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Abstract

Slowly varying regressors are asymptotically collinear in linear regression. Usual re-
gression formulae for asymptotic standard errors remain valid but rates of convergence
are affected and the limit distribution of the regression coefficients is shown to be one
dimensional. Some asymptotic representations of partial sums of slowly varying functions
and central limit theorems with slowly varying weights are given that assist in the de-
velopment of a regression theory. Multivariate regression and polynomial regression with
slowly varying functions are considered and shown to be equivalent, up to standardiza-
tion, to regression on a polynomial in a logarithmic trend. The theory involves second,
third and higher order forms of slow variation. Some applications to trend regression are
discussed.
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AMS 1991 subject classifications: 26A12, 62J05, 62J02
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1 Introduction

Empirical models of time series often involve deterministic trend functions. Time polynomials
and sinusoidal polynomials are the most common functions to appear in such models and the
properties of regressions of time series on these trend functions have been extensively explored
in the literature, an early and definitive contribution being Grenander and Rosenblatt (1957,
ch.7). A common element in much of the asymptotic theory that has been developed is a
requirement of the type that ensures the existence of a positive definite limit to a suitably
normalized sample second moment matrix of the regressors. Frequently, this requirement
appears as one of a general set of conditions on the sample variances and autocovariances of

*The author thanks Sidney Resnick for references on second order regular variation and the NSF for research
support under Grant No. SBR 97-30295. The paper was typed by the author in SW2.5.
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the regressors, such as those which are often characterized (e.g., by Hannan 1970, p.215) as
‘Grenander’s conditions’ (see Grenander and Rosenblatt, 1957, pp.233-234).

Not all deterministic functions of interest are covered by these requirements and when the
conditions fail some adjustments to the asymptotic theory are usually needed. One example
that is important in certain empirical applications is the semilogarithmic growth model

ys=a+ flogs+us s=1,...n (1)

where u; is an unobserved error process. In quite a different context, an analogous formulation
arises in the log periodogram analysis of long memory, a subject on which there is now a
large literature (see Robinson, 1995, and Hurvich, Deo and Brodsky, 1998, and the references

therein). In that case (discussed in Example 3.2(a) below), ys is the periodogram of the

data measured at the Fourier frequencies As = %, s = 1,..,m < n, and the slope coefficient
0 = —2d, where d is the memory parameter.

The reason model (1) fails to fit within the usual framework is that the sample moment
matrix of the regressors is asymptotically singular. Indeed, setting D,, = diag (v/n,/nlogn),

and F, ! = diag (ﬂ \/ﬁ) , we have (c.f. equations (23) and (24) below)

logn?’

1| n o_1logs 1 11
Dy, " . logs " log?s Dnﬁll’
s=1108 s=1108
and

1| n " logs | _ 1 -1
E [ v ilogs %%’:110225 ] E = [ -1 1 ] '

So, both the sample second moment of the regressors and its inverse have singular limits after
standardization, thereby failing Grenander’s conditions.

The same problem arises when the logarithmic function in (1) is replaced by any slowly
varying function L (s). In effect, the intercept and any slowly varying function are asymp-
totically collinear after appropriate standardization. The phenomenon is manifest in a more
serious way when one considers polynomial versions of (1) such as

p
ysZZﬂjlongJrus s>1
j=0

or similar regressions involving polynomials in a slowly varying function. In such cases, one
finds that the sample moment matrix of the regressors, while of rank p 4+ 1 for all n > p,
is singular and of rank unity in the limit after suitable normalization. More generally still,
the singularity persists when the regressors constitute a vector of different slowly varying
functions, such as {log s, 1/log s} involving a logarithmic and inverse logarithmic trend. .
In practical statistical work the phenomenon arises in nonlinear regressions of the type

y8:ﬂ57+u8 521,...,71 (2)
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where the trend exponent v > —% is to be estimated along with the regression coefficient (.
The affine linear form of (2), taken about the true values of the parameters (denoted by 3, and
Y0), involves the regressors s70 and s70 (log s), which are regularly varying and whose second
moment matrix is asymptotically singular upon appropriate (multivariate) normalization
(c.f., equation (52) below). It follows that statistical models like (2) manifest asymptotic
collinearity analogous to that of the linear regression (1). Wu (1980, p.509) noted that model
(2) failed his conditions (which require a single normalizing quantity and a positive definite
limit matrix for the second moment matrix of the affine model) for asymptotic normality,
and consequently did not provide a limit distribution theory for this model.

The present paper provides a treatment of regressions of this type. The discussion is con-
ducted in terms of slowly varying regressors and some results on polynomial and multivariate
functions of slow variation are obtained that may be of interest outside the present study. The
paper is organised as follows. Section 2 lays out some assumptions and preliminary theory.
Results for simple regression are given with some common examples in Section 3. Polynomial
regressions in slowly varying regressors are covered in Section 4. Some general multivariate
extensions are reported in Section 5. Section 6 applies the theory to the nonlinear trend
model (2). Section 7 and 8 contain supplementary technical material and proofs. Notation
is listed in Section 9.

2 Assumptions and Preliminary Results

It will be convenient to use some standard theory of slowly varying functions and, in so doing,
we shall repeatedly reference Bingham, Goldie and Teugels (1987), hereafter designated as
BGT. From the Karamata representation (e.g. BGT, theorem 1.3.1, p.12), any slowly varying
(SV) function L (x) has the representation

L(z)zc(z)exp(/x#dg, forz > a (3)

a

for some a > 0, and where ¢ (-) is measurable with c¢(z) — ¢ € (0,00) and € (z) — 0 as
x — o00. The function ¢ in (3) is referred to as the e-function corresponding to L.

The present paper works with the subclass of (so-called) normalized SV functions for
which ¢(z) is a constant. In the development of an asymptotic theory of regression, little
seems to be lost in making the restriction to constant ¢ functions because the asymptotic
behavior of L (z) is equivalent to that of (3) with ¢ (z) = c. It is also known that for every
SV function L there is an asymptotically equivalent SV function which is arbitrarily smooth
(e.g., BGT, theorem 1.3.3, p.14). This property is especially helpful in developing asymp-
totic representations and working with transforms that arise from the process of integration
and differentiation. The limit behavior studied below is determined by L and ¢, and some
properties, as we shall see, are invariant to the particular SV function.

To validate the expansions needed in our development of an asymptotic theory of regres-
sion, we shall assume the following.



2.1 Assumption (SSV)

(a) L(z) is a smoothly slowly varying (SSV) function with Karamata representation

L(x)zcexp(/j#dt), forz >a (4)

for some a > 0 and where ¢ > 0 is a constant, ¢ € C*° and € (z) — 0 as © — oo.

(b) |e(x)| is SSV and e has Karamata representation

Tt
e(x) = coexp </ #dt) forz > a (5)
for some (possibly negative) constant c. and where n € C*, |n| is SSV and n(x) — 0
as T — o0.
We call € (z) and 7 (x) the e- and n- functions of L (z). Under SSV we have
LI
%‘S):E(x)%o as T — 00

and, more generally,
2™ L) () 2™ (z) 2mn(m) ()
L(z) = e@ ' n()
(BGT, p.44). The class for L (x) covered in SSV includes all of the common slowly varying

—0 forallm=1,2,... as x — oc.

deterministic functions such as (for v > 0) log” z, 1/log” z, loglogz, and 1/loglogx that
might appear directly in simple regression formulations or indirectly in nonlinear regression
through the corresponding affine linear models.
Since we contemplate the use of L as a time series regressor, the value of the initialization
a in (4) is not important. In fact, we may reset a = 0 by taking € (t) = 0 over ¢ € [0, 6] for
some small 6 > 0 and by interpolating e over [§, a] so that e € C* [0, 00], thereby assuring
existence, integrability and smooth behavior for L over [0,a]. We shall henceforth presume
this change has been made and that we can majorize L (rn) /L (n) — 1 as follows
L (rn)
6

where K (n) is SSV, and ¢(r) € C[0,1]. In consequence, and using the fact that for any

1]gK<n>g<7~>,

slowly varying function K, K (n) /n™ — 0 for arbitrary n > 0, we have, given some o > 0

and any positive integer k

[ ea(). e

To deliver an asymptotic theory of regression we need to appeal to a central limit result.

where 6 = a —n > 0.

For this purpose, it is convenient to assume the regression errors us satisfy the following
linear process condition.



2.2 Assumption (LP) For all t > 0, u; has Wold representation

ut:C(L)et:ZCjet_j, Zj[cﬂ < oo, C(1)#0, (7)
3=0 3=0

with e; = iid (0,02) and po, = E lug|*P < oo for some p > 2.

It is well known (e.g., Phillips and Solo, 1992, theorem 3.4) that LP is sufficient for the
partial sums S; = >%_; us to satisfy the functional law ﬁs[n.] —q B(-), where B(-) is
Brownian motion with variance 02 = ¢2C (1)?. Further, extending the probability space as
needed, the partial sum process S; may be uniformly strongly approximated by a Brownian
motion such as B, in the sense that

() ()

for some integer p > 2. Strong approximations such as (8) have been proved by many authors

and are reviewed in Shorack and Wellner (1986) and Csorgd, M. and L. Horvath (1993).

A strong approximation justifying (8) in the case where w; is a linear processes is given in
1

Phillips (1999) for time series data under LP. Akonom (1993) gave (8) with an op(nféJr?)
error under LP using the weaker moment requirement that p,, = F |us|” < oo for some p > 2.

sup
1<t<n

Under LP, it follows by partial summation and by taking weak limits, that for any f € C*

Ty DAy T R
Some related results hold when f is slowly varying. In particular, we have the following.
2.3 Lemma If L(t) satisfies SSV, L =n"131", L(t) and u; satisfies LP, then:
(a) m SP L(t)ur —q B(1) =¢ N (0,0%) as n — oo.
(b) —mrisy Sty (L) = T) e —a Jy (14 logr) dB () =4 N (0,0%) as n — oo,
(c) \/— ) 21 [LJ(;% 1}jut —4 [ log? rdB (1) =4 N (0,02 (25)!) as n — oc.

