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Abstract

This paper studies the optimal provision mechanism for multiple excludable public goods

when agents�valuations are private information. For a parametric class of problems with bi-

nary valuations, we characterize the optimal mechanism, and show that it involves bundling.

Bundling alleviates the free riding problem in large economies in two ways: �rst, it can increase

the asymptotic provision probability of socially e¢ cient public goods from zero to one; second,

it decreases the extent of use exclusions.
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1 Introduction

This paper studies the optimal provision mechanism for multiple excludable public goods, and

shows that bundling is an important feature of the constrained e¢ cient mechanism.

�Bundling� refers to the practice to sell several goods together as a package deal, as opposed

to providing each good separately. This is a common selling strategy, and there is a quite large

literature on the topic, which almost exclusively focuses on private goods.1 If the technology exhibits

constant or decreasing returns to scale, bundling of private goods can be rationalized as a scheme

to improve the extraction of surplus from consumers by a seller with market power. However,

regardless of whether preferences are private information or not, the normative recommendation in

such an environment, simple marginal cost pricing, does not involve bundling.

To motivate the importance of a better understanding of bundling of non-rival goods, we note

that many goods that are provided in bundles are close to fully non-rival. A striking example is

access to electronic libraries, for which the typical contractual arrangement is a site license that

allows access to every issue of every journal in the electronic library. Another obvious example

is cable TV. Technologically, it would be feasible to allow customers to choose whatever channels

they are willing to pay for without constraints. In practice, the basic pricing scheme consists of a

limited number of available packages. While some programming is available on a per channel or

pay-per-view basis, the bundled channels are simply not available in any other way than through

their respective bundles. Other examples include computer software and digital music �les. All

these examples have in common that the pros and cons of bundling for the consumer have been

frequently debated by the media, legal scholars, and in the courtroom. Still, there are virtually

no attempts in the academic economics literature to build a normative benchmark that explicitly

considers the public nature of these goods.2

We consider a model with m excludable public goods: the goods are fully non-rival, but con-

sumers can be excluded from usage. Each consumer is characterized by a valuation for each good,

and the willingness to pay for a subset of goods is the sum of the individual good valuations. The

cost of provision for each good is independent of which other goods are provided. Under these

separability assumptions, the �rst best benchmark is to provide good j if and only if the sum

of valuations for good j exceeds the provision cost and exclude no consumer from usage. Under

perfect information there is thus no role for either bundling or use exclusions.

In this paper we assume that preferences are private information to the individuals. Consumers

must therefore be given incentives to truthfully reveal their willingness to pay. We also assume

that consumers may decide not to participate, and that the provision mechanism must be self-

�nancing. Finally, we assume that the preference parameters are stochastically independent across

individuals. Together, these assumptions make it impossible to implement the (non-bundling)

1An exception is Bakos and Brynjolfsson [6].
2However, see Bergstrom and Bergstrom [7] who discuss site licenses for academic journals.
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perfect information social optimum.3

The �rst part of the paper considers a relatively general setup, and characterizes the form of

optimal provision mechanisms in symmetric environments. We then exploit these results for a

special case where we obtain an exact characterization of the constrained e¢ cient mechanism. This

special case is when there are two public goods, valuations for each good are binary, and the goods

are symmetric both with respects to costs of provision and joint valuation distributions. While this

is obviously a very special case, the results are suggestive, and the methodology may be useful for

more general (symmetric) multidimensional screening problems.

There is an element of bundling in the constrained e¢ cient mechanism whenever valuations

are not too positively correlated. The best intuition for this probably comes from considering

results in McAfee et al [18] together with the more recent literature on e¢ cient provision of (a

single-dimensional) excludable public good. We know from McAfee et al [18] that introducing

the bundling instrument increases the pro�ts for a monopolist that is restricted to �xed-price

mechanisms. By results in Hellwig [14] and Norman [21] we also know that, in the case with a

single good, the constrained welfare problem has a Lagrangian characterization. This problem may

be interpreted as maximizing a weighted average of social welfare and pro�ts, where the relative

weights come from the Lagrange multiplier on a �zero pro�t constraint.� Given these links between

constrained e¢ ciency and a standard monopoly problem it seems highly plausible that the logic in

McAfee et al [18] should carry over to our problem.

