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Abstract

In time series regression with nonparametrically autocorrelated errors, it is now standard
empirical practice to construct confidence intervals for regression coefficients on the basis of
nonparametrically studentized t-statistics. The standard error used in the studentization
is typically estimated by a kernel method that involves some smoothing process over the
sample autocovariances. The underlying parameter (M) that controls this tuning process
is a bandwidth or truncation lag and it plays a key role in the finite sample properties of
tests and the actual coverage properties of the associated confidence intervals. The present
paper develops a bandwidth choice rule for M that optimizes the coverage accuracy of
interval estimators in the context of linear GMM regression. The optimal bandwidth balances
the asymptotic variance with the asymptotic bias of the robust standard error estimator.
This approach contrasts with the conventional bandwidth choice rule for nonparametric
estimation where the focus is the nonparametric quantity itself and the choice rule balances
asymptotic variance with squared asymptotic bias. It turns out that the optimal bandwidth
for interval estimation has a different expansion rate and is typically substantially larger
than the optimal bandwidth for point estimation of the standard errors. The new approach
to bandwidth choice calls for refined asymptotic measurement of the coverage probabilities,
which are provided by means of an Edgeworth expansion of the finite sample distribution
of the nonparametrically studentized t-statistic. This asymptotic expansion extends earlier
work and is of independent interest. A simple plug-in procedure for implementing this
optimal bandwidth is suggested and simulations confirm that the new plug-in procedure
works well in finite samples. Issues of interval length and false coverage probability are also
considered, leading to a secondary approach to bandwidth selection with similar properties.
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1 Introduction

Robust inference in time series regression is typically accomplished by estimating the standard
errors of the regression coefficients nonparametrically to allow for the effects of autocorrelation
of unknown form by a kernel smoothing process. A critical element in achieving robustness is
the bandwidth or truncation lag (M). Appropriate choice of M addresses the nonparametric
autocorrelation but also affects other aspects of inference such as the coverage probability of
associated confidence intervals. It seems sensible that the choice of M should take these other
effects into account, for instance when confidence interval coverage probability is a primary
concern. Conventional econometric approaches (e.g., Andrews, 1991; Newey and West, 1987,
1994) follow early practice in the time series spectral analysis literature by selecting M to
minimize the asymptotic mean squared error (AMSE) of the nonparametric quantity itself,
which in this context is the relevant long run variance (LRV). Such a choice of the smoothing
parameter is designed to be optimal in the AMSE sense for the estimation of the LRV, but is
not necessarily optimal and may not even be well suited for other purposes, as shown in Sun,
Phillips and Jin (2007) in the context of hypothesis testing in a Gaussian location model.

The present paper pursues this theme of focused bandwidth choice in linear GMM regres-
sion by developing an approach to bandwidth selection that is based on minimizing the coverage
probability error (CPE) of a relevant confidence interval in linear GMM regression. This ap-
proach to automated bandwidth selection requires asymptotic measurement of the coverage
probabilities, which are provided by means of an Edgeworth expansion of the finite sample
distribution of the nonparametrically studentized t-statistic. We show that the asymptotic cov-
erage probability depends on the asymptotic bias and variance of the LRV estimator as well as
other aspects of the data generating process. To minimize the coverage probability error, we
would choose M to balance the asymptotic bias and variance. This selection process contrasts
with the conventional MSE criterion that balances the squared asymptotic bias with variance.
As a result, larger values of M are called for if coverage accuracy of confidence intervals is of
primary concern. In particular, when second order kernels, such as the Parzen and Quadratic
Spectral (QS) kernels are used, conventional wisdom and long historical practice in statistics
suggests that M be of order T/5 as the sample size T increases. We show that if our goal is to
achieve the best coverage accuracy of two-sided confidence intervals, then the optimal M should
be of order T1/3. Taking M ~ T gives coverage errors of order T—2/%> whereas M ~ T/3
gives coverage errors of order T~2/3. Interestingly, the choice of M is not so critical in one-sided
confidence intervals. As long as M increases faster than T%/4 and more slowly than T/2, the
dominant term in the Edgeworth expansion of the coverage error is of order 7-/2 and does not

depend on M. Again, if we use the MSE-optimal bandwidth M ~ T'/5, the coverage error will



of order T-2/5, which is larger than 7~1/2 by an order of magnitude.

In addition to the difference in the rate of expansion, the CPE-optimal bandwidth differs from
the MSE-optimal bandwidth in the following aspect: depending on the direction of the dominant
asymptotic bias of the HAC estimator, the CPE-optimal bandwidth may trade the asymptotic
bias with the asymptotic variance or zero out the asymptotic bias with the asymptotic variance.
In the latter case, the coverage errors of two-sided confidence intervals will be of an order

2/3 when second order kernels are used. In the former case, we can use the

smaller than T~
Cornish-Fisher type of expansion and obtain high-order corrected critical values. These high-
order corrected critical values are analogous to those obtained in Sun, Phillips and Jin (2007).
The difference is that our correction here reflects both the asymptotic bias and variance while
the correction in Sun, Phillips and Jin (2007) reflects only the asymptotic variance. With the
high-order corrected critical values, the coverage error of two-sided confidence intervals will also
be of an order smaller than T-2/3. Therefore, the present paper makes two main innovations:
the CPE-optimal bandwidth that minimizes the coverage error; and the high-order correction
that further reduces the coverage error.

Another contribution of the present paper is to provide an automatic and data-dependent
procedure to implement the CPE-optimal bandwidth. Following established statistical practice
and the work of Andrews (1991), we use simple parametric models to capture the main features
of the target vector process, that is, the product of the instruments with the regression error.
This plug-in methodology allows us to gauge the values of the unknown parameters in the CPE-
optimal bandwidth. The computational cost of our plug-in bandwidth procedure is the same as
that of the conventional plug-in bandwidth so there is no increase in computation.

In a series of simulation experiments, we compare the coverage accuracy of conventional
confidence intervals and new confidence intervals. We find that new confidence intervals out-
perform the conventional confidence intervals for all models considered, and often by a large
margin. Prewhitening is shown to be effective in improving the coverage accuracy of both types
of confidence intervals, especially for conventional confidence intervals. Nevertheless, new con-
fidence intervals remain consistently more accurate in coverage probability than conventional
confidence intervals.

The final contribution of the paper is to outline an alternative bandwidth choice rule that
takes the length of the confidence interval into account. Two coverage types are considered in this
approach — coverage of the true value (true coverage) and coverage of false values (false coverage).
The bandwidth is selected to minimize the probability of false coverage after controlling for the
probability of true coverage. The probability of false coverage indirectly measures the length of
the confidence interval because the longer a confidence interval is, the more likely it is that the

interval will cover false values. The optimal bandwidth formula from this approach turns out



to be more complicated than the one that minimizes the absolute coverage error but the main
conclusion remains valid: for confidence interval construction, it is generally advantageous to
reduce bias in HAC estimation by undersmoothing.

Our theoretical development relies on the Edgeworth expansion of the nonparametrically
studentized t-statistic. The Edgeworth expansion we obtain is of independent interest. For
example, it may be used to search for the optimal kernel, if it exists, for the purpose of interval
estimation. It may also be used to establish high-order refinements of the moving block boot-
strap. Our Edgeworth expansion differs from the one obtained by Gotze and Kiinsch (1996)
in that they consider only nonparametrically studentized sample means and obtain the Edge-
worth expansion with the remainder of order o(T~'/2). The Edgeworth expansion they obtain
is sufficient for proving the high order refinement of the moving block bootstrap for one-sided
confidence intervals. In contrast, the Edgeworth expansion we obtain is for general linear GMM
models with possible over-identification. To derive the CPE-optimal bandwidth, we have to
establish the Edgeworth expansion with a remainder of order o(M~7), where ¢ is the so-called
Parzen exponent of the kernel function used (Parzen (1957)). With a suitable choice of M,
the remainder is smaller than o(7~'/2) by an order of magnitude. This is also in contrast to
the Edgeworth expansion established by Inoue and Shintani (2006) in that the remainder in
their Edgeworth expansion is of the larger order O(M ~). Therefore, this paper contributes to
the statistical literature on Edgeworth expansions of nonparametrically studentized t-statistics.
Nevertheless, our proofs are built upon those of Inoue and Shintani (2005, 2006), which in turn
rely on Gotze and Kiinsch (1996).

A paper with conceptual ideas related to those presented here is Hall and Sheather (1988).
These authors considered interval estimation for a sample quantile where the asymptotic variance
depends on the probability density function. As in the present paper, they used the absolute
coverage error as the criterion to select the bandwidth for density estimation. The found that
the optimal bandwidth should be of an order of magnitude smaller than is recommended by
the square error theory. Their qualitative findings are analogous to ours although the problems
considered and the technical machinery used are fundamentally different.

Other related papers include Kiefer, Vogelsang and Bunzel (2000), Kiefer and Vogelsang
(2002a, 2002b and 2005). These papers considered alternative approximations to the finite
sample distribution of the t-statistic for a given bandwidth. In constrast, we consider the
conventional asymptotic normality approximation and choose the bandwidth to optimize the
criteria that address the central concerns for interval estimation.

The plan of the paper is as follows. Section 2 describes the linear GMM model we consider
and presents assumptions. Section 3 develops a high order Edgeworth expansion of the finite

sample distribution of the t-statistic. This expansion is the basis for optimal bandwidth choice



and high-order corrections. Sections 4 and 5 propose a selection rule for M that is suitable for
confidence interval construction. Section 6 reports some simulation evidence on the performance
of the new procedure. Section 7 outlines an alternative bandwidth choice rule. Section 8
concludes and discusses some possible extensions of the ideas and methods. For easy reference,
notation is collected in the first subsection of the Appendix. Proofs and additional technical

lemmas are given in the rest of the Appendix.
2 Model and Assumptions
We consider a linear regression model

Yt = w;BO + Ut, (1)

where z; € R% and w; is a zero mean stationary process with a nonparametric autocorrelation
structure. We assume that there exists a stochastic process z; € R% such that the moment

condition
Ezt Ut = 0 (2)

holds. To identify the model parameter (3, we assume dz > d;. In the special case where z; = x4,
the model reduces to conventional linear regression.

Given Tp observations (4,4}, 20) ,t = 1,2,...,Tp, we are interested in inference about 3.
Let M be the bandwidth parameter used in heteroscedasticity-autocorrelation consistent (HAC)

covariance matrix estimation and set T' =Ty — M + 1. Defining

1 & 1 & 1 <&
Gr=—= qxh, Sp=— ZiUp = — Vg, 3
T th:;tt/ T ﬁ;tt \/th:;t ()

the two step GMM estimator of 3, based on the moment condition (2) satisfies

. . -1 .
VT (Br - ) = (Gr07'Gr)  (Grrtsn). (4)
where Qr is a consistent estimate of the long run variance matrix Qg of vy :
o0
Qo = Ezulz, + Z [zt+jut+jutz£ + ztututﬂ-z;ﬂ] ) (5)
j=1

It is standard empirical practice to estimate (g using kernel-based nonparametric estimators

that smooth and truncate the sample autocovariance sequence. The resulting HAC estimate of



Qo has the form!
1 T M j
QT = T t_zl Zt?thZQ + J:Zl k (H) (Zt+jat+j7:6tzz + Ztﬁtﬁt+jzg+j) . (6)

In the above expression, u; is the estimated residual u; = y; — x;BT for some consistent initial
estimate By, k (-) is the kernel function, and M is the bandwidth or truncation lag. Throughout
the paper, we employ the first step GMM estimator as BT :

VT (@T . ﬂ()) = (GLVrGr) T (GhViSy) . (7)

where Vr is a weighting matrix.

When the model is just identified, we have
vT (BT - 50) = G Sr, (8)

and the weighting matrix is irrelevant. When z; = x4, BT reduces to the familiar OLS estimator.
So, the analysis includes linear OLS regression as a special case.
Under some standard regularity conditions, v/T' (BT — Bp) is known to be asymptotically

normal with distribution
VT (Br = By) — N(0.%0) ©)
where
S0 = (G5 Go) ™ and Go = E (Gr). (10)

This limit theorem provides the usual basis for robust testing about ;. As in Rothenberg (1984),
it is convenient to consider the distribution of the studentized statistic of a linear combination

of the parameters as in the standardized expression
. ~1/2 .
ty =T (R'ZTR> R’ (BT - 50) , (11)

where R is a dj x 1 vector and X7 = (GLQ5'Gr) L.
To establish an Edgeworth expansion for the distribution of this studentized statistic, we

maintain the following conditions.

! This HAC estimator differs slightly from the typical formula in the literature in that the number of terms in
the sample covariance sums is the same regardless of the order of the sample covariance. We use this modified
HAC estimator in rigorously proving the validity of the Edgeworth expansion up to order o(M/T'). The technical
modification is not necessary for a lower order Edgeworth expansion. Similar modifications have been employed

to facilitate theoretical developments in the bootstrap literature, e.g. Hall and Horowitz (1996).



Assumption 1. (a) There is a unique 3, € R4 such that E (z (y — x48;)) = 0. (b) The

long run variance matriz Qy = Z;’;_OO E(Z()UOUJ‘Z}) is positive definite.

Assumption 2. (a) {z},y,, 2} is strictly stationary and strongly miving with mizing
coefficients satisfying cu, < d~'exp(—dm) for some d > 0.
(b) Let Ry = ((zeuy) ,vec (zxh)). Then E||Ry||"™" < oo for v > 16 and some 1 > 0.

Assumption 3. Let .7-"2 denote the sigma-algebra generated by Rg, Rgt1, ..., Ry. For all
m,s,t=1,2,... and A € FT5

E|P (AFLuFy,) — P(AF -, UFET™)| < d ' exp(—dm). (12)

t—s—m

Assumption 4. For all m,t = 1,2,... and 0 € R%2(A+Y) such that 1/d < m <t and

161 = d,
t+m
E {exp [w' ( > (Re— ERS)>

s=t—m

E <exp(—d). (13)

'ftocluu to-ﬁl}

Assumption 5. k() : R — [0, 1] is an even function which satisfies: (i) k(x) = 1—gq|x|?+
O(|z|*) as © — 0+ for some q € Z* and q > 1; (ii) k(z) = 0 for |x| > 1; and (iii) k(z) is

continuous at 0 and at all but a finite number of other points.
Assumption 6. M ~ CTY/ @) for some constant C' > 0 as T — 0.

Assumption 7. The weighting matriz Vi converges to a positive definite matriz Vy such

that
P (Tq/<2q+1> Vi — V|| > elog T> =0 (T7X) (14)
for all € > 0 and some x > 2.

Assumption 1(a) is a standard model identification condition. The condition holds when the
rank of F/(z:x}) is at least dj. Assumption 1(b) is also standard and ensures the limit distribution
of the GMM estimator (7 is nondegenerate. The strong mixing condition in Assumption 2(a)
is a convenient weak dependence condition but is stronger than necessary. It can be shown
that all results in the paper hold provided that (z},y}, 2;)" can be approximated sufficiently well

by a suitable strong mixing sequence. More specifically, the assumption can be replaced by a



condition that ensures the existence of a strong mixing sequence of sub-o fields {D;} for which

t+m

/ / \/ : / / !/ / s
(2%, Y4, 2;)" can be approximated by a D; ", -measurable process (4 ,,,, Yt m» 2t,) With

E H (1’;, yll‘,'/ 21{/)/ - (J";,mv yzlt,m’ Z;,m)/H < dil exp(—dm). (15)

See Gotze and Hipp (1983) for details. Assumption 2(b) is a convenient moment condition and
is likely not to be the weakest possible. Lahiri (1993) provides a discussion on the validity of
Edgeworth expansions under weaker moment conditions.

Assumption 3 is an approximate Markov-type property. It says that the conditional prob-
ability of an event A € F/*5, given the larger o-field 'l U 11, can be approximated with

increasing accuracy when the conditioning o-field j—“f_‘;_mu]-'fjf M grows with m. This assump-
tion trivially holds when R, is a finite order Markov process. Assumption 4 is a Cramér-type
condition in the weakly dependent case. It imposes some restrictions on the joint distribution
of Ry. As shown by Gotze and Hipp (1983), the standard Cramér condition on the marginal
distribution, namely that
lim sup }Eexp (iO'Rt)‘ <1, (16)
[16]|—o0
is not enough to establish a “regular” Edgeworth expansion for the normalized sample mean.
The Cramér-type condition given in Assumption 4 is analogous to those in Gotze and Hipp
(1983), Gotze and Kiinsch (1996), and Inoue and Shintani (2006). Assumption 5 imposes
some restrictions on the kernel function. The parameter ¢ is the so-called Parzen exponent (e.g.
Parzen (1957)). For first order asymptotics, it suffices to assume that k(z) = 1— g, |2|?+o(]x]?),
while for higher order asymptotics, we have to strengthen o(|2|?) to O(|z|*).
Assumption 6 is a rate condition on the bandwidth expansion. The given order M ~
@) (Tl/ q+1) is the expansion rate for M such that the asymptotic bias and variance of the LRV
estimator are of the same order of magnitude. Assumption 7 requires that that the weight
matrix Vp converges to Vj at a certain rate. It holds trivially in the special case where Vp =
(T1 Zle z2;)"L. When Vr is the inverse of a general nonparametric estimator of the HAC
covariance matrix, Assumption 7 holds if the underlying bandwidth is proportional to 7Y/ (2a+1)
and if V7 has an Edgeworth expansion with an error term of order o (77X) . A direct implication
of Assumption 7 is that the first step estimator BT can be approximated well by an estimator

with finite high order moments. More specifically, let 3, be defined according to
VT (B — B,) = (Gf)VoGo)f1 (GoVoSt) (17)

where G = F (Gr) is defined as before. Assumption 7 implies that the first step estimator BT

satisfies

P (\/T (HBT - [3“) > ¢ (log?T) T*q/@q*l)) =0 (T7X), (18)



for all £ > 0 and some y > 2, as shown in Lemma A.3(c) in the Appendix. While the consistency
of the first step estimator is sufficient for first order asymptotic theory, further conditions are
needed for higher-order analysis. In fact, the higher order properties of the studentized statistic
depend crucially on how the first step estimator is constructed. Note that condition (18) is
different from Assumption (i) in Inoue and Shintani (2006) where it is assumed that the r-th
moment of \/T(37 — f3,) is finite. The requirement of finite higher moments may be restrictive

and there is some advantage in avoiding direct assumptions of this type.

3 Edgeworth Expansions for the Studentized Statistic

This section develops Edgeworth expansions for ¢, thereby extending the work of Gotze and
Kiinsch (1996) which gave an Edgeworth expansion for the studentized mean. It also provides
a refinement of the results in Gotze and Kiinsch (1996) and Inoue and Shintani (2006). The
latter two papers do not include the asymptotic bias of the HAC variance estimator in their
Edgeworth approximations while we explicitly take the bias into account. For our purpose of
optimal bandwidth choice that is investigated here, it is necessary to deal explicitly with the
bias and not to leave it as part of the remainder term in the Edgeworth expansion.

To establish the Edgeworth expansion for ¢, we first establish the validity of some stochastic

approximations. Let

Or= 30 KGO T = { Pt 720 (19)
=M vy, J < 0,
and set
gr = a'St+b|vec(Gr— Go)® Sr]+¢ {vec (QT — Qo> ® ST}
+d’ [vec(Qr — Qr) ® vee(Qr — Q7) @ ST} (20)
for vectors a, b, c and d given in Lemma 1 below. Then it can be shown that
Plts = grl > nr) = o(nr) (21)
for
np =max (M~/logT,(M/(TlogT)). (22)

This stochastic approximation implies that the Edgeworth expansion for ¢, is the same as that
for g7 up to a certain order. However, even with this approximation it is still difficult to obtain
the Edgeworth expansion for gy as it depends on the first step estimator whose moments may

not exist. To overcome this difficulty, we establish a further stochastic approximation, this time



for g7. Let Qr be defined as Q7 but with the first step estimator BT replaced by BT (defined in
(17)), then we can show that

P(lgr — hr| >np) =o0p), (23)

where

hr = a’ST + b [U@C (GT — Go) X ST} +c ['UGC (QT — Qo) X ST]
+d' [vec(Qr — Qr) ® vee(Qr — Q1) ® St . (24)
That is to say, for the purposes of the present development we can replace Qr whose high order

moments may not be finite by {7 whose higher order moments are finite.
Let

o0 = (R'SoR)Y? 30 = (G052 Go) ™ (25)

A1o = ZoR, Agg = Q5 ' Go X0, (26)
and

O = QalGozoR,

Oy = Qala

O3 = QGG (27)
1

O = Oz0— Oz — =—561007,.
20%

We formalize the result on the stochastic approximations in the following Lemma.

Lemma 1 Let Assumptions 1-7 hold, then

P (ltar = hr| > nr) = o(nr) (28)
where
a=vec(Qq), b=1rec(Qp), c=vec(Q.), d=rvec(Qq). (29)
Qu = —0 30
a = O'_() 10, ( )
1 1 1
Qs = = [A1o ® (020 = O30)] = = (A2 ® O + a3 [(©10A19) ® O] , (31)



1

Qo= (00 ® Oup) . (32)
and
Qs = 4%(% {[vec (©'g) ® (O20 — O30) ® (©10070)] }
+%‘0 {[vec (©19) @ Ou0 ® (O30 — On0)] }
+2%0 {Kdzd% [vec (B40) ® (O30 — O20) ® O] }
—%‘% {vec < 10 ® [Tio@m - Tig@lo@llob [0 ® O] } : (33)

Lemma 1 implies that t;; and A7 have the same Edgeworth expansion up to a certain order.
Thus, to establish the Edgeworth expansion for ¢y, it suffices to establish that for hr. The most
difficult part is to control the approximation error as hp can not be written as a finite sum of
means. In fact, Q7 is the sum of M different means, namely, the sample covariance for lags
0,1,..., M — 1 with M increasing with the sample size T'. Following recent studies by Gotze and
Kiinsch (1996) and Lahiri (1996), we are able to rigorously justify this expansion. Details are
given in the Appendix.

Let Q7 be the HAC estimator of )y based on {v}. Define

Ple = lim M?E2a'Spc[vec (QT — Qo) ® Stl, (34)
’ T—o0
. T / / e )
Proo = Thm HEQa Src'[vec (QT — QT) ® St], (35)
and
Kloo = Tlim VTV [E (vec (Gr — Go) ® S7)]
+ Tlim VTc! [E (vee (Qr — Qo) ® Sr)] | (36)

K200 = 2 lim EE (a’ST) {d' [UBC (QT —Qr

7500 M @uec <QT - QT) @ ST} }

I (37)

)
)

R3o0 = Tlgréo VTE (a’ST)3 + 3%5130 VTE (a’ST)2 {b [vec (Gr — Go) ® S|}

—I-Th_rgo ‘Z;E {c' (U@C (QT - QT> ® St

+3 Tlim VTE (a'ST)2 {'[vec (Qr — Qr) ® S7]}, (38)
Kaoo = 4T1£I;o %E (a’ST)3 {d/ [vec (QT — QT> ® vec (QT — QT> & ST} }
. T 2 ~ - 2
+6 lim —F (aSr) {c'[vec (QT - QT> ® ST]} . (39)

The following theorem gives the Edgeworth expansion for tj;.

