
 
 

STRATEGIC DISTINGUISHABILITY 
AND ROBUST VIRTUAL IMPLEMENTATION 

 
 
 
 

By 
 

Dirk Bergemann and Stephen Morris 
 
 
 

June 2007 
Revised April 2008 

 
 
 
 

COWLES FOUNDATION DISCUSSION PAPER NO. 1609R 
 
 
 
 
 
 
 
 
 
 
 
 
 

COWLES FOUNDATION FOR RESEARCH IN ECONOMICS 
YALE UNIVERSITY 

Box 208281 
New Haven, Connecticut 06520-8281 

 
http://cowles.econ.yale.edu/ 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Research Papers in Economics

https://core.ac.uk/display/6967183?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Strategic Distinguishability and Robust Virtual Implementation�

Dirk Bergemanny Stephen Morrisz

First Version: March 2006

This Version: April 2008

Abstract

In a general interdependent preference environment, we characterize when two payo¤ types

can be distinguished by their rationalizable strategic choices without any prior knowledge of

their beliefs and higher order beliefs. We show that two types are strategically distinguishable

if and only if they satisfy a separability condition. The separability condition for each agent

essentially requires that there is not too much interdependence in preferences across agents.

A social choice function - mapping payo¤ type pro�les to outcomes - can be robustly virtually

implemented if there exists a mechanism such that every equilibrium on every type space achieves

an outcome arbitrarily close to the social choice function: this de�nition is equivalent to requiring

virtual implementation in iterated deletion of strategies that are strictly dominated for all beliefs.

The social choice function is robustly measurable if strategically indistinguishable types receive

the same allocation. We show that ex post incentive compatibility and robust measurability

are necessary and su¢ cient for robust virtual implementation.
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1 Introduction

Preferences are assumed to be interdependent for informational or psychological reasons in many

areas of economics. But there has been little attempt to identify what are the observable impli-

cations of such preferences. A classic and well developed �revealed preference� theory underlies

economists�way of understanding individual choice. An analogous strategic revealed preference

understanding of interdependent preferences is required. This paper proposes an approach to this

question.

Fix an interdependent preferences environment, with a �nite set of agents, each with a �nite

set of possible payo¤ types, with expected utility preferences over lotteries depending on the whole

pro�le of types. Say that two payo¤ types of an agent are strategically distinguishable if they have

disjoint rationalizable strategic choices in some �nite game for all possible beliefs and higher order

beliefs about others� types. Thus a pair of payo¤ types are strategically indistinguishable if in

every game, there exists some action which each type might rationally choose given some beliefs

and higher order beliefs. We are able to provide an exact and insightful characterization of strategic

distinguishability. If we have sets of types, 	1 and 	2, of agents 1 and 2, respectively, we say that

	2 separates 	1 if knowing agent 1�s preferences and knowing that agent 1 is sure that agent 2�s

type is in 	2, we can rule out at least one type of agent 1. Now consider an iterative process where

we start, for each agent, with all subsets of his type set and - at each round - delete subsets of

actions that are separated by every remaining subset of types of his opponents. A pair of types are

said to be pairwise inseparable if the set consisting of that pair of types survives this process. We

show that two types are strategically indistinguishable if and only if they are pairwise inseparable.

If there are private values and every type is value distinguished, then every pair of types will be

pairwise separable and thus strategically distinguishable. Thus strategic indistinguishability arises

when the degree of interdependence in preferences is large. We can illustrate this with a simple

example. Suppose that agent i�s payo¤ type is �i 2 [0; 1] and agent i�s valuation of a private good
is �i+

X
j 6=i

�j . Each agent has quasilinear utility, i.e., his utility from money is linear and additive.

We show all distinct pairs of types are strategically distinguishable if jj < 1
I�1 where I is the

number of agents. All pairs of types are strategically indistinguishable if jj � 1
I�1 .

Strategic distinguishability is key in characterizing when robust virtual implementation is possi-

ble. Suppose that a social planner would like to design a mechanism that will induce self-interested

agents to make strategic choices that will lead to the selection of socially desirable outcomes. A
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social choice function speci�es the social desired outcomes as a function of unobserved payo¤ types

of the agents. The planner would like to be sure that outcomes speci�ed by the social choice

function arise with probability arbitrarily close to 1: thus she requires virtual implementation; she

would like every possible equilibrium to virtually implement the social choice function: thus she

requires full implementation; and she would like every equilibrium to virtually implement the social

choice function whatever the agents�beliefs and higher order beliefs about others�types; thus she

requires robust implementation. In this paper, we provide a characterization of when robust virtual

implementation is possible in a general interdependent preference environment.

One necessary condition for robust virtual implementation will be ex post incentive compatibil-

ity : under the social choice function, each agent must have an incentive to truthfully report his

type if others�report their types truthfully, whatever their types. Ex post incentive compatibility is

su¢ cient to ensure the existence of desirable equilibria, but, as the existing incomplete information

implementation literature has emphasized, further restrictions on the social choice function are

required to rule out other, undesirable, equilibria. If a mechanism is to fully implement a social

choice function, it must be that two types who are treated di¤erently by the social choice function

are guaranteed to behave di¤erently in the implementing mechanism. If two types are guaranteed

to behave di¤erently in the implementing mechanism, then - under our de�nition outlined above -

they are strategically distinguishable. Thus a second necessary condition for robust virtual imple-

mentation will be robust measurability : strategically indistinguishable types are treated the same by

the social choice function. We show that ex post incentive compatibility and robust measurability

are also su¢ cient for robust virtual implementation (under an economic assumption).

Our characterization result for strategic distinguishability (theorem 1) comes in two parts. If

two types of an agent are pairwise inseparable, then they belong to a set of types which are not

separable by a pro�le of sets of types of that agent�s opponents. The set of types of each opponent

in that pro�le is then not separable by a pro�le of sets of types of that opponent�s opponents. And

there is a continuing chain of inseparable sets in the chain. We prove that pairwise inseparable types

are strategically indistinguishable (proposition 1) by induction, showing that in any mechanism at

any round in the iterated deletion of messages that are never best responses and for every set

of types in the chain of inseparable type sets, there is a common action which is played. The

inseparability property ensures that we can always construct beliefs for each type that make the

same message a best response.

To show the converse result (proposition 2), we construct a single, �nite maximally revealing
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mechanism with the property that all pairwise separable types have disjoint sets of rationalizable

actions. The construction exploits the linearity of expected utility preferences and duality theory.

Whenever a set of types of one agent is separated by a pro�le of sets of types of other agents, we

are able to construct a �nite set of lotteries such that knowing the �rst agent�s preference over

those lotteries will always rule out at least one of his types. We can take the union over all such

�nite sets constructed for each pro�le of type sets where the separability property holds. We then

construct a �nite �test set� of lotteries such that knowing an agent�s most preferred outcome in

that test set implicitly reveals his ranking of outcomes in all the original sets. Finally, we consider

a mechanism where each agent gets to pick a lottery with some positive probability, then guesses

which lotteries others chose and gets to pick another lottery, with small probability, contingent on

other agents making the choice he conjectured, and so on. With a large, but �nite, number of

rounds this mechanism will eventually lead pairwise separable types to make distinct choices.

Our proof of the su¢ ciency of ex post incentive compatibility and robust measurability (corol-

lary 1) for robust virtual implementation builds on an ingenious construction used by Abreu and

Matsushima (1992b) to establish an extremely permissive result for complete information virtual

implementation; in Abreu and Matsushima (1992c), they adapted the argument to a standard

Bayesian virtual implementation problem; we in turn adapt the argument to our robust virtual

implementation problem.

While our su¢ ciency argument for robust virtual implementation builds on Abreu and Mat-

sushima (1992c), the interpretation of our results ends up being rather di¤erent. Abreu and Mat-

sushima (1992c) characterized virtual implementation in a standard Bayesian environment, where

there was common knowledge of a common prior over a �xed set of types, using the solution con-

cept of iterated deletion of strictly dominated strategies and restricting attention to well-behaved

(�nite) mechanisms. Bayesian incentive compatibility of the social choice function is a necessary

condition: a standard compactness argument shows that the weakening to virtual implementation

does not weaken the incentive compatibility requirement. In addition, they showed that a measur-

ability condition was necessary. Put each agent�s types into equivalence classes that have the same

preferences over outcomes - unconditional on other agents�types. Having distinguished some types

by their unconditional preferences, we can then further re�ne agents�types, by distinguishing types

with di¤erent preferences conditional on other agents�types in the �rst round. We can continue this

process of re�ning agents�types based on preferences conditional on other agents�types revealed so

far. The social choice function is Abreu-Matsushima measurable if it is measurable with respect to
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the limit of this iterative re�nement. This seems to be a weak restriction that is generically satis-

�ed.1 They show that Bayesian incentive compatibility and Abreu-Matsushima measurability are

su¢ cient as well as necessary for virtual implementation in iterated deletion of strictly dominated

strategies.

Robust virtual implementation is equivalent to requiring that there is a single mechanism that

implements a social choice function, for all possible type spaces that could be constructed for the

environment with �xed payo¤ types and utility functions for the agents. It is instructive to see

how to get from Abreu and Matsushima (1992c) to the robust virtual implementation results in

this paper.

Observe that Abreu and Matsushima (1992c)�s solution concept naturally uses agents�given

beliefs about others�types in their solution concept: when strategies are deleted, it is because they

are strictly dominated conditional on their beliefs. We want implementation for all possible beliefs;

we therefore establish our results under an incomplete information version of rationalizability that

does not make use of any beliefs over others�types; it is equivalent to iteratively deleting strategies

that are ex post strictly dominated, i.e., strictly dominated for all possible beliefs over others�types.

We work with this solution concept throughout the paper. However, results from the epistemic

foundations of game theory establish that an action is rationalizable in this sense for a payo¤ type

if and only if it could be played in an equilibrium on some type space with beliefs and higher

order beliefs, by a type with that payo¤ type (Brandenburger and Dekel (1987) and Battigalli

and Siniscalchi (2003)). Thus a bonus of our �robust� analysis is that the distinction between

equilibrium and rationalizability (or iterated deletion of strictly dominated strategies) becomes

moot.

Now ex post incentive compatibility is the robust analogue of Bayesian incentive compatibility

and robust measurability is the robust analogue of Abreu-Matsushima measurability. Abreu and

Matsushima (1992c) could reasonably argue that - in a standard Bayesian setting - their measur-

ability condition is a weak technical requirement.2 As a result, the �bottom line� of the virtual

implementation literature has been that full implementation, i.e., getting rid of undesirable equilib-

1Abreu and Matsushima (1992c) and Serrano and Vohra (2005) note that a simple su¢ cient condition for all

social choice functions to be A-M measurable is type diversity : every type has distinct preferences over lotteries

unconditional on others�types.
2Although Serrano and Vohra (2001) describe an economic example where all individually rational and Bayesian

incentive compatible social choice functions fail Abreu-Matsushima measurability because types have identical con-

ditional preferences.
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ria, does not impose any substantive constraints beyond incentive compatibility, i.e., the existence

of desirable equilibria. By requiring the more demanding, but more plausible, robust formulation of

incomplete information, we end up with a condition that is substantive, imposing signi�cantly more

structure in interdependent value environments than incentive compatibility, easily interpretable

and - via the relation to strategic distinguishability - of independent conceptual interest.

This paper adds to a recent literature on robust mechanism design that provides one opera-

tionalization of the so-called �Wilson doctrine�3 that progress in practical mechanism design will

come from relaxing the implicit common knowledge assumption in the formulation of mechanism

design problems.4 Neeman (2004) highlighted the fact that full surplus extraction with correlated

type results (Myerson (1981) and Cremer and McLean (1985)) rely on the implicit assumption

that there is common knowledge of a mapping from beliefs to payo¤ types of all agents (a �beliefs

determine preferences�property). This (counterintuitive) assumption is implied by the �generic�

choice of a common prior on a �xed type space where distinct types are assumed to have di¤erent

preferences. The apparent weakness of the Abreu-Matsushima measurability condition (and the

fact that it is satis�ed for "generic" priors) relies on the same property. We believe that by relaxing

this unnatural implicit assumption, we get a better insight into the nature of the extra requirement

for full implementation over and above incentive compatibility conditions.