Concretely, bundling works as follows in the optimal mechanism. All agents get access to any

good for which he or she has a high valuation. If valuations of the two goods are not too positively

correlated, a �mixed type� is always more likely to get access to his or her low-valuation good

than is an agent with low valuations for both goods. In some cases, this di¤erential treatment

leads to a drastic improvement compared to the best that can be achieved without bundling. For

many parametrizations, the probability of provision tends to zero if bundling is not used, whereas

bundling makes it possible to provide with probability one. Moreover, even when the goods may

be provided without bundling, the proportion of agents that get access to the goods is higher under

the optimal bundle mechanism.

It is important to note that, while the existing literature on bundling (of private goods) focuses

on how bundling relaxes the informational constraints and improves sellers�revenue, we derive a

constrained e¢ cient mechanism that involves bundling in the public good setting. In the models

used in the existing literature, the pro�t maximizing bundling mechanism is dominated by marginal

cost pricing in terms of social e¢ ciency, and could be trivially implemented.

The remainder of the paper is structured as follows. Section 2 presents the model and some

3All these restrictions are essential. Removing either the voluntary participation or the self-�nancing constraint

makes it possible to construct pivot-mechanisms that implement the �rst-best. If we allow correlation in valuations,

a version of the analysis in Cremer and McLean [10] can be used to implement the e¢ cient outcome.
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characterization results. Section 3 introduces the special case when valuations are binary and

demonstrates by example that a (pure) bundling mechanism may improve e¢ ciency. Section 4

characterizes the optimal mechanism for this special case, and compares our characterization with

existing results in the literature, and Section 5 concludes. Proofs are collected in the Appendices.

2 The Model

This section lays out a fairly general model (Section 2.1). The set of randomized direct mech-

anisms is represented in a somewhat nonstandard, but useful, way (Section 2.2), before setting up

the mechanism design problem (Section 2.3). We then gradually show, sometimes with additional

restrictions on the environment, that it is without loss of generality to consider a smaller and more

tractable class of simple, anonymous and symmetric mechanisms (Sections 2.4 and 2.5). The main

results of this section are Propositions 1 and 2, which are used in later Sections to reduce the

dimensionality of the design problem.

2.1 The Environment

There are m excludable public goods, labeled by j 2 J = f1; :::;mg and n consumers, indexed
by i 2 I = f1; :::; ng. Each public good is indivisible, and the cost of providing good j, denoted
Cj (n), is independent of which of the other goods are provided. Since n is the size of the economy

and not the number of users, all goods are fully non-rival. The rationale for indexing cost by n is

to be able to analyze large economies without making the public goods a free lunch in the limit.

We therefore allow for the existence of cj > 0 such that limn!1Cj (n) =n = cj > 0. There is no

need to give this assumption any economic interpretation. It is best viewed as a way to ensure that

the provision problem remains �signi�cant�with a large number of agents.

Consumer i is described by a vector �i =
�
�1i ; :::; �

m
i

�
2 � � Rm; where �ji is interpreted as i

0s

valuation for good j: Agent i has preferences represented by the utility function,X
j2J

I
j
i�
j
i � ti; (1)

where Iji is a dummy variable taking value 1 when i consumes good j and 0 otherwise, and ti is

the quantity of the numeraire good transferred from i to the mechanism designer. Preferences over

lotteries are of expected utility form. One could imagine more general utility functions than (1),

but the linear formulation (also used by Adams and Yellen [1], McAfee et al [18], and Manelli and

Vincent [17]) has the advantage of ruling out bundling due to complementarities in preferences.

The preference vector �i is private information to the agent, and preferences are independently

and identically distributed across agents. We denote by F the joint cumulative distribution over

�i. Valuations across goods may be correlated for the individual agent. For brevity of notation,
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we let � � (�1; :::; �n) 2 �n; which will be referred to as a type pro�le. In the usual fashion, we let
��i = (�1; ::; �i�1; �i+1; :::�n) and, with some abuse of notation, we write F (�) � �i2IF (�i) and

F (��i) � �k2IniF (�k) as the joint distribution of � and ��i respectively.