10



Theorem 2 Let Assumptions 1-7 hold, then

sug |P(tyr < ) — @r(x)| = o(ny) (40)
Te
where
o _ 1 M 1 Al
r(z) = () + ik (2)d(z) + = p2(2)¢ (2) + 32p3 (2) H(2), (41)
for polynomials p1(x), p2(x) and ps (x) defined by
P = e ¢ (e — Bre) (a2 - 1)
Pr(2) = 5 (poa+ K20) T — 5 (e — Grine) (a — B2),
@) = 31 (42)

As is clear from the proof of the theorem given in the Appendix, the coefficients for the
polynomials py(z), p2 (x), ps(z) depend on the kernel function used. A direct implication is
that higher order asymptotics are able to at least partially capture the effects of the kernel
function. In contrast, the first order normal limit does not depend on the kernel function used.
This is one of several reasons for poor finite sample performance in first order asymptotics.

The Edgeworth expansion in Theorem 2 consists of a term of order 1/v/T plus a second
“superimposed” series of terms of order M~9 and M/T. The term of order (1/v/T) is typical
in Edgeworth expansions. It is convenient to regard it as a contribution from the mean and
skewness of the t-statistic. The M 9 term arises from the type I finite sample bias of the HAC
estimator. The type I bias is the same as the nonparametric bias in spectral density estimation
when the time series is observed and used in estimation. The M /T term arises from the type II
finite sample bias of the HAC estimator, the variance of the HAC estimator, and the statistical
dependence of the HAC estimator on a’Sp, a quantity that largely captures the randomness of
the numerator of the t-statistic. The type II bias, reflected in the term containing p, ., is due
to the unobservability of v;. This term can not be avoided because we have to estimate 3 first
in order to estimate v; and construct the HAC estimator.

Note that p; (x) is an even polynomial while pa(z) and ps (x) are odd polynomials. It follows

immediately from Theorem 2 that for two-sided probabilities we have

sup |P(|t| < 2) = @5'(2)]| = o). (43)
where
B}l (2) = @) — ® () + 22 pa(2)6 () + 1o (1) D). (44

11



In general, the values of p; ., and k; o depend on the underlying data generating process in
a complicated way. In the special case that v; follows a linear Gaussian process, we can obtain
analytical expressions for p; o, i = 1,2 and £ 0, ¢ = 1,2, 3, 4. For our proposes here, it suffices
to obtain the closed form solutions for p; o, P2 o0, £2,00 and £y 0o as the optimal bandwidth given
in the next section depends only on these parameters. From now on we ignore the technical

modification (c.f. footnote 1) and employ the conventional kernel-based HAC estimator. Let

7o {lef?vt+jvz TR {le?‘mma =

45)
_ T . — T .. . (
Tlgtﬁjvtvtj, j <0, Tlgtﬁjvtvgj, j <0,

QCT:jf:MkG—;[) s, O Z k:<M> [¢, and Q5 = Z /<:<M> ETS.  (46)

.]—

Define
o= [ ke = [ i (47)
and
Fo = VoGo(GoVaGo) 'Gh, ) = i 34T (48)
j=—00

The next proposition gives closed-form expressions for p; o, P2 oo: K2,00 and rig 00 When Qp, Qr

and Qp are replaced by QCT, Q% and QCT respectively.

Proposition 3 Assume that vy follows a linear Gaussian process:
o0
v = Z\I/Set_s, t=1,2,..,T (49)

where ey ~ iidN (0, 3) and Wy satisfies S o0 | s*||Us|| < o0o. Then
() proo = /RS0G5 AP0 GoSoR [R'Gglﬂo (Ggl)’R} o
(b) paoe = —2p11€" [vec (QoF o + F 0 — F5Q20F 0) ® (Q0a)]
2111 { Ly + K g g, Tty © Kapap) } {[(1 = Fo) ()] @ vee Q0 (T = Fo)l}
(¢) K200 = 2419 + 2119 (d2 — d1)
(d) K400 — 6K200 = 6fiy.

It is clear from Theorem 2 and Proposition 3 that the asymptotic expansion of the t-statistic
depends on the first step estimator through the quantity F o, which in turn depends on Vj, the
probability limit of the weighting matrix used in constructing the first step estimator. Although

the first order asymptotics of the t-statistic does not reflect the estimation uncertainty in the
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first step GMM estimator, the higher order asymptotics do capture this uncertainty. Note that
F o becomes an identity matrix, which does not depend on the weighting matrix Vr, when the
model is just identified. This is not surprising as in this case the weighting matrix is irrelevant.

The analytical expression for p, ., can be greatly simplified if the model is just identified
or the first step estimator is asymptotically efficient so that Vo = Qy 1 Some algebraic manip-
ulations show that in both cases py o, = p11. Combining Proposition 3 with equation (43), we

obtain
P(lty] < z)=®(x) — P (—2x)

M 1 1
- | F {me+ g+ 0 1 =10+ 0]} + o 60 + 0 ) 50

uniformly over 2 € RT™. When the model is just identified, we have ds = d; and thus
P(lty| <) = ®(x) = ®(=2) — | = & + 5hg [2° + 2] ¢ + —=py o| S(x) +0(n7). (51)
T 2 Ma
where
R'Gg ' (Gg!)' R
g :
YRG0 (G R

Ploo = (52)

This asymptotic expansion coincides with the asymptotic expansion obtained by Velasco and
Robinson (2001) and Sun, Phillips and Jin (2007) for Gaussian location models.

4 Optimal Bandwidth Choice for Interval Estimation

This section explores optimal bandwidth choices that minimize the coverage probability error
of a confidence interval. Both one-sided and two-sided confidence intervals are considered.
One-sided confidence intervals are examined first. The coverage error of a one-sided confi-
dence interval can be obtained directly from Theorem 2. Without loss of generality, we consider
upper one-sided confidence intervals as the qualitative results are the same for lower one-sided
confidence intervals. Let z, = ® ! (1 — a), then the coverage probability for the one-sided

confidence interval Zp := (BzT — (za/\/T)fll/2

()T ar-) =)

= 1=t (Zemlan) + Fmalen) + gmalen) ) 6 () o). (53)

o0) for the i-th component of 3 is given by

where i“ is the (i,7)-th element of matrix . The term

CPE = <%p1(2a) + ¥p2<za) + %pg(%)) ¢ (za) (54)
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provides an approximation to this coverage error.

If the order of magnitude of M lies between 7/(29) and T/2, e.g. when M = C'T" for some
v € (1/(29),1/2), then the M9 and M /T terms in (54) are negligible in comparison with the
1/ VT term. However, if M is of larger order than T2 or of smaller order than 7/(29) then
the coverage error will be larger than 1/v/T. For example, this increase in the coverage error
probability occurs when we use the MSE-optimal bandwidth. In that case, M ~ cTY(2atl)
and we have

1 1
CPE= CqTq/(2q+1)p3(za)¢ (20) +0 (Tq/(2Q+1)> ’ (55)

For the widely used Bartlett kernel, ¢ = 1, in which case, the coverage error for the MSE-
optimal bandwidth is of order 1/T /3 Therefore, for one-sided confidence intervals, the conven-
tional MSE-optimal bandwidth choice is not optimal for minimizing the error in the coverage
probability and actually inflates the coverage error by increasing its order of magnitude.

Our analysis suggests that the choice of M is not particularly important, provided that M
increases faster than 7/(29) and more slowly than 7Y/2. For any such M, the coverage error
will be dominated by a term of order 1/v/T. Although the expressions given in (36) and (38)
may appear to suggest that this term depends on ¢, the proof in the appendix shows that the
dependence actually manifests in higher order terms. In consequence, the O(1/v/T) term cannot
be removed by bandwidth adjustments.

We next consider two-sided confidence intervals, which are quite different from their one-
sided counterparts. Let z,/o = ®~1 (1 — a/2), then the coverage probability for the two-sided
confidence interval Iy := (BzT - (za/2/ﬁ)f)ié2, Bi,T + (Za/g/ﬁ)iié2) is

P (—Za/2 < (Si) VAVT(Bir — Big) < Za/2>
M 1
= l-a+2 ?Pz(%zn) + mm(za/z) P(za)2) +0(n7) - (56)
The approximate coverage error is now

M 1
CPE =2 <?p2(2’a/2) + mpg(za/2)> ¢(Za/2). (57)

In this expression, the term of order 1/ VT vanishes, as usual. Minimizing the order of the
coverage error is achieved by balancing the O(M~?) term and the O (M/T) term in (57).
The form of the optimal bandwidth depends on the signs of p2(z4/2) and p3(za/2)- If pa(24/2)

and p3(z, /2) are opposite in sign, then M can be chosen according to the rule

— 1/(g+1)
M = (M) TVt (58)
pQ(Za/2)
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in which case the two terms in (57) cancel and the coverage probability error becomes of smaller
order, viz., o(T~%(@+1)). On the other hand, when p2(2a/2) and p3(z,/2) have the same sign,

then we can choose M to minimize the absolute coverage error, leading to the rule

1/(g+1)
v (LEee) T e, (59)
pZ(Za/2)

For convenience, we call the bandwidth in (58) and (59) the CPE-optimal bandwidth. This
bandwidth is quite different from the MSE-optimal bandwidth that minimizes the asymptotic
mean square error of the HAC estimator. It can be shown that the bias of the HAC estimator
is of order O(M ~?) and the variance is order O(M/T"). To minimize the mean squared error of
the HAC estimator, we would choose the bandwidth to balance the variance and squared bias,
resulting in a bandwidth choice of order M ~ T'/(24+1) (see, for example, Andrews (1991)).
However, to minimize the coverage error, we need to balance terms of order M /T and order
M9, i.e., variance is balanced to bias, instead of squared bias. The optimal choice of M is then
O(T*/(@+1)) instead of O (T (a+D)) .

For this optimal choice of M, the resulting best rate of convergence of the coverage error to
zero is O (qu/ (qH)) . This rate increases with ¢ and can be arbitrarily close to O (T*I) if ¢
is large and the autocovariances decay at an exponential rate. Examples of kernels with ¢ > 2
include the familiar truncated kernel and the flat top kernel proposed by Politis and Romano
(1995, 1998). These kernels are not positive semidefinite. However, we shall consider only the
commonly-used positive semidefinite kernels for which ¢ < 2 in this paper and leave the analysis
of higher order kernels for future research.

We now turn to the case of just identification or the case where the first step estimator is
asymptotically efficient. In these two cases, we can easily see the determinants of the optimal

bandwidth. In particular, it follows from equation (50) that the optimal bandwidth is given by

1/(g+1)
201,00 1/(g+1) .
— T < 0;
< 21 +ig (Zi/2+4d2—4d1+1> » Pleo
M = (a+) (60)
24p1,00 1/(g+1)
T/ > 0.
<2u1+uz (Zi/2+4d24d1+1)> FLe0

The above analytical expression provides some new insights. First, the optimal bandwidth
depends on the kernel function not only through g, and py but also through the parameter
(1. This dependence contrasts with the MSE-optimal bandwidth which does not depend on ;.
It is well known that the quadratic spectral kernel is the best with respect to the asymptotic
truncated MSE in the class of positive definite kernels. This optimality property of the quadratic

spectral kernel does not hold with respect to the coverage error for interval estimation. To see
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this, note that when p; ., > 0 and the optimal bandwidth is used, the absolute coverage error is

1 gy 1/(q+1)
(ql/(qH) + q_Q/(qH)) {Pl,oogq {/ﬁ ke (23/2 + 4dy — 4dy + 1)] } T/ (61)

For any given critical value z,/9, the optimal kernel in the class of positive-definite kernels
with £(0) = 1 and ¢ = 2 should minimize go (M1 + %,uQ (22/2 +4dy — 4dy + 1>>2 . However, the
quadratic spectral kernel is designed to minimize gop3 and may not be optimal any longer. The
problem of selecting the optimal kernel in the present case is left for future research. Second,
the optimal bandwidth depends on the design matrix Gy and the coefficient considered via
the restriction vector R. This is again in contrast with the MSE-optimal bandwidth which is
of course generally independent of both Gy and R. The MSE-optimal bandwidth does not
depend on G and R because Andrews (1991) focuses on the asymptotic truncated MSE of
rather than of the HAC standard error of the regression coefficients. Andrews (1991) justified
this approach by noting that the rate of convergence of Gy is faster than that of Qp. The
faster convergence rate guarantees that the MSE of the HAC standard error is dominated by
the asymptotic bias and variance of Qr but it does not rule out that the MSE of the HAC
standard error may depend on Gy, the limit of the design matrix, and R, the restriction matrix
and coefficient considered. Third, the optimal bandwidth depends on the relative bias of the
HAC standard error. The quantity R'G 100 (Ga l)l R, which is the denominator of p; o, is the
true variance of the R'/T(fr — f3,) while R’Galﬁ(()q) (Gal),R, the numerator of p; ,, can be
regarded as the bias of the HAC estimator. Therefore, p; ., is proportional to the percentage
bias. The higher the (absolute) percentage bias is, the larger is the bandwidth. Finally, the
optimal bandwidth depends on the confidence level through the critical value z,. The critical
value increases as the confidence level increases. As a result, and with all else being equal, the
higher the confidence level, the smaller the optimal bandwidth.
When p; o, > 0 and the optimal bandwidth is used, we have

P(lta| < ) = ®(x) - @ (-2

2 [ Ly (2 e 4014 1) o 2 o) (02

To reduce the coverage error of the two-sided confidence interval, we can remove the O(M/T)
term using a Cornish-Fisher type expansion. Let z,/, be the critical value from the standard

normal such that ® (za/g) =1-—a/2and

, g+1 (1 1 M
Zoj2 = Zaj2 t e {5#12(1/2 Tt 22/2 + Za/2 (4dy — 4dy + 1)} } T (63)
Then

P(ltm| > 2z4p9) = ato(nr) . (64)
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We call 2} /2 the higher order corrected critical value. With this higher order correction, the
coverage error is of order o(T~%(4+1)) regardless of whether P1.00 > 0 or not. The higher order
correction is similar to that obtained by Sun, Phillips and Jin (2007). For a Gaussian location
model, they established a higher order correction based on po(z), the term that captures the
asymptotic variance of the HAC estimator.

For illustrative purposes, we compute the optimal bandwidth for the Bartlett, Parzen, and
Quadratic Spectral (QS) kernels for the Gaussian location model y; = 8y + u; where u; follows
an AR(1) process with autoregressive parameter p. Let

4p2 / B 4p2
a2 and o(2) = T (65)

Standard calculations show that the MSE-optimal bandwidth is given by

a(l) =

Bartlett Kernel: M =1.1447 [« (1)}1/3 /3
Parzen Kernel: M = 2.6614 [a (2)]V/° TV/5 (66)
Quadratic Spectral Kernel: M = 1.3221 [ (2)]Y/° TV/5

whereas the CPE-optimal bandwidth is given by

1/(q+1)
294 T/ (a+1) <0
<2M1+M2 (Zi/2+4d2—4d1+1> ‘a (Q)‘ P
M = 1(a+1) (67)
2994 T71/(g+1) >0
<2u1 T (Z§/2+4d2—4d1+1) (@) |> P

where the constants jiq, 119, g, and ¢ are given in Table I below.

Table I. Values of the Constants for Different Kernels

Hq Ha Yq q
Bartlett Kernel 1.0000 0.6667 1.0000 1
Parzen Kernel  0.7500 0.5393 6.0000 2
QS Kernel 1.2500 1.0000 1.4212 2

Table II tabulates M under different criteria for the Bartlett and Parzen kernels. To save
space, we omit the result for the QS kernel. For the CPE-optimal bandwidth, we consider two
confidence levels, i.e. 90% and 95%. Some features of note in these calculations are as follows.
First, as predicted by asymptotic theory, the CPE-optimal bandwidth is in general larger than
the MSE-optimal bandwidth especially when T is large. Second, the CPE-optimal bandwidth
for the 90% confidence interval is always larger than that for the 95% confidence interval. The
difference is not very large, especially when the autoregressive parameter is not very large. Third,

compared with the Bartlett kernel, the Parzen kernel requires larger bandwidths regardless of
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the criterion used. Of course, the optimal bandwidth given in Table II is not feasible. For this

reason, calculations based on estimates of the unknown parameters are considered in the next

section.
Table II. Asymptotically Optimal Bandwidth under Different Criteria
When w; = pug—1 + &4, e¢ ~ 1id N(0, 1)
p-09 -05 -01 01 05 09 -09 -05 -0.1 01 05 0.9
T
Bartlett Kernel, MSE Parzen Kernel, MSE

128 258 70 20 20 7.0 258 53 5.1 34 4.0 122 56.1
256 325 88 25 25 88 325 6.1 58 39 46 140 644
512 41.0 11.1 3.2 32 11.1 41.0 70 6.7 45 53 161 74.0
1024 517 140 4.0 4.0 14.0 51.7 81 7.7 52 6.1 185 85.0

Bartlett Kernel, CPE, 90% Parzen Kernel, CPE, 90%
128 23.3 87 34 34 87 233 6.0 58 42 6.0 152 54.1
256 329 124 48 48 124 329 76 73 53 7.6 19.2 68.1
512 46.6 175 6.8 6.8 17.5 46.6 96 92 66 95 24.1 858
1024 659 247 9.6 9.6 24.7 659 12.1 11.6 83 120 304 108.1

Bartlett Kernel, CPE, 95% Parzen Kernel, CPE, 95%
128 215 81 31 31 81 215 57 55 40 57 144 512
256 30.5 114 44 44 114 30.5 72 69 50 7.2 181 64.6
512 43.1 162 6.3 6.3 16.2 43.1 91 87 63 9.0 229 813
1024 609 229 89 89 229 609 114 11.0 79 11.4 288 1025

5 An Automatic Data-Driven Bandwidth

The optimal bandwidth in (58) and (59) involves unknown parameters py o, P2 s /2,00, Kd,co
which could be estimated nonparametrically (e.g. Newey and West (1994)) or by a standard
plug-in procedure based on a simple model like a VAR (e.g. Andrews (1991)). Both methods
achieve a valid order of magnitude and the procedure is analogous to conventional data-driven
methods for HAC estimation.

We focus this discussion on the plug-in procedure, which involves the following steps. First,
we estimate the model using the OLS or IV estimator, compute the residuals, and construct the
sequence {0;}. Second, we specify a multivariate approximating parametric model and fit the

model to {0;} by standard methods. Third, we treat the fitted model as if it were the true model
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for the process {v;} and compute p; o, P2,00s K200 and fig 00 as functions of the parameters of
the parametric model. Plugging these estimates of py o, P2.00, 2,00 aNd Ky 0o into (58) or (59)
gives the automatic bandwidth M.

In this paper, we assume that the approximating parametric model satisfies the assumptions
of Proposition 3. As in the case of MSE-optimal bandwidth choice, the automatic bandwidth
considered here deviates from the finite sample optimal one due to the error introduced by
estimation, the use of approximating parametric models, and the approximation inherent in the
asymptotic formula employed. It is hoped that in practical work the deviation is not large so
that the resulting confidence interval still has a small coverage error. Some simulation evidence
reported in the next section supports this argument.

Under the model given in Proposition 3, the CPE-optimal bandwidth depends only on
Qo, QéQ), Go, Vo and R. In other words, we can write M = M (Qy, Q((JQ), Go, Vo, R). Since Gy and

). Suppose

Vo can be consistently estimated by G and Vi, we only need to estimate €2y and Q(()q
we use a VAR(1) as the approximating parametric model for v;. Let A be the estimated para-
meter matrix and ¥ be the estimated innovation covariance matrix, then the plug-in estimates

of Qg and Q(()q) are

Q0 = (Idz - A)712<Id2 - ‘21/)717 (68>

AP = (I, — A)F (AD 4 A2 4 A28 - 6ASA

FS(AN? 4 AS(A)? + ZA’) (I, — A3, (69)

O = f + H' with H = (I, — A) A2 A8 (). (70)

For the plug-in estimates under a general VAR(p) model, the reader is referred to Andrews
(1991) for the corresponding formulae. Given consistent estimates of Gy and Vp and plug-in

(9)
0

estimates of 0y and €23", the data-driven automatic bandwidth can be computed as

M =N (Q0. 0, Gr, Vi, R). (71)

When the model is just identified or the initial weighting matrix is consistent for (2 ! the

automatic bandwidth is given by

1/(q+1)
2P1,00 1/(g+1)
_ T, <0
. ( 2piy-+ig (22 )y +4da—4d1 +1) » Pleo
M = 1(at) (72)
24P1,00 1/(g+1) &
T >0
<2M1+M2 (Z§/2+4d24d1+1)> P1,00
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where

R — R R R ~ -1
R (Gy$oGr) G100 Gy (GruGr) R .
RIG7H0 (G7H)'R '

bl,oo = Yq

It should be pointed out that the computational cost involved in this automatic bandwidth is

the same as that of the conventional plug-in bandwidth.

6 Simulation Evidence

This section provides some simulation evidence on the finite sample performance of these new
procedures for confidence interval construction. The new confidence intervals are based on the
CEP-optimal bandwidth and critical values that are possibly high-order corrected.

We consider several linear regression models in the experimental design of the form
Y= 01+ by +u,t =1,2,...,T (74)

each with a scalar regressor. In the first model, AR(1)-HOM, the regressor and errors are

independent AR(1) processes with the same AR parameter p :
Ty = PTt—1 + Ext, Ut = PU—1 + Eut (75)

where ;4 ~ iidN(0,1), eyt ~ 1idN(0,1) and {8%,5}?:1 are independent of {au,t}le . The values
considered for the AR(1) parameter p are 0.1,0.3,0.5,0.7,0.9,0.95, —0.3 and —0.5. In the second
model, AR(1)-HET, we introduce multiplicative heteroscedasticity to the errors of the AR(1)-
HOM model, leading to

Tp = PT—1 + Exp, Up = PUs—1 + Euypy U = |X¢| Uy (76)

The same values of p are considered as in the AR(1)-HOM model. In the third model, MA(1)-

HOM, the regressor and errors are independent MA(1) processes with the same MA parameter

P
Ty =€zt +VEpt1,Ut = Eugt +YEut_1, (77)

where €, ~ iidN(0,1), et ~ 7dN(0,1) and {gm’t}itl;l are independent of {gu,t}rle . The values
of ¢ are taken to be 0.1,0.3,0.5,0.7,0.90,0.99, —0.3, and —0.7. These data generating processes
are similar to those used in Andrews (1991).

We focus on constructing 90% and 95% two-sided confidence intervals for 3,. Since the
coverage probabilities are invariant with respect to the regression coefficients 3; and (3,, we set

81 = By = 0 and do so without losing generality. To compute the HAC standard error, we
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employ the three commonly-used positive definite kernels, i.e. Bartlett, Parzen and Quadratic
Spectral kernels.