2.4 Heuristics As shown in (56) and Lemma 7.3 below, one of the implications of SSV is
that we have the following asymptotic representation of L (¢) for ¢t = nr with r > 0

L (rn)
L(n)

—1l=exp{e(n)logr[l+o(1)]} —1=ec(n)logr[l+o(1)], (10)

Such a function may be called second order slowly varying (c.f., de Haan and Resnick, 1995,
who discuss second order regular variation). For the sample mean L, we have

L=L(n)—L(n)e(n)+o(L(n)e(n)).
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In consequence, the standardized sums that appear in (a), (b) and (c) of Lemma 2.3 have
the approximate asymptotic forms

Ut,

(1 + log <£)> Ut
1 n
logj <£> Ut,

n

to which we may apply a standard central limit argument like that of (9) above. These cases

M=

“
Il
=

t

5
~
=
o
=
]
pikg
=
=
|
-
S
2
SI= Sl- Sl
[]= 1=

t

Il
=

indicate that, as far as first order asymptotic theory is concerned, weighted means of u; with
arbitrary slowly varying weights behave in a common way, at least up to a normalization factor
that depends on the asymptotic form of the slowly varying function and its corresponding
e-function. The ‘common’ form that appears in these expressions is that of a logarithmic
trend function logt, while the influence of the particular slowly varying function affects the
normalization by way of L (n) and € (n). This characteristic will be seen to apply more
generally in regression asymptotics.

3 Simple Regression
We start with the simple regression model
ys=a+BL(s)+us s=1,...,n

where u, satisfies LP. Let & and B be the least squares regression coefficients. The limit be-
havior of these regression coefficients depends on that of the first and second sample moments

n

f:%iL(s), %Z(L(S)—Z)Q:%iL(S)Q—<%iL(S)> : (11)

s=1

The natural approach is to approximate these sample sums by an integral using Euler sum-
mation and then determine the asymptotic form of the resulting integrals as n — oco. Lemma
7.1 gives

n n

SOL()f = /1 L)*dt+ O (a), (12)
t=1

where 17 > 0 is arbitrarily small, and Lemma 7.3 gives the explicit asymptotic expansion

L(n)* —kL(n)*e ) +kLn)*em)? —kLn)fem)nn) (13)

S |
(]
h
=
B

I

+o (L (n)*e(m)n(n)+m)).
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Using (12) and (13) in (11) leads to the following asymptotic expansions for these sample
moments

~ 1 n 2]t 1 n —
\/ﬁL(n)s(n)(ﬂ— ):[WZ(L@)L)?] WZ(L(L‘)—L)W,

t=1

Vie(n) (@ -a) = s(n%iut—ﬁL(n)e(n)(B—ﬁ)[H(s(n))]
= —ViL(n)e(n) (B—B) +oy(1). (15)

The limit theory for the regression coefficients then follows directly from (15) and Lemma
2.3.

3.1 Theorem If L(t) satisfies SSV and u; satisfies LP, then
vne(n) (@ — o) 1 -1
[ﬁL(n)s(n) (3-5) 1 H”(“v"z [ 1 D (16)
3.2 Examples

(a) L(s) =logs This gives the semi-logarithmic model. Here, € (n) = @, L(n)e(n)=

1, and (16) is
ognn (a_a) 1 -1
[%(B_ﬂ)}HdN<o,a2ll ) D (17)

This example also covers log periodogram analysis of long memory. In this case we have the
regression
log (Ix (As)) = @ — 2dlog A + residual, s=1,..,m (18)

where Ix()\;) is the periodogram of a time series (X;)7; and A\s = 22 are fundamental

frequencies. The spectrum of X, is assumed to have the local form f,(A\) ~ CA™%¢ for
A — 04 and, correspondingly, the regression (18) is taken over a band of frequencies that
shrink to the origin, so that = + 2 — 0. Then (18) has the alternate form

~ 2 ~ ~
log (Ix (Xs)) = <E 2dlog %) — 2dlog s 4 residual = ¢,, — 2d log s + residual (19)
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where ¢, = ¢ — Q(flog 27” Set ¢ = logC, ¢, = ¢ — 2dlog 2% The moment matrix of the
regressors in (19) is asymptotically singular, just as in (1). Although the details of the
central limit theory differ from Lemma 2.3 because of the properties of the residual terms in
(18) (c.f. Robinson, 1995, and Hurwich et al., 1998), we nevertheless end up with a result
analogous to (17) but with sample size m, viz.

fogm (Cn — Cn) |1 -1
ogm * —q¢ N[0, — .
2/m (d—d) 6| -1 1

Since ¢, —cp = (¢ —¢) — 2 (J— d) log 2% we have

v v -
oy (G0 = on) = logn(c—c)+2\/ﬁ(d—d) =0, (1),

from which we deduce that

N
lo n(C*C) 7T2 1 -1
[Q\g/ﬁ(c?d)]_)d]v@’?l—l 1 D

a result obtained by Robinson (1995, theorem 3). The perfect negative asymptotic correlation

between the estimates ¢ and d induces a corresponding property between the estimates C
and d of the original parameters appearing locally in f;(\) ~ C ™2,

f
(b) L(s) = loés This example arises when the regressor decays slowly. Here ¢ (n) =
*@, L(n)e(n)= —10g12n and (16) is
A (a _ a) 1 1
U —a N {007 1 (20)
n 3 d ) g .
{loan(ﬂ_ﬁ) < [_1 1 ])

(c) L(s) =loglogs Here, ¢ (n) = -, L(n)e(n) = =—, and (16) is

= lToglogn logn’ ~ logn’
V5
logn (57[3) o

(d)L(s):m Here, € (n) = — -2, L(n)e(n) = ——— =, and (16) is

" loglogn logn’ " logZlogn logn’

L(a_a) 1 .
loglognlogn R N <O 02 [ 1)
n d ,
{m(ﬂ—ﬁ) 11
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(e) L(s)=1log”s, v >0. In this case, ¢(n) =2, L(n)e(n) =~log” 'n, and (16) is

— logn>

1Wn (5
lo, n(Oé*Oé) N 2 1 —1
B0y el )

In all these cases the limit behavior is identical up to appropriate normalization of the
coefficients, which is determined solely by L and its e-function. When L (n) — oo as n — oo,
the convergence rate of B exceeds that of @, because the signal from the regressor is stronger
than that of a constant regressor; when L (n) — 0 as n — oo, the convergence rate of fﬂ is
less than that of @, because the signal from the regressor is weaker than that of a constant
regressor.

3.3 Standard Errors These are computed by scaling the square root of the diagonal
elements of the inverse of the second moment matrix with an estimate of o2 obtained from
the regression residuals (either the sample variance, in the case where u; is 7id (0, 02) , OT an
estimate of 02 = ¢2C (1)? obtained by kernel methods in the stationary time series case (7)).
Using (12) and (13), we have

n

5[ b ][ hae 2o e

=
where

Liz (n) = L(n) = L(n)e (n) + L (n)e (n)* + =L (n) e (n)n (n) + o (L (n)e (n) [n (n) + & (n)]),
and

Loy (n) = L (n)?=2L (n)%e (n)4+4L (n)* ¢ (n)*—2L (n)* & (n) n (n)+o (L (n)%e(n)[n(n) +¢ (n)]) :

Upon standardization with the diagonal matrix D,, = diag (v/n,+/nL (n)), (22) becomes
PR L(s) _ 11 0 —&(n)
1 1 _
Dn ; l L(s) L(s)? ] D = l 11 ] + l Ce(n) —2e(n) | TOEM)
11
S o
Similarly, upon inversion, we have

"1 L(s)
(Z [ L(s) L(s? ]

s=1

— 1 =
- nYy e (L (s) —f)z 5:221

[ L(s)? —L(s) ]
—L(s) 1
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_ 1 lLZ‘z (n) Lo (n)l
nL(n)’e()* +o (nL(n)*s(n) [n(n) + @)]) [ L12(0) 1

;2 f%
[ ia(n) ) nL(ln)a(n)
nL(n)e(n)?  nL(n)%e(n)?

[L+o(nL(n)e(n)n(n)+e®@], (24)

which, upon standardization by F,, ! = diag (v/ne (n),+/ne (n) L (n)), gives

~1
_ » L L(s) _ 1 -1
-l n D=1 1 ‘
" (l LiL(s) Y L(s) S RS
It follows from these formulae that, in spite of the singularity in the limit matrix, the co-

variance matrix of the regression coefficients is consistently estimated as in conventional
regression when an appropriate estimate s of o2 is employed.

4 Polynomial Regression in L ()

In this model the regressors are polynomials in the smoothly slowly varying function L (s)
and the data are generated by

p .
Ys = ZﬂjL (5)j +us = B/Ls + Us, (25)
=0

where the regression error u, satisfies LP. This model may be analyzed using the approach of
the previous section. But, as the degree p increases in (25), the analysis becomes complicated
because higher order expansions than (13) of the sample moments of L (s) are needed in order
to develop a complete asymptotic theory. An alternate approach is to rewrite the model (25)
in a form wherein the moment matrix of the regressors has a full rank limit. The degeneracy
in the new model, which has an array format, then passes from the data matrix to the
coefficients and is simpler to analyze.
The process is first illustrated with model (1) which we can write in the form

S
Ys = a+ﬂlogn+ﬂlogﬁ+us
S
= an+ﬂlogﬁ+us, say. (26)

The regressors {1,log £} in (26) are not collinear. Writing % (r) = [1,logr]" and using stan-
dard manipulations, we obtain

NG [ %;‘” 1 —>dN<o,g2 (/Olk(r)k(r)'dr>l> =N (o, [ i ; ]1) :

Since, oy, —ap = Q@ — o+ (B — ﬁ) logn, we deduce that

NG

S (@-a) =~V (5-5) + 0, (=),



which leads directly to the earlier result (17).