Our operationalization of the "Wilson doctrine" is rather strong: we put no restrictions on

agents�beliefs and higher order beliefs. A recent paper of Artemov, Kunimoto, and Serrano (2008)

examines what happens to the conditions for robust virtual implementation if the planner is given

partial information about agents�beliefs, in particular, a subset of beliefs over others�payo¤s types

that can arise with each payo¤ type. We discuss this intermediate robustness approach in section

6.1.

It is possible to interpret our result as rather negative: ex post incentive compatibility is already

a very strong condition, as emphasized by the recent work of Jehiel, Moldovanu, Meyer-Ter-Vehn,

and Zame (2006);5 robust measurability adds the further substantive restriction that there not be

too much interdependence of preferences; and, in any case, the mechanism that we use to robustly

3Wilson (1987) contains a statement of what Eric Maskin has dubbed the �Wilson doctrine�.
4Neeman (2004), Bergemann and Morris (2005c), Heifetz and Neeman (2006), Chung and Ely (2007).
5Although we argue in Bergemann and Morris (2005a) that ex post incentive compatibility is feasible in many

economically important environments either because types are one dimensional or because natural economic features

of the environment lead to a failure of the "generic" properties that lead to the non-existence of non-trivial ex post

incentive compatible social choice functions in Jehiel, Moldovanu, Meyer-Ter-Vehn, and Zame (2006).
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virtually implement social choice functions is complicated to describe and presumably hard to

play. However, we can show that in one large and interesting class of economic environments with

interdependent preferences, robust virtual implementation is not only possible but is possible in

the direct mechanism where agents simply report their payo¤ types. Say that an environment has

aggregator single crossing preferences if the pro�le of agents�types can be aggregated into a single

number and preferences are single crossing with respect to that number. E¢ cient social choice

functions satisfying ex post incentive compatibility often exist in such environments. Bergemann

and Morris (2005a) showed that in such an environment, exact robust implementation is possible if

the social choice function satis�es strict ex post incentive compatibility and a contraction property.

In this paper, we observe that the contraction property is equivalent to robust measurability, so

that - under the weak condition that there exists some strictly ex post incentive compatible social

choice function - whenever robust virtual implementation is possible, it is possible in the direct

mechanism.

We believe that our notion of strategic distinguishability is of interest apart from its importance

for robust virtual implementation. Two rational payo¤ types are strategically indistinguishable if

they might choose the same action (in any game). This strategic revealed preference relation on

payo¤ types is key to the implementation problem, when one cannot allow for the possibility of two

distinct types behaving the same in every mechanism. But say that two payo¤ types are strategically

equivalent if the sets of actions they might choose are the same (in any game). In other words,

two types are strategically equivalent if they have the same set of rationalizable actions in every

game. Strategic distinguishability is a coarser notion than strategic equivalence; for example, in the

linear example described in the opening paragraphs, no distinct types are strategically equivalent.

If two rational payo¤ types are strategically equivalent, it is not possible that they will behave

di¤erently in any game. Strategic equivalence is the relevant strategic revealed preference notion if

one is interested in identifying the �nest behaviorally relevant description of agents�interdependent

types. A version of this latter question has been studied by Gul and Pesendorfer (2007).6 However,

we do not pursue alternative motivations for characterizing strategic distinguishability in this paper.

The remainder of the paper is organized as follows. Section 2 introduces the environment and

the solution concept. Section 3 illustrates the notion of separability in the context of a single private

6Gul and Pesendorfer (2007) do not explicitly allow for uncertainty or incorporate strategic choices. We charac-

terize the stronger notion of strategic equivalence in our environment, and discuss the relation to Gul and Pesendorfer

(2007) in more detail, in the working paper version of this paper, Bergemann and Morris (2007).
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good with interdependent preferences. Section 4 de�nes and characterizes strategic distinguisha-

bility, constructing the maximally revealing mechanism to show the equivalence between strategic

distinguishability and pairwise separability. Section 5 reports our results on robust virtual imple-

mentation. Section 6 contains discussion of the intermediate notions of robustness, the epistemic

foundations for the solution concept, weak rather than strict dominance, positive results in the

direct mechanisms and the relation to exact implementation results. Section 7 concludes.

2 Setting

2.1 Environment

There is a �nite set of agents 1; :::; I and each agent i has �nite set of possible payo¤ types:

�i =
n
�1i ; :::; �

l
i; :::; �

L
i

o
.

We assume without loss of generality that the cardinality of each set �i is equal to L for all i. The

�nite set X of pure outcomes is given by

X = fx1; :::; xn; :::; xNg :

The lottery space over the set of outcome is Y = �(X). A lottery y is an N dimensional vector

y = (y1; :::; yn; :::; yN ) with

yn � 0;
NX
n=1

yn = 1:

Each agent has a von Neumann Morgenstern expected utility function ui : Y ��! R with

ui (y; �) =
NX
n=1

ui (xn; �) yn:

We will abuse notation by writing x for the lottery putting probability 1 on outcome x and X for

the set of degenerate lotteries.

It is often convenient to work with underlying preferences over lotteries rather than any of their

representations. We write R for the collection of expected utility preference relations on Y . We

will write R�i;�i 2 R for the preference relation of agent i if his payo¤ type is �i and he has belief

�i 2 �(��i) about the types of others:

8y; y0 2 Y : yR�i;�iy
0 ,

X
��i2��i

�i (��i)ui (y; (�i; ��i)) �
X

��i2��i

�i (��i)ui
�
y0; (�i; ��i)

�
;
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and we write P�i;�i for the strict preference relation corresponding to R�i;�i .

We make a non-degeneracy assumption on preferences: every agent i, whatever his type �i 2 �i
and beliefs �i 2 �(��i), has a strict preference over some pair of outcomes:

Assumption 1 (Non-Degeneracy)

For each i, �i 2 �i and �i 2 �(��i), there exist x; x0 2 X such that xP�i;�ix
0.

We maintain this assumption throughout the paper.7 We denote by y the central lottery which

puts equal probability on each of the pure outcomes. Now non-degeneracy implies that every agent

i, whatever his type �i and beliefs �i 2 �(��i), strictly prefers some pure outcome x to y; and
compactness implies that those strict preferences are uniformly strict:

Lemma 1 There exists c > 0 such that, for each i, �i 2 �i and �i 2 �(��i), there exists x 2 X
such that X

��i2��i

�i (��i)ui (x; (�i; ��i)) >
X

��i2��i

�i (��i)ui (y; (�i; ��i)) + c.

The lemma is proved in appendix and we will use c in our later constructions. We will also

exploit the existence of an upper bound on payo¤ di¤erences C which follows immediately from

the �niteness of pure outcomes and states:

Lemma 2 There exists C > 0 such that��ui (y; �)� ui �y0; ���� � C;
for all i; y; y0; �.

2.2 Mechanisms and Solution Concept

A mechanism M is a collection ((Mi)
I
i=1 ; g) where each Mi is �nite and g : M ! Y . We denote

a belief of agent i over the product of payo¤ type and message spaces of the other agents by

�i 2 �(��i �M�i). We consider the process of iteratively eliminating never best responses,

without making assumptions on agents�beliefs about others�payo¤ types. The set of messages

surviving the k�th level of elimination for type �i in mechanismM are iteratively de�ned by

SM;0
i (�i) =Mi

7Our results can be extended to allow for non-degeneracy as shown in the appendix of the working paper version,

Bergemann and Morris (2007).

9



and, for each k = 0; 1; ::

SM;k+1
i (�i) =

8>>>><>>>>:mi 2 SM;k
i (�i)

����������
9 �i 2 �(��i �M�i) s.t.:

(1) �i (��i;m�i) > 0) m�i 2 SM;k
�i (��i)

(2) mi 2 argmax
m0
i

X
��i;m�i

�i (��i;m�i)ui (g (m0
i;m�i) ; (�i; ��i))

9>>>>=>>>>; ;
we let

SMi (�i) =
\
k�0

SM;k
i (�i) .

We refer to SMi (�i) as the rationalizable messages of type �i of agent i in mechanism M. This

incomplete information version of rationalizability was studied in Battigalli (1998) and Battigalli

and Siniscalchi (2003). A standard and well known duality argument implies that this solution

concept is equivalent to iterated deletion of ex post strictly dominated strategies.

SMi (�i) is the set of messages that type �i might send consistent with knowing that his payo¤

type is �i, common knowledge of rationality and the set of possible payo¤ types of the other players,

but no restrictions on his beliefs and higher order beliefs about other types. Equivalently, it is the

set of messages that might be played in any equilibrium on any type space by a type of player i

with payo¤ type �i and any possible beliefs and higher order beliefs about others�payo¤ types. In

section 6.2, we report a formal argument con�rming this interpretation. In the body of the paper,

we work directly with this solution concept.

2.3 Separability

We will be interested in the set of preferences that an agent might have if his payo¤ type is �i and

he knows that the type �j of each opponent j belongs to some subset 	j of his possible types �j .

Thus writing 	�i = f	jgj 6=i for a pro�le of subsets of i�s opponents, we de�ne

Ri (�i;	�i) = fR 2 R jR = R�i;�i for some �i 2 �(	�i)g .

Now suppose we observed i�s preferences over lotteries and knew that i assigned probability 1 to

his opponents�type pro�le ��i being an element of 	�i, what would we be able to deduce about

i�s type? We will say that 	�i separates 	i if - whatever those realized preferences - we could rule

out at least one possible type of i.
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De�nition 1 (Separation)

Type set pro�le 	�i separates 	i if

\
�i2	i

Ri (�i;	�i) = ?.

We will be interested in a process by which we iteratively delete type sets of each agent that are

separated by some type set pro�le of his opponents. Thus writing �ki for the kth level inseparable

sets of player i, we have:

�0i = 2
�i , (1)

and

�k+1i =
n
	i 2 �ki

��� 	�i does not separate 	i, for some 	�i 2 �k�io ; (2)

and a (�nite) limit type set pro�le is de�ned by:

��i =
\
k�0

�ki . (3)

Finally, we say that a pair of types are pairwise inseparable if they cannot be iteratively sepa-

rated in this way:

De�nition 2 (Pairwise Inseparability)

Types �i and �0i are pairwise inseparable (written �i � �0i) if
�
�i; �

0
i

	
2 ��i .

Note that the relation � is re�exive and symmetric by construction, but it is not necessarily

transitive. The following ��xed point�characterization of pairwise inseparability will be useful in

the analysis that follows. Let � = (�i)
I
i=1 2 �Ii=12�i be a pro�le of type sets for each agent.

De�nition 3 (Mutual Inseparability)

� is mutually inseparable if, for each i and 	i 2 �i, there exists 	�i 2 ��i such that 	�i does not
separate 	i.

Lemma 3 Types �i and �0i are pairwise inseparable if and only if there exists mutually inseparable

� = (�i)
I
i=1 and 	i 2 �i with

�
�i; �

0
i

	
� 	i.

Proof. (if) Suppose there exists b� = �b�i�I
i=1

and 	i 2 b�i with ��i; �0i	 � 	i. We claim thatn
	i

���	i � 	0i and 	0i 2 b�i for some 	0io � �ki
11



for each k = 0; 1; ::: . The claim holds for k = 0 by de�nition. Suppose the claim holds for arbitrary

k and suppose that 	i � 	0i and 	0i 2 b�i. Because b� is mutually inseparable, there exists 	�i 2b��i � �ki such that 	�i does not separate 	0i. By the de�nition of separation, since 	i � 	0i, 	�i
does not separate 	i. So 	i 2 �k+1i and

�
�i; �

0
i

	
� 	i 2 ��i =

\
k�0

�ki :

(only if) Observe that �k+1i � �ki for each k = 0; 1; ::: by construction. Thus (��i )
I
i=1 is mutually

inseparable. Thus if �i � �0i, there exists mutually inseparable �� with
�
�i; �

0
i

	
2 ��i .

