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Abstract

Slowly varying regressors are asymptotically collinear in linear regression. Usual re-
gression formulae for asymptotic standard errors remain valid but rates of convergence
are affected and the limit distribution of the regression coefficients is shown to be one
dimensional. Some asymptotic representations of partial sums of slowly varying functions
and central limit theorems with slowly varying weights are given that assist in the de-
velopment of a regression theory. Multivariate regression and polynomial regression with
slowly varying functions are considered and shown to be equivalent, up to standardiza-
tion, to regression on a polynomial in a logarithmic trend. The theory involves second,
third and higher order forms of slow variation. Some applications to trend regression are
discussed.

JEL ClassiÞcation: C22
AMS 1991 subject classiÞcations: 26A12, 62J05, 62J02

Key words and phrases: Asymptotic expansion, Collinearity, Karamata representation,
Slow variation, Smooth variation, Trend regression.

1 Introduction

Empirical models of time series often involve deterministic trend functions. Time polynomials
and sinusoidal polynomials are the most common functions to appear in such models and the
properties of regressions of time series on these trend functions have been extensively explored
in the literature, an early and deÞnitive contribution being Grenander and Rosenblatt (1957,
ch.7). A common element in much of the asymptotic theory that has been developed is a
requirement of the type that ensures the existence of a positive deÞnite limit to a suitably
normalized sample second moment matrix of the regressors. Frequently, this requirement
appears as one of a general set of conditions on the sample variances and autocovariances of

∗The author thanks Sidney Resnick for references on second order regular variation and the NSF for research
support under Grant No. SBR 97-30295. The paper was typed by the author in SW2.5.
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the regressors, such as those which are often characterized (e.g., by Hannan 1970, p.215) as
�Grenander�s conditions� (see Grenander and Rosenblatt, 1957, pp.233-234).

Not all deterministic functions of interest are covered by these requirements and when the
conditions fail some adjustments to the asymptotic theory are usually needed. One example
that is important in certain empirical applications is the semilogarithmic growth model

ys = α+ β log s+ us s = 1, ..., n (1)

where us is an unobserved error process. In quite a different context, an analogous formulation
arises in the log periodogram analysis of long memory, a subject on which there is now a
large literature (see Robinson, 1995, and Hurvich, Deo and Brodsky, 1998, and the references
therein). In that case (discussed in Example 3.2(a) below), ys is the periodogram of the
data measured at the Fourier frequencies λs = 2πs

n , s = 1,..,m ≤ n, and the slope coefficient
β = −2d, where d is the memory parameter.

The reason model (1) fails to Þt within the usual framework is that the sample moment
matrix of the regressors is asymptotically singular. Indeed, setting Dn = diag (

√
n,
√
n logn) ,

and F−1n = diag
³ √

n
logn ,

√
n
´
, we have (c.f. equations (23) and (24) below)

D−1n

"
n

Pn
s=1 log sPn

s=1 log s
Pn
s=1 log

2 s

#
D−1n →

"
1 1
1 1

#
,

and

F−1n

"
n

Pn
s=1 log sPn

s=1 log s
Pn
s=1 log

2 s

#−1
F−1n →

"
1 −1
−1 1

#
.

So, both the sample second moment of the regressors and its inverse have singular limits after
standardization, thereby failing Grenander�s conditions.

The same problem arises when the logarithmic function in (1) is replaced by any slowly
varying function L (s) . In effect, the intercept and any slowly varying function are asymp-
totically collinear after appropriate standardization. The phenomenon is manifest in a more
serious way when one considers polynomial versions of (1) such as

ys =
pX
j=0

βj log
j s+ us s ≥ 1

or similar regressions involving polynomials in a slowly varying function. In such cases, one
Þnds that the sample moment matrix of the regressors, while of rank p + 1 for all n > p,

is singular and of rank unity in the limit after suitable normalization. More generally still,
the singularity persists when the regressors constitute a vector of different slowly varying
functions, such as {log s, 1/ log s} involving a logarithmic and inverse logarithmic trend. .

In practical statistical work the phenomenon arises in nonlinear regressions of the type

ys = βs
γ + us s = 1, ..., n (2)
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where the trend exponent γ > −1
2 is to be estimated along with the regression coefficient β.

The affine linear form of (2), taken about the true values of the parameters (denoted by β0 and
γ0), involves the regressors s

γ0 and sγ0 (log s) , which are regularly varying and whose second
moment matrix is asymptotically singular upon appropriate (multivariate) normalization
(c.f., equation (52) below). It follows that statistical models like (2) manifest asymptotic
collinearity analogous to that of the linear regression (1). Wu (1980, p.509) noted that model
(2) failed his conditions (which require a single normalizing quantity and a positive deÞnite
limit matrix for the second moment matrix of the affine model) for asymptotic normality,
and consequently did not provide a limit distribution theory for this model.

The present paper provides a treatment of regressions of this type. The discussion is con-
ducted in terms of slowly varying regressors and some results on polynomial and multivariate
functions of slow variation are obtained that may be of interest outside the present study. The
paper is organised as follows. Section 2 lays out some assumptions and preliminary theory.
Results for simple regression are given with some common examples in Section 3. Polynomial
regressions in slowly varying regressors are covered in Section 4. Some general multivariate
extensions are reported in Section 5. Section 6 applies the theory to the nonlinear trend
model (2). Section 7 and 8 contain supplementary technical material and proofs. Notation
is listed in Section 9.

2 Assumptions and Preliminary Results

It will be convenient to use some standard theory of slowly varying functions and, in so doing,
we shall repeatedly reference Bingham, Goldie and Teugels (1987), hereafter designated as
BGT. From the Karamata representation (e.g. BGT, theorem 1.3.1, p.12), any slowly varying
(SV) function L (x) has the representation

L (x) = c (x) exp

µZ x

a

ε (t)

t
dt

¶
, for x > a (3)

for some a > 0, and where c (·) is measurable with c (x) → c ∈ (0,∞) and ε (x) → 0 as
x→∞. The function ε in (3) is referred to as the ε-function corresponding to L.

The present paper works with the subclass of (so-called) normalized SV functions for
which c (x) is a constant. In the development of an asymptotic theory of regression, little
seems to be lost in making the restriction to constant c functions because the asymptotic
behavior of L (x) is equivalent to that of (3) with c (x) = c. It is also known that for every
SV function L there is an asymptotically equivalent SV function which is arbitrarily smooth
(e.g., BGT, theorem 1.3.3, p.14). This property is especially helpful in developing asymp-
totic representations and working with transforms that arise from the process of integration
and differentiation. The limit behavior studied below is determined by L and ε, and some
properties, as we shall see, are invariant to the particular SV function.

To validate the expansions needed in our development of an asymptotic theory of regres-
sion, we shall assume the following.
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2.1 Assumption (SSV)

(a) L (x) is a smoothly slowly varying (SSV) function with Karamata representation

L (x) = c exp

µZ x

a

ε (t)

t
dt

¶
, for x ≥ a (4)

for some a > 0 and where c > 0 is a constant, ε ∈ C∞ and ε (x)→ 0 as x→∞.
(b) |ε (x)| is SSV and ε has Karamata representation

ε (x) = cε exp

µZ x

a

η (t)

t
dt

¶
for x ≥ a (5)

for some (possibly negative) constant cε and where η ∈ C∞, |η| is SSV and η (x)→ 0

as x→∞.
We call ε (x) and η (x) the ε- and η- functions of L (x) . Under SSV we have

xL0 (x)
L (x)

= ε (x)→ 0 as x→∞

and, more generally,

xmL(m) (x)

L (x)
,
xmε(m) (x)

ε (x)
,
xmη(m) (x)

η (x)
→ 0 for all m = 1, 2, ... as x→∞.

(BGT, p.44). The class for L (x) covered in SSV includes all of the common slowly varying
deterministic functions such as (for γ > 0) logγ x, 1/ logγ x, log log x, and 1/ log log x that
might appear directly in simple regression formulations or indirectly in nonlinear regression
through the corresponding affine linear models.

Since we contemplate the use of L as a time series regressor, the value of the initialization
a in (4) is not important. In fact, we may reset a = 0 by taking ε (t) = 0 over t ∈ [0, δ] for
some small δ > 0 and by interpolating ε over [δ, a] so that ε ∈ C∞ [0,∞] , thereby assuring
existence, integrability and smooth behavior for L over [0, a]. We shall henceforth presume
this change has been made and that we can majorize L (rn) /L (n)− 1 as follows¯̄̄̄

L (rn)

L (n)
− 1

¯̄̄̄
≤ K (n) g (r) ,

where K (n) is SSV, and g(r) ∈ C[0, 1]. In consequence, and using the fact that for any
slowly varying function K, K (n) /nη → 0 for arbitrary η > 0, we have, given some α > 0

and any positive integer k

Z 1
nα

0

µ
L (rn)

L (n)
− 1

¶k
dr = o

µ
1

nδ

¶
, as n→∞, (6)

where δ = α− η > 0.
To deliver an asymptotic theory of regression we need to appeal to a central limit result.

For this purpose, it is convenient to assume the regression errors us satisfy the following
linear process condition.
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2.2 Assumption (LP) For all t > 0, ut has Wold representation

ut = C (L) et =
∞X
j=0

cjet−j ,
∞X
j=0

j |cj| <∞, C(1) 6= 0, (7)

with et = iid
¡
0,σ2e

¢
and µ2p = E |ut|2p <∞ for some p > 2.

It is well known (e.g., Phillips and Solo, 1992, theorem 3.4) that LP is sufficient for the
partial sums St =

Pt
s=1 us to satisfy the functional law

1√
n
S[n·] →d B (·) , where B (·) is

Brownian motion with variance σ2 = σ2eC (1)
2 . Further, extending the probability space as

needed, the partial sum process St may be uniformly strongly approximated by a Brownian
motion such as B, in the sense that

sup
1≤t≤n

¯̄̄̄
St−1√
n
−B

µ
t− 1
n

¶¯̄̄̄
= oa.s.

Ã
1

n
1
2
− 1
p

!
, (8)

for some integer p > 2. Strong approximations such as (8) have been proved by many authors
and are reviewed in Shorack and Wellner (1986) and Csörgõ, M. and L. Horváth (1993).
A strong approximation justifying (8) in the case where ut is a linear processes is given in
Phillips (1999) for time series data under LP. Akonom (1993) gave (8) with an op(n

− 1
2
+ 1
p )

error under LP using the weaker moment requirement that µp = E |ut|p <∞ for some p > 2.
Under LP, it follows by partial summation and by taking weak limits, that for any f ∈ C1

1√
n

nX
s=1

f

µ
s

n

¶
us →d

Z 1

0
f (r) dB (r) = N

µ
0,σ2

Z 1

0
f (r)2 dr

¶
. (9)

Some related results hold when f is slowly varying. In particular, we have the following.

2.3 Lemma If L (t) satisÞes SSV, L = n−1
Pn
t=1L (t) and ut satisÞes LP, then:

(a) 1√
nL(n)

Pn
t=1 L (t)ut →d B (1) =d N

¡
0,σ2

¢
as n→∞.

(b) 1√
nL(n)ε(n)

Pn
t=1

³
L (t)− L

´
ut →d

R 1
0 (1 + log r) dB (r) =d N

¡
0,σ2

¢
as n→∞.

(c) 1√
nε(n)j

Pn
t=1

h
L(t)
L(n) − 1

ij
ut →d

R 1
0 log

j rdB (r) =d N
¡
0,σ2 (2j)!

¢
as n→∞.