For comparative purposes, we use both MSE-optimal and CPE-optimal bandwidth selection
rules. In both cases, the approximating parametric model is a VAR(1). The CPE-optimal
bandwidth is given in equations (72) and (73). As in Andrews and Monahan (1992), we adjust
the estimated VAR coefficient matrix Azg before constructing Q(()Q) and . The adjustment
is based on the singular value decomposition: Apg = BALgC' where B and C are orthogonal
matrices and Arg is a diagonal matrix. Let A be the diagonal matrix constructed from Arg by
replacing any element of Arg that exceeds 0.97 by 0.97 and any element that is less than —0.97
by —0.97. Then A = BAC'. Given the adjusted estimate /1, Q[()q) and Qq are computed using
the formulae in the previous section. For completeness, we give the MSE-optimal bandwidth of
Andrews (1991) below:

Bartlett kernel: M =1.1447[a (1) T]/3
Parzen kernel: M = 2.6614[a (2) T)/° (78)
Quadratic Spectral kernel: M = 1.3221 [& (2) T]1/5

where
_ QUec(Q(()Q))’Uec(Qéq))
tr [(Idg + Kd27d2> (Qo ® Qoﬂ '

(79)

[N
—
Q

It is well known that prewhitening can be used to reduce the finite sample bias of the HAC
standard error estimator. In our simulation experiments, we combine prewhitening with both
the conventional and new procedures. In the former case, Andrews and Monahan (1992) have
established the consistency of the prewhitened HAC estimator and show via Monte Carlo exper-
iments that prewhitening is effective in improving confidence interval coverage probabilities. In
the Monte Carlo experiments here, we use VAR(1) prewhitening as in Andrews and Monahan

(1992). The MSE-optimal bandwidth is based on the prewhitened error process ¢y defined by
0F = 0y — Aty_q, (80)

where A is the OLS estimates obtained from regressing Uy on vy—1. To compute the data-driven
plug-in bandwidth, we fit another VAR(1) model to the prewhitened error process ¢;. Univariate
AR(1) models have also been employed as approximating parametric models for each element of
vf, but the qualitative results are similar. Therefore, we focus on the VAR(1) plug-in estimate.

Let A* be the OLS estimate based on the following regression

of = A*oy_y + error, (81)
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and Q¥ and Qg(q) be defined as in equations (68)—(70) but with A replaced by A*. Then the
automatic MSE-optimal bandwidth is given in (78) but with Qo and QSQ) replaced by Qé and
Q;(Q). We note in passing that singular value adjustment has been made to both A and A* so
that the fitted parametric models are stationary.

Prewhitening can be combined with the new procedure in the same manner. To make a fair
comparison, we employ a VAR(1) prewhitened HAC estimator as before. The point of departure

is that the data-driven bandwidth is now based on the CPE criterion proposed above. Let
. =1 4 N—1 4 -1 . N -1
Go=(1-A4) (r-4) , ofd =(1-4) o (1-4) . (82)

Then the automatic CPE-optimal bandwidth is given in (72) and (73). This prewhitened band-
width selection rule can be justified on the basis of the v/T-consistency of A. Due to the faster
rate of convergence, the Edgeworth expansion of the two-sided probability will be not be af-
fected by the estimation uncertainty of A. Nevertheless, the estimation uncertainty may factor
in the Edgeworth expansion of the one-sided probability and this consideration is left for future
research as we concentrate on two-sided confidence intervals here.

For each parameter combination and HAC estimator, we construct two-sided symmetric

confidence intervals of the form

[—zw ( [(GTQOIGT) 1} 22) . . Zeo ( [(GTQ()lGT) 1} 22) 1/2] (83)

where z, is the critical value and [-],, stands for the (a, a)’th element of [-] . For the conventional
HAC procedure, we use critical values from the standard normal distribution, viz. 1.645 for the
90% confidence interval and 1.96 for the 95% confidence interval. For the new HAC procedure,
we use the standard critical values if p; o, < 0 and the high-order corrected critical values given
in (63) if p; o, > 0. The calculations reported below are for three sample sizes (100, 200 and 400)
and use 10,000 simulation replications. For each scenario, we calculate the empirical coverage
probability, i.e. the percentage of the replications for which the confidence interval contains the
true parameter value.

Tables ITI-V provide a comparison of the two bandwidth choice rules when no prewhitening is
used and 1" = 100 in the various models. The tables show that the confidence interval proposed
in this paper has more accurate coverage than the conventional confidence interval. This is
the case for both 90% and 95% confidence levels regardless of the kernel employed and the
model considered here. The advantage of the new confidence interval becomes more apparent
as temporal dependence in the regressor and the errors becomes stronger. Simulation results
not reported here show that both the new bandwidth choice rule and the high order correction

contribute to the improvement in coverage accuracy.
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As in Andrews (1991), we find that the QS-based confidence intervals are fairly consis-
tently the best among the conventional confidence intervals. The QS-based confidence intervals
outperform other conventional confidence intervals in 40 out of 48 scenarios in Tables III-IV.
However, the QS kernel does not deliver superior performance for the new confidence intervals.
As a matter of fact, QS-based confidence intervals are the best in only 10 out the 48 scenarios.
In these 10 scenarios, the QS kernel is either the same as or slightly better than the Parzen
kernel. In contrast, the Bartlett kernel and Parzen kernel are very competitive with each one
outperforming the other one in about half of the scenarios. More specifically, when the regres-
sor and the errors are fairly persistent, the Bartlett kernel delivers confidence intervals with
the best coverage. When the regressor and errors are less persistent, the Parzen kernel delivers
confidence intervals with the best coverage.

These qualitative observations remain valid for sample sizes 200 and 400. Table VI presents
the results for selected parameter combinations for sample size 400 when prewhitening is not
used. As expected, the increase in sample size from 100 to 400 improves the performance of
all confidence intervals. In all cases investigated, including those not reported here, the new
procedure outperforms the conventional procedure.

Table VII presents selected results for sample size 100 when prewhitening is used. It is
apparent that prewhitening is very effective in improving coverage probabilities for the conven-
tional confidence interval. This is consistent with the findings in Andrews and Monahan (1992).
However, the effectiveness of prewhitening is reduced for the new procedure. This is not sur-
prising as the new procedure is expected to work the best when there is a substantial bias in the
HAC estimator. Since prewhitening has already achieved considerable bias reduction, the room
for further bias reduction is reduced. It is encouraging to note that, even with prewhitening,
the new confidence intervals have consistently better performance than the conventional ones,

although the margin is not very large.

7 Optimal Bandwidth: An Alternative Criterion

Previous sections considered the coverage accuracy of confidence intervals. Another performance
criterion of an interval estimator is its length. In general, coverage probability and interval length
tend to work against each other. Accordingly, it may be desirable to construct a loss function
that takes both coverage probability and length into account and make a bandwidth choice to
optimize this loss function. The challenge is to construct a satisfactory loss function that does
not result in the paradoxical behavior described in Casella, Hwang and Robert (1993). Since
there is no satisfactory solution to this problem, we use the probability of covering false values

(or false coverage probability) as an indirect measure of the length of the confidence interval.
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We then seek to minimize the probability of false coverage subject to the constraint that the
probability of true coverage is bounded below by the nominal coverage probability.
Since the bandwidth is not very important for one sided confidence intervals, we focus the

present discussion on two-sided confidence intervals. Given the confidence interval

Ir = (Bip — (z/VDEI2 Bip + (2/ VIS (84)

Z’l’

for the i-th element of 3, the probability of covering the true value f3; o is Pg, { Bio € IT} where
Pj, is the probability measure under § = 3. To approximate the probability of false coverage,

we consider local alternatives of the form Hs : 85 = (ﬁm, ﬁdh(;) where

o\ —1/2
Bis=Bio+ §/NT x (E”> for some ¢ and 3,5 = 3, for j # i. (85)

Then, for each 6 # 0, the probability of false coverage is Pg, {51',5 € IT} . Obviously, we can
average this probability over a prior distribution on ¢ and obtain the average false coverage
FEs [Pﬁo { Bis € ITH , where FEj is the expectation operator under some prior distribution for 6.

Our alternative bandwidth choice rule involves minimizing the average false coverage
Es [Ps, { Bis € Ir}] after controlling for the true coverage Pg {8;¢ € Zr} . Mathematically,

we proceed to solve the following minimization problem:

H]\}[ilzl FEjs [Pﬂo {ﬁi,é S IT}] S.t. Pﬂo {ﬁi,O € IT} >1—« (86)

where 1 — « is the nominal coverage level of the confidence interval Zp. Note that we choose the
bandwidth and the critical value simultaneously. To the first order z is z,/o but a higher order
adjustment is possible, as described below. Confidence intervals that minimize the probability
of false coverage are called Neyman shortest (Neyman (1937, page 371)). The fact that there is
a length connotation to this name is somewhat justified by a theorem in Pratt (1961). Under
some conditions, Pratt (1961) showed that the expected length of a confidence interval is equal
to an integral of the probabilities of false coverage.

Our alternative approach to bandwidth choice requires improved measurements of the two
coverage probabilities: the probability of true coverage and the probability of false coverage.
Using the Edgeworth expansions established in this paper, we can obtain asymptotic approxi-

mations to the two coverage probabilities. The probability of true coverage satisfies

P {Bio € Ir} = @1 (2) — 1 (—2) + o(np), (87)

while the probability of false coverage satisfies

Pﬂo {61',6 S IT} = dp (Z — 5) — o7 (—Z - 5) + O(UT). (88)
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Hence, up to small order o (1), the minimization problem reduces to
rj{l/{in Es[®7 (2 —6) — Pp(—2—0)], s.t. Pp(2) —Pp(—2)>1—a. (89)
2
To gain further insight into this approach we may take an explicit prior distribution for ¢ of

the form
1 2 1 2
6~ §N(,u,w )+§N(_:uvw )7 (90)

so that ¢ is distributed as a normal mixture. Other prior weights may be used, but the normal
mixture is convenient because it leads to explicit analytic expressions and is rich enough to
include certain uni-modal distribution, bimodal distributions, and discrete distribution as special

cases. Let

1
(,Ok(l',W) = - >:| ) k= Oa 1a273' (91)

(1+w?)F Vil [(b (ﬁ

Then we can show that

Es [P (2 = 0) = Pp(—2z — 0)] (92)
Z+ —Z 4 ) []\/f 9 1 9
= | —— | - P —= ) +2 Z, phw?) + —p3(z, u,w?) |,
where
1
D2 (Za ey w2> = _5 (102,oo + K’Q,OO) 0.5 [@1(2 - K, w) + (101(2 + 122 w)]
1
— o (it = 652.00) 05 [y (= = p,0) + 03 (= + 11, )]
1 1.5
+t51 (Ka,00 — 652,00) 152 [p1 (2 = p,w) + 1 (2 + p,w)], (93)
and
1
ps (2 11,0%) = =5p1,005 [@1(2 = pw) + 01 (2 + 1, w)] (94)

For later use, we make a slight abuse of notation and write p; (2,0,0) = p; (2) for p; (2) defined
in theorem 2.

Let

M 1
z =22+ ?61 + mCQ (95)

be the high-order corrected critical value, then

B Zajp t R\ —Za/2 T
Es[®(z—0)—P(—2—-06)] = (—m> P (—m > (96)
M 1

M 1
+ |:?Cl + m@} [900 (Za/2 + Maw) +©o (_Za/Q + Naw>] + 0(?) + O(M)'
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After dropping some constants and smaller order terms, the minimization problem is approxi-

mately
min %Cl + %CQ l [QOO (Za/g + u,w) + ©q <—Za/2 + u,w)]
c1,c2,M T M 2
+ [?pQ(za/Qv W ) + mp?) (Zoc/Qv W >:| } ) (97)
subject to
M 1 M 1
|:?Cl + m62:| ¢ (Za/2> + ?p2(2a/25 Oa O) + mp3 (Za/Z', 07 0) > 0. (98)

Substituting the constraint into the objective function, we obtain the unconstrained minimiza-

tion problem:

) M , 1,
i (?P? + mf’3> %9)
where
p; = pj(za/27 0, O) - "fpj(za/% H, w2>7j =2,3, <100)
and
_ [0 (Zay2 + 1:w) + @0 (—zaj2 + 1,w)]
K = . (101)
2(25 (Za/Q)

Alternatively, we can let
c] = —pg(za/g, 0,0) and co = —p3 (Za/2, 0, O) (102)

so that the constraint (98) is satisfied. This argument leads to exactly the same unconstrained
minimization problem. The optimal bandwidth is now given by
(%)q_ilTﬁ, if p5 >0 and p5 >0,
A=) T/1ogT, if p5 <0 and p5 >0, (103)
T/logT or logT if p; <0 and pi <0,
log T, it p5>0and p; <O0.

When p5 > 0 and p5 > 0, this optimal bandwidth choice rule is similar to what was obtained
earlier in section 4. In particular, when r = 0, p; = pj(za/2,0,0) = pj(24/2) and the two
bandwidth choice rules coincide. It is easy to see that k — 0 as u — oo for any given finite
w?. Intuitively, when the false value is very far away from the true value, the probability of
false coverage is very small and becomes relatively unimportant. In this case, we choose the

bandwidth just to maximize the probability of true coverage. This is asymptotically equivalent
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to maximizing the absolute coverage error when the probability of true coverage is smaller than
the nominal coverage probability 1 — a.

When either p5 or p3 is negative, the optimal bandwidth formula is nonstandard. When

p5 < 0, we can choose M to be as small as possible in order to maximize |M ~9pj|. Similarly,
when p5 < 0, we can choose M to maximize |(M/T)p3|. Since the asymptotic expansion is
obtained under the assumption that M — oo and M /T — 0, the choice of M is required to be
compatible with these two rate conditions. These considerations lead to a choice of M of the
form given in (103).

To implement this optimal bandwidth choice rule, we can follow exactly the same procedure
as in section 5. We only need to specify the additional parameters 1 and w?. The selection of s
may reflect a value of scientific interest or economic significance, while the selection of w? can
reflect the uncertainly about this value. In the absence of such a value, we recommend using

the default values ;1 = 3 and w? = 1. Such a choice will lead to confidence intervals that avoid

covering false values three standard deviations away from the true value.

8 Conclusion

Automatic bandwidth choice is a long-standing practical issue in time series modeling when the
autocorrelation is of unknown form. Existing automated methods all rely on early ideas from
the time series literature which are based on minimizing the asymptotic mean square error of
the long run variance (spectral) estimator, a criterion that is not directed at confidence interval
construction. In constructing confidence intervals, the primary concern is often the coverage
accuracy. This paper develops for the first time a theory of optimal bandwidth choice that
optimizes the coverage accuracy of interval estimators. We show that optimal bandwidth se-
lection for semiparametric interval estimation of the regression coefficients is possible and leads
to results that differ from optimal bandwidth choices based on point estimation of the long-
run variance. Semiparametric interval estimation along these lines actually undersmooths the
long-run variance estimate to reduce bias and allows for greater variance in long-run variance
estimation as it is manifested in the t-statistic by means of higher order adjustments to the nom-
inal asymptotic critical values. A plug-in rule for the new optimal bandwidth choice is suggested
and finite sample performances of this choice and the new confidence intervals are explored via
Monte Carlo experiments. Overall, the results are encouraging for this new approach.

The theory developed in the paper suggests further areas of research. Our primary approach
focuses on interval estimation for one model parameter or a linear combination of parameters.
The basic ideas and methods explored here can be used to tackle the bandwidth choice problem

for constructing multidimensional confidence regions. Relatedly, the methods can be used to
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select the optimal bandwidth that minimizes the size distortion of the over-identification test.
In addition, we propose a secondary approach to bandwidth selection that takes false coverage
probability into account. It seems desirable to further explore this approach and its finite sample

performance.
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Table III. Empirical Confidence Levels of Nominal 90% and 95% Confidence Intervals
for AR(1)-HOM Model with Sample Size 7' = 100 with No Prewhitening

p
Kernel 0.1 0.3 0.5 0.7 0.9 0.95 -0.3 -0.5

90%

Bartlett MSE 88.02 86.51 83.75 78.70  65.50 57.10 86.66  84.21
CPE 88.46 88.43 87.38* 84.45* 76.07" 68.69* 88.39 87.68

Parzen MSE 87.72 86.35 84.05 79.09 64.08 56.36 86.96 85.02
CPE 88.71 88.67* 8730 84.00 7147 62.73 88.73* 88.16"

QS MSE 87.89 86.52 84.38 79.71 64.21 55.28 87.09 85.04
CPE 88.78* 88.64 87.14 83.76 71.58 62.55 88.72 88.00

95%

Bartlett MSE 93.65 92.50 89.97 85.66 73.38 64.84 9240 90.30
CPE 94.14 93.64 92.81 90.72* 83.34* 76.30* 93.63 93.12

Parzen MSE 93.45 9217 90.07 85.67 71.58 63.59 92,57  90.79
CPE 94.26* 93.85* 92.83* 90.00 7880 70.72 93.86* 93.45*

QS MSE 93.58 9238 90.32 86.19 7147 62.07 92.60 90.85
CPE 9422 93.76 92.75 8994 79.01 70.37 93.80 93.43

The superscript * indicates the most accurate confidence interval for each scenario
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Table IV. Empirical Confidence Levels of Nominal 90% and 95% Confidence Intervals
for AR(1)-HET Model with Sample Size 7" = 100 with No Prewhitening

p
0.1 0.3 0.5 0.7 0.9 0.95 -0.3 -0.5

90%
Bartlett MSE 86.72 85.15 81.60 75.70 60.21 48.16 85.08 82.28
CPE 87.23 86.77 84.84 81.49* 69.72* 58.15* 86.98 86.16
Parzen MSE 86.50 85.18 82.27 76.68 61.66 51.12 85.35 83.55
CPE 8727 86.75 84.88 80.78 66.31 55.58 87.18* 86.65*
QS MSE 86.76 85.30 82.40 77.20 62.51 51.53 8543 83.46
CPE 87.31* 86.81* 84.91* 80.53 66.49 55.53 87.12  86.60

95%
Bartlett MSE 92.60 91.25 88.37 83.25 6835 55.38 91.43 89.28
CPE 93.06 9233 91.05 88.41* 77.76* 66.31* 9276 92.08
Parzen MSE 92.33 91.07 88.59 83.97 69.55 5832 91.70  90.06
CPE 93.17* 92.59* 91.08* 87.70 74.22 63.34 92.96* 92.42*
QS MSE 92.41 91.27 88.68 84.23 70.15 5866 91.70 90.10
CPE 93.17* 9248 90.89 87.52 74.13 63.37 92.96* 92.34

The superscript * indicates the most accurate confidence interval for each scenario
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Table V. Empirical Confidence Levels of Nominal 90% and 95% Confidence Intervals
for MA(1)-HOM Model with Sample Size T' = 100 with No Prewhitening

0.1 0.3 0.5 0.7 0.9 0.99 -0.3 -0.7
90%
Bartlett MSE 88.02 86.94 85.88 85.29 85.00 85.04 86.97 85.39
CPE 88.48 88.50 88.53* 88.44* 88.48" 88.42* 88.62 88.61
Parzen MSE 87.76 86.90 85.75 85.24 85.10 85.17 87.20 86.18
CPE 88.71 88.81* 88.51 88.42 8841 88.28 88.87 88.78
QS MSE 87.93 87.12 86.11 85.63 8543 85.36 87.27 86.26
CPE 88.81* 88.73 88.50 88.35 88.29 88.19 88.88* 88.79*
95%
Bartlett MSE 93.63 92.59 91.59 91.15 91.03 90.96 92.88 91.51
CPE 94.15 93.73 93.59 93.75* 93.87* 93.90* 93.86 93.92
Parzen MSE 93.48 9248 91.61 91.14 90.99 91.03 93.04 91.97
CPE 94.24* 93.89* 93.72 93.75* 93.75 93.74 93.97* 94.19*
QS MSE 93.55 92.65 91.71 91.30 91.26 91.28 93.12 92.04
CPE 94.23 93.87 93.74* 93.72 93.65 93.65 9391 94.06

The superscript * indicates the most accurate confidence interval for each scenario

31



Table VI. Empirical Confidence Levels of Different Confidence Intervals
with T"= 400 with No Prewhitening

p ory

Bartlett MSE

CPE
Parzen @ MSE
CPE
QS MSE
CPE

Bartlett MSE

CPE
Parzen MSE
CPE
QS MSE
CPE

AR(1)-HOM AR()-HET MA(1)-HOM
05 09 05 05 09  -05 05 09  -0.7
90% 90% 90%
86.68 7644 86.67 86.68 7644 86.67 88.17 87.01 88.00
88.49  82.40% 88.98 88.49  82.40* 88.98 89.67 89.73 89.81
87.33  77.97 87.28 87.33 T7.97 87.28 88.49 8825 88.55
88.62* 80.63 89.16 88.62 80.63 89.16*  89.73* 89.72 89.89*
87.30 7822 8721 87.30 7822 8721 88.70 88.34  88.59
88.58 80.58 89.15 88.58 80.58  89.15 89.68 89.64 8981
95% 95% 95%
92.87 85.56 9201 92.18 83.80 92.70 93.67 9336 93.55
94.11  90.46* 94.67 93.94 88.96* 94.29 9458 9457 94.85
9320 85.74 93.46 92.65 85.00 93.26 93.88 93.68 93.92
94.27* 88.83 94.83*  93.99* 87.62 94.42*  94.66* 94.58* 94.88
93.24 8624 93.36 92.69 8526 93.14 93.91 93.76  94.00
9420 88.89 94.72 93.88 87.46  94.40 94.64 94.58* 94.91*

The superscript * indicates the most accurate confidence interval for each scenario
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Table VII. Empirical Confidence Levels of Nominal 90% Confidence Intervals
Under Different Models with Prewhitening

AR(1)-HOM, T = 100
- 01 03 05 07 09 09 -03 -05

Bartlett MSE 8798 87.94 86.92 84.14 76.97 71.15 8791 87.06
CPE 8788 88.01 8729 85.16 7849 7294 &7.77 87.31

Parzen MSE 87.78 8794 86.90 84.38 77.17 71.45 87.74 87.02
CPE 88.15 88.05 87.28 85.12 78.64 73.21 88.05 87.38

QS MSE 87.90 8796 87.00 84.36 77.15 71.49 87.81 87.12
CPE 88.24 88.13 87.25 85.18 7848 73.15 88.08 87.45

AR(1)-HET, T = 100
p= 01 03 05 07 09 09 -03 -05

Bartlett MSE 86.64 86.18 84.39 81.17 68.67 58.15 86.21 85.50
CPE 86.57 86.27 84.83 82.07 70.57 60.61 85.99 85.26

Parzen MSE 86.40 86.09 84.40 81.18 69.44 59.63 8591 85.11
CPE 86.61 86.31 84.78 81.97 70.54 60.92 86.28 85.58

QS MSE 86.50 86.15 84.43 81.17 69.34 59.26 85.99 85.20
CPE 86.74 86.35 84.79 82.02 70.22 60.70 86.39 85.56

MA(1)-HOM, T = 100
)= 01 03 05 07 09 099 -03 -07

Bartlett MSE 88.03 88.12 88.28 88.75 88.96 88.96 88.02 88.55
CPE 8794 88.22 88.59 89.10 89.39 89.35 88.08 88.47

Parzen MSE 87.84 88.07 88.27 88.57 88.61 88.57 87.89 88.17
CPE 88.21 88.33 88.62 89.04 89.25 89.20 88.27 88.64

QS MSE 88.02 88.17 88.46 88.79 88.96 88.97 87.96 88.40
CPE 88.29 88.44 88.73 89.11 89.38 89.33 88.37 88.83
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Appendix
A.1 Notation

Much of the notation is conventional but for ease of reference is collected together in this subsection.
Some definitions are repeated in order to enhance the readability of the proof.