Extending this process to the model (25) gives the representation

= n Ls) _ n ’ u
wo= LAALE) |0y + L@
_ e (N [EE) ),
= jz:%ﬂjL( ) ;(l {L(n) 1] + U
= pa- L(s)—lj U
2 iz -1
where
ano = ZﬂjL(n)j
j=0
ang = iﬂjL(n)j (‘;) k=1,.,p—1
j=k
anp = BpL(n)’.
Define

o ()= [ =[5 ] -

and the model (25) becomes

p
s s
Ys = E i K <—> +us =l Kp <—> + Us.
s n n

Least squares estimation gives

e[S (1)1 ()] [S ()]

11

The limit behavior of these coefficient estimates depends on that of the regressors K; ( ) ,

1
n

and sample moment asymptotics for K,; follow from that of its sample mean. Define the vec-
tor Ky, (1) = (Kp; (1)) and the normalization matrix Dy, = diag {1, e(n),e(n)?,...e (n)p} .

4.1 Theorem
(a) If L(t) satisfies SSV, then

1

—_n-1 —_ = — | J—1
-D, t§:1:Kn <n> H/O lp(rydr =11, —1, 2!, =3,

(-1 p! |



where {, (1) = [1,logr, ...,logf r]" and

DSk () () o2
- £ n - n - £
n " = n n ™

12

1
- /O by (1) b (rY dr
[ 1 -1 2! -3 (—1)7 p!
-1 2! —3! 4! (=P (p+1)!
2! —3 4! —5! (=12 (p+2)!
= | =3 41 —5! 6! (=1)P*3 (p 4 3)!
PR CP D (—DP ) (1P 8) . (2p)
which is positive definite.
(b) If L(t) satisfies SSV and u; satisfies LP then
1 -1
VnDpe [Gn — an] —a N (0, o [ /0 Uy (1) &y (1) dr] ) - (33)

Next, we rewrite this limit distribution in terms of the original coefficients using relations
(27) - (29). It transpires that only the final component, d,, in @, (which translates to the
component Bp in the original coordinates) determines the nondegenerate part of the limit
theory for the full set of coefficients.

4.2 Theorem If L (t) satisfies SSV and uy satisfies LP then
vne () Dur, (B = 8) = tyer /oL (n) e () (B, — B,)+0p (1) —a N (0,077 p i, ),

where Dup = diag (1, L(n) .., L)), ey = (=1, (=17 (5),0s (<1) (,71),1] , and
-1
oPTLPHL — (pN)72 s the p + 1'th diagonal element of [fol O, (r) (r)/dr} :

The limit distribution of \/ne (n)? Dy, (B — ﬁ) has a support given by the range of the

vector 1,11 and is therefore of dimension one. The variance matrix of 3 is given by

pP+Lp+1 1 , .
ne (n)Zp Dy by by 1Dy (34)

which, as we now show, is consistently estimated by the usual regression formula. The

following result gives expressions for the asymptotic form of L'L = S-"_, LI/, and (/L) ",

showing that, indeed, (34) is the asymptotic form of (L'L) " .
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4.3 Theorem If L (t) satisfies SSV, then:
(a)
L'L = nDnLZ'p+1i;)+1DnL [1 +o0 (1)] , (35)

where ipy1 is a p + 1 vector with unity in each element.

(b)
e Yo, (r) e, (r) dr _16
(L/L)il —— [fo - (ni (252;)) } ak D;LIMpHN;HD;Ll [1+o(1)], (36)

where L, (1) and p,, are given in theorems 4.1 and 4.2.

It follows from (36) that, in spite of the singularity in the limit matrix, the covariance
matrix of the regression coefficients is consistently estimated as in conventional regression by
s2 (I'L)™" whenever s? is a consistent estimate of o2,

5 Regression with Multiple SSV Regressors

Multiple regression with different slowly varying functions as regressors is also of some interest
in applications. One such formulation is given in example 5.2 below and involves a slowly
varying growth component in conjunction with a trend decay component that slowly adjusts
the intercept in the regression to a lower level. Such a model is relevant in empirical research
where one wants to capture simultaneously two different opposing trends in the data. Such
models can be analyzed by the methods of the previous section, with the slowly varying
regressors replacing the polynomials in a given function L (s). We shall provide results for
a model with two different regressors, which is the case of principal interest in practice and
where our assumptions allow for a full treatment. We also briefly discuss the general case,
where more structure is needed for a complete treatment.

Let Lj(s) (j = 1,2) be SSV functions with corresponding e- and 7- functions ¢; and 7,
( = 1,2). We consider the two variable regression model

Ys = Bo + B1L1 (s) + BoLla(s) +us = ﬂ/Ls + us, say (37)

where the regression error ug satisfies LP. An asymptotic theory of regression in this model
is obtained by showing that (37) has an alternate, asymptotically equivalent, form involving
a quadratic function of the simpler regressor log (£) . Analysis similar to the previous section
then applies.

Rewrite (37) as follows

Ys = Bo+ B1L1(n)+ Bala(n)

1Ly (n) l—LLll(?j)) T
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To transform the regressors in this version of the model, we note from Lemma 7.10 that L;
has a higher order representation in terms of its e- and n- functions that has the asymptotic
form

Lj(rn)

Lj (n) —1l= &j (TL) logr + %5j (n) {5j (TL) + n; (n)} log2 r [1 + o0 (1)] ., r>0. (38)

Equation (38) shows L; to be third order slowly varying in the sense that

i(n
——~— —logr

lim - gj(n)
"= L ey (n) +m; (n)]

thereby extending the concept of second order slow variation that appears in the earlier

= log2 r, r>0,

expression (10). Using the expansion (38) we write

Ys = Bo+B1L1(n)+ BrL2(n)
5L (n) <1 (n)log > + 511 (n) e (n) + 1y (m)]log? = 1+ 0 (1)]

L3 (1) &2 (1) log = + = Baea () [e2 (n) + 1y ()] og? = [1+ 0 (1)] + g

= apo + aplog ( ) + aupa log? ( ) [1+o0(1)] + us, say (39)

giving a new form of the model with regressors that comprise a quadratic function in log (%) .
The new coefficients satisfy the system

ano 1 Ly (n) (n) /80
Qn1 = 0 Li(n)er(n) Ly (n)ez (n) 081
Q2 L0 3Li(n)er (n) [fer (n) + 1y ()] —Lz(n) e2(n)[e2(n) +ma(n)] | | Bo
(11 1 10 0
= 0 e1(n) g9 (n) 0 Li(n) O
L0 zer(m)[er(n) +m (n)] ge2(n)fe2(n) +mp(m)] | [ 0 0 Ly (n)
For further asymptotic analysis, we impose the condition
6 (n) = [e2(n) +n2 (n)] = [e1 (n) + 11 (n)] # 0 (41)

which is necessary if we are to solve (40) for the original coefficients in (37). If (41) does
not hold, then the regressors L; and Lo are collinear to the second order in (38). In that
case, the situation is more complex — higher order representations are needed to develop an
asymptotic theory and rates of convergence need to be adjusted. The following result holds
under (41), uses only the second order form (38) and gives the limit theory for the original
coefficients in (37).

Bo

B1

B
(40)
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5.1 Theorem If L (t) satisfies SSV, u satisfies LP and 6 (n) # 0, then

E€min (n) (//8\[) - ﬂO) 1. 2 1 -1, 1:
Vns(m) | e1 ()L () [By = By] | ~ | =1 | vt [Gna — ane] —a N |0, % 1. 1 -1
e2(n) L2 (n) 232 — By 1 Le -t
(42)
where
eoin (1) = g2 (n) if e9 (n) = 0(e1(n))
- er(n)  ifer(n) =o(e2(n))
and

5.2 Discussion

(a) Equation (39) indicates that multiple regression with different slowly varying functions is
asymptotically equivalent to polynomial regression on a logarithmic function. Theorem
5.1 shows that the outcome is analogous to that of a polynomial regression, but the rates
of convergence are affected by the respective natures of the slowly varying functions.
The actual rate of convergence of the estimates depends not just on the asymptotic
behavior of the functions L; (n) and their e-functions, but also on the divergence, 6 (n),
between the sum of the e- and n- functions of the two regressors L; and Lo. In effect,
the more divergent are the L; asymptotically, then the faster the rate of convergence

of the regression estimates.

(b) The scaling factor emin (n) in (42) relates to the constant in the regression and determines
that its rate of convergence is affected by that of the more slowly converging regression

coefficient.

(c) If L; (x) = log z for some ¢ then there is no second order term in (38) and &; (n)+n; (n) =0
in that case. The first matrix in (40) is simpler in this case and can be made upper
triangular by permuting coefficients if necessary.

(d) Just as in the polynomial regression case, the limit distribution (42) is singular and has

rank unity.

5.3 Example The following example has iterated logarithmic growth, a trend decay com-

ponent and a constant regressor:

1
Ys = B+ ,31@ + B9 loglog s + us.
The secondary functions are €1 (n) = —@, N (n) = —@, ga(n) = m@ and 7y (n) =

1 1
" loglogn = logn® Then
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2
) tnn) =~
)+ n) =~ 0 (oo
e\ n) = loglogn © loglogn /)’
1 1
5 - _ -
(n) loglogn to (loglogn> ’
S (n) = 1 1
fmin = €210) = loglognlogn’
We deduce that
1 1 (7
loglogn logn (60 760) —1 2 1 1
Vi (721) [51 *51} ~ | -1 ¢ [52 *52] —a N 070— 1 1
loglogn | leg"n L lognloglogn 2!
1 {ﬂ *ﬂ } 1 -1 -1
logn M2 2

The coefficient of the growth term converges fastest, but at less than a y/n rate. The intercept
converges next fastest, and finally the coefficient of the evaporating trend. All of these
outcomes relate to the strength of the signal from the respective regressor.