2.4 Heuristics As shown in (56) and Lemma 7.3 below, one of the implications of SSV is
that we have the following asymptotic representation of L (t) for t = nr with r > 0

L (rn)

L (n)
− 1 = exp {ε (n) log r [1 + o (1)]}− 1 = ε (n) log r [1 + o (1)] , (10)

Such a function may be called second order slowly varying (c.f., de Haan and Resnick, 1995,
who discuss second order regular variation). For the sample mean L, we have

L = L (n)− L (n) ε (n) + o (L (n) ε (n)) .
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In consequence, the standardized sums that appear in (a), (b) and (c) of Lemma 2.3 have
the approximate asymptotic forms

1√
nL (n)

nX
t=1

L (t)ut ∼ 1√
n

nX
t=1

ut,

1√
nL (n) ε (n)

nX
t=1

³
L (t)− L

´
ut ∼ 1√

n

nX
t=1

µ
1 + log

µ
t

n

¶¶
ut

1√
nε (n)j

nX
t=1

·
L (t)

L (n)
− 1

¸j
ut ∼ 1√

n

nX
t=1

logj
µ
t

n

¶
ut,

to which we may apply a standard central limit argument like that of (9) above. These cases
indicate that, as far as Þrst order asymptotic theory is concerned, weighted means of ut with
arbitrary slowly varying weights behave in a common way, at least up to a normalization factor
that depends on the asymptotic form of the slowly varying function and its corresponding
ε-function. The �common� form that appears in these expressions is that of a logarithmic
trend function log t, while the inßuence of the particular slowly varying function affects the
normalization by way of L (n) and ε (n) . This characteristic will be seen to apply more
generally in regression asymptotics.

3 Simple Regression

We start with the simple regression model

ys = α+ βL (s) + us s = 1, ..., n

where us satisÞes LP. Let bα and bβ be the least squares regression coefficients. The limit be-
havior of these regression coefficients depends on that of the Þrst and second sample moments

L =
1

n

nX
s=1

L (s) ,
1

n

nX
s=1

³
L (s)− L

´2
=
1

n

nX
s=1

L (s)2 −
Ã
1

n

nX
s=1

L (s)

!2
. (11)

The natural approach is to approximate these sample sums by an integral using Euler sum-
mation and then determine the asymptotic form of the resulting integrals as n→∞. Lemma
7.1 gives

nX
t=1

L (t)k =
Z n

1
L (t)k dt+O (nη) , (12)

where η > 0 is arbitrarily small, and Lemma 7.3 gives the explicit asymptotic expansion

1

n

nX
t=1

L (t)k = L (n)k − kL (n)k ε (n) + k2L (n)k ε (n)2 − kL (n)k ε (n) η (n) (13)

+o
³
L (n)k ε (n) [η (n) + ε (n)]

´
.
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Using (12) and (13) in (11) leads to the following asymptotic expansions for these sample
moments

L = L (n)− L (n) ε (n) + o (L (n) ε (n)) ,
1

n

nX
t=1

³
L (t)− L

´2
= L (n)2 ε (n)2 + o

³
L (n)2 ε (n) [η (n) + ε (n)]

´
. (14)

Then,

√
nL (n) ε (n)

³bβ − β´ = "
1

nL (n)2 ε (n)2

nX
t=1

³
L (t)− L

´2#−1 1√
nL (n) ε (n)

nX
t=1

³
L (t)− L

´
ut,

and

√
nε (n) (bα− α) = ε (n)

1√
n

nX
t=1

ut −
√
nL (n) ε (n)

³bβ − β´ [1 + (ε (n))]
= −√nL (n) ε (n)

³bβ − β´+ op (1) . (15)

The limit theory for the regression coefficients then follows directly from (15) and Lemma
2.3.

3.1 Theorem If L (t) satisÞes SSV and ut satisÞes LP, then" √
nε (n) (bα− α)√
nL (n) ε (n)

³bβ − β´
#
→d N

Ã
0,σ2

"
1 −1
−1 1

#!
. (16)

3.2 Examples

(a) L (s) = log s This gives the semi-logarithmic model. Here, ε (n) = 1
logn , L (n) ε (n) =

1, and (16) is  √
n

logn (bα− α)√
n
³bβ − β´

→d N

Ã
0,σ2

"
1 −1
−1 1

#!
. (17)

This example also covers log periodogram analysis of long memory. In this case we have the
regression

log (IX (λs)) = bc− 2 bd logλs + residual, s = 1, ...,m (18)

where IX(λs) is the periodogram of a time series (Xt)nt=1 and λs =
2πs
n are fundamental

frequencies. The spectrum of Xt is assumed to have the local form fx(λ) ∼ Cλ−2d for
λ → 0+ and, correspondingly, the regression (18) is taken over a band of frequencies that
shrink to the origin, so that 1

m +
m
n → 0. Then (18) has the alternate form

log (IX (λs)) =

µbc− 2 bd log 2π
n

¶
− 2 bd log s+ residual = bcn − 2 bd log s+ residual (19)
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where bcn = bc − 2 bd log 2πn . Set c = logC, cn = c − 2d log 2π.n . The moment matrix of the
regressors in (19) is asymptotically singular, just as in (1). Although the details of the
central limit theory differ from Lemma 2.3 because of the properties of the residual terms in
(18) (c.f. Robinson, 1995, and Hurwich et al., 1998), we nevertheless end up with a result
analogous to (17) but with sample size m, viz. √

m
logm (bcn − cn)
2
√
m
³ bd− d´

→d N

Ã
0,
π2

6

"
1 −1
−1 1

#!
.

Since bcn − cn = (bc− c)− 2³ bd− d´ log 2π.n , we have
√
m

logn
(bcn − cn) = √

m

logn
(bc− c) + 2√m³ bd− d´ = op (1) ,

from which we deduce that √
m

logn (bc− c)
2
√
m
³ bd− d´

→d N

Ã
0,
π2

6

"
1 −1
−1 1

#!
,

a result obtained by Robinson (1995, theorem 3). The perfect negative asymptotic correlation
between the estimates bc and bd induces a corresponding property between the estimates bC
and bd of the original parameters appearing locally in fx(λ) ∼ Cλ−2d.

f

(b) L (s) = 1
log s This example arises when the regressor decays slowly. Here ε (n) =

− 1
logn , L (n) ε (n) = − 1

log2 n
and (16) is √
n

logn (bα− α)√
n

log2 n

³bβ − β´
→d N

Ã
0,σ2

"
1 −1
−1 1

#!
. (20)

(c) L (s) = log log s Here, ε (n) = 1
log logn

1
logn , L (n) ε (n) =

1
logn , and (16) is √

n
log logn logn (bα− α)√
n

log n

³bβ − β´
→d N

Ã
0,σ2

"
1 −1
−1 1

#!
. (21)

(d) L (s) = 1
log log s Here, ε (n) = − 1

log logn
1

logn , L (n) ε (n) = − 1
log2 logn

1
logn , and (16) is √

n
log logn logn (bα− α)√

n
log2 logn logn

³bβ − β´
→d N

Ã
0,σ2

"
1 −1
−1 1

#!
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(e) L (s) = logγ s, γ > 0. In this case, ε (n) = γ
logn , L (n) ε (n) = γ log

γ−1 n, and (16) is γ
√
n

logn (bα− α)
γ
√
n logγ−1 n

³bβ − β´
→d N

Ã
0,σ2

"
1 −1
−1 1

#!

In all these cases the limit behavior is identical up to appropriate normalization of the
coefficients, which is determined solely by L and its ε-function. When L (n)→∞ as n→∞,
the convergence rate of bβ exceeds that of bα, because the signal from the regressor is stronger
than that of a constant regressor; when L (n) → 0 as n → ∞, the convergence rate of bβ is
less than that of bα, because the signal from the regressor is weaker than that of a constant
regressor.

3.3 Standard Errors These are computed by scaling the square root of the diagonal
elements of the inverse of the second moment matrix with an estimate of σ2 obtained from
the regression residuals (either the sample variance, in the case where ut is iid

¡
0,σ2

¢
, or an

estimate of σ2 = σ2eC (1)
2 obtained by kernel methods in the stationary time series case (7)).

Using (12) and (13), we have

nX
s=1

"
1 L (s)

L (s) L (s)2

#
= n

"
1 L12 (n)
L12 (n) L22 (n)

#
+O (nη) , (22)

where

L12 (n) = L (n)−L (n) ε (n) +L (n) ε (n)2+−L (n) ε (n) η (n) + o (L (n) ε (n) [η (n) + ε (n)]) ,

and

L22 (n) = L (n)
2−2L (n)2 ε (n)+4L (n)2 ε (n)2−2L (n)2 ε (n) η (n)+o

³
L (n)2 ε (n) [η (n) + ε (n)]

´
.

Upon standardization with the diagonal matrix Dn = diag (
√
n,
√
nL (n)) , (22) becomes

D−1n
nX
s=1

"
1 L (s)

L (s) L (s)2

#
D−1n =

"
1 1
1 1

#
+

"
0 −ε (n)
−ε (n) −2ε (n)

#
+ o (ε (n))

→
"
1 1
1 1

#
. (23)

Similarly, upon inversion, we haveÃ
nX
s=1

"
1 L (s)

L (s) L (s)2

#!−1

=
1

n
Pn
s=1

³
L (s)− L

´2 nX
s=1

"
L (s)2 −L (s)
−L (s) 1

#
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=
1

nL (n)2 ε (n)2 + o
³
nL (n)2 ε (n) [η (n) + ε (n)]

´ " L22 (n) L12 (n)
L12 (n) 1

#

=

 1
nε(n)2

− 1
nL(n)ε(n)2

− 1
nL(n)ε(n)2

1
nL(n)2ε(n)2

 [1 + o (nL (n) ε (n) [η (n) + ε (n)])] , (24)

which, upon standardization by F−1n = diag (
√
nε (n) ,

√
nε (n)L (n)) , gives

F−1n

Ã"
n

Pn
s=1 L (s)Pn

s=1 L (s)
Pn
s=1 L (s)

2

#!−1
F−1n →

"
1 −1
−1 1

#
.

It follows from these formulae that, in spite of the singularity in the limit matrix, the co-
variance matrix of the regression coefficients is consistently estimated as in conventional
regression when an appropriate estimate s2 of σ2 is employed.

4 Polynomial Regression in L (x)

In this model the regressors are polynomials in the smoothly slowly varying function L (s)
and the data are generated by

ys =
pX
j=0

βjL (s)
j + us = β

0Ls + us, (25)

where the regression error us satisÞes LP. This model may be analyzed using the approach of
the previous section. But, as the degree p increases in (25), the analysis becomes complicated
because higher order expansions than (13) of the sample moments of L (s) are needed in order
to develop a complete asymptotic theory. An alternate approach is to rewrite the model (25)
in a form wherein the moment matrix of the regressors has a full rank limit. The degeneracy
in the new model, which has an array format, then passes from the data matrix to the
coefficients and is simpler to analyze.