For an m x n matrix C' = (Cy,), [|C]* = S0, > i—1 O, vec(+) is the column-by-column vectorization
function, vech(-) is the column stacking operator that stacks the elements on and below the main diagonal,
D,, is the m? x m (m + 1) /2 duplication matrix such that for any symmetric m x m matrix C, vec(C) =
D, vech(C), Ky, », is the mn x mn commutation matrix such that for any m x n matrix C, K,, ,vec(C) =
vec(C"). We use k; (x) to denote the j-th cumulant of a random variable x and let k; :=k (j/M). vy is

the c-th element of vector v;.
Let up = yr — x4 8y, Ut = yr — 2By, Ut = zeUs, U = 24Uy, Wy = 22y, and set

_ T .. )
r. = T thzl Oy y 0y, § >0,
J - — ~A A .
T Zt:1 Utvéfj, 7 <0,
_ T )
- Tt thzl Vipjvg, J >0,
T Zt:1 Utvé_j, 7 <0,

Evyjug, j 20,
r, = AR
Evvy_j, j <0,

L
.

1T )
AVt T3 (Ut-i-.izszt + Zt+jvtlt'r;+j) 6, j =0,
J - -1 y7T / / / Y .
T 3 (Utzt—jxt—j + Ztvt—jmt) . J<0,

SV6 = T_lzg::l O (x4 j2t15221) 6, j 20,
J Tfl Zt:l 6/ (xtztzgfjngj) 6, j < O7
M ) M
Qr = > kT Qr= > kI,
j=—M j=—M
M oS
Qr = > kTi Q= > T,
j=—M Jj=—00

M M
VQrs = Y kVE68, 6V2Qps = > k' VAL6,

j=—M j=—M

where § is a vector in R%. Note that VI'; should be regarded as an operator, as VT'; is neither a vector
nor a matrix. Define

M -1
Q; = ijr.in:F = Z kil
7=0 j=—M
B M o -1 ~
OF = kD00 = Y kT
J=0 j=—M
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Let (37 be an estimator of (3, such that
VT (Br — Bo) = (GyVoGo) ™" (GoVoSr).

where Gy = E (z:x}) . Denote @ =y — 28, 0¢ = 2zt and

vl 1 T - </ .
S - T2 ey VtasUp,  J 20,
O = kT.. . = T Lat=1 J
T Z ] J { %2 :?:1 ﬁtf/'g,j? j < 0

Let
. /
Ap = (Ary) = (ST vec(Gr)', rech(Qﬂ')
and
Ao = (Aoe) = (0, vec (GO)/ ,vech (QO)/)/,

then t); is a function of the vector Ap. Throughout the paper, we use the convention that

Otar(Ag) _ 6tM(AT)‘
DAL, DA, Ar=de

A.2 Lemmas

We use the theorem in Yokoyama (1980) repeatedly and it is presented here for reference.

Theorem A.1 (Yokoyama) Let {X;} be a strictly stationary and strong mizing sequence with EX; =
0 and E | X1||""" < 0o for some r > 2 and n > 0. If the mizing coefficients {c;} satisfy

S i a0 <o
=1

Lemma A.2 The following moment bounds hold
(a) B||Sz||” = O(1). )
(b) E||T?vec(Gr — Go)|| =0(1).

- _ r/2
(c) EH (T/M) 1/2 vech (QT - QT)

then

1 T

for some positive constant C' > 0.

—0(1).

(d) EHTl/%ech (QT - QT)

=0(1 )
(e) EHTl/Qver‘h ({VQT Br — Bo D
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Proof. Parts (a) & (b) Let St ; be the i-th element of S7, then

do r/2 ds r
E|Sr|"=E (Z S%,> <FE <Z |ST/|> <
i=1

i=1
where the first inequality follows from: Efil Sz, < (Zjil |S7.:])? and the second inequality follows
from the Minkowski inequality:

da

> <EsT,,-f‘>”’“] (A1)

=1

ds 1/r
By ST,,-,V] <> (EBISra)"
i=1 i

It suffices to show that F'|S7;|" < oo. In view of Assumption 2, this inequality follows immediately from

Theorem A.1. Part (b) can be similarly proved.

Part (c) We write
N2,
(ﬁ) (8 — )
A2 I (M
N <ﬁ> ?Z Yk (viviyy = Buwiy + oo — Evp o) + o — Bo
t=1 | j=1
M 1/2 [T/M] 1 iM M
= <?> i Z ij (vpvyj — Evgp g + gy v — Evpy o) + oo — Evgv)
i=1 t=(i—1)M+1 | j=1
T ARARAS M
- (@) S s e s e oW
i=1 i=0mod 3 i=1mod 3 i=2mod 3
N 1/2
_ <ﬁ> (Wm) L 4 W<2>)
T b
where
1 iM M
Wi = 9 > D kg (i = Buvpy s+ vpyjoe — Bvpy o) + vy — v
t=(i—1)M+1 (=1
WO = Wi+ W+ .., W =W, + Wy + ..., and WP =Wo + Ws + ...

The dependence of W; on {vt}tT:l can be illustrated as follows:

v ... Um UM+1 - UV2m UV2M+4+1 .o U3M UspM+1 -+ U4Mm U4p+1 0 - UsM .o
W Ws Ws
V1T ... Upm UM+1 - UV2M VapM+1 - UM U3M+1 -0 U4M VapM+1 - UsM ...
Wa Wy

This decomposition ensures that the summands in W), j = 0,1,2 are a strongly mixing sequence with
mixing coefficients {ain}io;
Let W,Ejg be the (k, £)-th element of W), then we have, using the Cauchy and Minkowski inequalities,

<%> v vech (QT — QT)

7,/2 7‘/4

M\ © M, @)
=B (= %: (Wi + Wi+ wi)

E
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r/4

M r/4
< 3/E | (= (W) + (W) + (W) [Cauchy]
T k0 ’ ’
. 4/r R 4/r
M r/4 r/2 M r/4 r/2
< 3/ E(?> () + E<7> (mi) (A.2)
k.t k.l
) 4/7, 7‘/4
M\ r/2
+ E <? > (W,ﬂ) ) ] . [Minkowski]
k.0

We proceed to evaluate each of the three sums. As a representative example, we consider the first term:

r/2
M M. )
VWi Vo Wae + Wo ko + W +

=F
where W 1. ¢ is the (k, £)-th element of ;. Note that the summands W5, Wg, W, ... form a strong mixing

sequence with mixing coefficients {a;as};—, and the number of summands is less than |7/(3M)] + 1.
r/2

/
It follows from the moment inequality in Theorem A.l1 that E {\/]W /TWL(OZ } = O(1). Similarly,

r/2
E

\q7T/2
E { M/ TW,E? } = O(1) for j =1 and 2. Combining this with (A.2) yields the desired result.
. r/2
Part (d) We first prove E ‘\/T (Br — ﬁo)’ = O(1), a result to be used below, which follows because

r/2

BT (- = Jieavico | ElGa s

IN

2
|(@vaGo) ™| T IGavell” (B 1SN = o) (A.3)

by parts (a) and (b). Here we have used the inequality: for any two compatible matrices A and B,
IAB|| < [A[[IB]-
Next, we prove the lemma. It is easy to show that

T1/2 (QT — QT)
= —TY?VQr (By — Bo) + T2 (Br — Bo) V3 (B — Bo)

1 1T 3w o
- 7T1/2T ZZ ['Ifj“tﬂztxt(ﬁT — Bo) + kjzes vy (Br — /30)]
t=1 j=0
T M
Tl/Ql k- 2 / . SR A4
Y22 Y k(B = Bo) weas ez (Br = Bo)] (A4)
t=1 j=0

T
1 - ,
—Tl/QT Z Z kjvtzgfjméfj(ﬁT = Bo) + katvtfjxg(ﬁT = Bo)

t=1j=—M

A
SPPEST S (kB — 80wzt (B — o)
T J\PT 0) Tt2t2y_ iUy OT 0/)] -

t=1 j=—M

We show that each of the above four terms has a finite /4 moment. We focus on the first term and
proofs for other terms are similar. In order to show

r/4
1 M T . |
E \/TT DO kjvech [v gz (Br — Bo)] =0(1),

j=0t=1
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it suffices to prove each element of V7' Zj\io 23:1 kjvech [vitjzia}(By — By)] has a finite r/4 moment
[c.f. (A.1)]. The typical element is of the form:

Z ZZA Vtt5,02t,mTt,aC,. beCT1/2 ZLP’

a,b,c JOtl

where C~ = (Ca b) (GHVoGo) ™" and C = (Cy.) = G)Vp. It remains to show that

M T
a ZZ V4,02t mTt,aC,. bcb CT1/2 ZLPC
=0 t=1

p=1

has a finite r/4 moment for each fixed a,b, and c¢. Now, by the Holder inequality and the inequality
(ol + o) < 2772 (Ja” 4 ™2)

r/4
Z Z k; i Ut+5,02t, mTt, aca be c T1/2 Z Up.c
] =0 t=1
1 o r/2 1/2 . T r/2 1/2
< C|E T Z Z kj?)t_yjjujt,'rn,,a, E <T1/2 Z Up,(:)
7=0t=1 p=1
LM T v
= OB D ki g Wem.a = v m.a)
j=0 t=1
r/2 1/2
1 M T
+ T z;tz;kjEvtﬂ.zwt,m,a o),
§=0 t=

where we have used Lemma A.2 (a) to obtain the O(1) term. Following the same steps as in the proof
of part (c), we can show that

r/2
1
z I‘« Ut+j (Wt m,a EUtJr] LWtm a) = 0(1)7
‘[\/_7 =0 t=1
when wy , o = 1 and
1 M T r/2
/—zz]‘« Vi35 Wt m.a _Evt+j LWtm a) = 0(1)7
MT j=0t=1
when wy ;¢ # 1
In addition, by the strong mixing assumption, we have
LM T M
T Z Z ki BV oWt m.q = Z kjcov(viyj e, Wi m.a) = O(1).
j=0 t=1 J=0

38



Therefore, we have shown that

r/4

M T 1 T
T § § Ut 45,02t mLt, aca bcb c 1/2 § Up,c
T j=0t= T p=1

()" () o]
= 0(1),

and thus the first term in (A.4) has a finite /4 moment. Similarly, we can show that other terms have
finite /4 moments.
Part (e) This part has been proved in the proof of part (d) above. ®

Lemma A.3 For allc > 0 and some x > 2,
(a) P(|ISrll > clog T) = o(T),
(b) P (\F vec (G — Go)|| > 5100"T) — o(TX),
(¢) P (VT |By = Bz > e (10g? T) T-0/20+1) = o(7 ),
(@) P (VT |31 = ol > elog T) = o(T),
(e) P (H\/ﬁvech (% - r) H > ¢ (10g>T) T-9/ 2140} = o (),
(f) P (H\/mvech (% — ) H > clog? T) = o (ir).

where

e 1 M
= YogT M\ T )

Proof. Parts (a) & (b) Note that

T
1
(ST, 7}6(3(\/_ (GT - GQ = T Z ERf
t=1

Parts (a) and (b) follow from Lemma 3(c) in Andrews (2002) (with his X; equal to R, and his function
f () equal to the identity function).

Part (c)
P(\/_H[J'T ﬁTH > ¢ (log? T) T q/(2q+1))
= P ([( (GpVrGr) ™ ) (G Vr) — ((GOVOGO) 1) (GE)VE))} St > ¢ (log® T) qu/(qu))
< P(T9/EHD |V = V|| > ClogT) + P (T4 |Gy — Gol| > ClogT)

+P (||S7|| > ClogT)
= o1,

by parts (a), (b) and Assumption 7.
Part (d) This part can be proved using the same arguments as those for part (c).
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Part (e) Noting that Qp — Qp = QF — OF + Q7 — Q7 we start with the decomposition:

M T
~ . 1 - -
OF Q7 = T SN kjzy <Ut+j — Tpij <5T - 50)) <Ut — (ﬂT - 50)) 2
j=0 t=1
LT ] )
T ZZ kjzitj (Wit — zgs (Bp — Bo)) (we — ¢ (B — Bo)) 21
j=0 t=1
= By + By + B3 + By,
where
Moy T )
By = Z Zlv 242Uty T (%3 - 5T) )
Jj= t:l
Mo T ) )
BQ = Z Z k42t+‘jZ;Ut$;+‘j (/6T — ﬁT) s
7=0 t=1
Mo T ) i
By = T Z kjzij2imyy (‘BT - “80) ) (ng - ‘60) ,
7=0 t=1
Moy T ) )
By = Z Z kat+jZ;,I;+j (5T - 50) T} (5T - 50) .
Jj= t:l

We consider each of the four terms in the above equation. The typical element of B is

dq

_ZZ Zk ZttjiaZtbUt+j Tt c (BTC B ’c).

c=1 5=0 t=1

Note that, for any constant C' > 0

M T
P \/ A_ Z Z Zt+] a”t, buHth c (BT c BT,C) > C (10g3 T) T_q/(2q+1)

7=0 t=1
T
S P \/ A_ Z Z k; Zt+] a”t, b’U,t+JIf c (BT e °8T,c) > C (10g3 T) qu/(2q+1)
t=1 |j=0
T
1 ~ - _
= P ? Z \/_ Z |:]€ Zt+_] art but+]$t C\/T (s‘gT,c — “BT.,C>:| > C (10g3 T) T q/(2q+1)
T 1 M ~
s 2P VM > kizigjazistierjtie| VT (5T,C - 5T,c> > C (log® T) T~ 9/ 0+
t=1 7=0

which is bounded by

B
N

1
\/H Z k,; j2t+j,a%t,bUt45 Tt ,c > IOgT (A5)

M
j=0

t

Il
-

J=

(
P (VT (Br. - Br.)
7

]~

+ > C (log T)* T~/ <2q+1>)

t=

=

I
B

t P \/_ JZO]C 244,02t bUt+5 Tt c| > logT | + (T x+1)

Il
i
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Here the equality follows from part (¢). Now

T | XM
Pl|l— k24,02t pUtrjTtc| > logT
; \/H];) jAt+j,a<t,bUt+54t, 5

T M
1 1
; P T jz::o ki [zitj.aze it jTr.e — B (2i4ja2epUisTee)]| > 5 logT

IN

T M
1 1
+ Pl |l— FE (zixiaziptiyiTe )| > =logT
tz:; \/M Jz::o ( t+j,a~t,blt+j-bt ) 9 7
= 0 (nT) )
where the last equality holds because
1 & 1
P ﬁ ]:ZO kJ [ij’azt.bquact.c - Eijﬁazt’bquxt,c} > 5 IOgT =0 (T_X) s
by Lemma 3(c) in Andrews (2002) and

M
1 1
— E(ziriaziptiriTi o)l =0 | — | .
770 B o) (=)

Therefore, we have proved that

[T :
P < Vi B > % (log” T) T_q/(2q+1)> = o(ny) for all e > 0.

Similarly, we can show that P (||B;|| > (¢/8) (log® T) T~/ (24+1)) = o(n;) for i = 2,3, 4. In consequence,

T . y
P ( \/ Mvech (fﬁ - Q;) > (¢/2) (log?T) Tq/(zqﬂ)) =o(ng).

By symmetric arguments, we can show that

P < \/%vech (Q; - Q;) > (/2) (log® T) Tq/@qﬂ)) =o(ny)-

Combining the above two equations yields

T o .
P < V grvech <QT — QT)
as desired.

Part (f) We write:

IN
~
v~
ﬁ
=
~
]
Q
Q
>
> ~




Consider each term in turn. First, it follows from part (e) that

P <H\/T/]\/Ivech (QT - QT) H > iglog2 T> = o(ny).

Second, using part (d) and a proof similar to that for part (c), we can show that

- ~ 1
P <H\/T/M'vech, (QT - QT> H > Z&logQ T) = o(ny).

Third, using the same argument as in Velasco and Robinson (2001), we can establish an Edgeworth
expansion of the form:

P (VTR (§ur.) = 2r16.9)| < ) = ) — Bl-z) + Frotointen) +0 (5 )

for some constant ¢ and polynomial p(-), where Qr(i, ) is the (i,j)-th element of Qp and Qp(i, ) is the
(i,j)-th element of 7. Consequently,

P (H\/T/]erch <QT - QT) H > (1/4) e log? T)
M
= 2®(—celog®T) + Tqﬁ(cs log® Tp(cslog® T) + 0 (ny)
where c is a constant. Using ®(—2) < Cexp(—22/2) for some constant C' > 0 and z > 1, we have

1
®(—celog? T) < Cexp (—50252 log? T> < Cexp(—xlogT)=0(T™X)

for sufficiently large 7. The expression ¢(ce log? T)p(ce log? T) is a finite sum of terms of the form
(ce log? T)J #(celog? T), which can be easily shown to be o(7;). Therefore, we have shown that

P (H\/mvech (QT - QT) H > iglog2 T) =o(np).

Finally, \/T/Muvech (QT — Qo) is asymptotically equivalent to \/T/M?3+t1C for some constant vector
C. Therefore, under the rate condition in Assumption 6, \/T'/Mvech (QT - Qo) converges to zero. As a
result,

P (H\/mvech (Qr — Qo) H > (1/4) e log? T) =0,

for sufficiently large T.
Combining the above results completes the proof of this part. B

Lemma A.4 Let
gr = a,St+ by [vec(Gr — Go) ® St| + ¢}, {vech (QT — Q()) ® ST}
+d), [vech(QT —Qr) @ vech(Qr — Qp) @ ST} :
where

ap = 9t (Ao) by, = vec (M> Ch = vec e
957 0Srovec(Gry ) " OSrdvech(Qr)' )’
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and

1 0. 0%t
d; = —vec vee (A

o)
2 0 [vech(QT)}/ 0S50 [Uech (Q )}

Then tyr = gr + & where £ satisfies
P([&rl > ng) =op).

Proof. Note that

—1/2

tv(Ap) = <R’ (G’TQ;GT)MQ) (GT 1GT) 1(;}(2;15%.

Taking a Taylor series expansion of t;; around Ar = Ag, we have

Otar(Ao) Otar(Ao) Otar(Ag)
= oC — — 0 vech(Qr —Q
bar(Ar) oSt St + aveC(GT)’WC(GT Go) + 3vech(Q )’UPC (@ 0)
Otar(Ap) , atM(AO)
——F—————vec - — Y vech(Qp — Q
+5k 95 0vec(Gr) -vec (Gt — Go) + St 3STavech( Y vech(Qrp 0)
+vech(Qp — Q) 8@](140) vee (G — Go)
Ovech(§dp)dvec(Gr)'

1
+I1+ I+ I3+ ﬂRemT,

where
b= Z 8vec(aGT)p avef}zggi{gsm (vech(S2r = 0);) St (vee(Gr = Go)y)
L = 2 g;, aUPFha(QT) 3vefZEgT(i(Z9)STJ <UeCh(QT - QO)j) o (U‘?Ch(QT B QO)p) 1
I = 2 ?;) oG,y 8@666(22()?2»)37“1 (veclGr = Goly) Sri (vec(Gr = Goly),

and

Remrp = L E Ot (4) H (Are—Aoy) | -
24 £ 0Ar ;0Ar j0AT ,0AT 4 < ’ ’
i,5,P,q ’ J P 4 =ij.p.q

In the above expression vec(U), denotes the p-th element of vec(U).
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Note that

P L Ovec *tar(Ao)
hT e ovec(Gr)'

Therefore, we have

0510 [vee (Gr)]

0 (9215M(A0) A
L = - vech(Qr — Qq)q ) Sti (vee(Gr — G
! ”Zk aU€C<GT>k (%ech(QT)jOSTyi ( ( 4 0)J> o ( ( g O)k)
0ty (A R
= Z 8 ’ M< 0) 7 (vech(QT — Qo)j> (vec(GT — Go)k)
vee(Gr)k BST8 [Uech (QT>]
2
= ([vech(QT — Qo)}, ® S’T> Z 3 ’81)20 0 tM(AO? ; (vee(Gr — Go)g)
k vec(Gr)k 9ST0 [vech QTﬂ
2
= |:U€Ch(QT - Qo)}/ ® S}) Quec 7 9%t Ao) s | vee (G — Go) ,
9 [vec(GT)] 95710 |:U60h (Q )]
SO
L = {(vec(GT —Go)) ® (vech(QT - QO))/ ® S’T}
vec Ovec 0t (Ap)
Ovec(Gr)’ S0 [vech (QT)}/
v 2 o r A
= vec Quee - 0 tM(AOE y vee(Gr — Go) ® vech(Qp — Q) ® St
duec(Gr) 0St0 [vech (QT)] -
= e [vec(GT —Gp) ® vech(QT Q) ® ST} ,
where
e c dvec 821:]\,{ (Ao)
h = 7 R 7
duec(Gr) S0 [vech (QT)]
Similarly,
I, = dj [vech(QT - Q) ® Uech(QT — Q) ® ST} ,
I; = f,/L [vech(GT — Go) @vec(Gr — Go) ® ST} ,
where

ik

ta = &, St + by, [vec (Gr — Go) ® St] + ¢, [vech (QT — QO) ® St

+dj, [vech(QT — Q) @ vech(Qp — Qo) ® ST}

+ej, [vec(GT — Go) ®@ vech(Qp — Q) @ ST}

], [vech(Gr — Go) ® vee(Gy — Go) ® St + Remy

= gT+€T7
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where
&0 = Remr+dj, [vech(QT - Qr) ® vech(Qr — Qo) ® ST}
+dj, [vech(QT — Qo) ® vech(Qp — Q) ® ST} (A.6)
+dj, [vech(Qr — Qo) @ vech(Qr — Q) ® S|
+e, [vec(GT — Go) @ vech(Qp — Qo) ® ST}
+f;, [vech(Gr — Go) @ vec(Gr — Go) ® St] .
Let N(Ap) be a small neighborhood around Ag, then, by Lemma A.3 (a), (b) and (f), we have
P (Ar ¢ N(4o) = oliy).
It thus suffices to consider P (|Remy| > np, Ay € N(Ap)). Let C; and Co be some constants, then

P (|Remy| > np, Ar € N(Ap))

O*tar(A)
< Pl sup I 1Aze— Ao p| > 24ns
(LJ,pﬁq{AeN(Ao) 0A70AT j0AT ,0AT, | I
Ot (A)
< GyP Z sup H | Az — Agdl| > Ciny
ig.prg |AEN (Ao) 0Ari0AT j0ATpOAT £=i,5,p,q
a4t]\,[(A>
< C P| su > C log(T
~ 2i§q <A€N(I?4o> 8ATﬁiaAijaAT7paAT7q 1 g( )

+CoP [IS7]l > Cilog T] + CoP |G = Goll > C1 (nr /10 T) "]

+CQP _HQT — QOH > Cl (nT/10g2 T)1/3.
= o(np)+ CoP||Sr| > CylogT]
+CoP |||Gr — Gol| > C1 (np/ log? T)Q/‘3

+CyP

N o
HQT _ QOH > Oy (np/log>T) "
= o(ny),

't (A) : :
DAT9Ar, A oA, | 1S & bounded and determin-

where the first o (1) term holds because sup 4¢ n(4,)

istic constant. The second o(np) term holds because of Lemma A.3(a), (b) and (f).
Using similar arguments, we can show that the other terms in (A.6) satisfy a similar inequality. Hence

P(|&r| >np) =o(nr).
as desired. ®
Lemma A.5 Let S = (G405 Go) ™, 00 = (R'SeR)Y?,
Ao = SoR, Mg = Q5 Goo,
and
O1p = Q5 'GoXgR, 020 =,
Oz0 = Q5'GoXoGH ",

) 1
O40 (@30 — ©29 — 27‘3@109/10)-
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Then
ap = vec(Qq), by =vec(Qy), cp = vec(QcDa,), dy =vec((Dy, @ Ia,) QaDay,) |

where

1
Qa = _9107
g0

1 !/ / 1 / /
Qv = oo [Aly ® (©20 — O30)] (A20 ® ©Y) + >3 [(©10A]) ® O],
0

b
go
L

QCZU_O[ 10 © Oao],
and
1
Qi = 7 {lec(810) @ (O — O20) © (Or0030)])

1
+2— [vec (0]) ® Os0 ® (O30 — O20)]}
o0

1

200

5 { K.z [vee (B10) © (O30 — ©20) © O} ]}

1 ! 1 1 ! ! !
202 {WC (@10 ¥ {200 o - 203 10@10}) 191 ® @10]} '
0 0

Proof. First, it is easy to see that
ap = QJIGOEOR (R/E()R)_l/2 = @10/0’0.