2.2 Randomized Direct Mechanisms

In general, the outcome of any mechanism must determine: (1). Which goods, if any, should be

provided; (2). Who are to be given access to the goods that are provided; and (3). How to share

the costs. The set of feasible pure outcomes is thus

A = f0; 1gm| {z }
provision/no provision
for each goods j

� f0; 1gm�n| {z }
inclusion/no inclusion

for each agent i and good j

� Rn| {z }
�taxes�

: (2)

By the revelation principle, we restrict attention to direct mechanisms for which truth-telling is

a Bayesian Nash equilibrium. A pure direct mechanism is a map from �n to A: We represent a

randomized mechanism in analogy with the representation of mixed strategies in Aumann [5]. That

is, let � � [0; 1] ; and think of # 2 � as the outcome of a �ctitious lottery, where, without loss of
generality, # is uniformly distributed and independent of �: A random direct mechanism is then a

measurable mapping G : �n��! A. A conceptual advantage of this representation is that it allows

for a useful decomposition.That is, we may write G as a (2m+ 1)-tuple, G = (
�
�j
	
j2J ;

�
!j
	
j2J ; �)

where,

Provision Rule: �j : �n � �! f0; 1g

Inclusion Rule: !j : �n � �! f0; 1gn (3)

Cost-sharing Rule: � : �n ! Rn:

We refer to �j as the provision rule for good j, and interpret E��j (�; #) as the probability of

provision given announcements �: The rule !j =
�
!j1; :::; !

j
n

�
is the inclusion rule for good j; and

E�!
j
i (�; #) is interpreted as the probability that agent i gets access to good j when announcements

are �; conditional on good j being provided. Finally, � = (�1; :::; �n) is the cost-sharing rule, where

� i (�) is the transfer from agent i to the mechanism designer given announced valuations �. In

principle, transfers could also be random, but the pure cost-sharing rule in (3) is without loss of

generality due to risk neutrality.

4



2.3 The Design Problem

Let E�i denote the expectation operator with respect to (��i; #) : A mechanism is incentive

compatible if truth-telling is a Bayesian Nash equilibrium in the revelation game induced by G;

E�i

24X
j2J

�j(�; #)!ji (�; #)�
j
i � � i(�)

35 � E�i
24X
j2J

�j(b�i; ��i; #)!ji (b�i; ��i; #)�ji � � i(b�i; ��i)
35 ;

8i 2 I; � 2 �n;b�i 2 �: (IC)

We also require that the project be self-�nancing. For simplicity, this is imposed as an ex ante

balanced-budget constraint:4

E

0@X
i2I

� i (�)�
X
j2J

�j (�; #)Cj (n)

1A � 0: (BB)

Finally, we require that a voluntary participation, or individual rationality, condition is satis�ed.

Agents are assumed to know their own type, but not the realized types of the other agents, when

deciding on whether to participate. Individual rationality is thus imposed at the interim stage as,

E�i

24X
j2J

�j(�; #)!ji (�; #)�
j
i � � i(�)

35 � 0; 8i 2 I; �i 2 �: (IR)

A mechanism is incentive feasible if it satis�es (IC), (BB) and (IR). Utility is transferable, implying

that constrained e¢ cient allocations may be characterized by solving a utilitarian planning problem,

where a �ctitious social planner seeks to maximize total surplus in the economy, subject to the

constraints (IC), (BB) and (IR). A mechanism is thus constrained e¢ cient if it maximizesX
j2J

E�j(�; #)

"X
i2I

!ji (�; #)�
j
i � C

j (n)

#
; (4)

over all incentive feasible mechanisms.5

It is ex post e¢ cient to provide good j if and only if
P
i2I �

j
i � Cj (n), and to never exclude

any agent from usage, which is the same rule as the �rst best rule for a single public good. This is

implementable if and only if a non-excludable public good can be e¢ ciently provided under (IC),

(BB) and (IR). But, this is only possible in trivial cases (Mailath and Postlewaite [16]). Our setup

is thus a second best problem.
4The ex ante constraint (BB) is literally relevant only when the designer can access fair insurance market against

budget de�cits. However, adapting standard arguments (see Mailath and Postlewaite [16] and Cramton et al [9]), one

can show that any allocation implementable with transfers satisfying (BB) is also implementable with a transfer rule

that satis�es the ex post balanced-budget constraint (i.e. feasibility for every realization of �). The idea is simply

that, since agents are risk-neutral, the insurance against budget de�cits can be provided by the agents.
5All these constraints are noncontroversial if the design problem is interpreted as a private bargaining agreement.