The process is Þrst illustrated with model (1) which we can write in the form

ys = α+ β logn+ β log
s

n
+ us

= αn + β log
s

n
+ us, say. (26)

The regressors
©
1, log sn

ª
in (26) are not collinear. Writing k (r) = [1, log r]0 and using stan-

dard manipulations, we obtain

√
n

" cαn − αnbβ − β
#
→d N

Ã
0,σ2

µZ 1

0
k (r) k (r)0 dr

¶−1!
= N

0," 1 1
1 2

#−1 .
Since, cαn − αn = bα− α+ ³bβ − β´ logn, we deduce that

√
n

logn
(bα− α) = −√n³bβ − β´+Opµ 1

logn

¶
,
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which leads directly to the earlier result (17).
Extending this process to the model (25) gives the representation

ys =
pX
j=0

βj

½
L (n)

·
L (s)

L (n)
− 1

¸
+ L (n)

¾j
+ us

=
pX
j=0

βjL (n)
j
jX
i=0

Ã
j

i

!·
L (s)

L (n)
− 1

¸i
+ us

=
pX
j=0

αnj

·
L (s)

L (n)
− 1

¸j
+ us

where

αn0 =
pX
j=0

βjL (n)
j (27)

αnk =
pX
j=k

βjL (n)
j

Ã
j

k

!
k = 1, ..., p− 1 (28)

αnp = βpL (n)
p . (29)

DeÞne

Knj

µ
s

n

¶
=

·
L (s)

L (n)
− 1

¸j
=

"
L
¡ s
nn
¢

L (n)
− 1

#j
, j = 0, 1, ..., p

and the model (25) becomes

ys =
pX
j=0

αnjKnj

µ
s

n

¶
+ us := α

0
nKn

µ
s

n

¶
+ us. (30)

Least squares estimation gives

bαn − αn =
"
nX
t=1

Kn

µ
t

n

¶
Kn

µ
t

n

¶0#−1 " nX
t=1

Kn

µ
t

n

¶
ut

#
. (31)

The limit behavior of these coefficient estimates depends on that of the regressors Knj
¡
t
n

¢
,

and sample moment asymptotics for Knj follow from that of its sample mean. DeÞne the vec-
tor Kn

¡ t
n

¢
=
¡
Knj

¡ t
n

¢¢
and the normalization matrix Dnε = diag

h
1, ε (n) , ε (n)2 , ..., ε (n)p

i
.

4.1 Theorem

(a) If L (t) satisÞes SSV, then

1

n
D−1nε

nX
t=1

Kn

µ
t

n

¶
→
Z 1

0
`p (r) dr =

h
1, −1, 2!, −3!, . . . , (−1)p p!

i0
,
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where `p (r) = [1, log r, ..., logp r]
0 and

1

n
D−1nε

nX
t=1

Kn

µ
t

n

¶
Kn

µ
t

n

¶0
D−1nε

→
Z 1

0
`p (r) `p (r)

0 dr

=



1 −1 2! −3! . . . (−1)p p!
−1 2! −3! 4! . . . (−1)p+1 (p+ 1)!
2! −3! 4! −5! . . . (−1)p+2 (p+ 2)!
−3! 4! −5! 6! . . . (−1)p+3 (p+ 3)!
...

...
...

...
. . .

...
(−1)p p! (−1)p+1 (p+ 1)! (−1)p+2 (p+ 2)! (−1)p+3 (p+ 3)! . . . (2p)!


,

(32)

which is positive deÞnite.

(b) If L (t) satisÞes SSV and ut satisÞes LP then

√
nDnε [bαn − αn]→d N

Ã
0,σ2

·Z 1

0
`p (r) `p (r)

0 dr
¸−1!

. (33)

Next, we rewrite this limit distribution in terms of the original coefficients using relations
(27) - (29). It transpires that only the Þnal component, bαnp, in bαn (which translates to the
component bβp in the original coordinates) determines the nondegenerate part of the limit
theory for the full set of coefficients.

4.2 Theorem If L (t) satisÞes SSV and ut satisÞes LP then

√
nε (n)pDnL

³bβ − β´ = µp+1√nL (n)p ε (n)p ³bβp − βp´+op (1)→d N
³
0, vp+1,p+1µp+1µ

0
p+1

´
,

where DnL = diag (1, L (n) , ..., L (n)p) , µ0p+1 =
h
(−1)p , (−1)p−1 ¡p1¢, ..., (−1) ¡ p

p−1
¢
, 1
i
, and

vp+1,p+1 = (p!)−2 is the p+ 1�th diagonal element of
hR 1
0 `p (r) `p (r)

0 dr
i−1

.

The limit distribution of
√
nε (n)pDnL

³bβ − β´ has a support given by the range of the
vector µp+1 and is therefore of dimension one. The variance matrix of bβ is given by

vp+1,p+1

nε (n)2p
D−1nLµp+1µ

0
p+1D

−1
nL, (34)

which, as we now show, is consistently estimated by the usual regression formula. The
following result gives expressions for the asymptotic form of L0L =

Pn
s=1 LsL

0
s and (L

0L)−1 ,
showing that, indeed, (34) is the asymptotic form of (L0L)−1 .
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4.3 Theorem If L (t) satisÞes SSV, then:

(a)
L0L = nDnLip+1i0p+1DnL [1 + o (1)] , (35)

where ip+1 is a p+ 1 vector with unity in each element.

(b)

¡
L0L

¢−1
=
e0p+1

hR 1
0 `p (r) `p (r)

0 dr
i−1

ep+1

nε (n)2p
D−1nLµp+1µ

0
p+1D

−1
nL [1 + o (1)] , (36)

where `p (r) and µp+1 are given in theorems 4.1 and 4.2.

It follows from (36) that, in spite of the singularity in the limit matrix, the covariance
matrix of the regression coefficients is consistently estimated as in conventional regression by
s2 (L0L)−1 whenever s2 is a consistent estimate of σ2.

5 Regression with Multiple SSV Regressors

Multiple regression with different slowly varying functions as regressors is also of some interest
in applications. One such formulation is given in example 5.2 below and involves a slowly
varying growth component in conjunction with a trend decay component that slowly adjusts
the intercept in the regression to a lower level. Such a model is relevant in empirical research
where one wants to capture simultaneously two different opposing trends in the data. Such
models can be analyzed by the methods of the previous section, with the slowly varying
regressors replacing the polynomials in a given function L (s) . We shall provide results for
a model with two different regressors, which is the case of principal interest in practice and
where our assumptions allow for a full treatment. We also brießy discuss the general case,
where more structure is needed for a complete treatment.

Let Lj (s) (j = 1, 2) be SSV functions with corresponding ε- and η- functions εj and ηj
(j = 1, 2). We consider the two variable regression model

ys = β0 + β1L1 (s) + β2L2 (s) + us = β
0Ls + us, say (37)

where the regression error us satisÞes LP. An asymptotic theory of regression in this model
is obtained by showing that (37) has an alternate, asymptotically equivalent, form involving
a quadratic function of the simpler regressor log

¡ s
n

¢
. Analysis similar to the previous section

then applies.
Rewrite (37) as follows

ys = β0 + β1L1 (n) + β2L2 (n)

+β1L1 (n)

"
L1
¡
n sn
¢

L1 (n)
− 1

#
+ β2L2 (n)

"
L2
¡
n sn
¢

L2 (n)
− 1

#
+ us.
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To transform the regressors in this version of the model, we note from Lemma 7.10 that Lj
has a higher order representation in terms of its ε- and η- functions that has the asymptotic
form

Lj (rn)

Lj (n)
− 1 = εj (n) log r + 1

2
εj (n)

h
εj (n) + ηj (n)

i
log2 r [1 + o (1)] , r > 0. (38)

Equation (38) shows Lj to be third order slowly varying in the sense that

lim
n→∞

Lj (rn)

Lj (n)
−1

εj(n)
− log r

1
2

h
εj (n) + ηj (n)

i = log2 r, r > 0,

thereby extending the concept of second order slow variation that appears in the earlier
expression (10). Using the expansion (38) we write

ys = β0 + β1L1 (n) + β2L2 (n)

+β1L1 (n) ε1 (n) log
s

n
+
1

2
β1ε1 (n) [ε1 (n) + η1 (n)] log

2 s

n
[1 + o (1)]

+β2L2 (n) ε2 (n) log
s

n
+
1

2
β2ε2 (n) [ε2 (n) + η2 (n)] log

2 s

n
[1 + o (1)] + us

= αn0 + αn1 log

µ
s

n

¶
+ αn2 log

2
µ
s

n

¶
[1 + o (1)] + us, say (39)

giving a new form of the model with regressors that comprise a quadratic function in log
¡
s
n

¢
.

The new coefficients satisfy the system αn0αn1
αn2

 =

 1 L1 (n) L2 (n)
0 L1 (n) ε1 (n) L2 (n) ε2 (n)
0 1

2L1 (n) ε1 (n) [ε1 (n) + η1 (n)]
1
2L2 (n) ε2 (n) [ε2 (n) + η2 (n)]


 β0β1
β2


=

 1 1 1
0 ε1 (n) ε2 (n)
0 1

2ε1 (n) [ε1 (n) + η1 (n)]
1
2ε2 (n) [ε2 (n) + η2 (n)]


 1 0 0
0 L1 (n) 0
0 0 L2 (n)


 β0β1
β2

 .
(40)

For further asymptotic analysis, we impose the condition

δ (n) = [ε2 (n) + η2 (n)]− [ε1 (n) + η1 (n)] 6= 0 (41)

which is necessary if we are to solve (40) for the original coefficients in (37). If (41) does
not hold, then the regressors L1 and L2 are collinear to the second order in (38). In that
case, the situation is more complex � higher order representations are needed to develop an
asymptotic theory and rates of convergence need to be adjusted. The following result holds
under (41), uses only the second order form (38) and gives the limit theory for the original
coefficients in (37).
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5.1 Theorem If L (t) satisÞes SSV, ut satisÞes LP and δ (n) 6= 0, then

√
nδ (n)


εmin (n)

³bβ0 − β0´
ε1 (n)L1 (n)

hbβ1 − β1i
ε2 (n)L2 (n)

hbβ2 − β2i
 ∼

 1ε−1
1

√n [bαn2 − αn2]→d N

0, σ2
2!

 1 −1ε 1ε
−1ε 1 −1
1ε −1 1


 ,

(42)
where

εmin (n) =

(
ε2 (n) if ε2 (n) = o (ε1 (n))
ε1 (n) if ε1 (n) = o (ε2 (n))

and

1ε =

(
−1 if ε2 (n) = o (ε1 (n))
1 if ε1 (n) = o (ε2 (n))

.

5.2 Discussion

(a) Equation (39) indicates that multiple regression with different slowly varying functions is
asymptotically equivalent to polynomial regression on a logarithmic function. Theorem
5.1 shows that the outcome is analogous to that of a polynomial regression, but the rates
of convergence are affected by the respective natures of the slowly varying functions.
The actual rate of convergence of the estimates depends not just on the asymptotic
behavior of the functions Lj (n) and their ε-functions, but also on the divergence, δ (n) ,
between the sum of the ε- and η- functions of the two regressors L1 and L2. In effect,
the more divergent are the Lj asymptotically, then the faster the rate of convergence
of the regression estimates.

(b) The scaling factor εmin (n) in (42) relates to the constant in the regression and determines
that its rate of convergence is affected by that of the more slowly converging regression
coefficient.

(c) If Li (x) = log x for some i then there is no second order term in (38) and εi (n)+ηi (n) = 0
in that case. The Þrst matrix in (40) is simpler in this case and can be made upper
triangular by permuting coefficients if necessary.

(d) Just as in the polynomial regression case, the limit distribution (42) is singular and has
rank unity.

5.3 Example The following example has iterated logarithmic growth, a trend decay com-
ponent and a constant regressor:

ys = β0 + β1
1

log s
+ β2 log log s+ us.

The secondary functions are ε1 (n) = − 1
logn , η1 (n) = − 1

logn , ε2 (n) =
1

log logn
1

logn and η2 (n) =
− 1
log logn − 1

logn . Then
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ε1 (n) + η1 (n) = − 2

logn
,

ε2 (n) + η2 (n) = − 1

log logn
+ o

µ
1

log logn

¶
,

δ (n) = − 1

log logn
+ o

µ
1

log logn

¶
,

εmin = ε2 (n) =
1

log logn

1

logn
.