Second, we treat Oty (A7)/0St as a function of G and compute its first order differential as follows
(e.g. Abadir and Magnus (2005, Chapter 13)):

d[dtr(Ar)/0ST] = d

Or'Gr (G107 Gr) R (R’ (¢ro7'Gr) B R> 1/2]

= FEi1+FEy+E3;+ Es+ Ejs,

where
R . -1 . -1\ Y2
E, = O;'(dGr) (GL_FQ;GT) R(R’ (GL_FQ;GT) R)
A —1/2 N o
- (R’ETR) (R’ET®Q}1) dvec(Gr),
. R R . . —1/2
By = —O7'GrSrGLO7t [dGr] SR (R/ETR)

= (R’ETR)%/Q [(R'Sr) @ (97! GronGr7! ) | dvee(Gr),

By = - ;1GT§A}T {dG/TQ;lGT} EA]TR(R/ETR)*lﬂ
7 Je|

® Q;lGTf]T] } dvec(G/y)
[Q;lGTiT} } K 4,4, dvec(Gr)

&
[Q;lGTﬁ]T} ® [ ’XA)TG’TQ;l] } dvec(Gr),



_ lA—l S I —3/2 I r A—1 g
Ey, = QQT GrYrR (R'ETR R'Er |GrQ dGr| ErR

1 2 —3/2 4 1 & 2 2 A—1
5 (RErR) 07! GrEeR [R'Sr © RS GrO7! | dvec(Gr),
and
Laa S I 32 e / H—1 S
S0 GrErR (RErR) T R'Sr [dGr 07! Gr| SR
1 $ =324 4 S A =1 I§
5 (R ZTR) O GrSrR [R SrGO7t @ R ZT} K g,a, dvec(Gr)
1 & —3/2 4 2 & & A—1
= 5 (R’ETR) 07 GrSrR [R’ET®R’ETG"TQ; ]dvec(GT).
So

0t (Ar)

D51 0vec(G) (RIETR)_W [R5 @ 07]

- son) " (s firensacsa

- (R’f]TR)il/Q { [QEIGTZA)T} ® {R/ETG/TQF}}
+(R'SR) o (27 GrERR'Sr) @ (R'ErGr07")

and

by, = vee(Qy).

Third, we treat Oty (Ar)/IST as a function of Qr and compute its first order differential:

. . —1 . -1\ /2
d[Ota (Ar)/8Sr] = d lQTlaT (G’Tﬁ;lGT) R (72 (G/TQ;lGT) R> ]
= FE¢+ E7 + Es,
where
. . . . . —1/2
Be = —07' (ar) 07'GrieR (R'SrR)
N —1/2 N ~ N N
= —(R=R) [ RSrGOF © OF! | dvee (0 ),
. . o . . ~1/2
Br = 07'GrenGrOr de 07 GrieR (R'S:R)
. —1/2 . “ ~ N . .
= (RSR) 7 [RSGH0 © O3 GrEe GOz | dvec (0r).
_ _lAfl S 25 32 s =18 -1 S
By = —507'GrEaR (RER) T RGO dr0r GrirR

- 71 (RIETR) e Q%lGTiTR [RIETG/TQ}l ® RIETG/TQ;l] dvec (QT)

= L (r2R) (07 CreRRS, G107 © (RIS G0 )] duee ()
(R/iTR) s {(R’ETG/TQ;) ® (Q;GTETRR’ETG/TQ;H Ka, a,dvec (QT) .
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Therefore, using dvec (QT) = Dg,dvech (QT) and Ky, 4,Dq4, = Da,, we have

—1/2

Ot (Ar) / [(R'S2G07Y) © 07| Da,

dSrovech(Qr) B
+ (R’ETR)%/Q [(RSrGr07") @ (07 GrorGrQr!)| Da,

- (R’iTR)

—% (R’iTR)%/Q [(RErG07") @ (07 GrerRR $rGr07 )| Da

= Ji+ o+ Js
As a result,
1 1 :
¢, = —U—Ovec{[(%/lo ® (20 — O30)] Da, } — ;UGC{(GQO ® ©1001¢) D, }
0
1 , 1 ;
= —0—01}6(3 O ® | O20 — O30 + 202 ©10019 | Da,

1 /
= —wec[(0]y® Bu0) Dy,] .
go

Finally, we treat .J;,.J> and J3 as functions of Q7 and compute their differentials. Using the formula
(e.g. Magnus and Neudecker (1999, theorem 3.10, page 47)

vec(A® B) = (I, ® Kgm ® Ip) (vec (A) @ vec (B)),
where A is an m X n matrix and B is a p X ¢ matrix, we can show that
dvec (Jl) == J11 + J12 + J13 + J14

where

0
(DY, @ 1) ve [(R/ETG’ Q ) (dQT) }

Dy, @ 1a,) (Ig, ® Kay1 ® Ia,) [vec (R’ETG/ ) ® vec (Q (dQT) Q}l)}

) ® (07" & 07 vee (a0r) |}

{vec (R/ETG’ QO )
D), ® 14, {vec (R’ETG’ QO 1) ® (Q lo 0 )}vec (dQT) ,

) ve
)
)
)

vec { [R’ETG’ Q; dQT) Q%l Y Q;l} }
; ) vec (dQT) ® vec (Q;)} }
Ka, a2 [vec (Q;l) ® ( 1 R/iTG/TQI_"1> vec (dQTﬂ
(%

e R/ZADTG’TQ;lﬂ vec (dQT) ,

I
/\/\/5/\/\
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= - (RER) (D, @ 1) Ky [vee (07) © (9 GrErGily ! © RSr Gy ) | vee ()
and
J
114 1 —3/2 < ’ H—1 A—1 = ’ H—1 A A—1 &
= 5 (RER) " vee|(RErGH 07! @ 07) Doy | (R'E0GH07" (d0r) 07! GrErR)
= % (R/ETR)_g/Q vec [(R/ZA]TG'TQ;I ® Q}l) DdQ} [(R/EA]TG’TQ?) ® (R/XAITG/TQF)} vec (dQT)
_ % (R'ErR (DY, ® 1) vee (R'ErGr07" @ 07
X [ R'ﬁJTG'TQ;l) ® (R’f}TG'TQ;1>} vec (dQT) .
Similarly,
dvec (J2) = Ja1 + Jao + Jog + Jou + Jos + Jog,
where
Jo = - (R’ETR)_UZ vee [(RE7G07Y) @ (7' GronGrz! (a07) 07')| Dy
- (R’ETR) e (D), @ I,) [vec (R/ETG’TQ;l) ® (Q;l ® Q;lGTETG/TQ;l)] vee(dQr),
o = (RER) T vee [(RE:G107) @ (07 Gr S0 0h07 " (d2r) 7' G5 0p07) | Do,
_ (R’ETR>_1/2 (D), ® I,)
x [vee (R'E2GLOT) © 07 GrorGrQs! © 07 GrorGrQs! | vee(dr),
Jos = — (R’ETR)_UZ vec [(R/ETG/TQ;l) ® (Q;l (dQT) Q;GTETG/TQ;)} Da,
- (R’ETR)%/Q (D), & I,) {vec (R/ETG’TQ;l) ® (Q;lGTiTG’TQ;l ® Q;l)} vee(dQr),
Jog = —

- (Rsm) " [RrS0p 07 (a0r) 07 GG 0 07| Dy

R’iTR)_l/Q vec{ KR’ETG’TQ; (dQT) Q;1> ® <Q;1GTETG’TQ;1>} DdQ}
(Dle ® Idg)

X |vec (R’iTG’TQ;l (dQT> Q;) ® vec (Q%IGTETG%QF)}

e (Dﬁl2 ® 1,12) K, az [vec (Q;lGTf]TG’TQ;1> ® vec (R’ETG’TQ;l (dQT> Q;l)}
~1/2

) /
— R’ETR) (DY, @ Ia,) Ky a2

X [vec (Q;lGTf]TG}Q:;l) ® (Q;l ® R’f]TGépQ:;l)} vec(dQr),
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Jos = (R’ETR>_1/2 m{[(n SrGyO; (dQT)Q GrSrGLO7 )
®(Q GTETGT )} Da, }
= (R ) (Dl ® 1) Kay a2
x [Lec (Q GrSrGLOy ) (Q;GTETG/TQ;®R’STG/TQ;1)} vee(dQr),
and
Jog = J(R’ETR)_S/QW{[(R’ETG'TQ;)®(Q;1GT2TG'TQ;1)]D(12}
(72 SrGLO7 (dQT) Q;lcTSTR)
- —5(72 ZTR) v (Dgz®1d2)uec[(R’iTG/TQ;1)®(Q;1GT2TG/TQ;1)]
< | (RErGr07") & (RGO ) | vee (a2r ).

By the same argument, we have

where
Jy = % (R’ETR>_3/2
xvee { [(REr G071 ) @ (7' GronRR S2Gr 07 (a01) 071)| Day }
1 . -3/2
- (R’ZTR) (D), @ I,)
[vec (R ETGT ) ® vec (Q;lGTEA]TRR’XA]TG/TQ;l (dQT) Q;l)}
- %(RETR) oy e 1)
X [@ (R SrGLOT )@Q ® Q7 GrSrRR S Gl }Lec (dQT),
e = -k (RER)
xvee {[(R'SrGr07") @ (' GrEaRR SrGr07! (d0r) 07! GrEeGr07")| Day b
- _% (R'E1R) by, e 1)
X {vec (R’f]TG}QF) ® (Q;lGTiTG}Q;1> ® (Q;lGTiTRR/iTG’TQ;l” vec (dQT) ,
Jss = —% (R/ETR)_B/Q

xvee {[(R'SrGr07") @ (' GrEnGrOT! (dr) OF GrSrRR 1G0T | Day }
- _% (R'E1R) oy, e 1)
x [vee (R'ErGr07") @ (07! GrEaRR/SrGrOT ") @ (07! GrEnGr0z! ) | vee (d0r) |
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Jaa (R’ETR>_3/2 vec { [(R’ETG’TQ;1> ® (Q;l (dQT) Q;lGTETRR’ETG’TQ;)} DdQ}

<5 —3/2 /
(REeR) (Dl © 1)

{vec (R’f]TG}Q:Fl) ® <Q;1GT§A]TRR’§AJTG}Q;1> ® Q;l} vec (dQT> ,

J35

" e { [(R’ETG’TQ; (dQT) Q;l) ® (Q;lGTﬁ)TRR’ETG’TQ;lﬂ Ddz}
(R’ETR) o (D), @ I,,)

vee (RS0 Ghlz ! (d2r) 071) @ vee (07 0r S0 RRS 007

(R’ETR) e (Dl © Ia,) Ky a2

vee (7' GrE RR/ Sy G071 ) @ vee (R'S2G07 (a0r) 071

(R’ETR) e (Dl © In,) Ky a2

:'vec (Q;IGTETRR/ETG’TQTI) ® Q}l ® R/ETG’TQ;l} vec (dQT) ,

Jsg = —% (R’ETR) s
xvee { | (RE0GOT! (a2 ) 07' GrEeGr07! ) @ (7' GrorRR SGr 07 ) | Da, |
= —% (R’ETR)%/Q (D), ® 1)
x [vec (Q;l(JTiTRR’ETG’TQ;l) ® O GrSrGLOst ® R’ETG’TQ;] vec (dQT> :
and
Jyr = R’ETR)_S/Q vee {[(REr G107 ) @ (7' GronRR S2Gr 07 ) | Da, |

R’XA}TR)%/Q (Dl), ® I, vee [(R/ETG’TQ;) ® (Q;GTETRR@TG/TQ;)}

X =W X W

(
(R/ETG’TQ; (dQT) Q;lGTﬁlTR)
(
|

(R/ETG%Q;l) & (RliTG/TQ;I)] vec (dQT) .
Summing up the above expressions for J,, and evaluating the result at Ay = Ay, we obtain the

stated formula for d;,. m

Lemma A.6 Let

hr = aj,Sr+bj, [vec(Gr — Go) ® Sr] + ¢}, [vech (QT — Qo) ® S|
+d), [vech(QT —Qr) @ vech(Qr — Q) ® ST] )

Then

P(lgr = holl = n) = o (7).
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Proof. In view of

gr — hr = ¢, Rir + dj, Ror,

where
Ri1 = vech (QT — QT> ® ST,
and
Ror = [vech(QT - Q7)) ® vech(QT —Qr) — vech(QT - Q7)) ® vech(QT - Q7)| ® St,
it suffices to show

P([Rir|| = n7) = o(ny) fori=1,2.

We prove the above bound for ¢ = 1 and the proof for i = 2 is similar.

=P ( vech (QT — QT) ® STH > 77T)

Hvech (QT - QT) H I1ST] > nT)

Hvech (QT - QT) H > g/ log (T)) + P (||St]| > logT)
(

vech (Qr — QT) H > np/ log (T)) +o(nr)

P(|| Ryl

V
=
~

IN
T
e N

IN
e

Il
~
—

Il
Q
—

=
~
~—

by Lemma A.3(¢). m

Lemma A.7 The cumulants of hr satisfy

(a) k1 (hr) = Tk oo + O(T~Y2 M=) + 0 (M/T),

(b) ko(hr) = 1 + p1. OOM T+ (pg.oe + Ko,00) (M/T) +0(M/T),
(c) ks(hr) = (K3.00 — 3K1.00) /VT + o(M™9) + 0 (M/T),

(d) ka (hr) = (K400 — 6k2.00) (M/T) + 0 (M/T),

where p; . and Kj o are finite constants defined by

Ploo = Thm M?E2aj, Src)[vech (Qr — Qo) @ St
T
Proe = hm ]\[EQahSTch [vech (QT — QT) ® St], (A7)

Fleo = lim VT, [E (vee (Gr — Go) ® St)] + Jim VTc), [E (vech (r — Qo) ® St)]

T _ _ _ _
2o = 2 Thm i E (a},ST) {d;,, [vech (QT — QT> ® vech (QT — QT> ® ST} }
T . _ 2
+ Thﬂmc>o i [c;,, <1}ech (QT — QT) & STH ,

R3,00

lim VTE (a),S7)° + 3 lim VTE (a},S7)? {b), [vec (G — Go) @ S|}
—|—3 Thm \/TE (a;LST)z {C;2 [U@Ch (QT — QT) & ST]} s
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Kioco = 4T1£1;o H (a’hST)3 {d’h [vech ((ZT - QT) ® vech (QT — QT) ® ST} }

+6 lgr;o H E (a},57)° {c’h[vech <QT — QT) ® ST]}2 .

Proof. To prove the lemma, we need to show that: (i) p; ., and #; o are finite; and (ii) the asymptotic

expansions of the cumulants hold.
Part (a) Using the relationship #1(hr) = Ehr, we have

Tl/Qm(hT) = b, {Tl/QE [vec (G — Go) ® ST]} +c), {Tl/QE [vech (QT - Qo) ® ST]}
+dj, {Tl/QE [vech(Qr — Qr) ® vech(Qr — Qr) ® ST]} .
Consider each term in the above expression in turn. First

TY?2E [vec(Gr — Gp) ® St)

T T
= T1Y2ec lzztfﬂé ® szs
T \/T s=1
T T oo .
ZZE vec(wy) @ vg] = Z E [vec(wy) ® vg] + O (T) ,

s=1t=1 t=—o0

Nl =

where the infinite sum is finite because (vec(w;)’,v})" is a strong mixing process. Second, we write
ch, [Tl/QEvech (Qr — Q) ® ST}
= ¢ [Tl/gEvech (QT - QT) ® ST} +c), {Tl/zEvech (QT — QT> ® ST} . (A.8)
For the first term in (A.8), we have

[Tl/zEvech <Q — QT> ® ST}
—1
Tl/ZEZk wvech(T; —T;) @ Sp+TY?E > kjvech(T; —T;) @ Sr.

J=0 j=—M
Note that
M ~
T2 R Z kjvech(I'; —T';) @ St
=0
M 1 T 1 T
= TVY2ER jz_; kjvech <T Z Ut+j”£> ® <_T ;Us>
M T T
_ Z . ZZE [vech (vi4jv;) ® vg]

J t=1 s=1

M

- Z Z Evech (Lov )®U,+O<J¥>
0 —T+1

J

,_\

= |l

M

1 T-1
- Z Evech(vovﬂ)®v +O(M~ q)+O<T>
J=0i=—T+1

= Z Z Evech (vov’ ;) @ vi + O(M~ q)—&—O(Z;{)

J=01i=—00
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By symmetric arguments,

-1
T'2E Y kjvech(T; —T;)® St

j=—M
—1 e} M
= Z Z Evech(vov ,-)®v,+O(T>+O(M'q).
J=—00 1=—00
Hence

), [Tl/QEvech (QT — QT) ® ST} (A.9)
= ¢ Z Z Evech (vovij) ®v; +0 (%) +0 (M), (A.10)

J=—00 1=—00

where the double infinite sum is finite because v; is a strong mixing process.
For the second term in (A.8), we have

TV2E [vech (Or - Or ) @ St

— T2E :vech (VQT (Br — 50)) ® ST}
+TY2E [vech ((Br — o) V*0r (Br — 6o) ) ® St
T'2E [vech (VO (Br — By) ) @ Sr] + 0 (T71/2),

By Lemma A.2(e) and the Cauchy inequality, we know that T'/?E [vech (VQT (fJ’T — ﬁo)) ® ST} is
bounded. Following the same argument that leads to (A.10), we have

T'?E [vech (VQT (‘BT — BO)) ® ST}

—  lim TY?E [vech (VQT (B — 50)) ® ST} LOM ™)+ 0 <M>

T— o0 T

Therefore, we have shown that
ch, [Tl/zEvech (Qr — Q) ® ST}

M 1
= Thm ch, {Tl/QEvech (QT — Qo) ® ST} +OM 9 +0 < ) + 0 (T)

Finally, using Lemma A.2 (c¢) and (d) and the Holder inequality, we have

(T/M) Evech(Qr — Qr) @ vech(Qr — Qr) ® St
= (T/M) Ever‘h(QT - QT) ® UP(‘h(QT —Qr)® St + 0(1)
= CM T3/ Z Z Z (vech (v, — I') @ vech (vey vy — Tj) ® vy,) +o(1).
s<tlui=—M j=—M

To calculate the order of magnitude of the above quantity, we can assume, without loss of generality,
that v, is a scalar as the vector case can be reduced to the scalar case by considering each element of the
vector. We split the sum over s, ¢, u into three sums over S1,Ss and S3 where

S ={s,t,u:s<t<wu, max(t—s,u—t)>3M},
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Sy = {s,t,u:sgtgu, max (t — s,u —t) <3\/]\f[},
and

Sz = {s,t,u:sﬁtﬁu, 3VM < max (t — s,u —t) <3]\f[}.

To bound the first sum, we use the property of strong mixing processes that if X € F, and Y € F,,,
then

|E(XY)| < (EX) (EY) + 8 [a(Fo, F )" (B X)) (B |Y]7) !/ (A.11)
for any p,q,r > 1, and
pfl _’_qfl 4+l =1,

See, e.g. Doukhan (1995, Section 1.2.2). Let p = ¢ =2+ € and r = 1 + 2/¢ for some small € > 0, then
when t — s > 3M,

M M
E ) (erive =T0) > (vegjor—Ty) vy
i=—M j=—M
M p\ 1/p M ay\ 1/q
< 804}2(2“) (E Z (Vstivs — 1) > E Z (Vv — L) vy
i=—M j=—M
M . M .
e/(2+4e€ / 7 / q
< 8oyt [ > (Elospivs =Ty p] [ > (Bl(wrgve—T5) va?)
i=—M i=—M
S / . / /
e/(24¢ py1 gy 1 1
< 8af it [ > (Elverivs = Tuf) p] [Z (E |(verjor =TI | (B Joa] )

i=—M i=—M

= 0oy M)

where the last line follows because both sums are of order O(M).
When v —t > 3M,

M M
E Z (Vstivs — ') Z (vt4jve — L) vy
i=—M j=—M
o " p\ 1/p
€/(24€ g1
< Sagh ™ E| 3 (s =) Y (e =T))| | (Blea)?
i=—M j=-M
M 2p l/p
< 8o B Y (verivs =T (B o)
=M
M e\
’ P
< s (32 (Bl =) ") el
i=—M

= 0(ayF ).
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Therefore

M M
Z E Z (vsrivs — I%) Z (v — L) vy
s, t,ueEST i=—M j=—M
- 0 (MT3/2aj\f[<2+5)) =0 <MT3/2 exp <—ﬁM)> = O(MT). (A.12)
€

To bound the second sum, we note that the sum involves the forms:
M M M M
E E E E (vs+ivs) v, | and E E E E (Vs4iVs) (Vpg 1) Uy
5,t,uESs i=—M j=—M $,t,uESs i=—M j=—M

Since each expectation is bounded and max (¢t — s,u — t) < 3v/ M, the sum over S, satisfies:
M M

STE[ Y (e -T) Y (wagu T, | <T (3@)2 = O(MT). (A.13)

s,t,ueS2 i=—M j=—M

The third sum involves similar forms:

M M M M
Z E Z Z (vs+ivs) v, | and Z E Z Z (Vs4iVs) (Ve v ) Uy | - (A.14)
5.t uESs i=—M j=—M 5.t uESs i=—M j=—M
For the first term in (A.14), we have
M M
z E Z z (Vs4ivs) T'jvy (A.15)
s,t,ueSs i=—M j=—M
M
= COT Z E< Z (vs+ivs)vo>
5,tESs i=—M

= CMT i i E (vsvvo) (1 +0(1)) = O(MT).

s§=—00t=—00

For the second term in (A.14), we need to consider the two cases: 3M > u —t > 3v/M or 3M >
t —s > 3v/M. We consider the first case here as the second case follows from the same argument. When
3M > u—t > 3v/M, simple combinatorial argument shows that for any i and j, the largest gap between
the five integers s, s + i, t,¢ + j, u is greater than /M. Therefore

M M
STE[ S Y (v (v v :o(zx;r:r>+o(aj%“>M?) (A.16)
s,t,ueSs i=—M j=—M

for fixed € > 0. Here we have used inequality (A.11) as before. In the above expression, the O(MT) term
arises because the term (EX) (EY) in (A.11) leads to terms similar to that given in (A.15).
Combining (A.12), (A.13) and (A.16) yields

(T/M) E (vech(Qr — Qr) ® vech(Qr — Qr) ® Sr) = O(T™Y2) + o(1) = o(1).