If the goods are government provided, the participation constraints (IR) may seem questionable. One defense in this

context is that the participation constraint is a reduced form of an environment where agents may vote with their

feet. Another defense is to view this as a reduced form for inequality aversion of the planner. See Hellwig [13].
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2.4 Simple Anonymous Mechanisms

To simplify the analysis, we �rst exploit the symmetry and linearity of the constraints and the

objective function. This allows us to reduce the dimensionality of the problem:

De�nition 1 A mechanism is called a simple mechanism if it can be expressed as (2m+ 1)-tuple

g = (
�
�j
	
j2J ;

�
�j
	
j2J ; t) where for each j 2 J ;

Provision Rule: �j : �n ! [0; 1]

Inclusion Rule: �j : �! [0; 1] (5)

Cost-sharing Rule: t : �! R;

�j is the provision rule for good j, �j is the inclusion rule for good j (same for all agents), and t

is the transfer rule (also same for all agents).

There are a number of simpli�cations in (5) relative to (3). First, inclusion and transfer rules

are the same for all agents; second, conditional on �; the provision probability �j (�) is stochasti-

cally independent from all other provision probabilities, and all inclusion probabilities; third, the

inclusion and transfer rules for any agent i are independent of the realization of ��i; and fourth,

all agents are treated symmetrically in terms of the transfer and inclusion rules.

Symmetry in inclusion and transfer rules is built into the notion of a simple mechanism, but

(5) allows provision rules to treat agents asymmetrically. We therefore need a de�nition to express

what it means for the index of the agent to be irrelevant:

De�nition 2 A simple mechanism is called anonymous if �j (�) = �j
�
�0
�
for every j 2 J , every

� 2 �n; and every �0 2 �n that can be obtained from � by permuting the indices of the agents.

We now show that focusing on simple anonymous mechanisms is without loss of generality:

Proposition 1 For any incentive feasible mechanism G of the form (3), there exists an anonymous
simple incentive feasible mechanism g of the form (5) that generates the same social surplus.

Consequently, the remainder of this paper only considers simple anonymous mechanisms. The

idea is roughly that risk neutral agents care only about the perceived probability of consuming each

good and the expected transfer. Therefore, there is nothing to gain from conditioning transfers

and inclusion probabilities on ��i, or by making inclusion and provision rules conditionally depen-

dent. Mechanisms of the form (5) are therefore su¢ cient. Moreover, given an incentive feasible

mechanism, permuting the roles of the agents leaves the surplus unchanged and all constraints sat-

is�ed. An anonymous incentive feasible mechanism that generates the same surplus as the initial

mechanism can therefore be obtained by averaging over the n! permuted mechanisms.6

6The actual proof is a bit more complex than simply randomizing with equal probabilities over the n! permutations.

The reason is that inclusion and provision probabilities are potentially correlated.
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2.5 Symmetric Treatment of the Goods

Our next result, on which we rely heavily in Sections 3 and 4, identi�es conditions under which

it is without loss of generality to treat goods symmetrically. Obviously, the underlying environment

must be symmetric, and we formalize this by assuming that �i =
�
�1i ; � � � ; �mi

�
is an exchangeable

random variable, that is F (�i) = F
�
�0i
�
whenever �0i is a permutation of �i; and that there exists

C (n) such that Cj (n) = C (n) for all j:

Given valuation pro�le � and a one-to-one permutation mapping P : J ! J of the set of goods,

let �Pi denote the permutation of agent i
0s type by changing the role of the goods in accordance to

P : that is, �Pi =
�
�
P�1(1)
i ; �

P�1(2)
i :::; �

P�1(m)
i

�
; where P�1 denote the inverse of P . For simplicity,

write �P �
�
�P1 ; :::; �

P
n

�
as the valuation pro�le obtained when the role of the goods is changed in

accordance to P for every i 2 I.

De�nition 3 Mechanism g is symmetric if for every � and every permutation P : J ! J :

1. �P
�1(j)

�
�P
�
= �j (�) for every j 2 J ;

2. �P
�1(j)

�
�Pi
�
= �j (�i) for every j 2 J ;

3. t
�
�Pi
�
= t (�i) :

In de�ning a symmetric mechanism, the same permutation of goods must be applied for all

agents. As an example, suppose that there are two agents and two goods, and that the valuation

for each good is either h or l: In this case � = f(h; h) ; (h; l) ; (l; h) ; (l; l)g. Consider the type pro�le
� = (�1; �2) = ((h; l) ; (l; h)) 2 �2: Applying the only non-identity permutation of the goods, i.e.,
P (1) = 2 and P (2) = 1; to all agents generates a type pro�le �P =