We deduce that

√
n

log logn


1

log logn
1

logn

³bβ0 − β0´
(−1)
log2 n

hbβ1 − β1i
1

logn

hbβ2 − β2i
 ∼

 −1−1
1

 √
n

logn log logn

hbβ2 − β2i→d N

0, σ2
2!

 1 1 −1
1 1 −1
−1 −1 1


 .

The coefficient of the growth term converges fastest, but at less than a
√
n rate. The intercept

converges next fastest, and Þnally the coefficient of the evaporating trend. All of these
outcomes relate to the strength of the signal from the respective regressor.

5.4 The General Case Consider the model

ys =
pX
j=0

βjLj (s) + us = β
0Ls + us, say, (43)

where L0 (s) = 1. As in the two variable case above, this model can be rewritten as

ys =
pX
j=0

βjLj (n) +
pX
j=1

βjLj (n)

"
Lj
¡
n sn
¢

Lj (n)
− 1

#
+ us. (44)

Assume that each Lj has a higher order representation extending (38) in terms of the following
asymptotic expansion

Lj (rn)

Lj (n)
− 1 =

p−1X
i=1

εji (n) log
i r + εjp (n) log

p r [1 + o (1)] , r > 0, (45)

where εj1 (n) = εj (n) and
εji (n) = o (εji−1 (n)) , (46)

for each j and each ι > 1, so the coefficients, εji (n) , in (45) decrease in order of magnitude
as i increases. Such a higher order expansion can be developed under conditions analogous to
SSV in which each function in the sequence L, ε, η, ... itself has a Karamata representation
with an ε- function that is SSV. Applying (45) in (44), we obtain the transformed model
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ys =
pX
j=0

βjLj (n) +
pX
j=1

βjLj (n)


p−1X
i=1

εji (n) log
i
µ
s

n

¶
+ εjp (n) log

p
µ
s

n

¶
[1 + o (1)]

+ us
= αn0 +

p−1X
i=1

pX
j=1

βjLj (n) εji (n) log
i
µ
s

n

¶
+

pX
j=1

βjLj (n) εjp (n) log
p
µ
s

n

¶
[1 + o (1)] + us

= αn0 +
p−1X
i=1

αni log
i
µ
s

n

¶
+ αnp log

p
µ
s

n

¶
[1 + o (1)] + us

The coefficients in this system satisfy
αn0
αn1
αn2
...
αnp

 =


1 1 · · · 1
0 ε1 (n) · · · εp (n)
0 ε12 (n) · · · εp2 (n)
...
...

. . .
...

0 ε1p (n) · · · εpp (n)




1 0 · · · 0
0 L1 (n) · · · 0
...
...

. . .
...

0 0 · · · Lp (n)




β0
β1
β2
...
βp



=


1 1 · · · 1
0 1 · · · 1
0 η12 (n) · · · ηp2 (n)
...
...

. . .
...

0 η1p (n) · · · ηpp (n)




1 0 · · · 0
0 L1 (n) ε1 (n) · · · 0
...
...

. . .
...

0 0 · · · Lp (n) εp (n)




β0
β1
β2
...
βp

 ,

where
ηji (n) =

εji (n)

εj (n)
= o (1) , as n→∞.

DeÞne

Ξn =


1 · · · 1
η12 (n) · · · ηp2 (n)
...

. . .
...

η1p (n) · · · ηpp (n)

 ,
and note that, in view of (46), we have

ηji (n) = o
³
ηji−1 (n)

´
,

so that the Þnal row (i = p) of Ξn has elements of the smallest order and the other rows
decrease in magnitude as i increases. Then,

Ξ−1n =
1

detΞn


η11 (n) · · · η1p (n)
η21 (n) · · · η2p (n)
...

. . .
...

ηp1 (n) · · · ηpp (n)

 = 1

detΞn
Mn, say,

and, in view of the property of Ξn just mentioned, the Þrst p−1 columns ofMn = det (Ξn)Ξ
−1
n

are of smaller order as n → ∞ than the Þnal column of Mn. (Indeed, the columns of Mn

progressively increase in order of magnitude from left to right). We therefore have
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det (Ξn)

 L1 (n) ε1 (n) · · · 0
...

. . .
...

0 · · · Lp (n) εp (n)



β1
β2
...
βp



=


η11 (n) · · · η1p (n)
η21 (n) · · · η2p (n)
...

. . .
...

ηp1 (n) · · · ηpp (n)



αn1
αn2
...
αn2

 =

η1p (n)
η2p (n)
...
ηpp (n)

αnp [1 + op (1)] ,
so that

√
ndet (Ξn)


L1(n)ε1(n)
η1p(n) · · · 0

...
. . .

...
0 · · · Lp(n)εp(n)

ηpp(n)



√
n
³bβ1 − β1´

...√
n
³bβp − βp´



∼
 1...
1

 £√n (bαnp − αnp)¤→d

 1...
1

N Ã
0,

σ2

(p!)2

!
.

Turning to the intercept, we have αn0 = [1, L1 (n) , ..., Lp (n)]β. DeÞne

εmin = min
j≤p

εj (n)

ηjj (n)

to be the ratio with the smallest order of magnitude as n→∞. Then, we have
√
n
³bβ0 − β0´ = √n (bαn0 − αn0)− pX

j=1

Lj (n)
√
n
³bβj − βj´ ,

and scaling by det (Ξn) εmin and noting that det (Ξn) εmin = o (1) as n→∞, we deduce that
√
ndet (Ξn) εmin

³bβ0 − β0´
=

√
ndet (Ξn) εmin (bαn0 − αn0)− pX

j=1

Lj (n)
√
ndet (Ξn) εmin

³bβj − βj´

= op (1)−
√
n
Lj (n) εj (n)

ηjj (n)
det (Ξn)

³bβj − βj´→d N

Ã
0,

σ2

(p!)2

!
.

5.6 Theorem If L (t) satisÞes SSV, ut satisÞes LP and detΞn 6= 0, then

√
ndet (Ξn)


εmin 0 · · · 0

0 L1(n)ε1(n)
η1p(n) · · · 0

...
...

. . .
...

0 0 · · · Lp(n)εp(n)
ηpp(n)





√
n
³bβ0 − β0´√
n
³bβ1 − β1´

...√
n
³bβp − βp´


∼ ip+1

£√
n (bαnp − αnp)¤→d N

Ã
0,

σ2

(p!)2
ip+1i

0
p+1

!
(47)
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where
εmin = min

j≤p
εj (n)

ηjj (n)

is the ratio with the smallest order of magnitude as n→∞.

In (47) the scale coefficients Lj(n)εj(n)
ηjp(n)

as well as εmin are implicitly signed. That is, the

elements εj(n)
ηjj(n)

may have positive or negative signs. In consequence, since the signs are built
into the normalization factor, the covariance matrix of the limit distribution,

σ2vp+1,p+1ip+1i
0
p+1 =

σ2

(p!)2
ip+1i

0
p+1

displays perfect positive correlation among the elements of the standardized vector in the
limit.

6 Nonlinear Trends

In the nonlinear trend model (2), let us satisfy LP, let θ0 = (β0, γ0) be the true values of the
parameters and asssume that (β0, γ0) lies in the interior of the parameter space Θ = [0, b]×
[−1

2 , c] where 0 < b, c <∞. Wu (1980, Example 4, p.507 & p.509) considered the case where
us is iid(0,σ2 > 0) and noted that the model satisÞes his conditions for strong consistency
of the least squares estimator bθ = (bβ, bγ) but not his conditions for asymptotic normality.
There are two reasons for the failure: (i) the hessian requires different standardizations for
the parameters β and γ (while Wu�s approach uses a common standardization); and (ii) the
hessian is asymptotically singular because of the asymptotic collinearity of the functions sγ0

and sγ0 log s that appear in the score (whereas Wu�s theory requires the variance matrix to
have a positive deÞnite limit). Both issues are addressed by a version of the methods given
earlier in the paper designed to deal with extremum estimation problems.

Setting Qn(β, γ) =
Pn
s=1 (ys − βsγ)2 , the estimates (bβ, bγ) solve the extremum problem

(bβ, bγ) = argmin
β,γ

Qn(β, γ),

and satisfy the Þrst order conditions

Sn
³bβ, bγ´ = 0, (48)

where

Sn(θ) = −
nX
s=1

"
sγ

βsγ log s

#
(ys − βsγ) .

Expanding Sn(θ) about Sn(θ0), we have

0 = Sn(θ0) +Hn(θ0)
³bθ − θ0´+ [H∗

n −Hn(θ0)]
³bθ − θ0´ , (49)
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where the hessian H∗
n is evaluated at mean values between θ0 and bθ and

Hn(θ) =
nX
s=1


s2γ

βs2γ log s− ussγ log s
− (β0sγ0 − βsγ) sγ log s

βs2γ log s− ussγ log s
− (β0sγ0 − βsγ) sγ log s

β2s2γ log2 s− usβsγ log2 s
− (β0sγ0 − βsγ)βsγ log2 s

 .
The following lemmas assist in characterizing the asymptotic behavior of these quantities.

6.1 Lemma Let L be a slowly varying function satisfying SSV, and suppose us satisÞes
LP. Let Cn be a diagonal matrix all of whose elements diverge to ∞ as n → ∞. DeÞne
N0
n = {θ ∈ Θ : ||Cn (θ − θ0)|| ≤ 1} to be a shrinking neighbourhood of θ0 for any point θ0 in

the interior of a compact parameter space Θ. Let f (r; θ) ∈ C2 over (r, θ) ∈ [0, 1]×Θ and let
the derivatives fθ = ∂f/∂θ, fr = ∂f/∂r, frθ = ∂2f/∂θ∂r be dominated as follows

sup
θ∈N0

n

|fθ (r; θ)| ≤ gθ (r; θ0) , sup
θ∈N0

n

|fr (r; θ)| ≤ gr (r; θ0) , sup
θ∈N0

n

|frθ (r; θ)| ≤ grθ (r; θ0)

by functions gθ (r; θ0) , gr (r; θ0) and grθ (r; θ0) all of which are absolutely integrable over
[0, 1] . Then

1√
nL (n)

nX
s=1

f

µ
s

n
; θ

¶
L (s)us →d

Z 1

0
f (r; θ0) dB (r) = N

µ
0,σ2

Z 1

0
f (r; θ0)

2 dr

¶
, (50)

uniformly over θ ∈ N0
n.

6.2 Lemma Suppose us satisÞes LP and let the true parameter vector θ0 = (β0, γ0) lie in
the interior of Θ = [0, b]× [−1

2 , c] where 0 < b, c <∞. DeÞne the normalization matrices

Dn = diag
h
nγ0+

1
2 , nγ0+

1
2 logn

i
, Fn =

1

logn
Dn = diag

"
nγ0+

1
2

logn
, nγ0+

1
2

#
.

DeÞne Cn = Dn/n
δ for some small positive δ ∈ (0, γ0 +

1
2) and the following shrinking

neighbourhood of θ0
N0
n = {θ ∈ Θ : ||Cn (θ − θ0)|| ≤ 1} .