5.4 The General Case Consider the model

p
Ys = Zﬂij (s) + us = B'Ls + us, say, (43)
=0

where Lo (s) = 1. As in the two variable case above, this model can be rewritten as

b= Y B0 (n) + Y0 Byl (n) [L]j'j(z‘f)) - 1] . (a4)
j=0 i=1

Assume that each L; has a higher order representation extending (38) in terms of the following
asymptotic expansion

Lj(rn)
Lj(n)

p—1
—1= Zsji (n)log'r +¢€jp (n)logPr[1+0(1)], r>0, (45)
i=1

where €1 (n) = ¢; (n) and
gji (n) = o(gji-1(n)), (46)

for each j and each ¢ > 1, so the coefficients, €;; (n), in (45) decrease in order of magnitude
as ¢ increases. Such a higher order expansion can be developed under conditions analogous to
SSV in which each function in the sequence L, ¢, 1, ... itself has a Karamata representation
with an e- function that is SSV. Applying (45) in (44), we obtain the transformed model
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Ys = i +ZBL {Zsﬂ log( >+6]p( )logp(%> [1+0(1)]}+u5
- an0+ZZBL n)eji (n log( >+ZﬂL n)ejp (n )lng(%>[1+O(1)]+us

=1 j5=1
p—1

= ano+Zam~logi( >+oznplog ( )[1+0(1)]+us

=1

The coefficients in this system satisfy

Qano (1 1 o] 10 0 ﬂo
Onl 0 e1(n) - Ep (n) A,
Qp2 — 0 e19 (n) e Epn (n) 0 Ll (n) 0 ﬂ2
Qnp 0 '51p (n) - 'epp (n) 00 -+ Ly (n) bp
(1 1 1 4
10 -0
01 e 1 X
= |0 ma() - mp(n) } 0 Li(n)er(n) 0 o |
| 0 Mp (n) --- Mpp (n) 0 0 L, (n) Ep (n) ,Bp
where
nj; (n) ZZ((S)) =o0(l), asn — oo
Define
1 : 1
= _ | M2 (n) -+ np(n)
,;7117 (’)’L) T ,;7pp (’)’L)

and note that, in view of (46), we have

nji(n) =0 (nji_1 (n)),

so that the final row (i = p) of Z,, has elements of the smallest order and the other rows
decrease in magnitude as ¢ increases. Then,

ntt(n) - n'%(n)
21 2p
1 1 n°(n) nP (n) _ 1 M, say
" detE, | ST detZ, "
nPt(n) - PP (n)

and, in view of the property of Z,, just mentioned, the first p—1 columns of M,, = det (Z,,) =, !
are of smaller order as n — oo than the final column of M,,. (Indeed, the columns of M,
progressively increase in order of magnitude from left to right). We therefore have
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Li(m)er(n) - 0 ;.
det (Z,) : i
0 Ly (n) €p (n) bp
g ) ) Tem ] [0 ()
21 2 2
_ n (n) n (n) .05n2 _ n P (n Oy [1 + Op (1)] s
W) P (n) ] | o " (n)
so that
%(aé)(n) 0 vn (31 - ﬂ1)
Vv/ndet : R 5
0 o e | (5, )
1 1 2
~ P V@@ —anp)] —a | 2| N (O’ %) '
. | (p!)

Turning to the intercept, we have ang = [1, L1 (n) , ..., Ly (n)] 8. Define

min €J(n)
i<p 193 (n)

to be the ratio with the smallest order of magnitude as n — oco. Then, we have

ﬁ(ﬁo*ﬂo) = f (Qno — amo) iLJ (ﬂ - B )
j=1

Emin =

and scaling by det (Z,,) emin and noting that det (Z,,) emin = 0(1) as n — oo, we deduce that

Vvndet (Z,) emin (ﬂ - ﬁo)
p ~
= \/7d€t »—‘n) €min O477,0 - Oén[) Z LJ ) \/ﬁdet (En) €min (5j B 5j)
7j=1

= oy (1) — v ey (=, (3, - j)%dN<O,f_2>,

197 (n) p1)*

5.6 Theorem If L (t) satisfies SSV, u; satisfies LP and det =, # 0, then
€min 0 o 0 f%ﬂ ﬂ[);

Jrawey |t e O NaE

o0 e G

. . ot
~ lptl [\/ﬁ (@np — anp)] —a N (07 WZerll;)H) (47)
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where

()
i =B

18 the ratio with the smallest order of magnitude as n — oo.

In (47) the scale coefficients 5% as well as ey are implicitly signed. That is, the

elements % may have positive or negative signs. In consequence, since the signs are built
into the normalization factor, the covariance matrix of the limit distribution,

o2

. ./
(ph)?

displays perfect positive correlation among the elements of the standardized vector in the

2, pHlptl; o _
TP g =

limit.

6 Nonlinear Trends

In the nonlinear trend model (2), let u, satisfy LP, let 8y = (5y, 7o) be the true values of the
parameters and asssume that (3y,7,) lies in the interior of the parameter space © = [0,b] X
[—%, ] where 0 < b, ¢ < co. Wu (1980, Example 4, p.507 & p.509) considered the case where
us is #id(0,02 > 0) and noted that the model satisfies his conditions for strong consistency
of the least squares estimator § = (/3,7) but not his conditions for asymptotic normality.
There are two reasons for the failure: (i) the hessian requires different standardizations for
the parameters § and « (while Wu'’s approach uses a common standardization); and (ii) the
hessian is asymptotically singular because of the asymptotic collinearity of the functions s7o
and s70 log s that appear in the score (whereas Wu’s theory requires the variance matrix to
have a positive definite limit). Both issues are addressed by a version of the methods given
earlier in the paper designed to deal with extremum estimation problems.
Setting Qn(3,7) = X", (ys — Bs7)?, the estimates (3,7) solve the extremum problem

(B,7) = argmin Qu(5,7),
By
and satisfy the first order conditions

where
n

Sn(0) = — Z [ ;757 log s 1 (ys = B57).

s=1

Expanding S,,(0) about S, (6p), we have

0= Sn(00) + Ha(00) (0 — 60 ) + [Hy; — Ha(00)] (60— 6o) , (49)
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where the hessian H} is evaluated at mean values between 6y and 6 and

27 Bs%7log s — ugs¥ log s

Yy — (Bys™0 — Bs7) s7log s
Hn(0) = ; Bs¥ log s — uss™ log s B%s%71og? s — usBs7 log” s
— (/8[)870 —_ ,837) 8’7 logs — (/60570 — /687) /687 10g2 S

The following lemmas assist in characterizing the asymptotic behavior of these quantities.

6.1 Lemma Let L be a slowly varying function satisfying SSV, and suppose us satisfies
LP. Let C,, be a diagonal matriz all of whose elements diverge to co as n — oo. Define
N2 =1{0€©:]||C,(0—00)|| <1} to be a shrinking neighbourhood of 0y for any point 0y in
the interior of a compact parameter space ©. Let f (r;0) € C? over (r,0) € [0,1] x © and let
the derivatives fog = 0f /00, f. = 0f/Or, f.g = 0>f/000r be dominated as follows

sup |fo (1;0)] < go (r;60), sup |fr (1;0)| < gr (r;00), sup |fro (r;0)] < grg (r;00)
0eNyQ N9 0eN?

by functions gg (1;00), gr (r;00) and gre (r;00) all of which are absolutely integrable over
[0,1]. Then

ot (20) L@ —a [ G000 =N (0.0 [ eionpar). o0

s=1
uniformly over 6 € ND.
6.2 Lemma Suppose us satisfies LP and let the true parameter vector 6y = (B, 7o) lie in
the interior of © = [0,b] x [—3, c] where 0 < b,c < co. Define the normalization matrices

Yot+3
D,, = diag ﬁ ’

. 1 1 1
D,, = diag [n70+2,n70+2 log n] , F, ,n70+2] )

B logn ogn

Define C, = Dy, /n® for some small positive § € (0,7, + %) and the following shrinking
neighbourhood of 6g
NO={0ecO:||C(0—0) <1}.

Then

(a)

1 rvo 0'2
D;lSn(e[)) —d _/O [ ﬂ’:)rfyo ] aB (7") =N (07 m l ;0 g% 1) 9 (51)
(b)

-1 -1 1 1 By
Dn Hn(QU)Dn P 2,70+1 [ﬂo 5% ] ) (52)



(c)
Amin (Fn_lHn(@o)F{l) = O (logn) — oo,
(d)
0 3 2 28 1 Jé; 9
Fan(QO)ian = M ﬂo IOgg (2’YO+1) + loggn (270_;'_1)2
1
260 | o+ mgnmem

(27° +1)° l B2 B ]
1 9

o 55 —Bo

(e)

0eNQ

6.3 Remarks

B
—Bo + 1ogm

1
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s )
n

(a) Part (a) reveals that the order of convergence of the first member of (49), the score Sy, (6y),

is determined by the scaling factor D,;!. However, from part (b), the hessian matrix

under the same standardization by D, ! evidently has a singular limit as n — oo, which

prevents the application of the usual approach of solving (49) to find a limit theory

for a standardized form of (8 — ). Part (d) shows that upon standardization by F,,

rather than D, the inverse hessian matrix converges but also has a singular limit.

(b) Part (e) is useful in showing that, after rescaling, the third term of (49) can be neglected

in the asymptotic behavior of 0— o.

(c) As the following result shows, the appropriate scaling factor for (49) is the matrix F, !,

not D!, even though D, 15,,(0) is O, (1).