�
�P1 ; �

P
2

�
= ((l; h) ; (h; l)) :

De�nition 3 requires that the allocations for type pro�le ((l; h) ; (h; l)) is the same as the allocation

for ((h; l) ; (l; h)) with goods relabeled, and that transfers are unchanged.7 The result is:

Proposition 2 Suppose that �i is an exchangeable random variable and that there exists C (n) such

that Cj (n) = C (n) for all j 2 J : Then, for any simple anonymous incentive feasible mechanism
g; there exists a simple anonymous and symmetric incentive feasible mechanism that generates the

same surplus as g:

The idea is similar to that of Proposition 1, except that it is the role of the goods that are

permuted. Consider the case with two goods, and suppose that the two goods are treated asym-

metrically. Reversing the role of the goods, an alternative mechanism that generates the same
7 If we were to apply di¤erent permutations for the two agents, e.g., applying the identity permutation for agent

1 and the non-identiy permutation for agent 2, then we would obtain a pro�le ((h; l) ; (h; l)), which is a qualitatively

di¤erent from either ((h; l) ; (l; h)) or ((l; h) ; (h; l)) : In the pro�le ((h; l) ; (h; l)) ; both agents have low valuations for

good 2 and high valuations for good 1, whereas, in the pro�les ((h; l) ; (l; h)) or ((l; h) ; (h; l)) ; one and only one agent

has high valuation for both goods.

7



surplus is obtained. Averaging over the original and the reversed mechanism creates a symmetric

mechanism where surplus is unchanged.8 Incentive feasibility of the new mechanism follows from in-

centive feasibility of the original mechanism. Proposition 2 generalizes this procedure by permuting

the goods (m! possibilities) and creating a symmetric mechanism by averaging over these.

3 The Model with Binary Valuations

Assume that there are two public goods, and that the valuation for good j can either be �high�

(�ji = h) or �low� (�ji = l). For notational brevity we henceforth write the typespace for an

individual as � = fhh; hl; lh; llg ; and assume that �i is independently drawn from an identical

joint distribution over � according to probability distribution � = (�hh; �hl; �lh; �ll) 2 �4: To

apply Proposition 2, we assume that the goods are symmetric, so that �hl = �lh � �m and

C1 (n) = C2 (n) = cn:9 For future reference, let � � �hh + �m be the marginal probability that

an agent�s valuation for a public good is h: To keep the problem non-trivial, we also assume that

l < c < h.

Appealing to Propositions 1 and 2, we only consider simple anonymous mechanisms that treat

the two public goods symmetrically. For each � 2 �n � fhh; hl; lh; llgn ; let x � (xhh; xhl; xlh; xll)
denote the number of agents announcing di¤erent types, and let

Xn =
n
x 2 f0; :::; ng4 : xhh + xhl + xlh + xll = n

o
: (6)

be the set of possible values of x in an economy with n agents. Anonymity means that the provision

rule depends only on the number of agents who announce di¤erent valuation combinations. With

some notational abuse, it is thus without loss of generality to consider mechanisms of the form

M =
�
�1; �2; �; t

�
(7)

where �j : Xn ! [0; 1] for j = 1; 2; � � (�hh; �hm; �lm; �ll) 2 [0; 1]
4 and t � (thh; tm; tll) 2 R3. That is,

Proposition 1 states that inclusion probabilities without loss can be independent of types of other

agents. Because of symmetric treatment of the goods (Proposition 2), it is su¢ cient with a single

inclusion probability �hh; which is the probability of access to both goods for type hh: For the same

reason it is enough with a single inclusion probability for type ll: For types hl and lh, �hm is the

probability for access to the high valuation good, and �lm is the probability for access to the low

valuation good, where again the symmetric treatment comes from Proposition 2. The argument

for the cost-sharing follows the same lines, only a bit simpler.