Then

(a)

D−1n Sn(θ0)→d −
Z 1

0

"
rγ0

β0r
γ0

#
dB (r) = N

Ã
0,

σ2

2γ0 + 1

"
1 β0
β0 β20

#!
, (51)

(b)

D−1n Hn(θ0)D
−1
n →p

1

2γ0 + 1

"
1 β0
β0 β20

#
, (52)
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(c)

λmin
³
F−1n Hn(θ0)F

−1
n

´
= O (logn)→∞,

(d)

FnHn(θ0)
−1Fn =

¡
2γ0 + 1

¢3
2β20

 β20 − 2β20
logn

1
(2γ0+1) +

β20
log2 n

2
(2γ0+1)2

−β0 + β0
logn

1
(2γ0+1)

−β0 + β0
logn

1
(2γ0+1) 1

+ op µ 1
nδ

¶

→ p

¡
2γ0 + 1

¢3
β20

"
β20 −β0
−β0 1

#
,

(e)

sup
θ∈N0

n

¯̄̄¯̄̄
C−1n [Hn (θ)−Hn (θ0)]C−1n

¯̄̄¯̄̄
= op (1) .

6.3 Remarks

(a) Part (a) reveals that the order of convergence of the Þrst member of (49), the score Sn(θ0),
is determined by the scaling factor D−1n . However, from part (b), the hessian matrix
under the same standardization by D−1n evidently has a singular limit as n→∞, which
prevents the application of the usual approach of solving (49) to Þnd a limit theory
for a standardized form of (bθ − θ0). Part (d) shows that upon standardization by Fn,
rather than Dn, the inverse hessian matrix converges but also has a singular limit.

(b) Part (e) is useful in showing that, after rescaling, the third term of (49) can be neglected
in the asymptotic behavior of bθ − θ0.

(c) As the following result shows, the appropriate scaling factor for (49) is the matrix F−1n ,

not D−1n , even though D−1n Sn(θ0) is Op (1) .

6.4 Theorem In the model (2), let us satisfy LP and let the true parameter vector θ0 =
(β0, γ0) lie in the interior of Θ = [0, b]× [−1

2 , c] where 0 < b, c <∞. Then, the least squares
estimator bθ = (bβ, bγ) is consistent and has the following limit distribution as n→∞

Fn
³bθ − θ0´ → d

³
2γ0 + 1

´3 " 1
−1/β0

# Z 1

0
rγ0

·
log r +

1

2γ0 + 1

¸
dB (r)

=

"
1
−1/β0

#
N

µ
0,σ2

³
2γ0 + 1

´3¶
.
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6.5 Remarks

(a) The estimator bθ has a convergence rate that is slower by a factor of logn than that of the
score Sn(θ0). The reason is that the (conventionally standardized) hessianD−1n Hn(θ0)D−1n
has an inverse that diverges at the rate log2 n and this divergence slows down the con-
vergence rate of the estimator. Both the score and the hessian need to be rescaled to
achieve the appropriate convergence rate for bθ. With the new scaling we have
0 = F−1n Sn(θ0) + F

−1
n Hn(θ0)F

−1
n Fn

³bθ − θ0´+ F−1n [H∗
n −Hn(θ0)]F−1n Fn

³bθ − θ0´ ,
and then

Fn
³bθ − θ0´ = − hI + ³FnHn(θ0)−1Fn´F−1n [H∗

n −Hn(θ0)]F−1n
i−1 ³

FnHn(θ0)
−1Fn

´
F−1n Sn(θ0).

From Lemma 7.2 (d), the matrix FnHn(θ0)−1Fn = Op (1) and is singular, and the
matrix F−1n [H∗

n −Hn(θ0)]F−1n is op (1). Then

Fn
³bθ − θ0´ = −³FnHn(θ0)−1Fn´F−1n Sn(θ0) + op (1) ,

from which the limit distribution follows. Interestingly, even though the individual ele-
ments of F−1n Sn(θ0) diverge, the relevant linear combination

¡
FnHn(θ0)

−1Fn
¢
F−1n Sn(θ0)

is Op (1) .

(b) The variance matrix for bθ is singular but is consistently estimated by s2Hn(bθ)−1, where
s2 is a consistent estimator of σ2, because

FnHn(bθ)−1Fn = ¡
2γ0 + 1

¢3
β20

 β20 − 2β20
logn

1
(2γ0+1)

+
β20

log2 n
2

(2γ0+1)2
−β0 + β0

logn
1

(2γ0+1)

−β0 + β0
log n

1
(2γ0+1) 1

+op µ 1√
n

¶
.

7 Technical Supplement

7.1 Lemma (Averages of SV Functions) If L (t) satisÞes SSV, then for B ≥ 1
nX
t=B

L (t) =
Z n

B
L (t)dt+O (nη) , as n→∞

where η > 0 is arbitrarily small.

7.2 Proof Using Euler summation (e.g., Knopp, 1990, p.521) we have

nX
t=B

L (t) =
Z n

B
L (t) dt+

1

2
[L (B) + L (n)] +

Z n

B

½
t− [t]− 1

2

¾
L0 (t)dt. (53)

Since
tL0 (t)
L (t)

= ε (t)→ 0, and
L (t)

tη
→ 0,
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for all η > 0, we may choose a constant C such that for all t ≥ C and any η > 0¯̄̄̄
ε (t)

L (t)

tη

¯̄̄̄
< 1.

Then, the Þnal term in (53) may be bounded as follows¯̄̄̄Z n

B

½
t− [t]− 1

2

¾
L0 (t)dt

¯̄̄̄
≤ 1

2

Z n

B

1

t
|ε (t)L (t)| dt

≤ 1

2

Z n

C

1

t1−η
dt+

1

2

¯̄̄̄
¯
Z C

B
|ε (t)L (t)| 1

t
dt

¯̄̄̄
¯

=
1

2η
[tη]nC +O (1)

= O (nη) .

It follows that
nX
t=B

L (t) =
Z n

B
L (t) dt+O (nη + L (n)) =

Z n

B
L (t) dt+O (nη) ,

for any η > 0 as n→∞.

7.3 Lemma

1

n

nX
t=1

L (t)k = L (n)k − kL (n)k ε (n) + k2L (n)k ε (n)2 + kL (n)k ε (n) η (n)

+o
³
L (n)k ε (n) [ε (n) + η (n)]

´
.

7.4 Proof From SSV(b), |ε (x)| is SSV and

ε (x) = cε exp

µZ x

1

η (t)

t
dt

¶
where η (n)→ 0 as n→∞. Like ε, η ∈ C∞ and if |η| is SSV

xmη(m) (x)

η (x)
→ 0.

Then, using integration by parts, we ÞndZ n

1
L (t)k dt

=
h
tL (t)k

in
1
− k

Z n

1
tL (t)k

ε (t)

t
dt

= nL (n)k − k
Z n

1
L (t)k ε (t)dt+O (1)

= nL (n)k − k
h
tL (t)k ε (t)

in
1
+ k

Z n

1
t

"
kL (t)k

ε (t)2

t
+L (t)k ε (t)

η (t)

t

#
dt+O (1)
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= nL (n)k − knL (n)k ε (n) + k
Z n

1

h
kL (t)k ε (t)2 + L (t)k ε (t) η (t)

i
dt+O (1)

= nL (n)k − knL (n)k ε (n) + k2nL (n)k ε (n)2 + kL (n)k nε (n) η (n)

−k2
Z n

1
t

"
kL (t)k

ε (t)3

t
+ L (t)k 2ε (t)2

η (t)

t

#
dt

−k
Z n

1
t

"
kL (t)k

ε (t)2

t
η (t) + L (t)k ε (t)

η (t)2

t
+ L (t)k ε (t) η0 (t)

#
dt+O (1)

= nL (n)k − knL (n)k ε (n) + k2nL (n)k ε (n)2 + knL (n)k ε (n) η (n) + o
³
nL (n)k ε (n) [ε (n) + η (n)]

´
,

giving the stated result.

7.5 Example In the logarithmic case L (t) = log t, and ε (t) = 1
log t and η (t) = − 1

log t .
Lemma 7.3 then gives the expansion

Z n

1
logk tdt = n logk n− kn logk−1 n+ k2n logk−2 n− kn logk−2 n+ o

³
n logk−2 n

´
= n logk n− kn logk−1 n+ k (k − 1)n logk−2 n+ o

³
n logk−2 n

´
, (54)

whereas successive integration by parts (Lemma 7.9) gives the exact result

Z n

1
logk tdt = n

kX
j=0

(−k)j logk−j n,

so that the expansion in (54) is accurate to the third order.

7.6 LemmaZ n

1

h
L (t)− L

i2
dt = nL (n)2 ε (n)2 + o

³
nL (n)2 ε (n) [η (n) + ε (n)]

´
7.7 Proof Applying the expansion from Lemma 7.3, we getZ n

1

h
L (t)− L

i2
dt

=
Z n

1
L (t)2 dt− 1

n

µZ n

1
L (t) dt

¶2
=

h
nL (n)2 − 2nL (n)2 ε (n) + 4nL (n)2 ε (n)2 − 2nL (n)2 ε (n) η (n) + o

³
nL (n)2 ε (n) η (n)

´i
−1
n

h
nL (n)− nL (n) ε (n) + nL (n) ε (n)2 − nL (n) ε (n) η (n) + o (nL (n) ε (n) η (n))

i2
=

h
nL (n)2 − 2nL (n)2 ε (n) + 4nL (n)2 ε (n)2 − 2nL (n)2 ε (n) η (n) + o

³
nL (n)2 ε (n)2

´i
−
h
nL (n)2 − 2nL (n)2 ε (n) + 3nL (n)2 ε (n)2 − 2nL (n)2 ε (n) η (n) + o

³
nL (n)2 ε (n)2

´i
= nL (n)2 ε (n)2 + o

³
nL (n)2 ε (n) [η (n) + ε (n)]

´
.
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7.8 Lemma If L (t) is a smoothly varying and satisÞes SSV and (6), then

Z 1

0

·
L (rn)

L (n)
− 1

¸k
dr = (−1)k k!ε (n)k [1 + o (1)] ,

as n→∞.

7.9 Proof In view of SSV, we have

log
L (rn)

L (n)
= −

Z n

rn

ε (t)

t
dt, (55)

and, since |ε (t)| is slowly varying, it follows by Karamata�s theorem (e.g., Proposition 1.5.9a,
p.26 of BGT) that for all r > 0Z n

rn

ε (t)

t
dt = ε (n)

Z n

rn

dt

t
[1 + o (1)] ,

= −ε (n) log r [1 + o (1)] as n→∞.

Then
L (rn)

L (n)
− 1 = exp {ε (n) log r [1 + o (1)]}− 1 = ε (n) log r [1 + o (1)] . (56)

The function L is second order slowly varying (see de Haan and Resnick, 1995, for second
order regular variation) in the sense that

lim
n→∞

L(rn)
L(n) − 1
ε (n)

= log r, r > 0

Integration by parts gives Z 1

0
logk rdr = (−1)k k!, (57)

and so Z 1

0

·
L (rn)

L (n)
− 1

¸k
dr = ε (n)k

Z 1

0
logk rdr [1 + o (1)] (58)

= (−1)k ε (n)k k! [1 + o (1)] ,

giving the stated result.

7.10 Lemma If L (t) satisÞes SSV, then for all r > 0

L (rn)

L (n)
− 1 = ε (n) log r + 1

2
ε (n) [ε (n) + η (n)] log2 r [1 + o (1)] (59)

as n→∞.
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7.11 Proof Since both L and ε are SSV functions we have both (55) and

log
ε (rn)

ε (n)
= −

Z n

rn

η (t)

t
dt,

and, as in (56) above, we get for ε

ε (rn)

ε (n)
= 1 + η (n) log r [1 + o (1)] .