3 An Environment with Interdependent Values for a Single Good

We consider a quasi-linear environment with a single good with interdependent values to illustrate

the notion of separability. There are I agents and agent i�s payo¤ type is �i 2 [0; 1]. If the type
pro�le is �, agent i�s valuation of an object is given by:

vi (�i; ��i) = �i + 
X
j 6=i

�j ,

with  2 R+. The parameter  measures the amount of interdependence in valuations: the case of
private values is given by  = 0 and the case of pure common values is  = 1. The net utility of

agent i depends on his probability yi of receiving the object and the monetary transfer ti:

ui (�; yi; ti) =

0@�i + X
j 6=i

�j

1A yi � ti.
We determine the conditions for separability of types in this preference environment.8

Type set pro�le 	�i separates 	i if, knowing i�s preferences and knowing that he is sure that

others�type pro�le is 	�i, we can always rule out some �i. In this example, because the utility

function ui (�) is linear in the monetary transfer for all types and all agents, separability must come
8The example has a continuum of types and a continuum of deterministic monetary allocations. The general model

is de�ned for a �nite number of types and pure outcomes. We could rewrite the example and the corresponding results

without loss in the �nite setting. With a �nite model, integer problems would need to be taken into account in deriving

the inequalities to make sure that the process of elimination proceeds. In particular, the exact value of the critical

threshold for interdependence, to be determined below, would depend on the size of the grid. But as the grid becomes

�ner, the critical thresholds converge to the ones of the continuous example here.
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from di¤erent valuations of the object. For given type set pro�le 	�i of all but i, we can identify

the set of possible (expected) valuations of agent i with type �i by writing:

Vi (�i;	�i) =

8<:vi 2 R+
������9�i 2 �(	�i) s.t. vi = �i + 

X
��i2	�i

�i (��i)
X
j 6=i

�j

9=;
=

24�i + X
j 6=i

min	j ; �i + 
X
j 6=i

max	j

35 . (4)

Now 	�i separates 	i if and only if

\
�i2	i

Vi (�i;	�i) = ?.

This is equivalent to requiring that

Vi (max	i;	�i) \ Vi (min	i;	�i) = ?.

By (4), this will hold if and only if

max	i + 
X
j 6=i

min	j > min	i + 
X
j 6=i

max	j .

We can rewrite the inequality as

max	i �min	i > 
X
j 6=i

(max	j �min	j) .

Thus 	�i separates 	i if and only if the di¤erence between the smallest and the largest element in

the set 	i is larger than the weighted sum of the di¤erences of the smallest and the largest element

in the remaining sets 	j for all j 6= i. Conversely, 	�i does not separate 	i if the above inequality
is reversed, i.e.,

max	i �min	i � 
X
j 6=i

(max	j �min	j) . (5)

Now we can identify the kth level inseparable sets, described in (1)-(3), for our example. We have

�0i = 2
[0;1]

and, by (5),

�k+1i =

8<:	i 2 �ki
������max	i �min	i � 

X
j 6=i

max
	j2�kj

(max	j �min	j)

9=; ;
13



Now by induction, we have that

�k+1i =
n
	i

���max	i �min	i � ( (I � 1))ko :
Thus if  (I � 1) < 1, ��i consists of singletons, ��i = (f�ig)�i2[0;1], while if  (I � 1) � 1, �

�
i consists

of all subsets, ��i = 2
[0;1].

Thus if  < 1
I�1 , so that interdependence is not too large, every distinct pair of types are pairwise

separable. If  � 1
I�1 , every pair of types are pairwise inseparable. We note that the linear structure

of the valuations vi (�) leads to the strong converse result. But the example illustrates the general
principle that pairwise separability corresponds to not too much interdependence.9

Our later results will show that if  � 1
I�1 , no social choice function (except for a constant one)

is robustly virtually implementable; but if  < 1
I�1 , any ex post incentive compatible allocation

can be robustly virtually implemented. One can construct generalized VCG payments such that

e¢ cient allocation is ex post incentive compatible in this environment if  � 1 (Cremer and

McLean (1988), Dasgupta and Maskin (2000)). Thus the e¢ cient allocation is robustly virtually

implementable if and only if  < 1
I�1 . We return to this example, after describing our results for

general environments, in section 6.4.10

Our result on robust virtual implementation in this environment will contrast with what would

happen with standard Bayesian implementation. Suppose we assumed there was common knowl-

edge of a common prior on the set of payo¤ types [0; 1]I . Suppose �rst that agents� types were

drawn independently. Then each type would have di¤erent expected valuations of the object and

could easily be separated. Even if priors were not independent, for a "typical" choice of prior, the

measurability condition of Abreu and Matsushima (1992b) and Bayesian virtual implementation

would be possible as long as incentive compatibility conditions were satis�ed. Ex post incentive

compatibility (and thus Bayesian incentive compatibility for any prior) is satis�ed by the e¢ cient

allocation if  � 1.
9This observation can be straightforwardly extended to  < 0, i.e., negative interdependence in preferences; now

if jj < 1
I�1 , all distinct pairs of types are pairwise separable; if jj �

1
I�1 , all pairs of types are pairwise inseparable.

10 In fact, robust virtual implementation is possible in the direct mechanism. Chung and Ely (2001) �rst identi�ed

this condition as su¢ cient for (exact) implementation of the e¢ cient outcome in iterated deletion of weakly dominated

strategies. We discuss the relation in section 6.3.
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4 Strategic Distinguishability

4.1 De�nition

Two payo¤ types are strategically distinguishable if there exists a mechanism where the rationaliz-

able actions of those payo¤ types are disjoint; thus they are strategically indistinguishable if they

have a rationalizable action in common in every mechanism.

De�nition 4 (Strategically Indistinguishable)

Types �i and �0i are strategically indistinguishable if S
M
i (�i) \ SMi

�
�0i
�
6= ? for everyM.

We have two reasons for being interested in characterizing strategic distinguishability.

First, our characterization of strategic distinguishability is the key step in our characterization

of robust virtual implementation, described in the next section.

Second, assumptions of interdependence of preferences for informational or psychological rea-

sons are prevalent in many areas of economics, but there has been little attempt to identify what

are the observable implications of such preferences. A classic and well developed �revealed prefer-

ence�theory underlies economists�way of understanding individual choice. An analogous strategic

revealed preference approach to understanding interdependent preferences is required. We believe

that our characterization of �strategic distinguishability�delivers some clean insights about strate-

gic revealed preferences in the setting of this paper and may be a useful component of a more

general approach to the question. However, we postpone discussion of a more general approach for

future research.

Gul and Pesendorfer (2007) identify the minimal language to describe the interdependence of

preferences of "behavioral" types and use it to construct the "canonical space for behavioral types."

Types in the canonical space are characterized by how their preferences can be restricted given

information about others�preferences, and higher order conditional statements about preferences.

This has a similar �avor to our construction. There are a number of ways in which our frameworks

di¤er. We incorporate uncertainty with expected utility preferences about others� types. We

analyze revealed (interdependent) preferences based on rationalizable strategic behavior, while Gul

and Pesendorfer (2007) do not discuss strategic considerations in constructing the language). We

characterize when two payo¤ types could always be distinguished - whatever their beliefs or higher

order beliefs - in some (su¢ ciently complicated) mechanism. We would obtain a �ner partition

of types if we asked when two types could ever be distinguished, and this �ner partition is the
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relevant analogue to the canonical behavioral types of Gul and Pesendorfer (2007). We discuss this

latter point - and the relation to Gul and Pesendorfer (2007) more generally - in the working paper

version of this paper, Bergemann and Morris (2007).

4.2 Main Result

The main innovation of this paper is the following characterization of strategic indistinguishability.

Theorem 1 (Equivalence)

Types �i and �0i are strategically indistinguishable if and only if they are pairwise inseparable.

This result will be proved in two parts. First, proposition 1 shows that under any �nite mecha-

nism, if �i and �0i are pairwise inseparable, then the intersection of the set of rationalizable messages

for �i and �0i will always be non-empty. This observation follows easily from our de�nitions.

Proposition 1

If �i and �0i are pairwise inseparable (�i � �0i), then SMi (�i) \ SMi
�
�0i
�
6= ? in any mechanismM:

Proof. By lemma 3, if �i � �0i, there exists mutually inseparable � with
�
�i; �

0
i

	
� 	�i 2 �i.

Now �x any mechanismM. We will show, by induction on k, that for each k, i and 	i 2 �i,
there existsmk

i (	i) 2Mi such thatmk
i (	i) 2 S

M;k
i

�e�i� for each e�i 2 	i. This is true by de�nition
for k = 0. Suppose that it is true for k. Now �x any i and 	i 2 �i. Since � is mutually inseparable,
there exists 	�i 2 ��i, R and, for each e�i 2 	i, �e�ii 2 �(	�i) such that Re�i;�e�ii = R. Now let

mk+1
i (	i) be any optimal message of agent i when he believes that his opponents will sent message

pro�le mk
�i (	�i) with probability 1 and has beliefs �

e�i
i about the type pro�le of his opponents, i.e.,

mk+1
i (	i) 2 argmax

m0
i

X
��i

�
e�i
i (��i)ui

�
g
�
m0
i;m

k
�i (	�i)

�
;
�e�i; ��i�� .

By construction, mk+1
i (	i) 2 SM;k+1

i

�e�i� for all e�i 2 	i.
By the �niteness of the mechanism, there exists K such that SM;k

i

�e�i� = SMi

�e�i� for all i,e�i and k � K. Thus for each 	i 2 �i, there exists mi (	i) 2 Mi such that mi (	i) 2 SMi
�e�i� for

each e�i 2 	�i . Thus there exists mi 2 SMi (�i) \ SMi
�
�0i
�
.
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The second part of the theorem�s proof is the converse result.

Proposition 2 (Existence of Maximally Revealing Mechanism)

There existsM� such that �i � �0i ) SM
�

i (�i) \ SM
�

i

�
�0i
�
= ?.

Propositions 1 and 2 immediately imply theorem 1. Proposition 2 is proved by the explicit

construction of a mechanism which will lead every pair of distinguishable types to choose di¤erent

messages. We refer to the speci�c mechanism as the �maximally revealing mechanism�, and spend

the rest of this section describing its construction and �nding its properties.

4.3 The Maximally Revealing Mechanism

We will construct a mechanism that will work for any environment. In the canonical mechanism,

each agent is given K simultaneous opportunities to select a preferred allocation from a given �test

set�of allocations. For each opportunity k to select a preferred allocation, with k = 1; :::;K, the

agent is asked to report a pro�le of possible choices by the remaining agents in the opportunities

preceding the k-th opportunity. If the report of the agent at opportunity k matches the choices of

the other agents in the opportunities below k, then he will be given the right to choose a preferred

allocation. On the other hand, if his report fails to replicate the choices of the other agents in

the opportunities before k, then the designer will simply select the central lottery �y. While the

mechanism is entirely static, it requires each agent to make a series of choices, each one contingent

on the choices of the other agents. In particular, by asking the agent at opportunity k to match his

report with the choices of the other agents at the opportunities before k, we introduce an inductive

structure into the series of choices by each agent. We therefore refer to the k-th opportunity as the

k-th stage or k-th step of the mechanism even though the mechanism itself is entirely static.