6.4 Theorem In the model (2), let us satisfy LP and let the true parameter vector 0y =
(Bos 7o) lie in the interior of © = [0,b] x [—3,c| where 0 < b,c < co. Then, the least squares

estimator 0 = (03,7) is consistent and has the following limit distribution as n — oo

R A

_ l 11/50 ]N(O,Jz (270+1)3>.

] dB ()
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6.5 Remarks

(a) The estimator 0 has a convergence rate that is slower by a factor of logn than that of the
score Sy, (0p). The reason is that the (conventionally standardized) hessian D, ' H,,(69) D, !
has an inverse that diverges at the rate log? n and this divergence slows down the con-
vergence rate of the estimator. Both the score and the hessian need to be rescaled to
achieve the appropriate convergence rate for . With the new scaling we have

0= F;1S,(00) + F; 'H,(00)F; ' F,, (9 - 90) + EV[H — Ho(60) F;E, (5 - 00) :
and then
E, (5 - 90) = [I T (Fan(eo)*an) F7Y[H? — Hy(6)] Fgl} - (Fan(eo)*an) F1S,(6o).

From Lemma 7.2 (d), the matrix F,,H,(0p) *F, = O, (1) and is singular, and the
matrix F, 1 [H} — H,(0)] ;! is 0, (1). Then

Fo (6= 00) = = (FuHn(60) " Fn) iy " Su(00) + 0 (1),

from which the limit distribution follows. Interestingly, even though the individual ele-
ments of F, 1S, (6p) diverge, the relevant linear combination (Fy, Hy,(69) 1 F,,) F; 1S, (00)
is Op (1) .

(b) The variance matrix for 0 is singular but is consistently estimated by san@)_l, where

s? is a consistent estimator of o2, because

9~0 1 1)3 527250 L 83 2 —B, + Bo 1 1
Jol T (@)*1F _ (279" +1) 07 Togn (299+1) " logZn (2¢0+1)2 07 logn (29%+1) |4, [ _—_
niln n 52 ﬂg 1 1 p \/’E '
B —Bo + logn (27°+1)

7 Technical Supplement

7.1 Lemma (Averages of SV Functions) If L (¢) satisfies SSV, then for B > 1

éL@):/B"L(t)dtw(nn), a5 1> 00

where 1 > 0 is arbitrarily small.

7.2 Proof Using Euler summation (e.g., Knopp, 1990, p.521) we have

zn:L(t):/BnL(t)dt+%[L(B)+L(n)]+/Bn{t[t]%}L’(t)dt. (53)

t=B

Since
tL' (t)

L(t)

=e(t) — 0, anst—Ef)HO,




for all n > 0, we may choose a constant C such that for all ¢t > C' and any n > 0

L)

o < 1.

‘5 )

Then, the final term in (53) may be bounded as follows

’/ {t— - }L’()dt‘ < 2/”1|g ()] dt

C
< 2/ n +§‘/B ls(t)L(t)%dt‘
— oo
= O(n").
It follows that
S L) /L Ydt + 0 (" + L(n /L Ydt + O (n)

t=B

for any n > 0 as n — oo.

7.3 Lemma

7.4 Proof From SSV(b), |e (x)| is SSV and

e(x) = ccexp </1x @dt)

where 7 (n) — 0 as n — oo. Like €, n € C* and if |n| is SSV

z™n™ ()
n(z)

— 0.
Then, using integration by parts, we find
/ "Lk
= L@t -k / oL (o £

_ k/ Lt dt+0()

3

—~
~

~

+L(t)k5(t) dt +0 (1)

~ ‘

= nL(n)f—k [tL ()= (t)] +k/ [kL

23
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—k / [kL
= nL(n)* —knL(n)*e (n) + k*nL (n)* = (n)® + knL (n)* e (n) n (n) + o (nL n)*en)[e(n) +1 (n)]) ,

giving the stated result.

7.5 Example In the logarithmic case L (t) = logt, and £ (t) = =5 and 7 (t) = —=

logt logt-®
Lemma 7.3 then gives the expansion
n
/ loghtdt = nlog®n — knlog"'n+ k*nlog"=2n —knlog"2n+o (n logh—2 n)
1
= nlog®n—knlog" tn+k(k—1)nlog"2n+o (n logh—2 n) , (54)

whereas successive integration by parts (Lemma 7.9) gives the exact result

/ log" tdt = ”Z (—k); logh~I n,
1 ‘
Jj=0

so that the expansion in (54) is accurate to the third order.

7.6 Lemma
/1” [L(t) ] dt = nL (n)* (n)? + 0 (nL (n)? < (n) [y (n) + = (n)])
7.7 Proof Applying the expansion from Lemma 7.3, we get
/n L(1) —frdt
- [rorac ([ ey
nz

(n)? — 2nL (n)%e (n) + 4nL (n )ze(n)2—QnL(n)Zs(n)n(n)+o(nL(n)25(n)n n))]
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7.8 Lemma If L(t) is a smoothly varying and satisfies SSV and (6), then

Lf[azg‘*rQT:“iﬁmdmkﬂ+oa»

as n — oQ.

7.9 Proof In view of SSV, we have

log 12((:)) =— /r: #dt, (55)

and, since |e (¢)] is slowly varying, it follows by Karamata’s theorem (e.g., Proposition 1.5.9a,
p.26 of BGT) that for all » > 0

/rn&dt _ s(n)/j@[uo(n],

= —e(n)logr(l+o(l)] asn— oo.

Then
L(rn)

L(n)
The function L is second order slowly varying (see de Haan and Resnick, 1995, for second
order regular variation) in the sense that

—1=exp{e(n)logr[l+o(1)]} —1=¢(n)logr[l+o(1)]. (56)

and so

LTL(rn) k B e [t
/0 [ 1} dr = e(n) /0 logk rdr [1 + o (1)] (58)
= (1)) RI1+0(1)],

giving the stated result.

7.10 Lemma If L (t) satisfies SSV, then for all r >0

LU 1~ cogr + 3 ()¢ () + )] og? L+ o 1) 50

as n — oQ.
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7.11 Proof Since both L and ¢ are SSV functions we have both (55) and

logs(rn) :_/"@du

e(n) n t

and, as in (56) above, we get for &

) =14+n(n)logr[l+o(l)].

Then

t

logL(m) = /nﬂdtzg(n)/ng(”ﬁ)dt

n t ™ 6(n) 7

_ —a(n)/rn{lJrn(n)log%}@[HO(U]

n t
_ g(n)logrs(n)n(n)/rllogs% 1 +0(1)]

= e(n)logr+ %6 (n)n (n)log?r [1+o0(1)],

and we deduce that

L 1
L(Z:)) -1 = exp {5 (n)logr + € (n)n (n)log®r[1+o0 (1)]} -1
1
= e(n)logr + e (n) [e(n) + 1 (n)] log?r [1+0(1)],
as stated.
7.12 Example L (n)= @, e(n) = —@, n(n) = _lo;;n‘ Then, by direct expansion we
have for large n
L(rn) —logr —logr [ logr}1
1 = — 14 o0
L(n) logr + logn logn logn
logr & - (logr\7
= — —1)7
lognj;)( ) <logn> ’

which agrees with the third order expansion given in (59) above.

7.13 Lemma

(—k); logh=In

0

n k
/ logFtdt =n
1 =

J

where (—k)

j= (k) (“k+ 1) (k45— 1).

7.14 Proof This follows by successive integration by parts.
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7.15 Lemma

(a) S5 () (0 (1P =~ ).

(b) Y0, (=P () = 0.

7.16 Proof Both parts follow by direct calculation. First,

7.17 Lemma
(a)
/Olzp(r)ep( ) dr = H,F*H'
where
1 0 0 0 0 0]
-1 1 0 0 0 0
1 -2 1 0 0 0
= |1 3 -3 1 0 0
I O e B Y o o R Y ey o N 0
R A G e I G D e N G L (4 IS CE D LN
and

Fp =diag[1,1,2,3!, ... (p — D!, p!].

wmﬂmmmwM:%mM

©) ([fo b ) dr| 1) ~ G

p+1,p+1
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7.18 Proof Note that the (i, 7)’th element of the matrix [y £, () £, () dris (—=1)"7 72 (i + j — 2)1.
Consider the (7, j)’th element of the matrix product HpFI?HI’, and let j = k < i. By direct
calculation and using the representation

= (_1)i+k (l _ 1)! (k’ _ 1)! kz_:l (_1)2m (1 — i)m (1 - k)m

=0 m' (1)m
= ()G (k—1) oF (1 —d,1—k, 1;1), (60)

where o F} (a,b,c;2) = Z;o 0 %)Mlz is the hypergeometric function. Noting that the series

terminates (because 1 — k is zero or a negative integer) and applying the summation formula
(e.g. Erdélyi, 1953, p.61)

L' )T (c—a—0b)

2F1(a,b,¢;1) = T(c—a)T (c—b)

where I' is the gamma function, (60) reduces to

T(i+k—1)

—1)R G- (k- 1) =
(=17 (@ =1 (k D'r@rw)

= (-2 (i 4+ k—2),
giving the required result and part (a). Parts (b) and (c) follow directly.