Then

log
L (rn)

L (n)
= −

Z n

rn

ε (t)

t
dt = −ε (n)

Z n

rn

ε
¡
n tn
¢

ε (n)

dt

t

= −ε (n)
Z n

rn

½
1 + η (n) log

t

n

¾
dt

t
[1 + o (1)]

= ε (n) log r − ε (n) η (n)
Z 1

r
log s

ds

s
[1 + o (1)]

= ε (n) log r +
1

2
ε (n) η (n) log2 r [1 + o (1)] ,

and we deduce that

L (rn)

L (n)
− 1 = exp

½
ε (n) log r +

1

2
ε (n) η (n) log2 r [1 + o (1)]

¾
− 1

= ε (n) log r +
1

2
ε (n) [ε (n) + η (n)] log2 r [1 + o (1)] ,

as stated.

7.12 Example L (n) = 1
logn , ε (n) = − 1

logn , η (n) = − 1
logn . Then, by direct expansion we

have for large n

L (rn)

L (n)
− 1 =

− log r
log r + logn

=
− log r
logn

·
1 +

log r

logn

¸−1
= − log r

logn

∞X
j=0

(−1)j
µ
log r

logn

¶j
,

which agrees with the third order expansion given in (59) above.

7.13 Lemma Z n

1
logk tdt = n

kX
j=0

(−k)j logk−j n

where (−k)j = (−k) (−k + 1) ... (−k + j − 1) .

7.14 Proof This follows by successive integration by parts.
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7.15 Lemma

(a)
Pp−k−1
j=0

¡ p
p−j
¢¡p−j

k

¢
(−1)p−j = (−1)p−k+1 ¡pk¢.

(b)
Pp
j=k (−1)p−j

¡p
j

¢¡j
k

¢
= 0.

7.16 Proof Both parts follow by direct calculation. First,

p−k−1X
j=0

Ã
p

p− j

!Ã
p− j
k

!
(−1)p−j =

p−k−1X
j=0

p!

j!k! (p− j − k)! (−1)
p−j =

Ã
p

k

! p−k−1X
j=0

(p− k)!
j! (p− k − j)! (−1)

p−j

=

Ã
p

k

!p−kX
j=0

(p− k)!
j! (p− k − j)! (−1)

p−j − (−1)p−k
 = − (−1)p−k Ãp

k

!
,

giving (a). Second,

pX
j=k

(−1)p−j
Ã
p

j

!Ã
j

k

!
=

Ã
p

k

! pX
j=k

(−1)p−j (p− k)!
(p− j)! (j − k)! = (−1)

k

Ã
p

k

! p−kX
`=0

(−1)p−`
Ã
p− k
`

!
= 0

giving (b).

7.17 Lemma

(a) Z 1

0
`p (r) `p (r)

0 dr = HpF 2pH
0
p,

where

Hp =



1 0 0 0 . . . 0 0
−1 1 0 0 . . . 0 0
1 −2 1 0 . . . 0 0
−1 3 −3 1 . . . 0 0
...

...
...

...
. . .

...
...

(−1)p−1 (−1)p ¡p−11 ¢ (−1)p+1 ¡p−12 ¢ (−1)p+2 ¡p−13 ¢ 1 0

(−1)p (−1)p+1 ¡p1¢ (−1)p+2 ¡p2¢ (−1)p+3 ¡p3¢ . . . (−1)2p−1 ¡ p
p−1
¢
1


and

Fp = diag [1, 1, 2!, 3!, ..., (p− 1)!, p!] .

(b) det
hR 1
0 `p (r) `p (r)

0 dr
i
= Πpj=1 (j!)

2 .

(c)
µhR 1

0 `p (r) `p (r)
0 dr

i−1¶
p+1,p+1

= 1
(p!)2

.
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7.18 Proof Note that the (i, j)�th element of the matrix
R 1
0 `p (r) `p (r)

0 dr is (−1)i+j−2 (i+ j − 2)!.
Consider the (i, j)�th element of the matrix product HpF 2pH

0
p and let j = k ≤ i. By direct

calculation and using the representationÃ
a

`

!
= (−1)` (−b)`

`!
, (−b)` = (−b) (−b+ 1) ... (−b+ `− 1) ,

we Þnd that this element is

(i−1)∧(j−1)X
m=0

(−1)i−1+m
Ã
i− 1
m

!
(i− 1)! (j − 1)!

Ã
j − 1
m

!
(−1)j−1+m

= (−1)i+k (i− 1)! (k − 1)!
k−1X
m=0

(−1)2m (1− i)m (1− k)m
m! (1)m

= (−1)i+k (i− 1)! (k − 1)! 2F1 (1− i, 1− k, 1; 1) , (60)

where 2F1 (a, b, c; z) =
P∞
j=0

(a)j(b)j
j!(c)j

zj is the hypergeometric function. Noting that the series

terminates (because 1− k is zero or a negative integer) and applying the summation formula
(e.g. Erdélyi, 1953, p.61)

2F1 (a, b, c; 1) =
Γ (c)Γ (c− a− b)
Γ (c− a)Γ (c− b)

where Γ is the gamma function, (60) reduces to

(−1)i+k (i− 1)! (k − 1)!Γ (i+ k − 1)
Γ (i)Γ (k)

= (−1)i+k−2 (i+ k − 2)!,

giving the required result and part (a). Parts (b) and (c) follow directly.

8 Proofs

8.1 Proof of Lemma 2.3

Part (a). By partial summation we have

1√
n

nX
t=1

L (t)ut = L (n)
Sn√
n
− 1√

n

nX
t=1

[L (t)−L (t− 1)]St−1, (61)

where St =
Pt
s=1 us. So

1√
nL (n)

nX
t=1

L (t)ut =
Sn√
n
− 1√

nL (n)

nX
t=1

[L (t)− L (t− 1)]St−1

=
Sn√
n
− 1

L (n)

nX
t=1

·
L

µ
n
t

n

¶
− L

µ
n
t− 1
n

¶¸
St−1√
n
. (62)
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We now use the embedding of the standardized partial sum St−1√
n
in Brownian motion given

in LP(b), viz.

sup
1≤t≤n

¯̄̄̄
St−1√
n
−B

µ
t− 1
n

¶¯̄̄̄
= oa.s.

Ã
1

n
1
2
− 1
p

!
,

Then

1

L (n)

nX
t=1

·
L

µ
n
t

n

¶
− L

µ
n
t− 1
n

¶¸
St−1√
n
=

1

L (n)

Z 1

0
B (r) dL (nr) + oa.s.

Ã
1

n
1
2
− 1
p

!
. (63)

Next 1
L(n)

R 1
0 B (r) dL (nr) has mean zero and variance

2

L (n)2

Z 1

0

Z r

0
sdL (ns)dL (nr) . (64)

Observe thatZ r

0
sdL (ns) =

Z r

0
nsL0 (ns) ds =

Z r

0
L (ns) ε (ns)ds

=
1

n

Z nr

0
L (t) ε (t)dt =

1

n
[nrL (nr) ε (nr) + o (nrL (nr) ε (nr))] (65)

For the last equality, note that L (t) ε (t) is (up to sign) a smoothly slowly varying function.
We can then use Karamata�s theorem,viz. that for α > −1 and a slowly varying function `,
we have the asymptotic equivalenceZ x

a
tα` (t)dt ∼ xα+1

α+ 1
` (x) as x→∞ (66)

(e.g., BGT, Proposition 1.5.8, p. 26), setting α = 0 to obtain (65). Using (65) in (64), the
dominant term is

2

L (n)2

Z 1

0
rL (nr) ε (nr)dL (nr) =

2

L (n)2

Z 1

0
nrL0 (nr)L (nr) ε (nr)dr

=
2

L (n)2

Z 1

0
L (nr)2 ε (nr)2 dr

=
2

nL (n)2

Z n

0
L (t)2 ε (t)2 dt

= 2ε (n)2 + o
³
ε (n)2

´
= o (1) ,

by applying (66) again. It follows that

1

L (n)

Z 1

0
B (r) dL (nr) = op (1) (67)

as n→∞. We deduce from (62), (63) and (67) that

1√
nL (n)

nX
t=1

L (t)ut =
Sn√
n
+ op (1)→d N

³
0,σ2

´
.
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Part (b) We have

nX
t=1

³
L (t)− L

´
ut =

nX
t=1

L (t)ut − LSn

and Lemma 7.3 gives

L = L (n)− L (n) ε (n) + L (n) ε (n)2 − L (n) ε (n) η (n) + o (L (n) ε (n) η (n))

and using (62) and (63)

1√
n

nX
t=1

L (t)ut = L (n)
Sn√
n
−
Z 1

0
B (r) dL (nr) + oa.s.

Ã
1

n
1
2
− 1
p

!

so that

1√
n

nX
t=1

³
L (t)− L

´
ut

= L (n)
Sn√
n
−
Z 1

0
B (r)dL (nr) + oa.s.

Ã
1

n
1
2
− 1
p

!

−
h
L (n)−L (n) ε (n) + L (n) ε (n)2 − L (n) ε (n) η (n) + o (L (n) ε (n) η (n))

i Sn√
n

= −
Z 1

0
B (r) dL (nr) + oa.s.

Ã
1

n
1
2
− 1
p

!
+ L (n) ε (n)

Sn√
n
+Op

³
L (n) ε (n)2

´
= −

Z 1

0

B (r)

r

L0 (nr)nr
L (nr)

L (nr) dr + L (n) ε (n)
Z 1

0
dB (r) +Op

³
L (n) ε (n)2

´
= −

Z 1

0

B (r)

r
ε (nr)L (nr) dr + L (n) ε (n)

Z 1

0
dB (r) +Op

³
L (n) ε (n)2

´
. (68)

Now, in view of the local law of the iterated logarithm for Brownian motion, we have

lim sup
r→0

B (r)p
2r log log 1/r

= 1.

So, as in (66), we haveZ 1

0

B (r)

r
ε (nr)L (nr) dr = ε (n)L (n)

Z 1

0

B (r)

r
dr [1 + op (1)]

= −ε (n)L (n)
Z 1

0
(log r)dB (r) [1 + op (1)] . (69)

It follows from (69) that (68) isZ 1

0
(1 + log r) dB (r) + op (1)→d N

µ
0,σ2

Z 1

0
(1 + log r)2 dr

¶
=d N

³
0,σ2

´
,

as stated.
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Part (c) Start by considering n−
1
2
Pn
t=1Knj

¡
t
n

¢
ut. By partial summation and the

strong approximation LP(b), we obtain, as in (63),

1√
n

nX
t=1

·
L (t)

L (n)
− 1

¸j
ut = −

nX
t=1

St−1√
n
∆

"
L
¡
n tn
¢

L (n)
− 1

#j

= −
Z 1

0
B (r) d

·
L (nr)

L (n)
− 1

¸j
+ oa.s.

Ã
1

n
1
2
− 1
p

!

=
Z 1

0

·
L (nr)

L (n)
− 1

¸j
dB(r) + oa.s.

Ã
1

n
1
2
− 1
p

!
.

From (56) we have

L (rn)

L (n)
− 1 = exp {ε (n) log r [1 + o (1)]}− 1 = ε (n) log r [1 + o (1)] ,

so that Z 1

0

·
L (nr)

L (n)
− 1

¸j
dB(r) = ε (n)j

Z 1

0
logj rdB(r) [1 + o (1)] .

Thus,

1√
nε (n)j

nX
t=1

·
L (t)

L (n)
− 1

¸j
ut →d

Z 1

0
logj rdB(r) =d N

µ
0,σ2

Z 1

0
log2j rdr

¶
= N

³
0,σ2 (2j)!

´
,

as required.