The central aspect of the inductive structure of the choice mechanism is that it allows us

to analyze the behavior of the agent in the mechanism in terms of the iterative elimination of

dominated strategies. The precise construction of the choice mechanism is based on two central

concepts, the notion of a test set and the notion of an augmentation of a given mechanism. A test

set will give each agent a �nite set of choices and the choice behavior by the agent allows us to

distinguish between di¤erent types of the agent. The construction of the set of test allocations relies

on a few critical implications of our notion of separation. In turn, the notion of an augmentation

permits us to show that we can always construct a more informative mechanism on the basis of a

given mechanism.
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4.3.1 The Maximally Revealing Mechanism

Fix a �nite "test set" of lotteries Y �. The maximally revealing mechanism o¤ers each agent i a

series of K opportunities to select a preferred allocation from Y �. The set of messages for each

agent in the maximally revealing mechanism is de�ned as follows. Let M0
i =

�
m0
i

	
and inductively

de�ne

Mk+1
i =Mk

i �Mk
�i � Y �:

Thus M0
i =

�
m0
i

	
, M1

i =
�
m0
i

	
�M0

�i � Y �, M2
i =

�
m0
i

	
�M0

�i � Y � �M1
�i � Y �, and so on.

The message mk+1
i of agent i in stage k + 1 thus reiterates his message from step k and reports a

message pro�le of the remaining agents in the preceding stage k. Due to the inductive structure of

the messages, we can write a typical element mk
i of M

k
i as a list of the form

mk
i =

n
m0
i ; r

1
i ; y

1
i ; r

2
i ; y

2
i ; :::; r

k
i ; y

k
i

o
,

with m0
i = m

0
i and each r

k
i 2Mk�1

�i and each yki 2 Y �. The entry rki constitutes the report of agent
i regarding the message of the other agents in the previous round k � 1. The message set of agent
i is then given by MK

i .

The outcome function in the revealing mechanism is given by

gK;" (m) = y +
1� "K
1� "

1

I

 
KX
k=1

"k�1
IX
i=1

I
�
rki ;m

k�1
�i

��
yki � y

�!
;

for some " > 0 and where I is the indicator function,

I
�
rki ;m

k�1
�i

�
=

8<: 1, if rki = m
k�1
�i

0, otherwise
.

For a given " > 0 and positive integer K, we refer to the (K; ") revealing mechanism as

MK;" =
�
MK ; gK;"

�
. (6)

In words, the mechanism has K stages. In each stage k, an agent is asked to announce a stage k�1
message pro�le of messages he thinks his opponents might have sent and - with positive probability

- gets to pick a lottery from Y �. Lotteries from early rounds are much more likely to be chosen

than lotteries from later rounds. We can now analyze how the series of messages can iteratively

and interactively identify the types of each agent.
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4.3.2 Characterizing Rationalizable Behavior for small "

For su¢ ciently small " > 0, an agent�s choice of message at the kth round will be independent of

what messages he thinks others will send at round k and higher and thus also independent of K, the

total number of rounds of messages that will be sent. We �rst propose an inductive characterization

of the set of types of player i who could possibly send kth round message mk
i . We then report

two lemmas that we will use to verify that our proposed inductive characterization is correct for

su¢ ciently small ".

Let �
1
i

�
m1
i

�
be the set of types of player i who could possibly send �rst round message m1

i .

Since we will ignore later rounds, this will be independent of " and K. Taking these sets as given,

we will then �nd the set �
2
i

�
m2
i

�
of types of player i who could possibly send second round message

m2
i . And so on. We will end up with an inductive characterization of the set �

k
i

�
mk
i

�
of types of

player i who could possibly send kth round message mk
i . Thus

�
0
i

�
m0
i

�
= �i;

and inductively de�ne �
k
i

�
mk
i

�
as follows:

�
k
i

�
mk
i

�
= �

k
i

��
mk�1
i ; rki ; y

k
i

��
=

8>>><>>>:�i
���������
(i) �i 2 �

k�1
i

�
mk�1
i

�
;

(ii) �
k�1
�i

�
rki
�
6= ?; and

(iii) yki 2 BY
�

i

�
�i;�

k�1
�i

�
rki
��
.

9>>>=>>>; ; (7)

The set �
k
i

�
mk
i

�
identi�es the set of types of agent i for whom the message mk

i =
�
mk�1
i ; rki ; y

k
i

�
could be a �best response� in stage k, given that the messages in the previous rounds encoded a

�best response� in the test set Y �. The analysis of the limit behavior of �
k
i

�
mk
i

�
is heuristic in

the sense that the inductive process assumes the properties (ii) and (iii) in (7). In particular, it is

simply assumed that agent i in round k announces a past message pro�le of the remaining agents

which could have been sent by some type pro�le of the other agents, and it is simply assumed that

agent i will select an allocation which is a best response to some belief in stage k.

We will use two preliminary results to establish formally that these sets characterize limit

behavior for small " and large K. The routine proofs are reported in the appendix. First, we

note that for any �xed �nite mechanismM, when we iteratively delete messages that are not best

responses, they are uniformly worse responses, i.e., there exists �M > 0 such that each of those

deleted messages is not even an �M-best response.
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Lemma 4 (Uniformly Worse Responses)

For any mechanism M, there exists �M > 0 such that if mi 2 SM;k
i (�i), mi =2 SM;k+1

i (�i) and

�i 2 �(��i �M�i) satis�es

�i (��i;m�i) > 0) mj 2 SM;k
j (�j) for each j 6= i

then there exists mi such thatX
��i;m�i

�i (��i;m�i)ui (g
� (mi;m�i) ; (�i; ��i)) >

X
��i;m�i

�i (��i;m�i)ui (g
� (mi;m�i) ; (�i; ��i))+�M.

Second, we use the uniform lower bound in stating a key result about �augmenting�mecha-

nisms. We use this �augmentation lemma� in the construction of both the maximally revealing

mechanism (in this section) and the canonical mechanism for robust virtual implementation (in the

next section). For each player i, �x �nite message sets M0
i and M

1
i and let Mi = M

0
i �M1

i . Fix

g0 :M0 ! Y , g1 :M1 ! Y and g+ :M ! Y .

Lemma 5 (Augmentation)

Fix �0; �1; �+ � 0, let g :M ! Y be de�ned by

g (m) = �0g0
�
m0
�
+ �1g1

�
m1
�
+ �+g+ (m) ,

and consider the mechanism

M0 =
��
M0
i

�I
i=1
; g0
�
;

and the augmented mechanism

M =
�
(Mi)

I
i=1 ; g

�
.

If �+C � �0�M0, then �
m0
i ;m

1
i

�
2 SMi (�i)) m0

i 2 SM
0

i (�i) .

The lemma states that if the weight put on the original payo¤ function g0 in the augmented

mechanism (�0) is much larger than the weight put on any other component of the mechanism

where m0 e¤ects the allocation (�+), then any rationalizable message in the augmented mechanism

must entail sending a message m0
i that was rationalizable in the original mechanism.

Write BY
�

i (�i; �i) for agent i�s most preferred lotteries in the set Y � if he has payo¤ type �i and

beliefs �i 2 �(��i) and (with a minor abuse of notation) let BY
�

i (�i;	�i) be agent i�s possible
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most preferred lotteries if he has payo¤ type �i and assigns probability 1 to his opponents having

types in 	�i, so that

BY
�

i (�i; �i) =
�
y 2 Y �

�� y R�i;�i y0 for all y0 2 Y �	 ;
and

BY
�

i (�i;	�i) =
[

�i2�(	�i)
BY

�
i (�i; �i) :

We now show that these choices are indeed the result of iteratively elimination of strictly

dominated strategies. More precisely, we verify that �
k
i

�
mk
i

�
is an upper bound on the set of types

who could send kth round message mk
i in anyMk;" for su¢ ciently small ".

Lemma 6 (Limit)

Suppose that BY
�

i (�i; �i) 6= Y � for each i, �i and �i 2 �(��i). Then , for each k, there exists
" > 0 such that n

�i 2 �i
���mk

i 2 SM
k;"
(�i)

o
� �ki

�
mk
i

�
:

for all " � " and mk
i 2Mk

i .

Proof. By induction. The claim of the lemma holds for k = 0, sincen
�i 2 �i

���m0
i 2 SM

0;"
(�i)

o
= �i = �

0
i

�
m0
i

�
.

Now suppose that the claim holds for k. Thus there exists "k > 0, such thatn
�i 2 �i

���mk
i 2 SM

k;"
(�i)

o
� �ki

�
mk
i

�
for all " � "k and mk

i 2Mk
i :

Now observe thatMk+1;" is an augmentation ofMk;" and thus - by lemma 5 - there exists "k+1 2
(0; "k], such that for all " � "k+1,

mk+1
i =

�
mk
i ; r

k+1
i ; yk+1i

�
2 SM

k+1;"
(�i)) mk

i 2 SM
k;"
(�i) . (8)

Now by the inductive hypothesis, we also have

�i 2 �
k
i

�
mk
i

�
. (9)

mk+1
i = SM

k+1;"
(�i) also implies there must exist �i 2 �

�
��i �Mk+1

�i

�
such that (1):

�i

�
��i;m

k+1
�i

�
> 0 ) mk+1

j 2 SM
k+1;"

(�j) for each j 6= i
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and (2):

mk+1
i 2 argmax

mk+1
i 2Mk+1

i

X
��i;m

k+1
�i

�i

�
��i;m

k+1
�i

� h
ui

�
gk+1;"

�
mk+1
i ;mk+1

�i

�
; (�i; ��i)

�i
.

But note that
�
rk+1i ; yk+1i

�
- the last components of mk+1

i - e¤ect only one additively separable

component of the above expression. In particular,
�
rk+1i ; yk+1i

�
must maximize:

X
��i;m

k+1
�i

�i

�
��i;m

k+1
�i

�
I
�
rk+1i ;mk

�i

��
ui

�
yk+1i ; (�i; ��i)

�
� ui (y; (�i; ��i))

�
(10)

which we can rewrite asX
��i

X
fmk+1

�i jmk
�i=r

k+1
i g

�i

�
��i;m

k+1
�i

��
ui

�
yk+1i ; (�i; ��i)

�
� ui (y; (�i; ��i))

�
.

The later expression is zero if

�i

�
rk+1i

�
�
X
��i

X
fmk+1

�i jmk
�i=r

k+1
i g

�i

�
��i;m

k+1
�i

�
= 0.

But if �i
�
rk+1i

�
> 0 and yk+1i 2 BY �i (�i; �i), where

�i (��i) =

P
fmk+1

�i jmk
�i=r

k+1
i g

�i

�
��i;m

k+1
�i

�
X
�0�i

P
fmk+1

�i jmk
�i=r

k+1
i g

�i

�
�0�i;m

k+1
�i

� ,

then (10) must be strictly positive, by the premise of the lemma. Thus we must have
�
rk+1i ; yk+1i

�
chosen such that �i

�
rk+1i

�
> 0 and yk+1i 2 BY �i (�i; �i). Now �i

�
rk+1i

�
> 0, (8) and the inductive

hypothesis imply that

�
k
�i

�
rk+1i

�
6= ?; (11)

and

�i 2 �
�
�
k
�i

�
rk+1i

��
and yk+1i 2 BY �i (�i; �i) . (12)

Now (9), (11) and (12) together imply that, for any mk+1
i 2 SM

k+1;"
(�i), �i 2 �

k+1
i

�
mk+1
i

�
.
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4.4 Constructing a Rich Enough Test Set

Finally, we show that we choose the "test set" Y � to be su¢ ciently large so that lemma 6 will imply

that - for su¢ ciently small " > 0 and su¢ ciently large K - any pair of mutually separable types

are sending distinct messages in the (K; ") revealing mechanism.

Proposition 3 (Existence of Finite Test Set)

There exists a �nite test set Y � � Y such that:

1. for each i, �i and �i 2 �(��i), BY
�

i (�i; �i) 6= Y �;

2. for each i, 	i and 	�i, if 	�i separates 	i, then for each �i 2 	i and �i 2 �(	�i), there
exists �0i 2 	i such that

BY
�

i (�i; �i) \BY
�

i

�
�0i;	�i

�
= ?.

The proof of proposition 3 is in the appendix. Now the proof of proposition 2 is completed by

the following lemma, establishing that the sets �
k
i are closely related to kth level inseparable sets

�ki , as de�ned earlier in (1)-(3).