8 Proofs
8.1 Proof of Lemma 2.3
Part (a). By partial summation we have
LS LWu=rm 2 - LS Lo - - s, (61)
VS n

where S; = 3t_; us. So

1 n Sn 1 n
7ﬁﬁﬁg¥“mt: _g—yﬁmggyuw—L@—m&A
Sn 1
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We now use the embedding of the standardized partial sum S\t/g in Brownian motion given

in LP(b), viz.
Si_1 t—1 1
—B—— = Oq.s. ’
NG ( n )' o <n>
Then

ﬁi {L <n%> 1z <nt;1>] 5\‘,5/_51 _ LG) /OlB(r)dL(nr) + Oq.s. (n;_%

t=1

sup
1<t<n

Next ﬁ fol B (r) dL (nr) has mean zero and variance

2 1 pr
Observe that

/Orde(ns) = /OrnsL’(ns)ds:/OTL(ns)g(nS)ds

1 o 1
= — L(t)e(t)dt = —[nrL(nr)e(nr)+o(nrL(nr)e(nr))] (65)
n Jo n
For the last equality, note that L (¢) € () is (up to sign) a smoothly slowly varying function.
We can then use Karamata’s theorem,viz. that for « > —1 and a slowly varying function ¢,
we have the asymptotic equivalence

a+1

/xtaz(t)dtw‘” ((z) as z — oo (66)

a+1

(e.g., BGT, Proposition 1.5.8, p. 26), setting o = 0 to obtain (65). Using (65) in (64), the
dominant term is

2 1 92 1 ,
W /0 rL(nr)e(nr)dL (nr) = W /0 nrL' (nr) L (nr)e (nr) dr

= T (1)2 /OlL(nr)2s(m")2 dr
_ nL?n)z /OnL(t)Zs(t)Zdt

= 2:()’ +0(c(m)?) =o(1),

by applying (66) again. It follows that

1 1
20 /0 B(r)dL (nr) = o, (1) (67)

as n — oo. We deduce from (62), (63) and (67) that

R N

WZL(t)ut \/ﬁ+op(1) —a N (0,0%).
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Part (b) We have

3 (L(t) ff) w =3 L(t)u,— LS,
t=1 t=1
and Lemma 7.3 gives

L=L(n)~L(n)e(n)+L(n)e(n)® —L(n)e(n)n(n)+o(L(n)e(n)n(n))

(63)
" Sp 1 1
g )%/0 B(r)dL(nr)Jroa_s,( — )

1
n2

and using (62) and

3 =

so that

1
Ye(n / dB (r) + O, (L(n)s(n)z)
_ /OlBTT)s(nr) (nr)dr + L (n /dB )+ 0, (L(m)e(n)?).

—~

68)

Now, in view of the local law of the iterated logarithm for Brownian motion, we have

. B(r)
lim sup ————— =
r—0 +/2rloglog1/r

So, as in (66), we have

/01 @8 (nr) L (nr)dr = /

= —e(m)L(n )/ (logr) dB (r) [1 + 0p (1)] (69)

dr 1+ o0, (1)]

It follows from (69) that (68) is

1

/01 (1+logr)dB(r)+op (1) =4 N <0702/0 (1+ IOgT)Q dr) _N (0702) |

as stated.
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Part (c) Start by considering ns Yo Knj (%) u¢. By partial summation and the
strong approximation LP(b), we obtain, as in (63),

L[S - St )

From (56) we have

LL((:)) 1 =exp{e(n)logr[l+o(1)]} —1=e(n)logr[l+o(1)],
so that . for) ; 1
L (nr ; .
/0 [ T(n) - 1} dB(r) = ¢ (n)’ /0 log? rdB(r) [1 4+ o(1)].
Thus,
1 [ L(t) J I B 1 - .
n)j ; |:L (’)’L) — 1:| Ut —d /[) log] TdB(T’) =4 N (07 0.2/0 log2] T’d?”) =N (07 0_2 (2])') ?

as required.

8.2 Proof of Theorem 4.1 Using Euler summation with f(¢) = {m - 1}] we obtain,
as in Lemma 7.1,

2 )
= T el [Me-w-g [FG ] g
- F ] aro ()
= /; {IL((T)) 1rdr+0(n115> 2/01 [IL((T:)) 1rdr+0(n115>, (70)

for arbitrarily small 6 > 0, in view of (6). Hence, from (58) in the proof of Lemma 7.8, we
have

1

%gKnj <%> - 5(n)j/0110gj7"d7"[1+0(1)]+O(m>

= (~1Yjle()’ [L+o(1)],
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so that

! - iK ; <E> — /llogjrdT: (—1)7 5!
n)’ Y \n 0

t=1

from which the stated limit results follow. The matrix fol lp (r) £, (1) dr is positive definite
because

/1 [d't, (r)]zdr =0
0

implies a'¢y, (r) = 0 for all r, which implies a = 0, and part (a) is established.
To prove part (b), we note by Lemma 2.3 (c) that

N ]iKm( ) t—>d/ log’ rd B(r),

t=1

and proceeding in the same way as in the proof of that Lemma but with an arbitrary linear
combination of the above elements for j = 0,1, ..., p, we get

= 0\/_6 ZKM( >ut Zb / log? rdB(r) [1 4 04.6. (1)] Hdébj/ollogjrdB(r)

By the Cramér - Wold device, we deduce that

p

t=1
Then, from (31), (32

-1
. - t t\ 1 = t 9xr—1
Dy @ — ) = [EDHE ;Kn (E) K, <E> Dm] l%Dm ;Kn (E) ur| —a N (0,62V71).
8.3 Proof of Theorem 4.2 From (29) and (33), we get for the final coefficient

VAL () e () (B, — B,) = Ve () [np — anp] —a N (00771741

\/15 zn:Kn ( ) ug —>d/ 0y ( ly(r) = (1,logr, ..., logPr). (71)

d (71) we obtain

where V™! = (v™J) and V = fol lp (r) £y (r) dr. A calculation (see Lemma 7.17(c)) gives the
final diagonal element of the inverse matrix V1

1
vp+1,p+1 -

5
(p!)
For the next coefficient, we have

Qnp-1 = (p :Dﬂp_lL(n)p_l+ (pf 1>ﬁpL(n)p

p
= 5[)71[/ (n)p—l +pﬂpL (n)p’
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and so
5[)71[/ (n)pil = Qpp—1 — pﬂpL (n)p7
leading to

VAL e (0 (Byy — Byt) = Ve () (@ — Cpt) — (p g 1) VAL )’e ()" (B, = 6,)
= 0,(e(n)) - (p P 1) VAL ()P e () (B, - 5,)
- <p P 1) VAL ()P e () (B, = B8,) +0p (1)
_ (p p )ﬁs (1)" [Gnp — tnp) + 03 (1)

a7y,

Next, for £k = p — 2 we have
—2 p—1 ~1 p
ﬂp—2L (n)p = Qnp—2 — l<p _ 2) ﬂp—lL (n)p + <p . 2) /BpL (n)p] )

so that

VAL ()" e () (Byos = Bya) = Vne(n)P (@np-s — Anp-2)

L) v/ne (n)” (B, - 5,)
£ (n)2) + Kﬁ B ;) (Pﬁ 1) - <p f 2)] L (n)P y/ne (n)P (Bp - 5;;)
)+ 0= Vp= 5w D] LP Vi@ (3, 5,)

More generally, proceeding in this way for p—1 > k > 0 (under the convention that (%) =1),
we have

ok = 3" B L (n)’ @ = (Z) Bl ()" + ("" ' 1>ﬁk+1L () o+ (Z) Byl () (72)
j=k

so that
BrL ()" = apk — K’fz 1) B L (M + .+ @ B,L (n)”] :
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We establish by induction (for decreasing k) that

VAL (n)* e ()P (B — By) = (1) @ﬁL(n)P () (B, = 8,) +0p(1).  (73)

We have already shown (73) to be valid for £ = p—1 and p — 2. Assume it is valid for k + 1.
Then, using (72) and Lemma 7.13 we have

VL (n)" e (n)P (Bk - ﬁk)
= \/EE (n)p (ank - ank)
- Kk —kiz 1>L (n)kJrl e(n)? (BkH — 5k+1) + ...+ (Z)L (n)Pe(n)? (Ep o 51))]

_ 5 (E (n)p_k) _|(caypr (k’f—l) (k;r 1) o4 (=1) (pf 1) (P; 1) + (i)]

_ o(s(n)P’“)pfk_l (ppj> (p;]) 1P /AL () e (n)? (B, - 6,)

7=0
= (—1>p—’f(§j>m<n> e (B, — B,) +o0p (1),

showing that the result holds for k as well.
Equation (73)A gives an asymptotic correspondence between the elements of the least
squares estimate 8 and its final component 3, that has the form

Vine (0 Dur. (B = 8) = iy 1 /aL (n) e (n)? (B, = 8,) + 0, (1),

where Dy, = diag (1, L (n) , .., L(n)") and 1 = [(=1), (=177 (5),., (=1) (,7)), 1] - We
deduce that R
\/ﬁ&‘ (n)p DTLL (/8 - /8) —d N (07 vp+17p+1lu’p+l/"l’;)+1) )

giving the stated result. The explicit formula vP*1P+1 = 1/ (p!)? follows from Lemma 7.17(c).

8.4 Proof of Theorem 4.3 First, transform the regressor space in (25) as follows

Ys = ﬂ,Ls + us = ﬂ/Jnjyles + us = a;LXs + us, (74)
where
1 L(n) (n)? L(n)P™ L (n)? ]
0 L(n)e(n) (})L(n)*e(n) PTHL (Pt e(m) ()L (n)Pe(n)
o 00 L(n)%e (n)? P NL )P e(n) (B)L(n)Pe(n)?
00 0 L(n)p—lg(n)p—l (," )L (n)Pe(n)P
0 0 0 o 0 L(n)”e(n)” |

= E,H'D,;, say
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and E, = diag [1,8(72) e (n)?, ...,s(n)p} , D1 = diag {1,L (n),L(n)?,.. L (n)p} , and

(1 1 1 1 1
01 () ) )
H/: 0 0 1 (2) (2)
000 -1  (7)
000 - 1 ]

In (74) an, = J, 8 = E,q, where ay, is the parameter vector in (30) whose elements a, ; are
given in (27)-(29). Since X = J;;'Ls = E;'H™'D_} Ls, we may rewrite (74) as

S
Ys = an/qulKn <E> + us,

In view of (56), the vector E, 'K, (£) has elements
1 $ 1 |L(2n) 7 (s
—Kn — | = _ n -1 :10](_) 1+01 ,
e(n)’ " (n) e (n) [ L(n) ] & \n | W)
and so

an' B K, <%> = B J.E; 'K, (%) = BT, (%) [1+0(1)] = B Do HE,L, <%> [140(1)].