Symmetric treatment of the goods also has implications on how �1 relates to �2 which are used

in Section 4.1 to simplify the incentive constraints.
8Provision probabilities and taxes are given by straightforward averaging, but since inclusion and provision prob-

abilities may be correlated the procedure is somewhat more involved for the inclusion rules.
9Keeping the per capita costs constant simpli�es notation, but is not necessary.
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3.1 Optimal Separate Provision Mechanisms

As a benchmark, this section derives the asymptotic provision probabilities of the two public

goods when the provision problem for each public good is considered in isolation. Proposition 1

applies also to the case with a single good, which for the binary case means that the provision

rule may be taken to depend only on the number of agents who announce a high valuation. To

emphasize that the solution depends on the size of the economy, we denote a separate provision

mechanism for good j in an economy of size n as a triple (�jn; �
j
n; t

j
n), where �

j
n : f1; :::; ng ! [0; 1]

and �jn (�) denotes the probability of provision if � agents announce a high valuation for good j;

�jn 2 [0; 1] is the inclusion probability for type l and tjn = (tjn(h); tjn(l)) are the transfers.10

To �nd the best provision mechanism where goods are provided separately is formally the same

problem as �nding the best provision mechanism when there is only a single good. Maximizing

social surplus subject to the single-good analogues of (IC), (BB) and (IR) in Section 2.3 one obtains

the following characterization of the constrained optimal separate provision mechanism:

Proposition 3 Consider a sequence of economies of size fng1n=1 : Then,
(1) if �h < c; lim

n!1
E�jn (�) = 0 for any sequence of feasible separate provision mechanisms

n
�jn; �

j
n; t

j
n

o
;

(2) if �h > c; lim
n!1

E��jn (�) = 1 for any sequence of constrained optimal separate provision mecha-

nisms
n
��jn ; �

�j
n ; t

�j
n

o
: Moreover, any sequence of constrained optimal mechanisms satis�es

lim
n!1

��jn =
�h� c
�h� l ; lim

n!1
t�jn (l) =

�h� c
�h� l l; and lim

n!1
t�jn (h) =

�
1� �h� c

�h� l

�
h+

�h� c
�h� l l:

The result is a two-type analogue to Propositions 2 and 3 in Norman [21], and we only provide

a heuristic explanation.11 The key idea is that the incentive constraint for the high type

E
h
��jn (�) j�

j
i = h

i
h� t�jn (h) � E

h
��jn (�) j�

j
i = l

i
��jn h� t�jn (l); (8)

may be replaced by

E��jn (�)h� t�jn (h) � E��jn (�) ��jn h� t�jn (l); (9)

since the probability that agent i is pivotal for the provision decision is negligible in a large economy.

Moreover, the participation constraint for the low type binds, implying that t�jn (l) = E�
�j
n (�) �

�j
n l:

Because (8) binds in the optimal mechanism, budget balance requires that, approximately,

E��jn (�) c = �t�jn (h) + (1� �) t�jn (l) � �
�
t�jn (l) + E�

�j
n (�)h

�
1� ��jn

��
+ (1� �) t�jn (l)

= t�jn (l) + �E�
�j
n (�)h

�
1� ��jn

�
= E��jn (�)

�
��jn l + �h

�
1� ��jn

��
: (10)

10Exclusions of type h agents are also feasible, but never occur in an optimal mechanism, since excluding type h

tightens the downwards incentive constraint for h:
11Details available on request from the authors.
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Hence, ��jn � (�h� c) = (�h� l) follows from (10). Inspecting (10), it follows that limn!1 E��jn (�) =
0 if �h < c (since the bracketed expression is maximized at either l or �h and l < c by assump-

tion). Otherwise the budget balance constraint must be violated for large n: On the other hand, if

�h > c; it is feasible to provide for sure (for any n) with the transfers speci�ed in Proposition 3,

and inclusion probability ��1 � (�h� c) = (�h� l) : Conditional on this inclusion probability, the
ex post e¢ cient rule is to provide public good j whenever �

nh +
n��
n ��1l � c. An application of

Chebyshev�s inequality guarantees that

plim
�
�

n
h+

n� �
n

��1l

�
= �h+ (1� �) �h� c

�h� l l > �h > c:

Thus, the ex post e¢ cient provision rule conditional on the given inclusion probability converges

towards �always provide.�Hence limn!1 E�
�j
n (�) = 1 in the optimal mechanism. The limits for

the transfers can then be obtained by substituting limn!1 E�
�j
n (�) = 1 back into the incentive and

participation constraints.

The optimal separate provision mechanism characterized in Proposition 3 is bounded away from

�rst best e¢ ciency. First of all, the asymptotic provision probability is zero when �h < c while

e¢ ciency requires provision whenever �h + (1� �) l > c: Moreover, when �h > c; there is still a

distortion due to positive probability of exclusion of low valuation agents.