Lemma 7 For all i and k, �ki
�
mk
i

�
2 �ki for all mk

i 2Mk
i .

Proof. By induction. The claim is true for k = 0 by de�nition. Suppose �k�1�i

�
mk�1
�i

�
2 �k�1�i

for all mk�1
�i 2 Mk�1

�i . Now �x any mk
i =

�
mk�1
i ; rki ; y

k
i

�
2 Mk

i and let 	i = �
k
i

�
mk
i

�
and let

	�i = �
k�1
�i

�
rki
�
. By proposition 3 part (1), every type has some strict preference over Y � and

thus will set rki equal to somem
k�1
�i he assigns positive probability to. By our inductive assumption,

	�i 2 �k�1�i . Now suppose 	�i separates 	i and �x �i 2 	i. By proposition 3 part (2), there exists
�0i 2 	i such that yki =2 BY

�
i

�
�0i;	�i

�
. Thus �0i =2 �

k
i

�
mk
i

�
, a contradiction. We conclude that 	�i

does not separate 	i.
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5 Robust Virtual Implementation

In this section, we use the notions of strategic distinguishability and the maximally revealing mech-

anism to establish necessary and su¢ cient conditions for robust virtual implementation. Virtual

implementation of a social choice function requires a mechanism such that the desired outcomes are

realized with probability arbitrarily close to 1 (see Abreu and Matsushima (1992b) and Abreu and

Matsushima (1992c)). Robust implementation requires implementation of a social choice function

depending on agents��payo¤ types� independent of their beliefs and higher order beliefs about

others�payo¤ types (see Bergemann and Morris (2005a) and Bergemann and Morris (2005b)). Our

de�nition of robust virtual implementation is the natural one incorporating both these notions.

5.1 De�nitions

Write ky � y0k for the Euclidean distance between a pair of lotteries y and y0, i.e.,y � y0 =sX
x2X

(y (x)� y0 (x))2.

De�nition 5 (Robust "-Implementation)

The mechanismM robustly "-implements the social choice function f if

m 2 SM (�)) kg (m)� f (�)k � ".

f is robustly "-implementable if there exists a mechanismM that robustly "-implements f .

We can now de�ne the notion of robust virtual implementation.

De�nition 6 (Robust Virtual Implementation)

Social choice function f is robustly virtually implementable if, for every " > 0, f is robustly "-

implementable.

The relevant incentive compatibility condition required for our robust problem is ex post incen-

tive compatibility.

De�nition 7 (EPIC)

Social choice function f satis�es ex post incentive compatibility (EPIC) if, for all i, �i, ��i and �0i:

ui (f (�i; ��i) ; (�i; ��i)) � ui
�
f
�
�0i; ��i

�
; (�i; ��i)

�
.
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�Robust measurability�requires that if �i is pairwise inseparable from �0i, then the social choice

function must treat the two types the same. This condition is the robust analogue of the measur-

ability condition in Abreu and Matsushima (1992c).

De�nition 8 (Robust Measurability)

Social choice function f is robust measurable if �i � �0i ) f (�i; ��i) = f
�
�0i; ��i

�
for all ��i.

5.2 Necessity

It is well known from the literature on virtual Bayesian implementation (e.g., Abreu and Mat-

sushima (1992c)) that the relaxation to virtual implementation does not relax incentive compati-

bility conditions by a standard compactness argument.11

Theorem 2 (Necessity)

If f is robustly virtually implementable, then f is ex post incentive compatible and robust measurable.

Proof. We �rst establish ex post incentive compatibility. Fix any mechanismM that robustly

"-implements f . Fix ��i and m�i 2 SM�i (��i). For any m0
i 2 SMi

�
�0i
�
, virtual implementation

requires g �m0
i;m�i

�
� f

�
�0i; ��i

� � ". (13)

Now suppose that player i is type �i and is convinced that his opponent is type ��i sending message

m�i. Let mi be any message which is a best response to that belief. Then mi 2 SMi (�i), implying

that

kg (mi;m�i)� f (�i; ��i)k � ". (14)

In particular, by the best response property of mi:

ui (g (mi;m�i) ; (�i; ��i)) � ui
�
g
�
m0
i;m�i

�
; (�i; ��i)

�
. (15)

Now (13) and lemma 2 imply

��ui �g �m0
i;m�i

�
; (�i; ��i)

�
� ui

�
f
�
�0i; ��i

�
; (�i; ��i)

��� � "C; (16)

11Dasgupta, Hammond, and Maskin (1979) and Ledyard (1979) argued in a private value environment that dom-

inant strategy incentive compatibility was implied by Bayesian incentive compatibility for all priors on a �xed type

space. In the case of a social choice function, this argument - generalized to interdependent values - shows the

necessity of ex post incentive compatibility (see Bergemann and Morris (2005c)).
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and (14) and lemma 2 imply

jui (g (mi;m�i) ; (�i; ��i))� ui (f (�i; ��i) ; (�i; ��i))j � "C: (17)

Now combining (15), (16) and (17), we obtain

ui (f (�i; ��i) ; (�i; ��i)) � ui
�
f
�
�0i; ��i

�
; (�i; ��i)

�
� 2"C.

But virtual implementation implies that this holds for all " > 0, so we have

ui (f (�i; ��i) ; (�i; ��i)) � ui
�
f
�
�0i; ��i

�
; (�i; ��i)

�
,

and this establishes EPIC as necessary condition.

Next we establish robust measurability. Suppose that f is robustly virtually implementable.

Fix any " > 0. Since f is robustly virtually implementable, there exists a mechanismM" such that

m 2 SM"
(�)) kg (m)� f (�)k � ".

Now �x any ��i and m"
�i 2 SM

"

�i (��i). Also �x any �i � �0i, so by proposition 1, there exists m"
i 2

SM
"

i (�i) \ SM
"

i

�
�0i
�
. Now

g �m"
i ;m

"
�i
�
� f (�i; ��i)

 � " and
g �m"

i ;m
"
�i
�
� f

�
�0i; ��i

� � ".

Thus
f (�i; ��i)� f ��0i; ��i� � 2". This is true for each " > 0, so f (�i; ��i) = f ��0i; ��i�.

5.3 Su¢ ciency

We �rst describe the construction of a canonical mechanism that will be used to establish su¢ ciency.

Our construction follows the logic of Abreu and Matsushima (1992c), which in turn builds on Abreu

and Matsushima (1992b). In the mechanism we construct, each agent simultaneously announces

(i) a message in the maximally revealing mechanism described above; (ii) L announcements of

his payo¤ type. With probability close to 1
L , the outcome is chosen according the agents� lth

announcement of their payo¤ types in part (ii) of their messages. But with small probability, the

outcome is chosen according to the maximally revealing mechanism and their part (i) messages.

The mechanism then checks to see which agents were the ��rst�to �lie�, in the sense that his lth

report of his type is not consistent with the message he sent in the maximally revealing mechanism

and no other agent sent an inconsistent message in an �earlier� report. If an agent is not one of

the �rst to lie, then the agent is rewarded. For this part of the mechanism, we need an economic

property.
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De�nition 9 (Economic Property)

The uniform economic property is satis�ed if there exist a pro�le of lotteries, (zi)
I
i=1, such that, for

each i and �, ui (zi; �) > ui (y; �) and uj (y; �) � uj (zi; �) for all j 6= i.

Under the uniform economic property, there will exist a constant c0 such that

ui (zi; �) > ui (y; �) + c0 (18)

for all i and �.

In the canonical mechanism, part (i) announcements for the maximally revealing mechanism

are made as if the maximally revealing mechanism was being played as a stand alone mechanism

(since the probability of rewards can be chosen su¢ ciently small). An agent will never allow himself

to be one of the �rst to lie: sending a message that ensures that he is not the �rst to lie (given his

beliefs about others�strategies) will always strictly improve on his expected payo¤, since if others

are telling the truth, truth-telling is a weak best response by ex post incentive compatibility, and if

they are lying, for su¢ ciently large L, the reward will outweigh the cost of not lying in one round

of the mechanism.

We writeM� =
�
(M�

i )
I
i=1 ; g

�
�
for the maximally revealing mechanism. We use three numbers

in de�ning the canonical mechanism: c0 is the uniform lower bound on an agent�s utility gain from

having his uniformly preferred lottery rather than the central lottery; recall from lemma 2 that

C is an upper bound on payo¤ di¤erences in the environment; recall from lemma 4 whenever a

message is deleted in the iterated deletion process for the maximally revealing mechanismM�, it

is not even an �M�-best response to any conjecture. We will use these three numbers c0, C and

�M� , together with the number of players I, to de�ne two further numbers � and L that will be

used in the construction of the canonical mechanism. Choose � > 0 such that

� <
�M�

C
; (19)

and an integer L such that

L >
IC

�2c0
. (20)

Now the message space of the canonical mechanism is

Mi = M�
i �

L timesz }| {
�i � ::::��i = M�

i ��Li :

Thus a typical message will be written as mi =
�
m0
i ;m

1
i ; :::;m

L
i

�
, with m0

i 2M�
i ; m

l
i 2 �i for each

l = 1; :::; L. The idea is that an agent is �supposed� to truthfully report his payo¤ type in each
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round l = 1; :::; L and will receive a small punishment if he is one of the ��rst� to report a type

that is not consistent with his 0th message. The small individual rewards and punishments are

provided by

ri (m) =

8>>>>>><>>>>>>:
y, if

9k 2 f1; :::; Lg s.t. m0
i =2 SM

�
i

�
mk
i

�
;

and m0
j 2 SM

�
j

�
ml
j

�
8j = 1; ::; I and l = 1; :::; k � 1;

zi, otherwise.

(In slight abuse of notation, we use ri (m) here to denote rewards whereas we used rki earlier in

subsection 4.3.1). Now the outcome function of the canonical mechanism is:

g (m) =
�
1� � � �2

� 1
L

LX
l=1

f
�
ml
�
+ �g�

�
m0
�
+
�2

I

IX
i=1

ri (m) .

The mechanism g (m) has three components. The �rst component, which carries the largest

probability, is the social choice function f itself. The appropriate allocation f
�
ml
�
will be selected

by L replicas, each one of which is chosen with a small probability 1=L. The second component is

the maximally revealing mechanism outcome function g� which receives a smaller weight of �. The

third and �nal component, ri (m), represents a small reward or punishment. It is designed to give

each agent an incentive to replicate in strip l the report issued in the previous strips. It provides

a small �punishment� (y) if player i is the �rst to report in the message component, ml
i, a type

inconsistent with previous reports, otherwise ri (m) provides the small �reward�(zi).

Theorem 3 Under the uniform economic property, if f satis�es EPIC and robust measurability,

then the canonical mechanism � (1 + �) robustly virtually implements f .

This immediately implies the su¢ ciency part of our characterization of robust virtual imple-

mentation, since we can choose � arbitrarily close to 0 in the canonical mechanism.

Corollary 1 (Su¢ ciency) Under the uniform economic property, if f satis�es EPIC and robust

measurability, then f is robustly virtually implementable.

Proof. To prove the theorem, it is enough to establish that, for each i, mi =
�
m0
i ;m

1
i ; :::;m

L
i

�
2

SMi (�i) implies that (1) m0
i 2 SM

�
i (�i) and (2) m0

i 2 SM
�

i

�
ml
i

�
for each l = 1; :::; L. To see why,

observe that m0
i 2 SM

�
i (�i)\SM

�
i

�
ml
i

�
implies �i is strategically indistinguishable from ml

i, which
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implies, by robust measurability, that f
�
ml
i;m

l
�i
�
= f

�
�i;m

l
�i
�
. Since this holds for each i, we

have f
�
ml
�
= f (�). Since this is true for each l, we have that the mechanism selects f (�) with

probability at least 1� � � �2.
Claim (1) above - that

�
m0
i ;m

1
i ; :::;m

L
i

�
2 SMi (�i) ) m0

i 2 SM
�

i (�i) - follows from lemma 5

and inequality (19), since m0 in�uences the outcome only through weight � on g�
�
m0
�
and weight

�2 on 1
I

IP
i=1
ri (m).