We have thus proved part (a) of the lemma.

56



Part (b) Using the result in part (a), we get
(T/M) (r2(hr) = 1)
(T/M) <E (h2) —1- [T*l/%m FO(TY2M %) + o (M/T)} 2)

(T/M) (E (h3) —1) + O (1/M).
We now evaluate the order of magnitude of E (hy)? — 1. In view of
Eaj, SrShra, =1+ 0 (1/T),
we have, up to an order of O (1/T),
E(h})—1 = 2Eaj)Srbjvec(Gr —Go) ® Sr
+2Faj Sty [vech (QT — QO) ® St
+2Ea;,/STc§L [UEC}L (QT - QT) X ST
+2Eaj}, Srd), [vech(Qr — Qr) ® vech(Qr — Qr) ® Sr]
+FE [c}, (vech (Qr — Q) ® ST)]2
+0 {E [b}, (vec (G — Go) ® ST)]2}

+0 {E (dj, [vech(QT —Qr) @vech(Qp — Qr) ® St )2} .

Now
E [b;1 ('U@C (GT — Go) X ST)]2
= Ebj, [vec(Gr — Go) ® St [vee (Gr — Go) ® S| by
= Ebj[(vec(Gr — Go)vee (Gr — Go)/) ® (ST.57)]bp
1
- ﬁbZE{ Z [vec(wy — Bwy)vec(ws — Ew,)'] @ (vpv)) } by,
t.s,p,q
1

- o(5):

and

E {d;,, [vech(QT - Q7)) ® Uech(QT - Q7)) ® ST] }2
-0 [E [vech(Qr — Q) @ vech(Qr — Qp)||* E ||sT||2}
= 0 [E Hvech(QT - QT)H4E ||STH2}

N
((#))

using Lemma A.2(a), (c¢) and (d). Therefore

E()—1 = 2a),Sybj, (vec(Gr — Gao) & 1) + 207 Spchvech (0 — Or) @ 1]
+2aj,Srcy, [vech (QT - QT) © Sr] + 2, Srey[vech (U — Qo) @ St
+2ay, Srd), [vech(Qr — Qr) ® vech(Qr — Qr) ® Sr]

LB [¢}, (vech (2 — ) © S1)]> + 0 <%> ‘o <<¥>2> .
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Next, we proceed to examine each term in the above equation. Consider the first term when both w and
v are scalars, the vector case following by the similar argument. Note that

Ea), Stb), (vec (G — Go) @ St)

1
O\ 7 > 1B [(wi — Ew;) vjof]|
Y.

1 1
@) <T Z |E [(wo — Ewg) vjv,4e]| + T Z |E [vov; (wjte — Ew]—+g)]|> ,

where the sum is over j > 0, > 0 and j + ¢ < T. Using the strong mixing property of (wj, v;)’, we have
|E (wo — Ewg) vjvj4¢ < C(min(ey, ay)),
and
Efvovj (wjye — Ewjye)] < C(min(ay, ar)),

for some constant C' > 0. Without loss of generality, we can assume that «; is decreasing (see Billingsley
(1968, page 168)). Therefore, we find that

Eaj, Stb), (vec(Gr — Go) ® St)

1 T T . 1 T J .
= 0 TZme(aj,ag) =0 TZZIHHI(GTJ,OCZ)

J=0¢=0 J=01£=0
1L 1 o 1

in view of using Assumption 2(a).

Secondly,
Qp — Qp = Dy + Dz + D3 + Dy,
where

L LM

Dy = T ZZ [kjvtﬂzz{,x;(/@T —By) + katﬂvgx;ﬂ-(ﬁT — %30)] ,

t=1 j=0
| I M ) ]

Dy = =" [y(Br — B wegaeiai (B — 0]
t=1 =0
1 -1

Dy = -5 Z kjvizi_jay(Bp — Bo) + kjzivi—jzi(Br — Bo),

t=1 j=——M
L

Di = 73 2 [k(Br—Bo)mrazi_ya;(Br - 6]

t=1j=—M
So
T / ’ = ~
HE2ahSTch [’U@Ch (QT — QT) X ST]
4 p A ,
- ; 27 E2an5r (e, (Di® St)] = 2 Jim = E2a),Sr (¢}, (D; ® S7)] + o(1).
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The above limits are not zero in general, the reason being that
Tlim (T'/M) Evech (QT - QT) # 0.

To see this, we consider the special case where x; = z; = 1 and take the following limit as an example:

t=1 j=0
M 1 LT T-1 ,
= CTJLH;OMZIGJ-EU]-TZZL, 1 =C hn})o]\[Zk Ev; Z (17T>v,,.
§=0 i=1 t=1 R
1 M T—1 0o
= C/IJLII;O i Z k; Z (1 - = / k(z)dx cov(vokvj) # 0.
7=0 r=—T+41 Jj=—00

The general case is more complicated but limits of the above type will show up, provided there is a
regressor with a nonzero mean.

Thirdly,
j}ah Srey,[vech (QT - QT> ® St
. M
— MT ZM t;lk K {a;,vfc,, {vech (wq,[ j Fj) ® Um]}

T-1

M
= ]\[ Z Z k; E {aj,voc), [vech (vevy_ 7—F)®vm]}+O<T)

j=—Metm=—T+1

= lim H Z Z E {ajvoc), [vech (vevp_j —Tj) @ vm ]} + O <J¥) : (A.17)

T—oo
—Mlm=-T+1

Using Lemma A.2, the Holder inequality and Assumption 2(a), we can show that

T
A[ahSTch[Lech (QT — QT) ®Sr]=0(1),

and the limit in (A.17) is finite.
Fourthly,

Eaj,Syc)[vech (Qr — Qo) @ St

1 M T T
= 7 D D Uy = D E (ahvech [vech ()  v))

j=—M (=1 m=1

Z Z Z < |J|/JU ) ‘j\qE(a;ﬂ)ec;L [vech (T';) ® Um))

J*—]\If 1 m=1

= —M79 lim — Z Zqu 17|? E (ajvec, [vech (T'}) @ vy,]) + O(M~29)

T—oe T j=—M (=1 m=1
1 T T oS
= M hm 3TN D g il E (@ eech, [vech () @ wn]) + O(M21).
521 m=1j=—o0
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Fifthly,

E%2a/hSTd}L [vech(QT — Qp) @ vech(Qp — Q) ® St

) o L
= Egp2a,Srd, [“eCh(QT — Qr) @ vech(Qr = Qr) @ ST} tol)

1 M T
— : /
= lim UT Z Z 2kokpFa) vy

T=oe op=—M i jb=—T
xdj, [vech(viv;_, — To) ® vech(v;v)_, —Tp) @ ve] +o(1). (A.18)
Finally,
T ., ~ 2
Eﬂ [ch (vech (QT — Qo) ® ST)]
T

= —F|c), (vech (QT Q) ® ST)]2 +0 {%E ¢}, (vech (Qr — Qo) ® ST)}Q}

M T

xcj, [vech (viv;_, = Tp) @ ve] + o(1). (A.19)

Using Lemma A.2, the Holder inequality and the mixing property, we can show that the limits in
(A.18) and (A.19) are finite. Combining the above results yields

Ra(hr) =14 py oM™+ (pg. o0 + Ko.oo) (M/T) + 0 (M/T).
Part (c) We sketch the proof and omit the arguments for the finiteness of k3 . By definition
T2 ks (hy)
= T'2E((hr)’) = 3T"*E((hy)*)E(hr) + 2T"/? (Ehr)’
1,00

= TY2E((h)*) -3 [1 - /}\/]q +0 (%)}

oo i) o )

= TY2E((h1)*) = 3k1.00 + O (ﬁ) +0 (%) ,

where we have used parts (a) and (b) of the lemma. It remains to show that

B = ko +0 (17) +o (T2 )

Using Assumption 1, Holder’s inequality and Lemma A.2, we have
E((h)?) = E(a},57)° +3(a),Sr)° b, [vec (G — Go) ® Sy
+3 (), S7)? ¢} [vech (QT - QT) ® S7]
+3(al, S1)° ¢}, [vech (QT — QT) ® St
+3 (a;,,ST)2 cj,[vech (QT - Qo) ® St
+o(M/T).
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We consider two of the above five terms here, the other terms following in the same way. First,

Second,

3\/_E{ a}, Sr) ch[vech (QT - QT) & ST}}

3VTE {(a;IST)2 cj[vech (VQT (Br — “80)) ® ST]} +0 (%)

3 lim \/_E{ a,57)2 ¢, [vech (VQT (By — ﬂo)) ® ST]} ) (i> ) < ! ) .

T Ma

3VT (a),57)° ) [vech (Qr — Qo) ® S7]

3 T T T M
= 7 Z Z Zaﬁvoaﬁbvpcz [ Z (k; — 1) vech(I';) ® vi]

j=—M
M
‘o (?)
T

M
= 8 Y el z it vecn(t)) & | +0 (4F)

pa=—T

_ O<M->+O(T)

T T M
= 3 Z Z aj, voa, vyC), [ Z (k; — 1) vech(T;) ® v;

p=—Ti=—T -M

Part (d) As before, we briefly sketch the proof and omit arguments relating to the finiteness of the
limit quantities as these follow in the same way as earlier. Let A\; = E((hr)”), then

kg (hp) = A4+ 120500 — 303 —4A \3 — 6A]

Proc\ M 2 1
= A43{1+<]tjq>+T(p2m+n2m)} +O<T>

_ pl,oo M A[Z 1
- A436(1\1«1)6?(”2’<"’+'<’2’°°)+O<T2)+O<T>'

Using Lemma A.2 and Holder’s inequality, we have

A = E(a),Sp)* +4E(al,S7)b) [vec (G — Go) ® Sy
V4B (al, Sr)3c), [vech (QT ~ Q) @ 51
+4E(a), St)3c) [vech (QT — QT) ® St]
+4E(a), St)c),[vech (Qr — Qo) ® St
+4E(a),St)d), [vech(Qr — Qr) ® vech(Qr — Qr) ® St

M 1
+6E(a),St)? {c),[vech (QT - Q) ® 7] } +o < T) +o <m) .
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Combining equations (A.20) and (A.21), we obtain:

T M
— |kq (hr) + 6?52,00

M
T / 3./ ~ = T / , - _
= 4ME(ahST) cylvech (Qr — Qr) ® Sp] — 12ME(ahST)ch[vech (Qr — Qr) ® St
T q T _
+4ME<aZST)3c§L [vech (QT - Qo) ® St| — 12ME(a§LST)c§L [vech (QT — QO) ® St
T - _ . _
+4ME(3ZST)3d/h [UGCh(QT — Qr) @ vech(Qr — Q1) ® ST}
T .
+6FE(a§LST)2 {ch,[vech (Qr — Qo) ® ST]}2
+o(D), (A.22)
where we use
E(a,Sr)" =3 =0(1/T), (A.23)

and

T .
4ME(a;LST)db;,,[vec (Gr — Gp) ® St] = o(1).

Consider each term in equation (A.22) in turn. First, construct the orthogonal matrix [ap, a | | and write
Si= apay, Sr+a d'| Sr. Using (A.23), we have

E {(a;,sT)f)’ Sy — 3 (), Sr) ST} -y { [(agsT)‘* 3 (a’hSTﬂ an + [(agsT)?’ - 3a’hST} aLa’LST} = 0(1/7),

and it can then be shown that

4£E(a;LST)3c;L [vech (Qp — Qr) ® Sr] = 12£E(a;IST)c;L[vech (Qr — Qr) ® Sr] + o(1),

M M
and
r / 3./ ® T / / O)
4ME(ah,ST) ¢y [vech (Qr — Q) @ S| = IQME(ahST)c,L[vech (Qr — Q) ® Sr] + o(1).
Second,

T ~ _
47 E(@),Sr) e} [vech (O — 1) @ 1]

1
MT?

M
Z Z ky, Eaj,v;a),v;a),vecy, [(vech(vmuy, ) — ) ® vy]

i,7,4,m,pn=—M

= 4

M
1
= 4m Z Z ky, Eay,voay,v;ayvecy, [ (vech(vpuy, ) — ) @ vy]
Jlm,pn=—M
M

= [lim 4% Z Z ky, Eaj,voay,v;ay,vecy, [ (vech(vpun, ) — ) ® v,] 4+ o(1).
Jlom,p n=—NM
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Third,

T

]\[ E(a),Sr)%d), [vech(QT —Qp) @ vech(Qr — Q) ® ST]
= 4%E(a§zST)3d;L [vech(fl — Qr) @ vech(Q — Qr) ® ST} +o(1)
= Th_r)réo ﬁ Z Z FEkokya),voajv;a),vjx

i,j,k,;mo=—T l.n=—M
dj, [vech(vivy,_p — To) @ vech (vmvl,_,, — ) @ vo] +0(1).
Finally,
T

GME(a;LST)Q {c[vech (Qp — Qo) @ ST]}2

G%E(a;IST)2 {cﬁl[vech (QT — QT) ® ST]}2 +o(1)

M
. 6
= Th_{nOo W N Z Z | Ekgknaélvoaﬁlvi X
i, 4,mo=—T kn=—M
c;, [vech(v;v}_; — i) ® veley, [vech (vmv), ,, —Tn) @ v,] .

Combining the above results completes the proof of this part. ®

Lemma A.8 Define

sr(0) = % {m o (i0) + (13 (K3.00 — 3F1.00) (i9)3} n %%PLM (i0)?
+¥ {(ZZ) (P2.00 + F2,00) + % (K00 — 6,427%)} 7

o (0) = exp (—6%/2) (1 + <7 (9))

frn(z) = QL /exp(—i@x)éﬁh( )db, D (x / fr(u)du.

We have
1 1 ) 11
Brle) = B0) = == [t g (a —1.0) (5 = 1)] 000) = G0l
; ]¥ {(/b oo T K2 oo) T+ — B (/14,Oo — 6ko.00) (2% — 333)} o ().

Proof. Let ¢ (z) be the pdf of a standard normal random variable, then

dr 1 00 ) n
danb(x) =5 /_OC exp (—ifx) (—if)" exp (—92/2) de

So
fn(z)

— / exp(—ifz) o, (0)dO

— | (=K 'x—lkr -3k @)z

M p2,oo + K2,00
T 2

1 /1

N =

¢ (x) + <

51 i = 652) 690)]
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and thus

1 T 1 11
Op(x) = P(x)+ Nis _(—/{1700) ¢(@) — ¢ (K300 = 3h1,00) ¢N(€F)} t 5 1,009 ()]
M | p2 00 + K2,00 1 :
T B0 g (e — 02 ) 0
1T 1 ) 11
= B0~ = [+ g (= 3010 (07 1) 000) — G o)
1M 1
5T |:</02,oo + Ro,00) T+ T3 (R0 = 6k2,00) (2% - 3x)} ¢ (x).
|
Lemma A.9 For some constant C > 0, we have
_ ) M
sup |P(tys < o) — br(a)| < C 04(6) — 6,(8)] 18] B 0 (2 )
z€ER |0|<M—-1TlogT
Proof. It follows from Lemmas A.4 and A.6 that
ta = hr + &7,
for &7 satisfying
P (&) > ng) =o0(ng) .
Using Lemma 6 in Andrews (2002, page 1064), we then obtain
M
sup|P (tyy <z) —P(hr <z)| =0 = ). (A.24)
z€R T

Note that ¢, () = [ exp(ifx)d®r(x). It follows from the smoothing lemma (see, for example, Kolassa
(1997), Lemma 2.5.2, page 17) that, for some constant C' > 0

sup |P(hr < ) — ®7(2)|

z€R
< cf 00(6) = 200)] 107 9+ 0 (o )
J16|<M=1Tlog T TlogT
- - M
- ¢ 00(6) = )] 61 a8+ (7). (A.25)
J10|<M=1Tlog T

Combining (A.24) and (A.25) yields the desired result. ®
Following Gétze and Kiinsch (1996), define a truncation function by
(@) =T"2f (T |=ll) / |l

where v € (2/r,1/2) and f € C* (0, c0) satisfies (i) f(x) = « for x < 1; (ii) f is increasing; (iii) f(z) =2
for x > 2. Figure 1 gives an example of such a truncation function.

Define
~ Ry, it Rl <77,
Ry=7(Ry) = TTRS (T NRe) /[ Rell s 3 T <|[Rel| <277,
2T R/ | Re|l, if ||Re|| > 277,
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Figure 1: Graph of the Truncation Function

which satisfies HRt ‘ < 2T7. Let hy be defined as hy but with R; replaced R; and let ¢;,(0) be its
characteristic function. It is not difficult to show that

|¢h(9) - a)h(e)| |9|71 do

~/|0<1\~'[—1TlogT

|63,(6) — 6, (0)| 6] dB + o <¥) .

./|9§M—1TlogT

We will assume in the sequel that such a truncation transformation has been made. For ease of exposition,
we will drop the ‘7’ notation and identify hp with hp.

Lemma A.10 For0<e<1/[7(¢+1)], we have
[ Jo) = u0)| o7 a8 o (a1/1).
o)<

Proof. Following the same proof as that for Lemma A.7, we can show that x5 (hr) = o(M/T). There-
fore,

4 CANT
i0y M s
g 01 0) = Y- s ) -+ (7 167 )
j=1 ‘
uniformly over § and 7. Using Lemma A.7, we have
log ¢, (/) = —0—2 + <7 (0) + (i0) |O(T~ Y2 M1 M/T
g bn = —5 ter(0)+ @) |O( )+ o (M/T)
+(i0)% 0 (M/T) + (i6)” [o(M =) + 0 (M/T)]

+(i0) o (M/T) + 0 <¥ |9|5>

0 M
=5 ter () + 9?A2(9-,T)
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where supjg <pe [A2(6,T)[ — 0 as T' — oo.
Now
2

exp(log ¢y, (A)) — exp <—9—> (1+sr (9))‘

|¢h, (0) - &),,}(9)| = 2

2

exp [(logqsh ) + %)} —(I4¢r (9)).

I

@

)

o}
/I\
N>|°‘;-’\7
~_

exp (51 (6) + 07 8(0.7)) — (14 <1 ()

M 1 M 2
T |0A5(6,T)| + 5 sr (0) + G?AQ(&T)

IN
@
W
ke}
/I\
l\.'>|QR3
~

xexp<

where we have used the result that for any two complex numbers v and v,

M
or (0) + 9?A2<9’T)D ,

2
|ul

fexp () = (1+0)| < [|u—v+“7 exp (Jul).

(see Lemma A2.2 in Severini (2005, page 481)).
In view of the definition of ¢r (), we have, when || < T,

s (0) + 0¥A2(0,T)’ < e+ 667,

for some constant ¢ > 0 and é € (0,1/4] and

2 oy a1 MN® 7 15
sup |7 ()67 < O4 sup — ) 10"+ =16
ol <1< loj<rs |\ T T

— Y {ﬂ <ﬂ> Tl/[(q+1)}] ‘o {lTs/qun}
T

T\T
M 1
= Zpi-9)/(+a) —5/[5(a+1)]
0 ( T T > +o {TT }

M M M
— 2 p(1-q)/(1+q) ) - -
O(TT >+0<T> 0(T>.

Therefore,
[ Jon®) = o) 161" a0
Jjo|<7e
2
< M |Ay(0,T)| exp <9— + ¢ + 592> do
T Jioi<re 2

. 02
+/ 07165 (8)] exp <— +ch + 592> d
l6|<T= 2

M2 5 0> )
+ | = / 0[A2(0,T)]  exp | —— + cl + 66~ | df
) Jigzre 2

00 2
M sup |Az(0,7)| (1+0(1)) + sup |s7(6)67" / exp <—9— +c€+602) o
T o<1 o <Te J—c 2

)

:0(
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as desired. W

Lemma A.11 For0<e<1/[7(¢+1)], we have

/ |6,(0) — B (8)| 0] d = 0 (M/T).
Te<|9|<M-1Tlog T

Proof. Since

/ |6,(0) — 6, (0)] 6] 6
Te<|9|<M-1Tlog T

</ onlo) 18 do+ | NI
Te<|0|<M-1Tlog T Te<|9|<M-1Tlog T
and
/ o)l a0 < 1 [@u(®)] @8
JTe<|0|<M 1T log T JTe<|0|<M~1Tlog T
1 M
< T°¢ / exp(—=6°)df = o <—> ;
JTe<|0|<M 1T logT ( 4 ) T

it suffices to show that
/ 6,(60)| 1617 db = o(21/T).
JTe<|0|<M 1T logT

We follow the same steps as in Gotze and Kiinsch (1996, pages 1927-1930). Let m = KlogT for some
K>0and N = [(T/@2 + 1) m?] for T° < 6| < M~'T'logT. Define

1 Y R
Sy = — > v, Spr-n=—= Vg,
7T 2 T2

t=N+1
T

N
1 1
GN == T t:E - Wy, GT—N == T E Wt.

t=N+1

Let
M

M
Qy = Z kjfj,NaQT—N: Z kjf‘J}T—Nv
j=—M j=—M

where

1 N / .
Iy = T ngzl Vi, 20,

7 - 1 ) ;
T Dope Uty J <0,

1 T / :
T _ T Zt:N+1 ViU J 20,
PN LT VU] <0
T t=N+1 “tYt—j> J ’

and Qu, Qr_y are similarly defined. Given these definitions, we have
St =Sy +Sr—n, Gr =Gn + Gr_n, Qp = Qn + Qr_y,
and

hr = a'Sr+Q°(Gr — Go,Sr.Qr — Qr, Qr — Qo)
=a/'Sr +Q (Gr, Sr, Qr, Qr)
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where @ (+) is a polynomial in its arguments.
When vy = 0,w; =0, for t =1,2,..., N, we have Sy = 0,Gy = 0 and

Qv =y = VQy (Br = Bo) + (Br — By) V2 (Br — o) = 0.
Expanding @ (GT, Sp, Qr, QT) around vy = 0,w; =0, for t =1,2,..., N yields

Q(Gr,Sr,0r,97) = Q(Gr—n.Sr—n.Qr_n.Or)
+ Z MY Qr, (Gron. Sr—n. Qr_n, Qr)

fsv

where {wa} denotes an appropriate set of polynomials,

= (:ulﬂ"'a:uN’O O) V= (Vl,...,VN,O,.-.,O),

and |u| + |v] < 9. Here, for two compatible vectors a = (ay, as, ...,ar) and b = (by, ba, ..., br), we use the
following convention

T
b;
:Hai , ab= E a;b;.
i=1

i=1

Using the above expansion and the result that

<« (it)’
exp (i6) = Z T +0(10]")
j=0
(see Lemma A2.1 in Severini (2005, page 480), we obtain
¢,(0) = Eexp(ibhy) = FE [exp (ifa’St) +i0Q (Gr, Sr,Qr,Qr)]
= Fexp [zea St +1i0Q (GT N ST_N, QT N QT)]

X exp llezc;tu ;w (GTNasTN7QTN7QT)‘|

v

Eexp zHa St +1i0Q (GT Ny ST_N, QT N, QT)]
X Z C,u,,l/ 7/'#wl/Q;l.z/ (GT—N7 ST—N7 QT—N7 QT)

+0 (161" E|Q (Gr. S1.0r, 01) = Q (G- Sr-n. Q3. )| ) . (A.26)

where @), is another set of polynomials, ¢, , (0) is a set of coefficients that depend on 6, and |u| + || <
9(r —1).
Let us estimate first the last remainder term in (A.26). Note that
Q (G1.57.Q7,Q1) = Q (Gr—n. Sr—~. Qr—n, Q1)
= Q°(Gr —Go, 57, Qr — Qr, Q1 — Q)
—Q° (Gr-n — Go, Sr—n. Qr—n — Qr_n, Q7 — Q)
= QN (GN, Sn, v — Q. Q1 — Q)
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where Q% (+) is a polynomial in its arguments with bounded coefficients. It follows from Lemma A.2 that

BISxl = 0<(¥)/>

E(lGyl)" = O

Jor -l = o

E(Hvech(QN—QN)H)T = O<

As a result,

10" E|Q (G, Sr,Qr,Qr) — Q (Gr—n. Sr—n. Qr—n. Q) |T

o(m ) @) () 3)

using the fact that Q% (-) does not constant and linear terms. But for some @ > 0,

r/2 N\ /2
(N M ‘
<'97(?) (7) )0('9T'N7“M’"”T’")

[ O(MPrTT?) for TE < 0] < VT (A27)
B O (0" M"/>m"T~"), for VT <|0] < M~Y2T1= '
- O (M/T=), for T° < |0 < VT (A.28)
- O(T—"=m"), for VT <|9] < M~1/27'—= '

= O(M/T'"=),

provided that er > 1 + . Here we use the fact that N6* = O(T'm?) when 6] < /T and N = O(m?)
when |#] > /T Similarly,

a N r/2 N r

"(7) (7)
O ((rm*)* 12} (§)", for 7 < 6] < VT
o(11(%)" (#)). or VT < gy < ar e

for 7= < |0] < VT

for 7= < |0] < VT

> , for VT < |0] < M~1/271=
2 T/Q 2\ "
1) (%) ) for VT < |6] < M=1/271=

We have therefore proved that

0" E|Q (Gr, Sr,Q7.Qr) — Q (Gr—n, S7—n. Qr—n, Q1) ‘7‘ =o(M/T).
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In order to evaluate the expansion terms in (A.26), we proceed as in Gotze and Kiinsch (1996, page
1929). Define

{t(f, ...,tg<T_1)} ={t:pu, >0o0rwv, >0},
and
T={t:tc{l.2,..N—m} and [t — 10| >3m, for j=1,2,....9(r — 1)}.
Define {t1,...,t;} as follows:
t1 =1inf(T),t;41 =inf{j: ¢t > t; + Tm and t € T}.

and J denotes the smallest integer for which the inf is undefined. Let

A = H{expi@a/,vt/ﬁ., |t—tj|§m,t€1l‘}, =120
B, = H{expi@a’qzt/ﬁ, tj+m+1§t§tj+1—m—1,te’]r}, G=1,2, 0 —1
By = J[{expiba’vi/VT. t=t;+m+1teT},

LT H {exp i@a/vt/\/it ¢ T} {exp [Z@Q (GTfN: ST,N, QT,N, QT)} } vfw?