The sample second moment matrix, L'L of the regressors can now be written as

LL = J, [Z 6 (—) 4 (5)] L[+ o(1)]
= ah[[ 60607 @] L0+ o)
_ D,LHE, [Zﬁ (n>£p (%ﬂ EnH' Dyp, [1+ 0 (1)]
_ nDnLH{ / 0, (r) 6, (r) drEy }H/DnL[lJro(l)].

Since € (n) — 0 as n — oo, the matrix E,, = ere} +o(1), where e; = (1,0, ...,0)’, and final
expression above is

nD,H {6161/ by (r) €y (r) dreiel + o (1)} H'Dyp [1+0(1))
nDnLHelelH DnL[ (1)]
= nDuripi1ip Dar [1+0(1)],

where ip4q is the p+1 sum vector (i.e., it has unity in each component). This gives the first
result (35).
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Next, consider the inverse sample moment matrix

-1

(D™t = g @ (2)e (5)] L+ o ()]

e {/01 by (r) 6y (r) dr} T o)

n

I N e 1 11

= —D HE, by (r) Ly (r)dr|  E,*H'D}[140(1)]

n 0

Now observe that E,! is dominated by its final diagonal element, so we can write E, ! =

#epﬂegﬂ [1+0(1)] where epy1 = (0,0,...,1)". The final expression above is asymptoti-

cally equivalent to
1 —1 =1 / 1 , -1 / o
el e [ 0607 ar| eyt D)
ro 1y 1-1
= Gnlh® ()?;;;2 epHD;Llﬂfl’epﬂe;,HHﬂDng
G [ Y] e
B _ ne (n)2p Dy pbpiittp 1Dy (75)

giving the stated result. Line (75) holds because H Y €p+1 = Hpt1, the final column of H -
as is apparent from the fact that H'p,, 1 = ep1 which can be verified by direct multiplication
using Lemma 7.12(b).

8.5 Proof of Theorem 5.1 Solving (40) for 5; and 5, we get

51 5 ] 8o Errem] [
By |0 La (n) 3e1(n) [e1 (n) +m1 ()] 22 (1) [e2 (n) + 12 (n)] Qtn2
[ Lim)em) o 11 1 1 ]1[%]
|0 Ly (n)e2 (n) sler(n) +m ()] g le2 (n) +ny ()] Qn2
_ [ Lmeam) o 1_1i[%[62(n)+n2(n) —1Han1]
|0 Ly(n)ez(n) | 6(n) | —gler(m)+m(n)] 1 Otn2
and so
Vn §(n)er (n) Ly (n) |By — By _ [ 3 [e2 (n) + ny ()] 1] lﬁ[am Qp1) ]
2 | 6(n)ea(n) Lo (n) By — By —3le1(n) +my ()] 1 Vit [y — ama] |

Since ¢; (n) +n; (n) = o(1) for j = 1,2, we have

By~ ~1 ~ o2 [1 -1
gl_ﬁ:H:L ][ﬁ[amanz]]+op(1)wN<ijl_1 1 D
(76)

V| b (n)e1 (n) L1 (n)
2 | 8(n)ea(n)Lz(n)
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where the coefficient ﬁ comes from the third diagonal element of the inverse matrix

-1
{ fol by (r) Lo (1) dr} . Finally, the constant term satisfies

0o =ao—Li(n)B; — La(n) By
which, in combination with (76), leads to
Vi ovim gy [ ol mem) (B ) +op (1) ife(n) =ole ()
38 ()2 () (B0 = ) = { L1 (n) Y5 ()1 () éﬁl—m;m(l) it <1 (1) = o (2 (n)

— *\/ﬁ [an2 - OénQ] + 0p (1) if eg(n) =o0(e1 (n))
V1 [z — ama] + 0p (1) if &1 (n) = 0(e2 (n))

_ o?
= 18\/5 [ang — ang] + 0p (1) —q N (0, —= |

(21
wher
ere o (1) = g9 (n) if e (n) = 0(e1(n))
i 1 (n) if e1 (n) =o(e2(n))
and
_J -1 if g9 (n) = o0(e1 (n))
© 1 if e1 (n) =o0(e2(n))
We deduce that
SR8 () Emin (12) (ﬁo *Aﬂo) T1 2 [ 1 T
5 e1(n)Li(n)(B1—B31) | = | =1 | Vnlan2 — an2] =4 N O,W +1 1 -1 :
g2 (n) Lz (n) (By — B 1 Sl Fl -1 1

which gives the stated result upon scaling.

8.6 Proof of Lemma 6.1 Setting S; = Y_%_; u,, using partial summation and proceeding
as in the proof of Lemma 2.3 (a) have

o (L0) w0 S S 1 (R (nd) - s (R0 £ ()] B2
(77)

Assume the probability space is constructed so that we can embed the standardized partial

St—1 . . . .
sum \t/ﬁl in Brownian motion as in LP(b), viz.

a2 ()

Then, the first term of (77) clearly satisfies

sup
1<t<n

£ (1;0) % a F(1300) B(1), (78)
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as n — 6 uniformly over § € N{. The second term of (77) is

r ! (0) 2 () 7 (50) 1 ()| R

=t @) () -+ 0 )}S}l
: )

n
1 & t—1 t t—
Tt () P o) - (550 57
Start with T7. We have f(£;0) — f (£;60) = fo (£;0%) (0 — o) for some 0* € N, and so

e nl (50) -7 ()] [£(5) -2 (50 5

3l

L(n —
n " L(nt)—L(n=t)| g
= sup Z[fe (—;9*>} { ( )} =1 160 — 6|
9eN? |11 n L(n) NG
1y EN 2 )] [ S
< sup |0 —0p| =) sup (—;9*)
9€N0’ O’ntzggeN fo n L(n) || vn
— L' ()] | Si-1
= s 10— 60| ~ Zgo (n ) o |
B ‘ B(r)||L (nr)nr||L (nr)
B 986%)2’9_90’ {/0 9o (5 60) r L(nr) || L(n) d’”+0p(1)}
= Op (1), (80)
as L () L ()
nr nr)nr
, |————|—0, forallr >0and sup |01 —062 —0
’ L (n) L (nr) glﬁzeNgl 1 — 02

as n — oo. It follows that

(o) o) £ (5] 35 v

uniformly over § € N?. But, just as in the proof of Lemma 2.3 (a),

Lﬂéf(%;eo)p(n%)L(ntnl)}s“z /freo r)dL (nr) = Oy (¢ (n) = 0, (1),

and so Ty = 0,(1) uniformly over 6 € NJ.
Next, consider T. We have f (%, 0) — f( ) fr (n, ) for some t* € (t — 1,¢) and

then
= k(b Ge) (5]
ran ot () # (5:0) T o
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Nowfr(tn,) fr(n, ) f,«g(% )9 fp) for some 6* € NV and

—1

N A L R LS
= Tt () [+ (50) - f?“( )]
B L(rlwnZL(”%)f’@(i v)

)_.

t—1
0—0
n( 0),

J t—1 A
gi%v%meZ}L("T)fr@(ﬂ) m (0= 0)
1 B(r)||L (nr)nr||L (nr)
< s 0= ul| [ ri00) | = oo [z 4+ )
= o0p(1)

Moreover,

tiL( ) ( 0O> S’ffl— OlLL((TZ))f(r;QO)B( dr+op (1 /erO) (r) dr
N (52)

TL

as n — 00. It follows from (81) and (82) that

niL(n—)f( )S&_wop Hd/frr% B(r)dr,  (83)

t=1

uniformly over § € N2. We deduce from (77), (79), (78) and (83) that

n

:1 < >L wom I 90)%(TI+T2)de190 /fr?"eo
= /Olf(r;eo)dB(r), (4)

uniformly over § € N?, giving the stated result.
8.7 Proof of Lemma 6.2

Part (a) For any slowly varying function L satisfying SSV and any function f € C1,
we can show in the same way as Lemma 6.1 that

\/ﬁi(n)if(%;@o) (s) Us"d/ f(r;00)dB (r <Oo‘/f ) (85)

s=1

extending (9). The limit (51) follows directly.
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Part (b) Using Lemma 6.1 and (85), the asymptotic form of D, 'H,(69)D,! is

= Zs 1( )270 nlogn ZS 1 [ﬂ()( )270 log s — (n)’}’o lOgS}
i n]ogn PRy 1[50( ) 270 log s — us (3 )7 IOgS} Flgnzs 1 {(ﬂo) (n)ho log? s —usfBy (5 )7 log? 5}
_ i 'rlL ;L 1( )270 nlogn 1/80( ) 20 lé)gs 10 <L>
nlo nZS 1ﬂ0( ) 270 lOgS nlol nZs 1(ﬂ0) (n) 701 g25 P \/ﬁ
| nlog g’
[ fl r2Yodr Bo fl r2Yodr + 7;5 fol 20 log rdr (36)
B ﬂo f1r270dr+ Tog7 fol 20 log rdr J—loﬁz 01 270 (logn+logr) dr

1
0 (75)
— [ r2odr B Jy rodr | _ 1 L By
P Bo Jo r¥odr B3 [y r¥edr | 2y, +1 | Bo 8 |

as stated.