8.2 Proof of Theorem 4.1 Using Euler summation with f (t) =
h
L(t)
L(n) − 1

ij
we obtain,

as in Lemma 7.1,

1

n

nX
t=1

Knj

µ
t

n

¶

=
1

n

nX
t=1

·
L (t)

L (n)
− 1

¸j

=
1

n

Z n

1

·
L (t)

L (n)
− 1

¸j
dt+

1

2n
{f (1) + f (n)}+ j

n

Z n

1

½
t− [t]− 1

2

¾·
L (t)

L (n)
− 1

¸j−1 L0 (t)
L (t)

dt

=
1

n

Z n

1

·
L (t)

L (n)
− 1

¸j
dt+O

µ
1

n1−δ

¶
=

Z 1

1
n

·
L (rn)

L (n)
− 1

¸j
dr +O

µ
1

n1−δ

¶
=

Z 1

0

·
L (rn)

L (n)
− 1

¸j
dr +O

µ
1

n1−δ

¶
, (70)

for arbitrarily small δ > 0, in view of (6). Hence, from (58) in the proof of Lemma 7.8, we
have

1

n

nX
t=1

Knj

µ
t

n

¶
= ε (n)j

Z 1

0
logj rdr [1 + o (1)] +O

µ
1

n1−δ

¶
= (−1)j j!ε (n)j [1 + o (1)] ,
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so that
1

nε (n)j

nX
t=1

Knj

µ
t

n

¶
→
Z 1

0
logj rdr = (−1)j j!,

from which the stated limit results follow. The matrix
R 1
0 `p (r) `p (r)

0 dr is positive deÞnite
because Z 1

0

£
a0`p (r)

¤2
dr = 0

implies a0`p (r) = 0 for all r, which implies a = 0, and part (a) is established.
To prove part (b), we note by Lemma 2.3 (c) that

1√
nε (n)j

nX
t=1

Knj

µ
t

n

¶
ut →d

Z 1

0
logj rdB(r),

and proceeding in the same way as in the proof of that Lemma but with an arbitrary linear
combination of the above elements for j = 0, 1, ..., p, we get

pX
j=0

bj√
nε (n)j

nX
t=1

Knj

µ
t

n

¶
ut =

pX
j=0

bj

Z 1

0
logj rdB(r) [1 + oa.s. (1)]→d

pX
j=0

bj

Z 1

0
logj rdB(r).

By the Cramér - Wold device, we deduce that

1√
n
D−1nε

nX
t=1

Kn

µ
t

n

¶
ut →d

Z 1

0
`p (r)dB(r), `p (r) = (1, log r, ..., log

p r) . (71)

Then, from (31), (32) and (71) we obtain

√
nDnε [bαn − αn] =

"
1

n
D−1nε

nX
t=1

Kn

µ
t

n

¶
Kn

µ
t

n

¶0
D−1nε

#−1 "
1√
n
D−1nε

nX
t=1

Kn

µ
t

n

¶
ut

#
→d N

³
0,σ2V −1

´
.

8.3 Proof of Theorem 4.2 From (29) and (33), we get for the Þnal coefficient

√
nL (n)p ε (n)p

³bβp − βp´ = √nε (n)p [bαnp − αnp]→d N
³
0, vp+1,p+1

´
,

where V −1 =
¡
vi,j

¢
and V =

R 1
0 `p (r) `p (r)

0 dr. A calculation (see Lemma 7.17(c)) gives the
Þnal diagonal element of the inverse matrix V −1

vp+1,p+1 =
1

(p!)2
.

For the next coefficient, we have

αnp−1 =

Ã
p− 1
p− 1

!
βp−1L (n)

p−1 +
Ã

p

p− 1

!
βpL (n)

p

= βp−1L (n)
p−1 + pβpL (n)

p ,
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and so
βp−1L (n)

p−1 = αnp−1 − pβpL (n)p ,
leading to

√
nL (n)p−1 ε (n)p

³bβp−1 − βp−1´ =
√
nε (n)p (bαnp−1 − αnp−1)−

Ã
p

p− 1

!√
nL (n)p ε (n)p

³bβp − βp´
= Op (ε (n))−

Ã
p

p− 1

!√
nL (n)p ε (n)p

³bβp − βp´
= −

Ã
p

p− 1

!√
nL (n)p ε (n)p

³bβp − βp´+ op (1)
= −

Ã
p

p− 1

!√
nε (n)p [bαnp − αnp] + op (1)

→ d −
Ã

p

p− 1

!
N
³
0, vp+1,p+1

´
.

Next, for k = p− 2 we have

βp−2L (n)
p−2 = αnp−2 −

"Ã
p− 1
p− 2

!
βp−1L (n)

p−1 +
Ã

p

p− 2

!
βpL (n)

p

#
,

so that
√
nL (n)p−2 ε (n)p

³bβp−2 − βp−2´ =
√
nε (n)p (bαnp−2 − αnp−2)

−
Ã
p− 1
p− 2

!
L (n)p−1

√
nε (n)p

³bβp−1 − βp−1´
−
Ã

p

p− 2

!
L (n)p

√
nε (n)p

³bβp − βp´
= O

³
ε (n)2

´
+

"Ã
p− 1
p− 2

!Ã
p

p− 1

!
−
Ã

p

p− 2

!#
L (n)p

√
nε (n)p

³bβp − βp´
= O

³
ε (n)2

´
+

·
(p− 1) p− 1

2!
p (p− 1)

¸
L (n)p

√
nε (n)p

³bβp − βp´
=

Ã
p

p− 2

!
L (n)p

√
nε (n)p

³bβp − βp´+ op (1)
More generally, proceeding in this way for p−1 > k ≥ 0 (under the convention that ¡j0¢ = 1),
we have

αnk =
pX
j=k

βjL (n)
j

Ã
j

k

!
=

Ã
k

k

!
βkL (n)

k +

Ã
k + 1

k

!
βk+1L (n)

k+1 + ...+

Ã
p

k

!
βpL (n)

p (72)

so that

βkL (n)
k = αnk −

"Ã
k + 1

k

!
βk+1L (n)

k+1 + ...+

Ã
p

k

!
βpL (n)

p

#
.



34

We establish by induction (for decreasing k) that

√
nL (n)k ε (n)p

³bβk − βk´ = (−1)p−k
Ã
p

k

!√
nL (n)p ε (n)p

³bβp − βp´+ op (1) . (73)

We have already shown (73) to be valid for k = p− 1 and p− 2. Assume it is valid for k+1.
Then, using (72) and Lemma 7.13 we have

√
nL (n)k ε (n)p

³bβk − βk´
=

√
nε (n)p (bαnk − αnk)

−
"Ã
k + 1

k

!
L (n)k+1 ε (n)p

³bβk+1 − βk+1´+ ...+
Ã
p

k

!
L (n)p ε (n)p

³bβp − βp´
#

= O
³
ε (n)p−k

´
−
"
(−1)p−k−1

Ã
p

k + 1

!Ã
k + 1

k

!
+ ...+ (−1)

Ã
p

p− 1

!Ã
p− 1
k

!
+

Ã
p

k

!#
×√nL (n)p ε (n)p

³bβp − βp´
= O

³
ε (n)p−k

´
−
p−k−1X
j=0

Ã
p

p− j

!Ã
p− j
k

!
(−1)p−j√nL (n)p ε (n)p

³bβp − βp´

= (−1)p−k
Ã
p

k

!√
nL (n)p ε (n)p

³bβp − βp´+ op (1) ,
showing that the result holds for k as well.

Equation (73) gives an asymptotic correspondence between the elements of the least
squares estimate bβ and its Þnal component bβp that has the form

√
nε (n)pDnL

³bβ − β´ = µp+1√nL (n)p ε (n)p ³bβp − βp´+ op (1) ,
where DnL = diag (1, L (n) , ..., L (n)

p) and µ0p+1 =
h
(−1)p , (−1)p−1 ¡p1¢, ..., (−1) ¡ p

p−1
¢
, 1
i
.We

deduce that √
nε (n)pDnL

³bβ − β´→d N
³
0, vp+1,p+1µp+1µ

0
p+1

´
,

giving the stated result. The explicit formula vp+1,p+1 = 1/ (p!)2 follows from Lemma 7.17(c).

8.4 Proof of Theorem 4.3 First, transform the regressor space in (25) as follows

ys = β
0Ls + us = β0JnJ−1n Ls + us = a

0
nXs + us, (74)

where

J 0n =



1 L (n) L (n)2 · · · L (n)p−1 L (n)p

0 L (n) ε (n)
¡2
1

¢
L (n)2 ε (n) · · · ¡p−1

1

¢
L (n)p−1 ε (n)

¡p
1

¢
L (n)p ε (n)

0 0 L (n)2 ε (n)2 · · · ¡p−1
2

¢
L (n)p−1 ε (n)

¡p
2

¢
L (n)p ε (n)2

...
...

...
. . .

...
...

0 0 0 · · · L (n)p−1 ε (n)p−1
¡ p
p−1
¢
L (n)p ε (n)p−1

0 0 0 · · · 0 L (n)p ε (n)p


= EnH

0DnL, say
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and En = diag
h
1, ε (n) , ε (n)2 , ..., ε (n)p

i
, DnL = diag

h
1, L (n) , L (n)2 , ..., L (n)p

i
, and

H 0 =



1 1 1 · · · 1 1

0 1
¡2
1

¢ · · · ¡p−1
1

¢ ¡p
1

¢
0 0 1 · · · ¡p−1

2

¢ ¡p
2

¢
...
...
...

. . .
...

...
0 0 0 · · · 1

¡ p
p−1
¢

0 0 0 · · · 0 1


.

In (74) an = J 0nβ = Enαn where αn is the parameter vector in (30) whose elements αn j are
given in (27)-(29). Since Xs = J−1n Ls = E

−1
n H−1D−1nLLs, we may rewrite (74) as

ys = an
0E−1n Kn

µ
s

n

¶
+ us,

In view of (56), the vector E−1n Kn
¡ s
n

¢
has elements

1

ε (n)j
Knj

µ
s

n

¶
=

1

ε (n)j

"
L
¡ s
nn
¢

L (n)
− 1

#j
= logj

µ
s

n

¶
[1 + o (1)] ,

and so

an
0E−1n Kn

µ
s

n

¶
= β0JnE−1n Kn

µ
s

n

¶
= β0Jn`p

µ
s

n

¶
[1 + o (1)] = β0DnLHEn`p

µ
s

n

¶
[1 + o (1)] .

The sample second moment matrix, L0L of the regressors can now be written as

L0L = Jn

"
nX
s=1

`p

µ
s

n

¶
`p

µ
s

n

¶0#
J 0n [1 + o (1)]

= nJn

·Z 1

0
`p (r) `p (r)

0 dr
¸
J 0n [1 + o (1)]

= DnLHEn

"
nX
s=1

`p

µ
s

n

¶
`p

µ
s

n

¶0#
EnH

0DnL [1 + o (1)]

= nDnLH

½
En

Z 1

0
`p (r) `p (r)

0 drEn
¾
H 0DnL [1 + o (1)] .