XQuv (Gr-n,Sr—n,Qr-n, Q7).
Then
Eexp [iﬁa’ST + ZQQ (GT—N7 ST—N1 QT—Na QT)}

J
X z o (0) V" " Quu (Gr—n, S7—N, Q- N, Q1) = Z Cuw () E H A;B;Lr,

v v =1
where |4;| < 1,|B;| < 1 and |Ly| = O (T“) for some constant Cy > 0. The above multiplicative

decomposition is illustrated in Figure 2.
It follows from Assumption 3 that

J J
E H A;B;Ly — F H E(Aj|F; : |t —t;] < 3m) BjLr
j=1 j=1
J j—1 J
S Z E H 14/€B;C {A7 — E(A7‘ft : |t — tj| S ?)WL)}B7 H E (A[‘Ff : |t — t‘j| S 3m) BgLT
j=1| k=1 =j+1
J j—1 J
< SB[ ABe{A; = E(A|Ft £} B; [ E(AdF« [t —t;] < 3m) BeLr
j=1| k=1 =j+1
J Jj—1
+ EHAkBk{E(AjU:t:t?éj)_E(Aj']:t:|t_tj|§3m)}Bj
j=1 k=1
J
X H E(Ag|Fy o [t —t;| <3m)BiLy
l=j+1
J j—1 J
< Y \EJ[ABe{A; — E(Aj|F :t # )} B; [[ E(AdFe: |t —t,] < 3m) BeLy
Jj=1| k=1 l=j+1
+d = T exp(—dm)
= o(T™%),

70



.' ''''''''''''' " .......................... T
0\ smmrsrsssrsmsssnsssnneenn AJ
P

.......................... B;, B,

Figure 2: Illustration of the Decomposition

for some C7 > 0 and arbitrary C5 > 0 by choosing K in the definition of m sufficiently large.
Next, repeated applications of the mixing inequality in (A.11) yields:

J
EJ] E(Aj|F: : |t —t;| <3m) B, Ly
Jj=1
J
< T |E]]IE(A|F : [t —t;] < 3m)]
Jj=1
J
< T EIE(A|F: : [t —t;] < 3m)|| + O (T Jd ™" exp (—dm)),
Jj=1

for some C5 > 0.
By Assumption 4, for |0 > d, we have

E|E(Aj|F.t # j)| < exp(—d).
Therefore, using Lemma 3.2 of Gétze and Hipp (1983) and Assumption 4, we have

E|E(Aj|F : |t —t;] < 3m)]

< E|E(Aj|F 1t #t)| +O(d™ " exp(—dm))
< max(exp(—d), exp(—db#?/T) + O(d~" exp(—dm)),
and thus
J I
E H A;B;Lp = ¢ {max {exp(d),exp (daT—Q)} } + 0 (ch“) =0 (T*CS) , (A.29)
j=1

for arbitrary constant Cs > 0 provided K in the definition of m is chosen large enough. This implies that

FEexp [iea’ST +i0Q (GT—N:« ST_nN, QT—N, QT)] -0 (T—Cs) ]
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Note that when ¢ < 1/[7(q + 1)], we have M~'/27"=% > M~'TlogT when T is sufficiently large.
Combining (A.27) and (A.29) yields

6,(0)] 6] db < /T 16,(0)] 18] do

-/T£§9|§MlTlogT =<|g|<M—1/2T1—¢

M . M M
= O|=—— 0 do =0 logT* | = — ],
<T1+w> /Tfﬁlegzwl/mf i <T”w o8 > (T> ’

which completes the proof of the lemma. m

Lemma A.12 The following results hold:
(a) 2qu, {d' [(Id2 ® Kay.a, @ Idg) (vee (Qo) ® vee () @ (Qo ))}} =3+ 22 (do— dv),
(0) 241 {@' (Ko, 2 © L) (vee (Q0) @ vee () @ (Qa)) | = duy + 4 (d — o),
(¢) pac (0 ® Qo © Qo) ¢ = gpin + i (d2 — du)
(d) p15¢ (Kay.a, ® Ia,) (R0 ® Qo ® Q) ¢ = 22,
(e) 12p5¢" [0 @ Qo & (Qoaa’y)] ¢ = 6,
(f) 1209¢ (Kay .4, @ 1a,) [0 ® Qo ® (Qoaa’Qg)] ¢ = 6.

Proof. Part (a) Using the definition of d in Lemma 1, we have

2145 {d’ [(Id2 ® Kgy dy @ Idg) (vec (o) ® vec (Qo) ® (Qoa))} }
— 2“—211(3(‘ [(O10) ® (O20 — O30) ® (@10@’10)}’ (Id2 ® Kay.d, ® Idg) (vee (o) ® vee (o) ® (Qoa))
o3

+Z—Ovec [(©10) ® O40 ® (O30 — On0)]' (Id2 ® Ka,.4, ® Idg) (vee () ® vee () @ (Qa))

/
+ 2 pec (Kd a2 [vec (©49) ® (O30 — O20) ® @/10]) (Id2 ® Ky, ® [dg)
o0

x (vec (Q0) @ vec (o) @ (Qoa))

— 3% vee {vec (B & (O30 — Ox0]) (O & Oiol} (Lar ® K, ® L)
0

x (vec (o) @ vec (o) ® (Qoa))
3 / / -
+4/—2”€C {vec (©1y ® ©10071)) (019 ® O19)} (Irlz ® Kaydy ® Id%)
70
x (vec (o) @ vec (o) ® (Qoa))
=A; + Ay + Az + Ay + As.

Let e; be the i-th column of I,,, and w; be j-th column of I,,. Then E;; = eiu;. is the m x n matrix with
1 in its (i, 7)-th position and zeros elsewhere and the commutation matrix can be written as

m n — ZZE” ®E;7

=1 j=1
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See Abadir and Magnus (2005, Exercise 11.8). Using this representation, we have

Ay
= %‘L%vec [(©10) ® (O20 — O30) ® (©100})]’ <1d2 ® Kiy.dy ® Idg) (vec (Q0) ® vee () @ (2pa))
= % a (Uec(Qo)/ ® vec () @ (Qoa)/) (sz ® Ez/j ® Eij ® Idg) vec[(010) ® (O — O30) @ (0100)]
i
— % > (/Uec(Qo), ®vec () & (Qoa)/) vee {[(Ei;010) ® (O20 — O30) ® (0100%0)] (Iu, ® Eij)}
i
— 2/%'28 > (vee () ® vee (o) @ (a)’) vee [(E1;010) ® (©20 — O30) @ (0100} Eij]
i,j
_ 2”72(3) >~ [vec ()" ® (a)] [(Ei;010) © (O20 — Os0) ® (Or00%o) Eig] vee ()
i
- 2‘% >~ [vec ()" @ (2a)'] vee {(B10O10) Eig 2o [(EijO10)' © (920 — Os0) ]}
i
_ 2’%‘2(3) > (20a)' (€100%0) Eij [(E5;€10)' © (O20 — ©20)'] vee ()
i,j
- 2”72(3) Za’Qo@m@’loEion [(Ei;010) ® (620 — O30)'] vee ()
i
— %‘28 > (a'Q0010) Oy Eij [Q0 (O20 — O30) Qo] EijO10
i,J
- QMTQS > (a'Q0019) O geiut [0 (O20 — Os0) Qo] ;010
= %jg > (a'Q0010) 10100 ge; () [Qo (O20 — O30) Qo] ;)
By
— g—z ZJ: (Q0a)’ (O30 — O2) €i€;$20040Q0€;€;019 = 0.
Similarly,
Ay = %vec [(©10) ® Oup © (O30 — Oa0)]' (Idz ® Ky, ® Idg) (vee () ® vee () @ (Qa))
_ Z_i z; (Qa)' (O30 — O20) EijQ [(Ei;010) ® (Ou0)'] vee ()

= Z—i Z (Q0a)' (030 — ©20) €:€200400€:¢;010
i ]

- Z_i > "' (O30 — On) ei€;O10 (€)2O040¢;)
4,J

= 0.
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Next,

As
L /
= /g—f)vec <I&d a2 [vec(©40) ® (O30 — O2) ® @’10]) (Id2 Q@ Kaya, @ Id§> (vee (o) @ vee (o) ® (Qoa))
= g—vec [(©30 — O20) ® Oy ® vec (@40)]/ (Id2 ® Kgy d, @ Idg) (vee (o) @ vee (o) ® (Qoa))
0

= 5—2 Z (vee (Q0)" @ vec () ® (Qa)’) (Id2 QFE,; @ FEj;® Idg) vee [(O30 — O2) ® Oy ® vec (O40)]

0
= & z vee (Q) @ vee (Q)' @ (Qa)’) vee { (El‘j ® Idg) (B30 — O29) ® O]y @ vec (Og)] (1g, ® Eij)}
= p’2 Z ’U€C QO Qoa) ] {Elj (@30 - @20) (39 [@/10 &® vec (@40)] E,-j}vec (Qo)

= —Z E vec [vec (Qo) (Qoa) ] v P(‘{ Oy ®vec (040)] EijQ (O30 — O2) E }
0 “—
i

- ﬁ:—Q z vee [vec () ® (Qoa)/]/ vee {[0 ® vec (Ou0)] €€ (O30 — O) €€} }
0 4=
= K2 Z vee () ® (Qa)] vee {[0], @ vec (Ou0)] eie}} Q0 (O30 — Oa0) €;
= /L—2 Z vec Qo) (24 (Qoa)/] U@C{[@lloei X vec (@40)] 6;} 6;-90 (@30 — @20) €j
00 4=
= & z [vec (Q)' @ (Q0a)'] vec {vec (O40) €7} O eie (O30 — On) €;
g0 —

— NJ2 Z ’UGC QQ Qoa) ] [Gi ® vec (640)] 6’1061'6}90 (630 — @20) 6]

Let ©4 = E?il ve Y, Y, be the spectral representation of ©49 with v, and Y, being the corresponding
eigenvalues and eigenvectors. Then

A, = B2 £23 " vp [vee () @ (Q0a)'] 60 @ Y1 © T(] Olpere 2 (O30 — Oa0)

zg 4

= Z—z Z ve [vec (0) (e; @ To)] (@'QLe) (Ofge:) [€5€0 (O30 — Oz0) €]
15,6

= LS (e @ T vee ()] (&' T0) (Ofer) €2 (B0 — Oan) e
i,5,0

= K 72 Z}/Z T[QOGZ] (a Q()Té) (61061) [6 QO (@30 — @20) ej]
i,5,0

= &2 ZW ;0] (T Q0a) (O)pe;) [F Qo (O30 — O0) PJ]
zg 14

L
= f 22 Ze QQ @30 — @20)) Qoa (@1061) [6 QO (@30 — @20) ]
]

203 Ze Q00100142020 pe; [¢/Q0 (O30 — O20) €]

] 7M22 tr [QO (@30 — @20)] ’u2 (dQ — dl)
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Similarly, letting ©39 — @99 = E?il ve=¢=) be the spectral representation of ©39 — O3, we have

Ay = —2%2(3)@66 {vec (0, @ [O30 — Os0]) [0y ® O]} (Id2 ® Kdy.dy @ Idg) (vec Qo) @ vec (o) @ (Qoa))
— _% (0] ® O}y ® Oy ® vec (O30 — Ox)’) (IdQ ® Kdydy ® Idg) (vee ($20) ® vee (o) ® (Qoa))
- _2%28 (010 ® (O ® O4) Ka, .4, ® vec (B30 — O)') (vee (o) ® vee (o) ® (Qpa))
- _% (00 ® (O} ® O)) ® vec (O30 — Oa)') (vee (Q) ® vee () @ (Qpa))

- Z v [0y ® O] vee () (O ® Zf ® Z)) [vec (o) ® (Qoa)]
- - 203 21’561090610@109()3@5@9051
(U
_%,239/1090610@’1090 (O30 —O20) a =10
0

Finally,

3ptg

As = vee () ® vee (Qo)' @ (Qoa)’) ( dy.z ® Laz ) | vec [vec [B)y ® (©1007,)] (O ® Op)]

400

( )

= 3“2 { vee (Q)' @ vee (Q) ® (Qoa) ( dy,a2 @ Id2)
( )
[

1 (©10 ® O19) @ vec (O], ® (0100],)]
00

RITN

[ R S T |

vee (Q) @ vee (o)’ @ (Qoa)’) ( ds,z2 © Loz ) | (B10 © O10) ® O10 ® O10 ® O1o

407
RITN

P (Uec QQ ) ® vec (QQ)/ ® (Qoa)/ﬂ (©10 ®O10) ® O190 ® O19 ® Oy
0

Therefore,

24y {d’ [(IdQ ® Ka,.a, ® Idg) (vec (o) ® vee (o) ® (Qoa))}} i/LQ + % (do — dy),

as desired.
Part (b). We sketch the proof, starting with

21t {d’ [(Kd%dg ® Idg) (vec (£20) @ vec () ® (Qoa))} }

= %WC [(©10) ® (B20 — O30) ® (©100})] (Kdz.dg ® Idg) (vec (Qo) @ vee (o) @ (Qoa))
0

+Z—Ovec [(©10) ® Ouo ® (O30 — On0)]’ (ded% ® Idg) (vee () ® vee () ® (Qa))

—i—Z—Zvec (Kdz)dg [vec (O40) ® (O30 — O20) ® @’10]) (Kd%dg ® Idg) (vec (20) ®@ vee (o) @ (Qoa))

— 32 vee{vec (B & (O30 — Ox]) [ © Ool} (K2 © Lz ) (vee () @ vee (%) @ (a)
0

3 . ,
Lyec{vee (O ® ©10040) (1) ® O1p)} (Ka, 2 @ L) (vee () & vee () © ()
0

= By + B+ B3+ By + Bs.
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Now, with some abuse of notation, we write Ky, 42 = Zzﬂj (Eij ® E,’J) . So

B

- ;; (vee ()" ® vec () ® (Qa)’) (Kdg,d2 ® Idg) vec[(©10) @ (O — O30) ® (0100))]

= 2%28 3 (vee () @ vec () @ (Roa)’) (E ®E;® Idg> vee (O10) ® (O — O30) ® (©100),)]

B 570 > [vee (o) Eij @ vee () (Ej; © 1a;) @ (Q0a)] vee [(O10) ® (O20 = O20) ® (61000)]
ij

— %‘28 > [vec () Eij ® [(Eij ® Ia,) vee ()] @ (Qa)'] vec [(O10) ® (O20 — O30) ® (01007)]
i,

- 2/%128 - :W’C(QO)/ Lij @ vec <90E’2j)/ ® (Qoa)/} vec (010 ® (O20 — O30) @ (©100])]
i,

- 2/%‘28 > :veC(Qo)/ E;; ® vec (QOE;]*)/ ® (Qoa)/} (Id2 ® Ky 2 ® [d2>

x {vec[O10 ® (O20 — O30)] ® O10 ® O10}
12 [ /
= 27:28 vec (Q0) Eij @ vec (Q0E};) ]

i
X {(Idz ® Kdz,dz) (vec[O10 ® (B2 — O30)] ® 910)} (a’Q0010)

Ho
= Ttg 2 [vec (Q0) Eij @ vec (QE; ) Ky, dz}
X (Kdg,dz ® Id2 & Id2) [@10 X vec (@20 — @50) 024 @10] (3/90910) .

Plugging ©39 — Oy = Z‘Zil veZ¢E) into the above equation, we have

By
= 2[2'23 Uy |:U€C (Qo)/ E,J ® vec (QOE:J)/ K’dg,d§:| [Eg ROV R @10} (3/90@10)
0, 15,0
L —_ —_
= 2/;3 Uy {UEC (Qo)/ Eij:g ® vec (Q()E,/J)/ Kdg.d% {@10 QX @10}:| (a/Qo@lo)
0 R4

4 —_
= / 2 Z Uy LE’F QQ ,JH/@] [vec (Q()E,,/;j)/ {@10 &® @10 ® :g}:| (a’QOGm)
7.34

= ng vee () Ei;E] [0 E;; (010 @ ©10)] (a'QO10)

200 Y
= 20’8 ZU@ ._%E vec (Qo)] [._%Qou] (@10 &® @10)] (a/Q()@lo)
7,7,
4 I
= 2/028 Z vr [Zpujeivec (Q0)] [E0Q0u;] € (©10 ® O10) (a'QO10)
0,9,

= _F Zw [ (26E780) u;] [€; (O10 ® O10) vec (20)" ] ('€2O10)
0.0

- 2157'2 ((620 - 930) QO) (@/1090@10) (a’Q()@lO) = % (d2 _ d1> )
0
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Next, some tedious calculations show that

BQ
= —gQ E [vec (520)/ Eij ® vec (SZOE;]')/ oY (5203)/} vec [6)10 ® Oy ® (@30 _ @20)]
0=
,J

- g—z z [vec(Qo)/Eij ® vec (QoEéj)’ ® (Qoa)/} (Id2 ® Ky p2 ® Id2) (Kay.a, ® Iay ® I,)
i\

X [@19 ® vec (BO49) ® vec (B39 — O]
= Mz Z Voug [vec(ﬂo) Ei; ® {vec (QEL) KdQ.dg} ® (Qoa)'}
1,7,k
X {(Kdg,dz ® I4,) [O10 @ vec(B4)] @ Z; ® Ei}
' . - -
_ M2 Z Vo (vec(Qo)/Eij ® {vec (QOE;j)/Ad%d%D {(Kagy.ay ® I4,) [010 @ T © Ty @ Zi} (@' Q)

go . <
1,5,k.¢

(=)

_ M2 Z VU {vec (Q) Eij ® {vec (QOEQJ»)/ Kdz.,dgﬂ {(Tr®O100 1)) @ Ex} (2" QEk)

00

- K2 Z veuy, [vec Q) Ei; Y] vec (QE; ) Kq, a2 {010 ® Ty ® Z1} (2’ Q0ZER)

9o ,
_ M Z vevy [vec () Ei;To] vee (QE; ) {26 ® 010 @ T4} (' QEy)
o0,
= g_2 Z VgUy, vec QO) E”Td TgﬂoE (2 ® O10) (2’ Q)
0,
k.l
) Z VU vec(Qo) E”Td TKQOE (ErZELQ0a ® 010)
L] k.l
— 2—2 Zvec (Qo)’ Ez‘j@4OQ()E£j [(©30 — ©20)a® O1)] =0
B
/
= g—2vec ([(dg,d% [vec (©40) ® (O30 — O20) ® @/10]) ((K@,dg ® ng)) (vec (o) ® vee () ® (Qoa))
0
- g_2 Z VRt {vec (QO)/ Eij @ vec <QOE1/Z7'>/ ® (Qoa)/] (Id? ® Kay.dy ® Irl%) [Er®EL®0100 T, @Y/
0.4
i,7,k,¢
Ho / S\ R _
- 22 Z ULV [Uec(Qo) E;; @ vec (QE};) ® (Qoa) } 51 ® 010 ® 5, © T @ Ty
g0 i,7,k,¢
B 5_2 Z vive [a' QoY) [vec (Qo)" B Xy ] vec (QOEz(j)/ (O10® X, ®@Ye)
0.~
1,5,k 0
— % Z vrve [@'Qo Y] [vee (R0) EijZx] (0 ® Z) ® T)) vee (QE};)
0.~
i,9,k, 0
= 5_2 Z VEVy [algng] [vec (Qo)/ EijEk] T}QOEl/j (@10 X Ek,)
0.4
i,9,k.,0
] > ok [a' Q0] [vee () eaujZx] TyQou e (O10 @ )
oo .~
1,5,k 0
= Z_Za/QOG4OQO <630 - @20) QO@lO = 07
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and

B

= —%vec {vec (0] ® [O30 — O20]) [O]y @ O]} ((Kdg,dg ® Idg)) (vee () ® vee (o) @ (2ga))
0

_ M2 {U@C (Q0)' L;; ® vec (QOE:;;)/ ® (Qoa)/} vee {vec (015 ® (O30 — O2]) [0y ® O]}
i g,k

= Z V) {vec () E;; ® vec (QOE ) (Qoa)/} {10 ®0O10®O10 R, @ Z}
IJ k
Z vpvec (Q9) E;jO19vec (QOE ) (010 ® O19 ® Zp) (2" Q=)
ij.k

= Z vivec Qo) Ezg®10 [<HkQO ij (@10 & @10))] (a/Q()Ek)
i,5,k

!
— 2/ 23 Z vivec Qo) e @10 [(Z,Qouje; (O10 ® O10))] (a'Q =)
1] k

= 203 Z U@C Qo €il; @10 [ (@10 024 @10)] a/QO (@30 — @20) Qo’u,j =0.
0 i.j

The same derivation leading to A5 = % [ty gives us By = % o Combining the above results, we obtain

24tq {d’ (Kd%dg ® Idg) (vec (Q0) ® vec (o) ® (Qoa))} = Z,uz + 22 (dy — dy)

as stated.
Part (c) Using the definition of ¢ in Lemma 1, we can write

pac’ (20 @ Qo @ Q) ¢
1 )
= [oohevec (010 ® (0100])) (R ® Qo ® Q) vee (0 ® (0100)())
0

1 ,
—l—?/jg [vec (@/10 & [@30 — @20])]/ (Qo ® Qo ® Qo) vec (@/10 ® O30 — O)
0

1

——qHa [vec (074 ® [O30 — O20])] (R ® Qo ® Qo) vee (O], @ O100])
0

=C1+Co + Cg,

where

“ - 4lf7 vee (00 @ ©100%)" (2 ® Qo ® Q) vee (O ® O1004)
0

_ %‘8( 10® 600 ®0,) (2 ® U @ Q) (O10 ® O @ Or)

Ho / 3
= 5 (07,2010)
40§ 10
Ha
4 )
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and

Therefore

G2 = Z_;) [vee (01 © [B30 — Oa0))] (2 @ Qo © Qo) (O10 ® vee (O30 — Oap))

2 (g ql/2 1/2 _ 121"\ (1/2 , 1/2 _ 1/2
p < oS/ ® vee (4% (O30 — ©20) 4] > (2/%010 @ vee |24/ (B30 — ©20) 2% )
Z—g@’wﬁo@wvec [9(1)/2 (O30 — O2) 9(1)/2} / vec {Qém (O30 — Op) Qé/ﬂ

23010%000tr {25/ (B0 — 020) 21/ | [ 24/ (@30 — 020) 2]}

%@3090@10” {(©30 — ©20) Q0 (O30 — O20) Qo }

5—%6’1090@10 [tr (S0GHQy " Go) — 2tr (' GoXoGy) + tr(la,)]

’Of—é@’waoew [di — 2d + do)

Ho (d2 - dl) ;

1
C3 = *U—élb [vec (O ® [O30 — O20))] (2O 10 ® QO 19 ® 2 O1)
1
= —O_—é/L2 [UE,’C (6/10 024 [@30 - @20])]/ (G()E()R R GpXgR ® GoEoR)
1
= *;/QWC(I@)’ {[©10 ® (O30 — ©20)] ® 4, } (GoXoR ® GoXoR ® GoXoR) = 0.