We will now establish claim (2) above - that
�
m0
i ;m

1
i ; :::;m

L
i

�
2 SMi (�i) ) m0

i 2 SM
�

i

�
ml
i

�
for

all i and l = 1; :::; L.

Suppose this claim were false. Then there must exist a smallest l for which the claim fails.

There there exists l� 2 f1; :::; Lg such that, for all j, mj 2 SM
�

j (�j) ) m0
j 2 SM

�
j

�
ml
j

�
for all

1 � l < l�; but there exists i and mi =
�
m0
i ;m

1
i ; :::;m

L
i

�
2 SMi (�i) with m0

i =2 SM
�

i

�
ml�
i

�
. Now �x

any conjecture �i 2 �(��i �M�i) with �i (��i;m�i) > 0) mj 2 SMj (�j) for all j 6= i. Consider
two cases. First, suppose that

�i (��i;m�i) > 0 ) m0
j 2 SM

�
j

�
ml
j

�
for all j 6= i and l = 1; :::; L. (21)

In this case, sending the message

mi = (m
0
i ;

L timesz }| {
�i; �i; :::; �i)

instead of mi will strictly increase i�s utility: since he is certain that each agent is reporting a type

that is strategically indistinguishable in each of the L strips, EPIC and robust measurability ensure

that his utility will not decrease from truthtelling in the L strips; his utility will be unchanged in

the maximally revealing mechanism; and his utility will be strictly increased in the punishment

component. Secondly, i�s conjecture �i is such that (21) fails. In this case, we can de�ne

bl = minnl 2 f1; :::; Lg : 9 (��i;m�i) with �i (��i;m�i) > 0 and m0
j =2 SM

�
j

�
ml
j

�
for some j 6= i

o
.

Note that bl � l�. Now sending the message
mi = (m

0
i ;

bl timesz }| {
�i; �i; :::; �i;m

bl+1
i ; :::;mL

i )

instead of mi will strictly increase i�s utility: since he is certain that each agent is reporting a type

that is strategically indistinguishable in each of the �rst bl�1 strips, EPIC and robust measurability
ensure that his utility will not decrease from truthtelling in the �rst bl � 1 strips; his utility will be
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unchanged in the maximally revealing mechanism; if it turns out that m0
j 2 SM

�
j

�
m
bl
j

�
for some

j 6= i, then i�s utility will also not be reduced in the bl�th strip or in the punishment component; but
if it turns out that m0

j =2 SM
�

j

�
m
bl
j

�
for all j 6= i, then i�s utility will be reduced in the bl�th strip

by at most
�
1� � � �2

�
1
LC and will increase in his own punishment component ri (�) by at least

�2

I c0 (and by the economic property, will not decrease in his opponents�punishment components

r�i (�)). The second term exceeds the �rst term by (20).

We conclude that for no conjecture is mi a best response, contradicting our original assumption.

This proves our second claim.

While the basic construction of this proof follows Abreu and Matsushima (1992c), there are

some complications that arise in our robust formulation. The messages sent in the maximally

revealing mechanism do not partition an agent�s types. Rather, for each set of types that survives

the iterated deletion of sets that can always be separated, there is a message that may be sent by

all types in that set. So we say that message ml
i is consistent with m

0
i if message m

0
i is one that

might be sent by m0
j 2 SM

�
i

�
ml
i

�
.

The economic property can weakened along the lines of assumption 2 in Abreu and Matsushima

(1992c). It would be enough to have that the economic property holds for any type set pro�le 	

in the inseparable type set ��, i.e. for each set pro�le 	 = (	i)
I
i=1 2 ��, there exists (zi)

I
i=1, such

that, for each i and � 2 �Ii=1	j ; ui (zi; �) > ui (y; �) and uj (y; �) � uj (zi; �) for all j 6= i.

6 Discussion

6.1 Intermediate Robustness Notions

The classic Bayesian implementation literature considers implementation on a �xed type space.

We believe that this approach - as usually formulated - assumes too much common knowledge

(among the agents and the planner) about the environment. In relaxing these common knowledge

assumptions, we take an extreme approach: we maintain the assumption that there is common

knowledge of the payo¤ structure of the environment (i.e., the set of possible payo¤ types of each

agent and how each agent�s utility function depends on the pro�le of payo¤ types) but do not

restrict agents�beliefs and higher order beliefs about other agents�types.

In a recent paper, Artemov, Kunimoto, and Serrano (2008) consider what happens to robust

virtual implementation results if one imposes some restrictions on agents� beliefs in the payo¤

environment. In particular, call a pair (�i; �i) 2 �i ��(��i) a "pseudo-type" and suppose that
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we add the common knowledge that agent i�s pseudo-type (�i; �i) belongs to a subset Ti � �i �
�(��i). When can a social choice function be virtually implemented on all type spaces where

each agent i�s pseudo-type belongs to Ti? Note that an agent�s pseudo-type pins down his payo¤

type and belief about others�payo¤ types, but not his higher order beliefs. Thus this assumption

is intermediate between the standard approach and our robustness approach. In the special case

where Ti = �i��(��i), this setting becomes the setting of this paper. But if Ti is a strict subset
of �i ��(��i), the conditions for robust virtual implementation will be weakened.

Now say that "pseudo-type diversity" is satis�ed if

1. The set of beliefs consistent with a payo¤type is a compact set, i.e., f�i 2 �(��i) j (�i; �i) 2 Tig
is a compact set for each i and �i 2 �i.

2. Two distinct payo¤ types cannot have the same preference over constant lotteries, i.e.,

(�i; �i) ;
�
�0i; �

0
i

�
2 Ti and �i 6= �0i ) R�i;�i 6= R�0i;�0i .

Artemov, Kunimoto, and Serrano (2008) show that if pseudo-type diversity is satis�ed, then

robust virtual implementation will always be possible if the appropriate incentive compatibility

conditions are satis�ed (their Theorem 1). The idea is that agents� payo¤ types can then be

identi�ed by their preferences over constant lotteries and the Abreu and Matsushima (1992c)-style

argument applied.12

To get a feel for the strength of the pseudo-type diversity condition, we can return to our leading

example in section 3. Recall that each �i = [0; 1] and vi = �i + Ei(
X
j 6=i

�j) is a su¢ cient statistic

for agent i�s preferences. Now let �i � �
�
[0; 1]I�1

�
be a compact set of beliefs over others�types

that agent i may have (whatever his payo¤ type), so his set of possible pseudo-types is the product

set Ti = [0; 1]� �i. Now if 0 <  � 1
I�1 , so there is not too much interdependence of preferences,

pseudo-type diversity will be satis�ed if and only if each �i is a singleton.13

12Artemov, Kunimoto, and Serrano (2008) actually assume a slightly stronger version of pseudo-type diversity:

they assume that each Ti is �nite and that distinct pseudo-types have distinct preferences over constant lotteries

even if they correspond to the same payo¤ type, i.e., (�i; �i) ; (�0i; �
0
i) 2 Ti and (�i; �i) 6= (�0i; �

0
i) ) R�i;�i 6= R�0i;�0i .

But the weaker version we report will also be su¢ cient, since it is not necessary to distinguish pseudo-types with the

same payo¤ type.
13This example has a continuum of payo¤ types, so does not �t our formal framework. But we could make the

same point with a �nite grid of payo¤ types.
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Artemov, Kunimoto, and Serrano (2008) also report the appropriate measurability condition re-

quired for robust virtual implementation if the pseudo-type diversity condition fails (their De�nition

12 and Theorem 2). This will naturally be intermediate between Abreu-Matsushima measurability

and our robust measurability condition. We can illustrate this also with our example. Suppose

that the probability that agent i assigns to any subset of other agents�payo¤ types is always at

least 1� � times the probability of that event under a uniform prior, so that

�i =

8>><>>:�i 2 �(��i)
��������
�i (E) � (1� �)

Z
��i2E

d��i

for each measurable E � [0; 1]I�1

9>>=>>;
and Ti = �i � �i.

Now suppose that agent i�s payo¤ type is in 	i and he knows that other agents�payo¤ types

are in 	�i. If agent i�s beliefs are restricted to belong to �i, when do there exist a pair of payo¤

types in 	i who could not have the same expected valuation of the object? Only if

max	i + 
X
j 6=i

�
(1� �) 1

2
+ �min	j

�
> min	i + 

X
j 6=i

�
(1� �) 1

2
+ �max	j

�
.

Thus 	�i "�-separates" 	i if and only if

max	i �min	i � �
X
j 6=i

(max	j �min	j) .

Now the argument of section 3 can be adapted to show that if � < 1
I�1 , all payo¤ types will be

strategically distinguishable (under � belief restrictions) and thus incentive compatibility will be

su¢ cient for robust virtual implementation. And if � > 1
I�1 , no payo¤ types will be strategically

distinguishable (under � belief restrictions) and robust virtual implementation will be impossible

for any (non-constant) social choice function.

6.2 Rationalizability and All Equilibria on All Type Spaces

Our analysis took as given the solution concept of incomplete information rationalizability for our

environment. Thus we assumed that if the agents�true payo¤ type pro�le was

� = (�1; :::; �I) ,

they might send any message pro�le

m � (m1; :::;mI) 2
I
�
i=1
SMi (�i) � SM (�) .
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Our motivation for employing this solution concept is that we did not want to make any assumption

about agents�beliefs and higher order beliefs about other agents�payo¤ types. In fact, suppose one

constructed a �type space�T specifying for each agent a set of possible epistemic types, and, for

each epistemic type, a description of his (known) payo¤ type and his beliefs about others�epistemic

types. By standard universal type space arguments, we can incorporate any beliefs and higher order

beliefs about others�payo¤ types in such a type space. Now the type space T and a mechanismM
together de�ne a standard incomplete information game. The set of messages that can be sent by

any type of agent i with payo¤ type �i in any Bayesian Nash equilibrium of the game (T ;M) for

any type space T is equal to SMi (�i). This result is the straightforward incomplete information

extension of the classic epistemic foundations result of Brandenburger and Dekel (1987), showing

that the set of actions that can be played in the subjective correlated equilibria of a complete

information game equals the set of actions that survive iterated deletion of strictly dominated

actions in that game. Battigalli and Siniscalchi (2003) reported the incomplete information version

of this result as Propositions 4.2 and 4.3. For completeness, we formally state and prove this result

in the appendix of the working paper version (Bergemann and Morris (2007)).

This observation means that the gap between the solution concepts of pure strategy Bayesian

Nash equilibrium (Serrano and Vohra (2001), Serrano and Vohra (2005)) and iterated deletion of

(interim) strictly dominated strategies (Abreu and Matsushima (1992c)) in incomplete information

virtual implementation disappears in our robust approach.14 We consider this to be an attraction

of our approach. The intuition is that the extra bite obtained by the assumption of equilibrium is

lost without complementary strong assumptions on beliefs and higher order beliefs for the imple-

mentation problem.