Part (c) Upon calculation of (86) and rescaling, we deduce that
F, Ho(00)F, Y = log?nDy ' Hy(60) Dyt

_ Bo

10g2 n 1 60 (2’70+1) logn + (1)
= 3 7 3 By 324 22 232 Op

7o 07 (2yo+1)logn 0 (270+1) logn T (2yy+1)%log2n

2 Bq

_ log”n 1 60 + 0 (2'y0+1) logn +0 (1)
T o2y, +1) | By 3 By 232 p (1),

7o 0 0 " (2v9t+1)logn  (2yo+1)logn

whose eigenvalues are evidently O (log2 n) and O (logn) , respectively, provided [, # 0.

Part (d) First calculate

dn(eﬂ)
= det [D;lHn(eo)Dgl}

B [t os 2 Lo 2 Bo [t o2 ? 1
— (L0 [ 20 (logn + logr)2d / 4 —( / Wdr 4 20 / 0] d) ) (—)
<log2n/o 770 (logn + log ) r) ; reYodr Bo ; r g og rdr AW
5% e 27, 2 ! 27 ! 2y ’ _1
= 3 / r=70 log” rdr / revodr | — / r=70 log rdr +o0 3
log”n |Jo 0 0 log“n
g [ 2 /1 27, /1 2 (/1 2 )2 ( L )
= - log rd Todr — 70 log rd —
log2n _ 2P+ T ogrdr A T r A r ograr +o log2n

2 [ ) 1 1 1 2 1
= 5[2) 5 / r¥odr — ( 5 / 7"2'70d7"> +o <—2>
log®n | (270 +1)* Jo 2% +1Jo log”n

5
(290 +1)*log®n’
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Then
Hn(e[))il n
_ 1 B3 Jo r¥vodr + 3 %— fol 20 log rdr + —Ll o [Lr2log? rdr  —By [y r¥odr — % [ r270 log rdr
ﬂo fl r2odr — Ogn fol 20 Jog rdr fol r2Yodr
2 265 1 83 B By 1
— log g(2vo+1>‘°’ T ln @y T B0 30t ogn ey + 0, <10g2”>
1 1
oy 5 T e S e Vi
290 + 1)*1og?n | 65— TR N . 1
_ (29" + l og'n | Po logn(?'yo-i-l) log”n (270+1)? 07 logn (29°+1) +Op<og "
5o —Bo+ 1oz logn (270+1) 1 \/ﬁ
We deduce that
Fan(QO)il n
3 1 83 2 B 1
= 7@70 —; 1) B — 10gg @0+ T log?n (2¢99+1)° —Po + Togn Z7071) +0, <L§g7)
1
B —Bo + 1ogn Togn (279+1) 1 vn
3
LD TN
% —Bo 1

as given.

Part (e) Define C,, = D,,/n® for some small positive § € (0,7, + %), so that C, D1 =
0 (n*’s) = 0(1) and Apin(Cy) — 00 as n — 0o, where Apin denotes the smallest eigenvalue.
Construct the following shrinking neighbourhood of 6y

Ny ={0€0:[|Cp(0—0o)l| <1}.

and define the matrix

o1 [Hn (9) —H, (90)] o1 — l a1i,n  A12,n ] '

a21,n  Aa22n

We show that

sup |y [H (6) — Ha (00)] O3 || = 0 (1). (88)
0eNyQ
Note that in N we have
1
su <————F——, su — Byl £ ———

Also, since v > —% we can choose € > 0 such that v, > —% + ¢, and then we have the
dominating function

sup [17] <77 (89)
e n

|
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Consider the individual elements of C;; 1 [H,, (§) — H,, (69)] C;; ! in turn. First, for v* between
v and 7y, we have

1 9 2 LN
- - ) — % Y _
Uln = oy Fi726 Szl ( = 0) = 2+1ts SZZI 57 logs (v =)
2logn 1 m s\
T p20v0—r)+28 lnlogn ; (E) logs| (v =)

Next

1 m s\ 2 1 & /s\2 1 &/s\2 s 1
Z) logs=-— - =) log— 04
nlogn?(n) 085 nz(n> +nlogns§<n> Ognﬂfo " "

1 s=1 1

uniformly for § € N? in view of the majorization (89). It follows that for large enough n

1 (2 2logn
S — Y o2
9561}\17’0 270 +1+28 > (s s o) 10) (—2(70 73 S Iy — 70|>
n s=1
1 1
= O\ 55— |=0(1). 90
<n5 n70+%_6logn> 0( ) ( )
Next,
1 n 9
a12,n == m Zl |:/88 ’YIOgS — U’SS’Y logs — (/60870 _ /65’)/) S’Y log 5:|
S 2 I
= n2’70+1+2’5 logn & Zs Tlog s — n2’70+1+2’5 ogn 2 Zuss log s
1 n
—_—_— Yo _ Y\ Y
n2vo+1+26 logn;(ﬂos 0 —Ps7)s7 log s
= Ti+ T+ T3
We find

sup (|T1| + |T3]) = o(1)
N9

in the same way as (90) above. For term T, in view of (85) we have for each v € N?

N nY 1 n s\7
—_— ugs’ logs = us [ — | logs.
n2’yo+1+25 logn Z $ & 270+%+25 \/ﬁn’y logn ; § <n) &

By Lemma 7.1 we have

n

1 s\ 1
_ <=1 1 YodB
\/ﬁlogn;u (n) 0g s Hd/o r (r)

uniformly over § € N2, and,
n’ 1
o (L)
n270+§+25 n

uniformly over § € N? for large enough n. Hence,

sup ’T2’ = OP (1)7
N9

as n — 00. The argument for the term as,, is entirely analogous and (88) therefore follows.
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8.8 Proof of Theorem 6.4 Standard asymptotic arguments of nonlinear regression for
nonstationary dependent time series (e.g., Wooldridge, 1994, theorem 8.1) may be applied.
But, modifications to the arguments need to be made to attend to the singularity arising
from the asymptotically collinear elements s70 and s70 log s that appear in the score Sy, (6o).
First, the demonstration that there is a consistent root of the first order conditions (48) in
an open, shrinking neighbourhood of g follows as in the proof of Wooldridge’s theorem 8.1
using (49) and Lemma 7.2 (e). There are two changes in the proof that are needed: (i)
the standardizing matrix is F, ! in place of D!, as discussed in Remark 6.3(a); (ii) the
scaled hessian matrix F,, ' H,(0o)F, ' does not tend to a positive definite limit with finite
eigenvalues bounded away from the origin. Instead, as shown in the proof of Lemma 7.2(c),
F;YH,(0)F; ! is positive definite for all large n and has eigenvalues of order O (log2 n) and
O (logn) and the smallest eigenvalue Amin (Fy *Hy(00)F, ) = O (logn) — oo. With these
changes, the remainder of the consistency argument in Wooldridge’s theorem 8.1 holds and
we obtain F, (5 - 90) =0p(1).
Next, scaling the first order conditions (49), we have

0= F,; " Su(00) + Fyy " Hy(00)F, Fo (0= 00) + Fy * [Hyy — Hy(00)] Fy Fr (0= 00)
and then

~ -1
E, (9 — 90) - [I + (Fan(Qo)_an) FoY[HY — Hy(6)] Fn—l} (Fan(HO)_an) F18,(6,).
(91)
P 1
Note that F, = @Dn = diag [”loognz ,n7073 | and since D715, (6o) = Oy (1) from Lemma

7.2(a), we have F,15,,(00) = O, (logn). However, from (87) in the proof of Lemma 7.2(d)
we have

Fan(QO)ian

3[ 52 260 1 i 2 bo 1
_ (27074{;1) B0~ gn @ Y iognapay 0T enmom | Op <L>
B | ot 1 vn
_ 0,(1), (92)

and from Lemma 7.2(e) we have

sup F,, ' [Hn (0) — Ha(00)] Fyy ' = 0p (1),
0eN?

where N = {0 € ©:||C,, (0 — 6p)|| < 1}, a shrinking neighborhood around 6y with C,, =
D, /n® for some small § > 0. Since F, (5— 90) = Op (1), it follows that 6,6* € NO with

probability approaching unity as n — oo, where 8* is a generic mean value between 6 and 0o.
Hence
E;V[HE — Ha(00)) Fy b =0, (1), (93)

and so, combining (93) and (92) we have

(FuHa(00) ™ Fo) 7 [H = Ha(00)] By = 0p (1) (94)
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Then, from (91), (94) and (87) we deduce that

E, (5 - 90)

= — (FuHa(00) ' F) F—lsn(eo) + o, (1)
@2+’
& —Po+ rogn (27°+1) 1

n s5\7%
| l gg>(§)130glzgs ] s+ 0p (1)

»30 2 o /BQ 1
50 logn 27°+1) - log? n (279+1)2 Po+ logn (2¢9+1)

()

_l’_

zﬂz( )'yologn 32 2(%)Wologn v ﬂz ( )'yologs
(27 +_1 i “logn (299+1) login (27°+1)? =55 ()7 log 3 + 155 logn ~ (2y0+1)
s=1

OIOgTL u5+0p (1)

2(s\70 70
22 (s\Y s 0(5) 2Q ()&
ikl i G ()™ log 5~ Ty + Togn B | 4 o0 (1)

2
08 (3" log 3 — oy ()7

(27°+1)

— (270+1)3 [ 1_1/% ] %; [(E) Olog%+%] us+0p(b;n>+op(1)

g (270+1)3 l 11/50 ] /Olrvo [logr—!— 2%1+J dB (r) = [ 11/50 ] N<0,02 (2~y“+1)3),

giving the stated result.

1
Us + Op <@> + 0p (1)

9 Notation

—q.s. almost sure convergence SV slowly varying

—p convergence in probability SSV smoothly slowly varying

=y distributional equivalence =, —4 weak convergence

= definitional equality ['] integer part of

(@), a(a+1)..(a+k—-1) rAs  min(r,s)

B (r) standard Brownian motion ~ asymptotic equivalence

ok class of continuously differentiable Op(l) tends to zero in probability
functions to order k 0a.s.(1) tends to zero almost surely
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