if xhh
α2
≥ xll

(1−α)2 ,
(B104)

which is just reversing of provision rule ρ1. Hence, conditional onm, ρ1(xhh (m)+1, xhl, xlh, xll) = 0

and ρ1(xhh (m) , xhl, xlh, xll + 1) = 1; and for all other values for xhh, agent i
0s announcement does

not affect the provision probability. It thus immediately follows from out previous calculations that

ρ1
i
(hh)− ρ1

i
(ll) = −

n−1X
m=0

Pr (m)Pr (xhh = xhh (m)|m) ≥ −². (B105)

It follows from (B102) and (B105) that, for any conceivable provision rule,

−² ≤ ρ1
i
(hh)− ρ1

i
(ll) ≤ ρ1i (hh)− ρ1i (ll) ≤ ρ1i (hh)− ρ1i (ll) ≤ ².
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