6.3 Iterated Deletion of Weakly Dominated Strategies

Our incomplete information rationalizability solution concept is equivalent to iterated deletion of

strictly dominated strategies. What would happen if we looked at iterated deletion of weakly

14Abreu and Matsushima (1992c) showed that their measurability condition was necessary for virtual implementa-

tion in mixed strategy Bayesian Nash equilibrium restricting attention to well-behaved mechanisms. But it remains an

open question whether the measurability condition is necessary for virtual implementation in pure strategy Bayesian

Nash equilibrium restricting attention to well-behaved mechanisms (see Serrano and Vohra (2005)).
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dominated strategies instead? In other words, we let WM;0
i (�i) =Mi,

WM;k+1
i (�i) =

8>>>>>>>>>><>>>>>>>>>>:
mi 2WM;k

i (�i)

����������������

9 �i 2 �++ (��i �M�i) s.t.:

(1) �i (��i;m�i) > 0) m�i 2WM;k
�i (��i)

(2) mi 2 argmax
m0
i

X
��i;m�i

�i (��i;m�i)ui (g (m0
i;m�i) ; (�i; ��i))

9>>>>>>>>>>=>>>>>>>>>>;
;

and

WM
i (�i) =

\
k�0

WM;k
i (�i) :

It is easy to see that our �negative�results would go through unchanged. If two types are pairwise

inseparable (�i � �0i) then the argument of proposition 1 - unchanged - implies that they will have
iteratively weakly undominated actions in common in every mechanism, or

WM
i (�i) \WM

i

�
�0i
�
6= ? for allM:

Thus robust measurability is a necessary condition for implementation (virtual or exact) of any

social choice function in iterated deletion of weakly dominated strategies in a �nite (or compact)

mechanism: the argument of proposition 2 will go through unchanged in this case.

Abreu and Matsushima (1994) show their argument for virtual complete information implemen-

tation in iterated deletion of strictly dominated strategies can be adapted to show the possibility

of exact complete information implementation in iterated deletion of weakly dominated strategies,

with some extra restrictions on the environment. It is a reasonable conjecture that this exten-

sion could be adapted to the standard incomplete information implementation setting of Abreu

and Matsushima (1992c) and our robust incomplete information setting. However, we have not

attempted this extension.

Chung and Ely (2001) have shown that in an auction environment with interdependent valu-

ations as in section 3, the e¢ cient outcome can be implemented in the direct mechanism under

iterated deletion of weakly dominated strategies (i.e., the solution concept described above) under

the assumption that  < 1
I�1 . Our results supply a strong converse: if  �

1
I�1 , it is not possible to

implement (exactly or virtually) any non-trivial social choice function in iterated deletion of weakly

dominated strategies in any �nite (or compact) mechanism, direct or indirect.15

15Our results are stated for a lottery space over �nite outcomes, but the extension to any compact space and

compact mechanisms is straightforward.
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6.4 Implementation in a Direct Mechanism

We restricted attention in this paper to �nite mechanisms. Thus the mechanisms here do not

include any of the pathological features of �integer games�that play an important role in the full

implementation literature and have been much criticized (see, e.g., Jackson (1992)). Nonetheless,

the mechanisms in this paper are complex. The canonical mechanism for robust virtual implemen-

tation inherits the complexity of the mechanism of Abreu and Matsushima (1992c), on which it

builds. Our maximally revealing mechanism generating strategic distinguishability is no simpler.

While the mechanisms are theoretically kosher, it has been argued that their complexity and the

logic of the iteration deletion in the mechanism might make them hard to use in practise. For

example, Glazer and Rosenthal (1992) have made this argument about the mechanism used by

Abreu and Matsushima (1992b) for complete information virtual implementation (see Abreu and

Matsushima (1992a) for a response and Sefton and Yavas (1996) for later experiments inspired by

the mechanism).

By requiring robustness to agents�beliefs and higher order beliefs, we reduce the amount of

common knowledge about the environment that can be used by the planner in designing a mecha-

nism. This will make it harder to achieve positive results (and our robust measurability condition

is rather strong in applications). But one motivation for studying robust implementation is that we

hope that robustness considerations will endogenously lead to simpler mechanisms when positive

results can be achieved. By adapting results from our earlier work on exact robust implementation

in direct mechanisms (Bergemann and Morris (2005a)), we can report that, in at least one broad

class of economic environments of interest, whenever robust virtual implementation is possible ac-

cording to corollary 1, it is possible in a direct mechanism where agents simply report their payo¤

types.

This result can be nicely illustrated in the environment with interdependent valuations for a

single good of section 3. Recall that if  � 1
I�1 , all pairs of types are pairwise inseparable, so - by

this paper�s theorem 1 - all pairs of types are strategically indistinguishable, and - by this paper�s

theorem 2 - robust virtual implementation of any non-trivial social choice function is impossible

in any mechanism. However, it turns out if  < 1
I�1 , not only does there exist a �nite mechanism

that robustly virtually implements the e¢ cient allocation, there is in fact a direct mechanism -

where each agent�s message space is his set of payo¤ types - that does so. To see why, �rst observe

that there is a well-known simple mechanism that allocates the object e¢ ciently as a function of
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agents�reports of their types. Each agent makes a report bi about his payo¤ type �i. The object

is awarded to the highest bidder who must pay the �pivotal�value

max
j 6=i

fbjg+ 
X
j 6=i

bj . (22)

Truth-telling is ex post incentive compatible in this mechanism; i.e., if you are sure that others will

bid truthfully, you have an incentive to bid truthfully whatever you think that others will bid. It is

straightforward to modify this direct revelation mechanism to one that virtually allocates the object

e¢ ciently with strict ex post incentive compatibility. With probability 1� ", allocate the object to
the highest bidder; but with probability ", there is a random allocation rule where one of the agents

is chosen with probability 1
I and he is given the object with probability bi (independently of others�

bids). If bidder i receives the object as the highest bidder, he must pay the pivotal value (22); if he

receives the object under the random allocation rule, he must pay 1
2bi + 

X
j 6=i

bj . Truth-telling is

strictly ex post incentive compatible in this mechanism and the object is allocated e¢ ciently with

probability at least 1� ". Bergemann and Morris (2005a) establish that - if  < 1
I�1 - truth-telling

is the unique rationalizable message in this mechanism.16

This observation generalizes to an economically intuitive class of environments. Preferences

satisfy aggregator single crossing (ASC) if each agent i�s preferences at type pro�le � belong to a

single crossing class parameterized by hi (�), where hi : �! R is a monotonic aggregator. Berge-

mann and Morris (2005a) established that exact robust implementation by a compact mechanism

is possible if and only if the social choice function satis�es strict ex post incentive compatibility and

a contraction property on the aggregator functions h = (h1; :::; hI). In the appendix of the working

paper version, we show that under the ASC assumption, robust measurability is always satis�ed

under the contraction property.

6.5 Exact Implementation and Integer Games

The �rst papers on incomplete information implementation focussed on exact implementation.

Postlewaite and Schmeidler (1986) and Jackson (1991) identi�ed a Bayesian monotonicity condition

which (together with Bayesian incentive compatibility) was necessary and (under weak economic

conditions) su¢ cient for exact implementation in Bayesian Nash equilibrium. Bergemann and

16Chung and Ely (2001) earlier noted that the e¢ cient outcome was the only one surviving iterated deletion of

weakly dominated strategies in the original fully e¢ cient auction without the modi�cation to generate strict EPIC.
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Morris (2005b) provide a robust analogue of this result, showing that ex post incentive compatibility

and a robust monotonicity condition are necessary and - under weak economic conditions - su¢ cient

for exact robust implementation. All these papers follow a tradition in the implementation literature

of allowing very badly behaved mechanisms, like integer games, in proving their general results. In

this paper, we follow Abreu and Matsushima (1992c) in restricting attention to �nite - and thus

well-behaved - mechanisms. We brie�y discuss the relation between these results in this section:

a more complete and formal discussion in contained in the appendix of the working paper version

(Bergemann and Morris (2007)).

Robust measurability and robust monotonicity turn out to be equivalent in the important class

of aggregator single crossing preferences. However, in general, one can show by example that robust

measurability neither implies nor is implied by robust monotonicity. Thus requiring only virtual

implementation is sometimes a strict relaxation; and allowing badly-behaved mechanisms is some-

times a strict relaxation. We do not have a characterization of when exact robust implementation

by a well behaved mechanism is possible (just as analogous characterizations do not exist for com-

plete information and classical Bayesian implementation). We know only that robust measurability,

robust monotonicity and strict ex post incentive compatibility will all be necessary.

We restrict attention in our analysis to social choice functions rather than social choice cor-

respondences. Bergemann and Morris (2005c) considered the problem of partially robustly im-

plementing a social choice correspondence, i.e., ensuring that whatever players�beliefs and higher

order beliefs about others�types, there is an equilibrium leading to outcomes contained in the so-

cial choice correspondence. In the special case where the social choice correspondence is a function

(and more generally in a class of separable environments), this is possible only if the function (or

a selection from the correspondence in separable environments) is ex post incentive compatible.

But in the general case, we do not have a satisfactory characterization of when partial robust im-

plementation is possible. For this reason, we have not even attempted a characterization of (full)

robust implementation of social choice correspondences.
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7 Conclusion

In an environment with interdependent preferences we introduced a notion of strategic distin-

guishability by saying that two payo¤ types of an agent can be distinguished if they have disjoint

rationalizable actions in some �nite game for all possible beliefs and higher order beliefs about

others�types. Conversely, a pair of payo¤ types are strategically indistinguishable if in every game,

there exists some action which each type might rationally choose given some beliefs and higher

order beliefs. We provided an exact and insightful characterization of strategic distinguishability.

The notion of strategic distinguishability is related to the idea of incentive compatibility in the

context of information revelation in a mechanism. The di¤erence between distinguishability and

incentive compatibility arises from the two central features of strategic distinguishability. First, we

say that two payo¤ types can be strategically distinguished if there exists some mechanism and

hence some outcome function for which the types have disjoint rationalizable actions. In contrast,

the analysis of incentive compatibility is typically concerned with a speci�c mechanism and hence

a speci�c outcome function. Second, strategic distinguishability requires that the two payo¤ types

display disjoint rationalizable actions for all possible beliefs and higher order beliefs. In contrast,

the analysis of incentive compatibility is typically concerned with a �xed and common prior belief

of the agents.

Despite this distinct perspective suggested by the notion of strategic distinguishability, we then

showed that strategic distinguishability plays an important and natural role in the robust version

of virtual implementation. By virtual implementation of a social choice function f , we require that

a given social choice function is only realized with probability 1 � " for every " > 0. The link

between strategic distinguishability and virtual implementation is established by the remaining

" probability. Here we are allowed to select an arbitrary outcome function, and in particular an

outcome function which can identify strategically distinguishable types. Consequently, we show that

a social choice function can be virtually implemented for all possible beliefs and higher order beliefs,

i.e. it is robustly virtually implementable if and only if the social choice function is measurable

which respect to strategically distinguishable types.
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8 Appendix

The appendix contains omitted proofs from the main body of the paper.

Proof of Lemma 1. Suppose thatX
��i2��i

�i (��i)ui (y; (�i; ��i)) �
X

��i2��i

�i (��i)ui (x; (�i; ��i)) (23)

for all x 2 X. If X
��i2��i

�i (��i)ui (y; (�i; ��i)) >
X

��i2��i

�i (��i)ui
�
x0; (�i; ��i)

�
for some x0 2 X, we could conclude, thatX

��i2��i

�i (��i)ui (y; (�i; ��i)) >
1

N

X
x2X

X
��i2��i

�i (��i)ui (x; (�i; ��i))

=
X

��i2��i

�i (��i)ui (y; (�i; ��i)) ,

a contradiction. So (23) impliesX
��i2��i

�i (��i)ui (y; (�i; ��i)) =
X

��i2��i

�i (��i)ui (x; (�i; ��i)) (24)

for all x 2 X. But (24) implies that R�i;�i is indi¤erent between all pure outcomes and thus all
lotteries. This contradicts assumption 1 on non-degeneracy. We conclude that the non-degeneracy

assumption implies that (23) fails for all i, i.e., that for all i, �i 2 �i and �i 2 �(��i), there exists
x 2 X such that X

��i2��i

�i (��i)ui (x; (�i; ��i)) >
X

��i2��i

�i (��i)ui (y; (�i; ��i)) . (25)

Now suppose that the conclusion of the lemma fails, so that for all " > 0, there exists i, �i 2 �i
and �i 2 �(��i) such thatX

��i2��i

�i (��i)ui (x; (�i; ��i)) �
X

��i2��i

�i (��i)ui (y; (�i; ��i)) + ":

Thus there exists i and �i 2 �i such that for each " > 0, there exists �"i 2 �(��i) such thatX
��i2��i

�"i (��i)ui (x; (�i; ��i)) �
X

��i2��i

�"i (��i)ui (y; (�i; ��i)) + ";
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for all x 2 X. The sequence �"i has a convergent subsequence with limit ��i andX
��i2��i

��i (��i)ui (x; (�i; ��i)) �
X

��i2��i

��i (��i)ui (y; (�i; ��i)) ;

for all x 2 X. This contradicts (25).�

Proof of Lemma 4. Fix any mi =2 SMi (�i). Then there exists k such that mi 2 SM;k
i (�i) and

mi =2 SM;k+1
i (�i). Consider

�ki =
n
�i 2 �(��i �M�i)

����i (��i �m�i) > 0) m�i 2 SM;k
�i (��i) for each j 6= i

o
.