0

1 ,
pac’ (0 @ Qo ® Qo) € ICREL (dy —dy).

Part (d) We write

/LZC/ (Kd27d2 ® Id2) (QO b2y Q0 & QO) C
1 /
fyvec (0 ® (010040)) (Kay.dy ® Ia,) (R0 @ Qo @ Qo) vee (O ® (01004))

40§
1

Jrp/lz [vec (019 @ [O30 — O20))] (Kay.ar @ Ia,) (R0 @ Qo @ Qo) vee (0hy @ Oz — O)
0
1

— gz [vec (O @ [Oz0 — 020))]" (K,d> ® Iay) (R0 @ Qp @ Q) vee (0 ® O100))
0

=Dy + Dy + D3,

where it is easy to show that

Dl = :u2/47

1 .
*FHQUEC(I@)/ {[©10 ® (O30 — ©20)] ® I, } (Kay.ap ® Lay) (GoXoR ® GoXoR @ GoXoR)
0

1
7;#21}66(Id2)/ {[@/10 ® (@30 - @20)] & 1,12} (G()E()R ® GoZOR & GoEoR) == 0,
0
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and

D, = Mg [0y ® vec (O30 — O20)'] (Kay.a, ® Lay) (R0 ® Qo ® Qo) (O10 ® vee (O30 — O2))

= Z gQ [@/10 ® vec (@30 — @20)/] (E,jj ® Ez/j & Idz) (QO & QO ® Qo) (@10 ® vec (@30 — @20))
0

4,

= Z Z2 [0 ® vec (O30 — O20)'] [(E:20010) ® (Ef;Q0 @ Qo) vee (O30 — Oa)]
0

©.J

— Z Z—g [@/10 ® vec (@30 — @20)/] [(E,JQ()Glo) ® vec (QQ (@30 — @20) QoE,J)]
0

1
= Z A 3 [ /10 (Eion) @10] vec (@30 - @20)/ vec (Qo (@30 - @20) QQEU)

99
= Z r [ 10 (Eij90) ©10] tr [(Q0 (O30 — O20) Q0 Eij (O30 — O20)')]

= Z ZZ [ /10 (E,JQ()) 610] tr [(@30 - @20) QQ (@30 — 620) QoE,J] =0.
0

4,

Hence,
o (K iy ® L) (Q0 ® Q0 @ ) e =12,

Parts (e) and (f) can be proved analogously and the details are omitted. m

A.3 Proofs of the Main Results

Proof of Theorem 2. The theorem follows from Lemmas A.9 to A.11. Note that some notational
changes are made to simplify the presentation. Let a = vec(Q,), b = vec(Qp), ¢ = vec(Q.), d =
vec(Qq) . Then p; . and k; o will not change if a;, by, c;,,d,, are replaced by a,b,c,d and the ‘vech’
operator is replaced by ‘vec’ operator. In fact, a =a; and b=Db;,. R

Proof of Proposition 3. Part (a) Some algebraic manipulations yield:

pl,oo = J—O Tlglclxj Ea STST [@10 X @40] hm Mvec (QT — QQ)]
= 3a 'Qp [0}y ® O] lim Mvec (Qp — Q)]
oo T—o0
— 2% 2994/00 [0y @ O0] vec(Q)
00

= —29,0/,204 @10/00

= gq@mQO@lO@on @10/00

R'S0GHQ AP 05 GoSoR
RIGy (GyY) R

Yq )

as stated.
Part (b) We start with the identity:

Proo = 2 ILII;O A—I;E (a’Sr) { "Tvec <QT - QT> ® ST]}
+2 lim. %E (a'Sy) {c/[vec (QT - QT) ® ST]} . (A.30)
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Using the BN decomposition as in Phillips and Solo (1992), we write
= We; + U4—1 — ¥,

where ¥ = >~ (W, and 0 is a stationary Gaussian process. Based on this decomposition, we can show
that the first term in (A.30) is

2T1£1;O %E (a’St) {c/[vec (QT - QT) ® ST]}

— N )/ ' y
= 2Th_r>nOo ]\[T Z Ec[vec (vpv) — Evgvy) @ (vpv),a)]

t,m,n=1

+2 lim m Z I{s#t}k ( ) Ec [vec (vsvy) @ (vmv,a)]

s,t,m,n=1

T
. 1 s—t / ,
= QTIE};O m E 1 {8 7é t} k < Vi ) FEc [Ut RUs ® (Uﬂﬂ)na)]

s, t,m,n=1

= 2 lim ﬁ Z 1{s #t}k( >Ec Ve, @ Ve, ® (Vep,e, V'a)l

s,t,m,n=1

_ 2nmi BERE #t}k(

/
A AT )Ec (Ve ® Ve, @ (Pegse,P'a))

T

1
+2 hm L S 1{s#t}k ( ) Ec [We; @ We, @ (Vere!,U'a)]
s,t=1
= A1 +A27
where
1 « s—1
_ - . / Iy
A = 2Thm T 2 1{s#t}k < i > Ec' (Ve @ Ve, @ Wege,¥'a)
1 < s—1
_ : - X / I/
= 2T1£1c1>C UT ggl 1{s#t}k < 7 ) Ec [Teei¥'a® Ve, @ Ve,
1 <& s—t
= <2 Tll—{rolc UT Sglk < i )) Ec [Wee;¥'a @ vee (Vesel W)
= 2u,¢" [Qoa @ vee(Q)]
and

Ay = 2 hm m Z 1{s#t}k ( ) Ec [(Te;) @ (Pey) ® (Perel U'a)]

T
— H - s—1 / /'y’
= 2Th_r>nOo UT g;l 1{s#t}k ( i ) Ec' [(Te) ® (Tege,U'a) @ (Pey)]
1 < s—1t
= 2 lim T 2 1{s#t}k ( i > Ec'Kgz 4, [(Pese,Wa) @ vec (Vere, W)

= 2" K3 4, [(Q0a) @ vee (Q)] .



Therefore

2 lim %E (a'Sr) { "Tvec (QT - QT) ® ST]} =2p,c’ (Idg + Kdg,dg) [(Qpa) @ vec(0)].  (A.31)

—){)O]\

In the rest of the derivations, we employ the BN decomposition as before. For notational convenience,
we simply identify v; with We;. For the second term in (A.30), we note that

§ | IT b o
O = 73> k(5 )uw)
t=1 s=1
| IT b e
- TZZA —w(GoVoGo) ™ VoTva
t=1 s=1
/
l — Wg GOVOGO) 1G/VO Zv
q 1
= Qr+ By + By + By,
where
1 I.T T -
B, = *T;;vw "VoGo(GyVoGo)™ Tg <]L[ >u/— 7
A ]79
By = - ZZ Zk( >wj [(G/%GO)AG&%]WW
t:1 s=1 J=1
1 & 1 & ~
Bs = TZZﬁ Zk< M )w (GoVoGo) ™ G Vouv VoGo (G VoGo) ™.

t=1 s=1 i=1 j=1

It is easy to show that

2
I
\
Nl
,Mﬂ

o
Il
—
*
Il
—

T
/ ! - ! !
v VoGo(GVoGo) ™" {T Zk <]\—[j)
< [j) u) — E?U }
1
) E?U } -+ Oq m (ﬁ) ’

where for a random matrix U, U = Oy, (1/\/_) stands for (E HU||2) =1/VT. Let

vtv;%Go(GéVoGo)*l { T 2

Sl
M
] =

o
Il
—
*
Il

s=1

I
Sl
\Mﬁ
rMﬁ

o
Il
—
*
Il
—

T
- —J
vtv;%Go(GéVoGo)*l T Z < i

Fo = VoGo(GuVoGo) Gy,
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Then

5 1 ZT ZT , 1 ZT t—j /

B = T t=1 s=1 vielo T j=1 " <_[> * Ogim (1/ T> ’

5 l e | 1 Jj—s Lo

b= FXY 7Y (57| Foveet + 0 (1VT)

V 1 ZT ZT 1 ZZT i— ]

Bs = T t=1 s=1 ﬁ i=1 j=1 " < M ) Févt’v;FO + Oq?m (1/ﬁ) '

Using the above results, we can write

T . -
2 lim HE( a'Sr) {c’[vec (QT — QT) ® ST]} =B, + B, +Bs,

T— o0
where
_ L o -
_ L L -
B, = -2 hm m t ;n Ec" | | vec (Fyuvl) T ;k <T> ® (vpvha) |,
and

T
t—J
Bo=2 tim o 3 5 [ et juatro) T—ZZ (52) ) & st

t,s,m,n
We proceed to compute By, B> and Bj, starting with

. t—j /
_leimoom Z Z < ) [(vec (viviFo)) @ (vmu)a)]

8, m,n

. 1 /
= ~2lim o Y- Z ( ) [(Fovs ® v) ® (vmvy,a)]

t,s,m,n

B,

T
. 1 1 t—
= -2 Thinc>o T E T E k <Z\—[]> [(Fo7/t Q) ® (Un”:;,a)]
L=

T .
. 1 1 / / !
2 377 27 1 () B w0 0 i)

-2 hm —

T .
1 t—
MT T E k < j) Ec [(Fyvs @ vy) ® (vsvia))

=B + B2+ B13,



where

T .
Ell = -2 Thj}clxy ]\[ Z Z < ) / [(F6Ut & vt) & (vﬂviz,a)]
T .
= 2y p Yk (57) B lectuntro) @ st
tn © j=1
= —2u,c" [vec (QF o) ® (Qoa)],
1
Bz = ”%E&mZ—Zk <z\—> ¢ (Fovha®u) @l
. 1
= —2%1_{1100 m "(FQ0a) @ vec()]
= —2uc [(FOQoa) ® vec(Qg)]
and
. 1 t 7,_7 IRy
BIS = -2 TILH;O m k ]\_[ C Kd%,dg [(Qoa) X vec (FQQO)]
t.J
= _2/‘L1C/Kd§,d2 [(Qoa) ® vec (FGQ())] .
So
By = —2u,c [vec(QoF o) ® Qoal — 2p,¢’ [F(Qoa @ vec(Qo)]
—2,¢' Kz 4, [(Q0a) ® vee (FQ)] -
Similarly,
1 1 t—37
By = -2 lim ==Y = k() B¢ (v @ Fue) @ (vav),a)

Ec [(vs @ Fovr) @ (vrvia)]

()
()
S LS () B0 6 i
(57)
( )

t,s Jj=1
T .
= —2 lim —Zle =y Ec [vec (Fyuvy) @ (vyv),a)]
Tooe MT £ T 1 o o
1 L~ (t=7\ o

2 57 L7 20 () Belvnta® Fow) o vl

—2 lim Lzlik =7 pe [(vs @ F yuivia) & vg)
T MT 4~ T M s ront :

= —2u,c" [vec (Fpo) ® (Qa)] — 2p1¢" [(Qoa) ® vee(QoF o)
—21,¢' K gz a, [(F 5Q02) @ vee (Q)]
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T
B= 2 gy 2 230k B e r o Guta)
1 1SN [t—j
= 2Jim S g 3k () B e ) @ (ot

T
1 t—
+2 hm m E 7 E k < 7 ) Ec' [(Fyvs @ Fyur) @ (vpvla)]

j=1
+2 lim L Z 1 zT: k <t;‘]> Ec' [(Fyvs ® Fu) ® (vsvia)]
U MT 2T 2"\ "M '
= 2 lim 1 Z 1 i k <t;‘7> Ec [vec (F yuviF o) @ (vyv),a)]
T—oo MT — T = M ' "

T
. 1 t—
+2 Tlgrcl>o UT ES T ]EZI k < i > Ec [(Fyvsvia® Fyur) @ vy

T .
. 1 1 t—7j 1t Lo
2l o 27 Lk <T> Be' (Fovs ® Fouivia) ® v
,S j=

= 2u,c [vec (FoQ0F o) @ (Qoa)] + 2p,¢’ [F5Q0a @ vee(QoF o)]
+241¢ Kz q, [(FoQ0a) ® vee (F Q)] -

Combining the above results yields

P2.00

= —=2u,c [vec (QoF o+ FoQ — FQoF o) @ (Q0a)]
+2p,¢" [(Qoa) ® vee (o) + (F Qoa) ® vee(QoF o)
—2p,¢ [(Qoa) @ vee(QoF o) + (FpQoa) ® vec(o)]
+2111¢' K gg 4, [(Q0a) ® vee (o) + (Fofoa) ® vee (F<)]
—241€" Kz g, [(Q0a) @ vee (F5Q0) + (FQ0a) ® vee ()] -

After some algebraic manipulations, we obtain
Proo = —2pic [vec(QoF o+ F Q0 — FoQoF o) ® (Qa)]
+24,¢' {Idg + K24, (1a, ® KdzAda)} {[I = Fo) (Qwa)] @vec[Q0 (I —Fo)l}-

Part (c) We first show that

Koo = 2fly {d/ {(Idg @ Kay.a, ® Idg) (vec () ®@ vee (Qo) @ (Qoa))} }

+24t9 {d’ (delg ® Idg) (vec (o) @ vee () ® (Qoa))}
+iac” (Q0 @ Qo @ Qo) €+ o (Kay.a, @ Lay) (o ® Qo @ Q) c. (A.32)
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The first term in k9 o i
2 lim —E(a’S){d’[vec(Q fQ)®vec(Q —Q)@S}}
7 M T ° T T ec ($p T T

= 2Thlr;c M'Tzz;é;;[z:kjs thi—j B {d [vec vsvt ®vec(vzv ®vg]v a}
s 1% £,m

. 1 / /
2 lim T2 ZZZkS,tki,jE {d' [vy ® vs ®v; @ V; ®ve]vy,a}

T—oo

s#t i#j £m
pr ) ) ). ) ) /
= QTIB;Omék B v @ vs @ v @ v ® vy ] V], a}
/
+2 hm m Zk B v @ vs ® v @ vy @ vy ] )8t
= C; +Cy,
where
Co= 2m o7 ; k2 EAd [vr ® (vs @ v) @ vs @ v v}
_— / ). ) )
= 2T1£1;0m§k LA v @ Kgy 4, (0 @ ) @ 05 @ vpv),a]}
. 1
= 2T1£1;O UT ;A LA [Tg,vr @ Kay.a, (v @ vs) @ v @ vpv),a] b
- 2Th—r>%o m ; k2 EAd (Lo, ® Kay.a,) (vt ® v ® 05) © 05 @ vy, al}
= 2 lim Lz;g E{d/ [(Id ® Kay.a ®Idz)(vt®vt®v ® Ve ® U, a)]}
T—oo A[T - s—t 2 2,02 3 S S mYYm
1
= <2/ kQ(I)dx) {d’ [<1d2 ® Kay.d, @ Idg) (vec (2g) ® vee () ® Qoa)} } ,
—1
and
1
Co = 2 lim —— Z k2 EA{d vy @ v, @ vs @ vy @ v 0], ak
T—oo MT o
= 2Th_r)1;o m Z k2 { [Kd%d% (vec (o) @v) @ v ® Qoa} }
1
= (2 /71 kQ(I)dl’) {d/ (Kd%d% ® Idg) (vee (o) ® vee (o) ® Qoa)} .
Therefore,

2 Tlglio %E (a'St) { d’ [Uech (QT - QT) ® vech (QT - QT) ® ST} }

_ (2 | /_1 kQ(g:)d:r,> {d’ [(Idg ® Kipdy ® [d%) (vee () ® vee () ® Qoa)}}

+ (2 /_11 k2(ai)dx> {d’ (Kdz,dg ® Idg) (vee () @ vee () @ Qoa)} _
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The second term in kg o is

i T e e - 0r) o))

. 1
= e hz ZZ kin—ike—mE {c’ [vp ® v; ® vj] [vg ® vy, ® vy ] e}
Ji, &ymyn

. 1
= Jim g S KB o n ey ool o] e)
2y

Z ki _E{c [ ®v; @ v)] [V} @), ® vj] e}
hyinj

+ 1 !
im —
T—oo MT?

= D+ Dy

where

. 1
B= i g D o n e [ e o]

(/11 kzz(m)dx> ¢ (2 ® Q@ ) e

1
MT?

D, = Tlglgo Z ki E{c [, ®v; ®vj] [v] @ v}, ® v;] c}

h.i,j

D kB Ky a, (vi @ vn) @ )] [ @ v, @ 0] ¢}
h,i,j

> ki EB{c (Kaya, © 1a,) (v @ vi) @ v5) [v] ® v, @ 0] ¢}
hoing

= lim L
o T— o0 AITQ

I 1
= 1m ——-
T—oo MT?

1
= (/ kQ(l’)dfC> c (Kd27d2 X IdQ) (Qo ® Qy ® QO) C
—1

Therefore

. T , ~ = 2
TILII;O EE [c <1}ech (QT — QT) ® STH

= </ k:Q(x)da:> c (Q®QN)c

J—1

+ </1 kz(l‘)d$> c (Kdz,dz X Idz) (QO ® Qo ® Qo) C. (A34)

Combining (A.31), (A.33), and (A.34) yields equation (A.32). This equation, combined with Lemma
A.12, leads to the stated result.
Part (d) In view of Lemma A.12, it suffices to show that

Koo — 0K 0o = 12#20/ [Qo ® Qo ® (Qoaa/Qo)] c
—|—12[1,2C/ (Kd27d2 X IdQ) [QQ X QO X (Qoaalﬂo)} C. (A35)
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First,

4Th—>ncl>o %E (a'St ) {d/ [vech (QT — QT) ® vech (QT — QT> ® ST} }

= 1 o ! . ) . F oo 1
= T]gnoo W Z Z Z ks—iki; E{d [v; ® vs ® v @ v; @ vp] vypav,,av, a}

st h,,j€mmn

= lim ]\[szzzk EAd [ @ vs @ v @ vs @ vp) vjav),av,at

T— o0
s;t h fmmn

s s v/ !/ /
Téoo ]\[T3 ;Z/Z k2 EAd v @ vs @ vs @ vy @ vp] vpav), avl,a}
= El + E27
where
E, = 4Tlme A[T3 ;%k LA v @ vs ® v @ v ® v vpav,, av), al
+4 hm ]\[T3 ; ; k2 EAd v @ vs @ v @ vy ® vy, vjav), avial
+4 hm ]UT3 §;k LA [ @ vs @ vy ® vs ® vy, vl av), av)al
= 12u,d’ [(Id2 ® Kay ., ® Idg) vec (o) @ vee (o) @ Qoa} (a'Qa),
1
B = 4 Sy DS KB 6 0 v a)
. 1
+4 Tlglclx3 UTE ; ZZ k2, E{d [v ® v, ® v, ® vy @ vy vpav,, avjal
: 1 2 / / ! !
+4 Tlgr;o TS ; ; ki E{d [ ® vs @ vs @ vy @ vy v, av,,av, a}
= 12u,d’ [(Kd2,d§ ® Id§> (vec (Qp) @ vee (o) ® Qoa)} (a'Qoa).
Second,
T , ~ _ 2
6 hm HE (a'Sr) {c [vech (QT - QT) ® ST]}
= 6fim =S Y ke B o ® v @ ][0 @ o), @ vl o (a'v) aly)
o,p h,i,j,£,m,n
= I+ FQ:«
where
1
Fio= 6Jim == > ki E{c [n®vi @] [v, @ vj @ v} (a'v,) (alvy)

o,p h,i,j,n

. 1
6 lim TS Z Z ki, E{c (R ®Q @ Q) c}(a'Qa)

o,p h,i,jn

+12 11m W Z ky_E{c [on ® v; @ vvfa] v, @ v @ a'v,;,] ¢}

h,i,j,n

= 6,U,QC/ (QO &® QO X QQ) C (a’Qoa) + IQIU,QC/ [QQ X QO &® (Qoaa/Qo)} C
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and

1
2= 60 377

, 1
= 6 lim —m

o> ki E{ @ v @ vl [vj @ v, @ )] e} (a'v,) (a'vy)

o,p h,i,j,n

SN B E (Kaas © L) (05 © ) @ 1) [v] @ 0, @ v} } (a',) (avy)

o,p h,i,j,n

6p12€” (K, ® Lay) (Qo @ Qo ® Qo) € (a'Q0a)
+12u20' ( ’d27,12 (039 1,12) [QO X QO (039 (Qoaa'Qo)] C.

Combining the above results completes the proof. B
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