Since ε (n) → 0 as n → ∞, the matrix En = e1e01 + o (1) , where e1 = (1, 0, ..., 0)0 , and Þnal
expression above is

nDnLH

½
e1e

0
1

Z 1

0
`p (r) `p (r)

0 dre1e01 + o (1)
¾
H 0DnL [1 + o (1)]

= nDnLHe1e
0
1H

0DnL [1 + o (1)]
= nDnLip+1i

0
p+1DnL [1 + o (1)] ,

where ip+1 is the p+1 sum vector (i.e., it has unity in each component). This gives the Þrst
result (35).
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Next, consider the inverse sample moment matrix

¡
L0L

¢−1
= J−10n

"
nX
s=1

`p

µ
s

n

¶
`p

µ
s

n

¶0#−1
J−1n [1 + o (1)]

=
1

n
J−10n

·Z 1

0
`p (r) `p (r)

0 dr
¸−1

J−1n [1 + o (1)]

=
1

n
D−1nLH

−10E−1n
·Z 1

0
`p (r) `p (r)

0 dr
¸−1

E−1n H−1D−1nL [1 + o (1)]

Now observe that E−1n is dominated by its Þnal diagonal element, so we can write E−1n =
1

ε(n)p ep+1e
0
p+1 [1 + o (1)] where ep+1 = (0, 0, ..., 1)

0 . The Þnal expression above is asymptoti-
cally equivalent to

1

nε (n)2p
D−1nLH

−10ep+1e0p+1
·Z 1

0
`p (r) `p (r)

0 dr
¸−1

ep+1e
0
p+1H

−1D−1nL

=
e0p+1

hR 1
0 `p (r) `p (r)

0 dr
i−1

ep+1

nε (n)2p
D−1nLH

−10ep+1e0p+1H
−1D−1nL

=
e0p+1

hR 1
0 `p (r) `p (r)

0 dr
i−1

ep+1

nε (n)2p
D−1nLµp+1µ

0
p+1D

−1
nL, (75)

giving the stated result. Line (75) holds because H−10ep+1 = µp+1, the Þnal column of H−10 ,
as is apparent from the fact that H 0µp+1 = ep+1 which can be veriÞed by direct multiplication
using Lemma 7.12(b).

8.5 Proof of Theorem 5.1 Solving (40) for β1 and β2, we get"
β1
β2

#
=

"
L1 (n) 0
0 L2 (n)

#−1 "
ε1 (n) ε2 (n)
1
2ε1 (n) [ε1 (n) + η1 (n)]

1
2ε2 (n) [ε2 (n) + η2 (n)]

#−1 "
αn1
αn2

#

=

"
L1 (n) ε1 (n) 0
0 L2 (n) ε2 (n)

#−1 "
1 1
1
2 [ε1 (n) + η1 (n)]

1
2 [ε2 (n) + η2 (n)]

#−1 "
αn1
αn2

#

=

"
L1 (n) ε1 (n) 0
0 L2 (n) ε2 (n)

#−1
2

δ (n)

"
1
2 [ε2 (n) + η2 (n)] −1
−1
2 [ε1 (n) + η1 (n)] 1

# "
αn1
αn2

#
.

and so
√
n

2

 δ (n) ε1 (n)L1 (n) hbβ1 − β1i
δ (n) ε2 (n)L2 (n)

hbβ2 − β2i
 = " 1

2 [ε2 (n) + η2 (n)] −1
−1
2 [ε1 (n) + η1 (n)] 1

# " √
n [bαn1 − αn1]√
n [bαn2 − αn2]

#
.

Since εj (n) + ηj (n) = o (1) for j = 1, 2, we have

√
n

2

 δ (n) ε1 (n)L1 (n) hbβ1 − β1i
δ (n) ε2 (n)L2 (n)

hbβ2 − β2i
 = " −1

1

# £√
n [bαn2 − αn2]¤+op (1)→d N

Ã
0,

σ2

(2!)2

"
1 −1
−1 1

#!
,

(76)
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where the coefficient 1
(2!)2

comes from the third diagonal element of the inverse matrixhR 1
0 `2 (r) `2 (r)

0 dr
i−1

. Finally, the constant term satisÞes

β0 = α0 − L1 (n)β1 − L2 (n)β2
which, in combination with (76), leads to

√
n

2
δ (n) εmin (n)

³bβ0 − β0´ =

 −L2 (n)
√
n
2 δ (n) ε2 (n)

³bβ2 − β2´+ op (1) if ε2 (n) = o (ε1 (n))

−L1 (n)
√
n
2 δ (n) ε1 (n)

³bβ1 − β1´+ op (1) if ε1 (n) = o (ε2 (n))

=

(
−√n [bαn2 − αn2] + op (1) if ε2 (n) = o (ε1 (n))√
n [bαn2 − αn2] + op (1) if ε1 (n) = o (ε2 (n))
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where
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We deduce that
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which gives the stated result upon scaling.

8.6 Proof of Lemma 6.1 Setting St =
Pt
s=1 us, using partial summation and proceeding

as in the proof of Lemma 2.3 (a) have
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nX
t=1

·
f

µ
t

n
; θ

¶
L

µ
n
t

n

¶
− f

µ
t− 1
n
; θ

¶
L

µ
n
t− 1
n

¶¸
St−1√
n
.

(77)
Assume the probability space is constructed so that we can embed the standardized partial
sum St−1√

n
in Brownian motion as in LP(b), viz.
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Then, the Þrst term of (77) clearly satisÞes
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n
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as n→ θ uniformly over θ ∈ N0
n. The second term of (77) is
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Start with T1. We have f
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as ¯̄̄̄
L (nr)

L (n)

¯̄̄̄
→ 1,

¯̄̄̄
L0 (nr)nr
L (nr)

¯̄̄̄
→ 0, for all r > 0 and sup

θ1,θ2∈N0
n

|θ1 − θ2|→ 0

as n→∞. It follows that

T1 =
1

L (n)

nX
t=1

f

µ
t

n
; θ0

¶·
L

µ
n
t

n

¶
− L

µ
n
t− 1
n

¶¸
St−1√
n
+ op (1)

uniformly over θ ∈ N0
n. But, just as in the proof of Lemma 2.3 (a),
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and, just as in (80) above, we Þnd that
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as n→∞. It follows from (81) and (82) that
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uniformly over θ ∈ N0
n. We deduce from (77), (79), (78) and (83) that
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uniformly over θ ∈ N0
n, giving the stated result.

8.7 Proof of Lemma 6.2

Part (a) For any slowly varying function L satisfying SSV and any function f ∈ C1,
we can show in the same way as Lemma 6.1 that
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extending (9). The limit (51) follows directly.
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Part (b) Using Lemma 6.1 and (85), the asymptotic form of D−1n Hn(θ0)D−1n is 1
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as stated.

Part (c) Upon calculation of (86) and rescaling, we deduce that
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Then
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We deduce that
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as given.

Part (e) DeÞne Cn = Dn/nδ for some small positive δ ∈ (0, γ0 + 1
2), so that CnD
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n =

O
³
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´
= o (1) and λmin(Cn)→∞ as n→∞, where λmin denotes the smallest eigenvalue.

Construct the following shrinking neighbourhood of θ0
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Consider the individual elements of C−1n [Hn (θ)−Hn (θ0)]C−1n in turn. First, for γ∗ between
γ and γ0, we have
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Next,
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as n→∞. The argument for the term a22,n is entirely analogous and (88) therefore follows.
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8.8 Proof of Theorem 6.4 Standard asymptotic arguments of nonlinear regression for
nonstationary dependent time series (e.g., Wooldridge, 1994, theorem 8.1) may be applied.
But, modiÞcations to the arguments need to be made to attend to the singularity arising
from the asymptotically collinear elements sγ0 and sγ0 log s that appear in the score Sn(θ0).
First, the demonstration that there is a consistent root of the Þrst order conditions (48) in
an open, shrinking neighbourhood of θ0 follows as in the proof of Wooldridge�s theorem 8.1
using (49) and Lemma 7.2 (e). There are two changes in the proof that are needed: (i)
the standardizing matrix is F−1n in place of D−1n , as discussed in Remark 6.3(a); (ii) the
scaled hessian matrix F−1n Hn(θ0)F−1n does not tend to a positive deÞnite limit with Þnite
eigenvalues bounded away from the origin. Instead, as shown in the proof of Lemma 7.2(c),
F−1n Hn(θ0)F
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n is positive deÞnite for all large n and has eigenvalues of order O
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¢
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¸
and since D−1n Sn(θ0) = Op (1) from Lemma

7.2(a), we have F−1n Sn(θ0) = Op (logn) . However, from (87) in the proof of Lemma 7.2(d)
we have
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and from Lemma 7.2(e) we have

sup
θ∈N0

n

F−1n [Hn (θ)−Hn(θ0)]F−1n = op (1) ,

where N0
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³bθ − θ0´ = Op (1) , it follows that bθ, θ∗ ∈ N0
n with

probability approaching unity as n→∞, where θ∗ is a generic mean value between bθ and θ0.
Hence

F−1n [H∗
n −Hn(θ0)]F−1n = op (1) , (93)

and so, combining (93) and (92) we have³
FnHn(θ0)

−1Fn
´
F−1n [H∗

n −Hn(θ0)]F−1n = op (1) . (94)
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Then, from (91), (94) and (87) we deduce that

Fn
³bθ − θ0´

= −
³
FnHn(θ0)

−1Fn
´
F−1n Sn(θ0) + op (1)

= −
¡
2γ0 + 1

¢3
β20


 β20 − 2β20

logn
1

(2γ0+1)
+

β20
log2 n

2
(2γ0+1)2

−β0 + β0
log n

1
(2γ0+1)

−β0 + β0
logn

1
(2γ0+1) 1

+Op µ 1√
n

¶
× 1√

n

nX
s=1

" ¡
s
n

¢γ0 logn
β0
¡
s
n

¢γ0 log s
#
us + op (1)

= −
¡
2γ0 + 1

¢3
β20

1√
n

nX
s=1

 − 2β20
logn

( sn)
γ0 logn

(2γ0+1)
+

β20
log2 n

2( sn)
γ0 logn

(2γ0+1)2
− β20

¡
s
n

¢γ0 log sn + β20
logn

( sn)
γ0 log s

(2γ0+1)

β0
¡
s
n

¢γ0 log sn + β0
logn

( sn)
γ0 logn

(2γ0+1)

us + op (1)
= −

¡
2γ0 + 1

¢3
β20

1√
n

nX
s=1

 −β20 ¡ sn¢γ0 log sn − β20(
s
n)

γ0

(2γ0+1) +
β20
logn

( sn)
γ0 log s

n

(2γ0+1)

β0
¡
s
n

¢γ0 log sn + β0( sn)
γ0

(2γ0+1)

us + op (1)
= −

¡
2γ0 + 1

¢3
β20

1√
n

nX
s=1

 −β20 ¡ sn¢γ0 log sn − β20
(2γ0+1)

¡
s
n

¢γ0
β0
¡ s
n

¢γ0 log sn + β0( sn)
γ0

(2γ0+1)

us +Op µ 1

logn

¶
+ op (1)

=
³
2γ0 + 1

´3 " 1
−1/β0

#
1√
n

nX
s=1

"µ
s

n

¶γ0
log

s

n
+

¡
s
n

¢γ0
(2γ0 + 1)

#
us +Op

µ
1

logn

¶
+ op (1)

→ d

³
2γ0 + 1

´3 " 1
−1/β0

# Z 1

0
rγ0

·
log r +

1

2γ0 + 1

¸
dB (r) =

"
1
−1/β0

#
N

µ
0,σ2

³
2γ0 + 1

´3¶
,

giving the stated result.

9 Notation

→a.s. almost sure convergence
→p convergence in probability
=d distributional equivalence
:= deÞnitional equality
(a)k a (a+ 1) ... (a+ k − 1)
B (r) standard Brownian motion

Ck
class of continuously differentiable
functions to order k

SV slowly varying
SSV smoothly slowly varying
⇒,→d weak convergence
[·] integer part of
r ∧ s min(r, s)
∼ asymptotic equivalence
op(1) tends to zero in probability
oa.s.(1) tends to zero almost surely
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