For all �i 2 �ki , there exists mi such thatX
��i;m�i

�i (��i;m�i)ui (g (mi;m�i) ; (�i; ��i)) >
X

��i;m�i

�i (��i;m�i)ui (g (mi;m�i) ; (�i; ��i)) .

By compactness of �ki , there exists "i (mi) > 0 such that for all �i 2 �ki there exists mi such thatX
��i;m�i

�i (��i;m�i)ui (g (mi;m�i) ; (�i; ��i))

>
X

��i;m�i

�i (��i;m�i)ui (g (mi;m�i) ; (�i; ��i)) + "i (mi) .

Now let

�M = min
i; �i and mi =2SMi (�i)

"i (mi) ;

which establishes the desired bound.�

Proof of Lemma 5. Suppose �+C � �0�M0 . We will argue, by induction on k, that�
m0
i ;m

1
i

�
2 SM;k

i (�i)) m0
i 2 S

M0;k
i (�i)

for all k � 0. This is true by de�nition for k = 0; suppose that it is true for k. Now suppose that
m0
i =2 S

M0;k+1
i (�i) but

�
m0
i ;m

1
i

�
2 SM;k+1

i (�i) and so
�
m0
i ;m

1
i

�
2 SM;k

i (�i) and - by the inductive

hypothesis - m0
i 2 S

M0;k
i (�i). Now �x any �i 2 �(��i �M�i) satisfying

�i

�
��i;

�
m0
j ;m

1
j

�
j 6=i

�
> 0)

�
m0
j ;m

1
j

�
j 6=i 2 S

M;k
�i (��i)) m0

�i 2 S
M0;k
�i (��i) .

Let

�i
�
��i;m

0
�i
�
=

X
(m1

j)j 6=i2M
1
�i

�i

�
��i;

�
m0
j ;m

1
j

�
j 6=i

�
.
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By lemma 4, there exists m0
i such that:X

��i;m0
�i

�i
�
��i;m

0
�i
�
ui
�
g0
�
m0
i ;m

0
�i
�
; (�i; ��i)

�
�

X
��i;m0

�i

�i
�
��i;m

0
�i
�
ui
�
g0
�
m0
i ;m

0
�i
�
; (�i; ��i)

�
> �M0 .

Thus X
��i;m�i

�i (��i;m�i)ui
�
g
��
m0
i ;m

1
i

�
;m�i

�
; (�i; ��i)

�
�

X
��i;m�i

�i (��i;m�i)ui
�
g
��
m0
i ;m

1
i

�
;m�i

�
; (�i; ��i)

�
> �0�M0 � �+C � 0.

This contradicts our premise that
�
m0
i ;m

1
i

�
2 SM;k+1

i (�i). We conclude that�
m0
i ;m

1
i

�
2 SM;k+1

i (�i)) m0
i 2 S

M0;k+1
i (�i) :�

Proof of Proposition 3. The canonical mechanism asks each agent to make a series of binary

choices between the central lottery �y and a speci�c lottery y from the test set. If the test set is

to be successful in eliciting the private information from agent i, then the test set should contain

a su¢ cient number of allocations such that for every type �i and every belief �i of agent i there

exists some allocation y that is strictly preferred to the central lottery �y.�

Lemma 8 (Duality)

Type set pro�le 	�i separates 	i if and only if there exists ey : 	i ! Y such thatX
�i2	i

(ey (�i)� y) = 0; (26)

and ey (�i)P�i;�i y; (27)

for all �i 2 	i and all �i 2 �(	�i).

This result says that for each �i 2 	i, we can identify a direction in the lottery space, ey (�i)�y,
that agent i likes whatever his beliefs about 	�i, such that the sum of those changes add up to

zero. The lemma follows from the following duality result in Samet (1998):

41



Proposition 4 (Samet (1998))

Let V1; :::; VL be closed, convex, subsets of the N -dimensional simplex �N . These sets have an

empty intersection if and only if there exist z1; ::::; zL 2 RN such that

LX
l=1

zl = 0;

and

v � zl > 0, for each l = 1; :::; L and v 2 Vl:

This result was introduced in Samet (1998) in order to provide a simple proof of the observation

that asymmetrically informed agents will trade against each other if and only if they do not share

a common prior, i.e., their posterior beliefs could not have been derived by updating a common

prior.17 Suppose that there are N states and L agents. Each agent l observes one of a collection

of signals about the true state. Each signal leads him to have a posterior v 2 �N over the states.

Let Vl be the convex hull of his set of possible posteriors. Notice that Vl represents the set of prior

beliefs he might have held over the state space before observing his signal. Thus posterior beliefs

are consistent with a common prior if and only if the intersection of the Vl sets is non-empty. Now

consider a multilateral bet specifying that if state n was realized, agent l will receive payment zln

where the total payments sum to zero:

LX
l=1

zln = 0 for all n:

Writing zl = (zln)
N
n=1, we then have

LX
l=1

zl = 0:

There exists such a bet where every agent has a strictly positive expected value from accepting the

bet conditional on every signal if v � zl > 0, for each l = 1; :::; L and v 2 Vl.

Proof of Lemma 8. By de�nition, type set pro�le 	�i separates 	i if, for every R 2 R, there
exists �i 2 	i such that R�i;�i 6= R for every �i 2 �(	�i). Write

X = fx1; x2; :::; xNg ;�i =
�
�1i ; �

2
i ; :::; �

L
i

	
, and ��i =

�
�1�i; �

2
�i; :::; �

M
�i
	
; with M = LI�1.

The vector

vlm =
�
ui

�
xn;
�
�li; �

m
�i

���N
n=1

;

17This converse to the no trade theorem was originally proved by Morris (1994), by a more indirect duality argument.
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is an element of RN . Without loss of generality (since expected utility preferences can be represented

by any a¢ ne transformation), we can assume that each vlm is an element of the N dimensional

simplex �N . Now (vlm)
M
m=1 is a collection of M elements of �N , and the set of preferencesn

R�li;�i
: �i 2 �(	�i)

o
,

are represented by the convex hull of (vlm)
M
m=1, which we write as

Vl = conv
�
(vlm)

M
m=1

�
� �N :

Thus 	�i separates 	i exactly if
L\
l=1

Vl = ?.

By proposition 4, this is true if and only if there exist z1; ::::; zL 2 RN such that

LX
l=1

zl = 0; (28)

and
NX
n=1

vnzln > 0; (29)

for each l and v 2 Vl. But if (zl)Ll=1 satisfy (28) and (29), we may choose " > 0 su¢ ciently small
such that ey ��li� = y + "zl 2 Y for each l;

and we have established (26) and (27).

Conversely, if (26) and (27) hold and we set zl = ey ��li�� y for l = 1; :::; L, then (zl)Ll=1 satisfy
(28) and (29).�

We now use lemma 8 to show how, if 	�i separates 	i, we can construct a �nite set of lotterieseYi (	i;	�i) � Y such that knowing that agent i knows that his opponent�s type is in 	�i and

knowing his preferences on eYi (	i;	�i) will always be enough to rule out at least one type in 	i
for agent i.

Lemma 9 If 	�i separates 	i, then there exists a �nite set eYi (	i;	�i) � Y , such that for each
�i 2 	i and �i 2 �(	�i), there exists y 2 eYi (	i;	�i) such that

yP�i;�iy; (30)

43



and for some �0i 2 	i,
yP�0i;�0i y; (31)

for all �0i 2 �(	�i).

Proof. By lemma 8, there exists ey : 	i ! Y such thatX
�i2	i

(ey (�i)� y) = 0;
and ey (�i)P�i;�iy for all �i 2 	iand �i 2 �(	�i) :
Let eYi (	i;	�i) = fey (�i)g�i2	i . Fix �i 2 	i and �i 2 �(	�i). Write eYi (	i;	�i) = �y1; :::; yK	,
with y1 = ey (�i). Let y0 = y and

yl = y + "
lX

�=1

(y� � y) ;

with " > 0 chosen su¢ ciently small such that yl 2 Y for all l = 1; :::;K. We know y1 P�i;�i y
0.

Suppose yl+1 R�i;�i y
l for all l = 1; :::;K � 1. By transitivity, this would imply that:

yK P�i;�i y
0:

But yK = y0, so we have a contradiction. We conclude that, for some l = 1; :::;K � 1, yl P�i;�i
yl+1. This implies that there exists �0i such that

y P�i;�i y
�
�0i
�
.

Since

y
�
�0i
�
P�0i;�0i y for all �

0
i 2 �(	�i) ,

the inequalities (30) and (31) are established.

Now we will construct a large enough �nite set of lotteries (the �test set�) such that knowing

just an agent�s most preferred outcome on the test set will always reveal enough information about

his preferences to separate out a type, if it is possible to do so. This will establish the proof of

proposition 3.

Proof of Proposition 3. Our proof is constructive. We �rst construct a set eY consisting of the
degenerate lotteries X and the eYi (	i;	�i) sets constructed in lemma 9, for every triple (i;	i;	�i)
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with 	�i separating 	i. Knowing an agent�s ranking of each element of eY relative to the central

lottery y would reveal all the information we need to extract. In order to extract this information

in a single choice, we let the agent pick f : eY ! f0; 1g. For each y 2 eY , y is chosen with probability
1=eY if f (y) = 1, otherwise the central lottery y is chosen. We let Y � be the set of all such lotteries.
Now observing an agent�s most preferred outcome in Y � reveals his binary preference between y

and each element of eY . Since eY contains each eYi (	i;	�i), this will ensure part (2). Since eY
contains degenerate lotteries, the agents will have strict preferences ensuring part (1).

Let eY = X [
[

f (i;	i;	�i)j	�i separates 	ig

eYi (	i;	�i) .
Now for any f : eY ! f0; 1g, let yf be the lottery obtained by picking an element y 2 eY with

uniform probability and then choosing lottery y if f (y) = 1 and y if f (y) = 0. Thus we de�ne:

yf � y +
1

#eY X
y2eY

f (y) (y � y) :

Let Y � be the set of such lotteries, i.e.,

Y � =
n
y 2 Y

���9f : eY ! f0; 1g such that y = yf
o
.

To prove part (1) of the proposition, �x any �i 2 �i and �i 2 �(��i). By lemma 1, there
exists x 2 X � eY such that xP�i;�iy; now let

f0 (y) = 0, for all y 2 eY ;
and

f� (y) =

8<: 0, if y 6= x;
1, if y = x:

So we can write:

yf0 = y; yf� = y +
1

#eY (x� y)
and so yf0 =2 BY

�
i (�i; �i).

To prove part (2) of the proposition, suppose that 	�i separates 	i. Fix �i 2 	i and �i 2
�(	�i). By lemma 9, there exists y 2 eYi (	i;	�i) and �0i 2 	i such that y P�i;�i y and y P�0i;�0i y
for all �0i 2 �(	�i). So

yf 2 BY
�

i (�i; �i)) f (y) = 0;
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while

yf 2 BY
�

i

�
�0i;	i

�
) f (y) = 1,

and so

BY
�

i (�i; �i) \BY
�

i

�
�0i;	i

�
= ?;

which establishes the result.�
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