3.2 E¢ ciency Gains From Bundling

Before deriving the constrained optimal mechanism, we consider an example that shows that

bundling can lead to provision for sure, even though the best separate provision mechanism has an

asymptotic provision probability equal to zero.

Suppose that �h + (1� �) l > c, so that provision is desirable in a large economy with a

probability near one. Consider mechanism

thh = tm = h+ l; and tll = 0

�hh = �hm = �lm = 1; and �ll = 0 (11)

�1 (x) = �2 (x) = 1 for all x 2 Xn:

That is, agents of type hh; hl and lh are taxed the willingness to pay of a mixed type and consume

both goods for sure. Type-ll pays nothing, but is excluded from usage from both goods. All

incentive and participation constraints are trivially satis�ed by mechanism (11). The only question

is thus whether the feasibility constraint (BB) is satis�ed, that is, if

Pr [fhh; hl; lhg] (h+ l) = (�hh + 2�m) (h+ l) � 2c; (12)

holds. It is easy to show that:

Claim 1 For any c > 0; and (�hh; �m; �m; �ll) 2 �4 such that �m > �hh�ll= (1� �ll), there exist
pairs (h; l) with h > c > l such that (12) is satis�ed, and at the same time (�hh + �m)h < c:

10
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Figure 1: The Bundling Mechanism Outperforms Optimal Non-bundling Mechanism in the Shaded Region.

The set of the values of h and l for which (11) outperforms the best separate provision mechanism

are depicted as the shaded region in Figure 1. It is easy to see that the shaded region will be non-

empty as long as the line �h = c is above point C in Figure 1. Point C has a coordinate of

(h; l) = (2c= (�hh + 2�m)� c; l) : Thus �h� c evaluated at point C is

�h� c = c

�
2 (�hh + �m)

�hh + 2�m
� (�hh + �m)� 1

�
= c

�
�hh

�hh + 2�m
� (�hh + �m)

�
= c

�
�hh�ll
1� �ll

� �m
�
< 0;

where the inequality follows from the assumption that �m > �hh�ll= (1� �ll) : The inequality,
which requires that the valuations for the two goods are not too positively correlated, is needed

because the revenue e¤ect from bundling depends on a trade-o¤ between price and the number of

agents willing to pay the price. If the valuations are strongly positively correlated, there are too

few mixed types for the increased sales to make up for the reduction in price.

The expected utility in the best separate provision mechanism approaches zero for all agents

when provisions go to zero, whereas type-hh enjoys utility level h � l > 0 under mechanism (11).

The proposed bundling mechanism therefore improves e¢ ciency. Hence, we�ve shown that a feasible

bundling mechanism can improve the e¢ ciency over the optimal separate provision mechanisms.

This is akin in spirit to McAfee et al [18] who used local analysis showing that bundling improves the

pro�ts for a monopolist. Also notice that if valuations are independent, �hh = �2; �ll = (1� �)2 ;

11



and �m = � (1� �) ; and the inequality in Claim 1 is satis�ed. Thus, just like in McAfee et al [18],

the argument applies also to the case when valuations across goods are stochastically independent.

4 The Constrained Optimal Mechanism

In this section, we proceed a step further and characterize the constrained optimal mechanism

for the binary version of the model described in the previous section.

4.1 The Constraints

There are 12 incentive constraints, but the payo¤ for type hh or ll from pretending to be hl is

the same as the payo¤ from pretending to be lh: Symmetrically, the payo¤ for type hl is the same

as the payo¤ for type lh regardless of whether the true type hh or ll is announced (announcing the

other mixed type a¤ects the payo¤). Due to the symmetry, 5 constraints can thus be immediately

discarded. Using that �1 (xhh; xhl; xlh; xll) = �2 (xhh; xlh; xhl; xll) (Proposition 2) we express the 7

remaining incentive compatibility constraints purely in the provision rule for good 1 as,

�hhE
�
�1 (x) jhh

�
2h� thh � �hmE

�
�1 (x) jhl

�
h+ �lmE

�
�1 (x) jlh

�
h� tm(13)

�hhE
�
�1 (x) jhh

�
2h� thh � �llE

�
�1 (x) jll

�
2h� tll (14)

�hmE
�
�1 (x) jhl

�
h+ �lmE

�
�1 (x) jlh

�
l � tm � �hhE

�
�1 (x) jhh

�
(h+ l)� thh (15)

�hmE
�
�1 (x) jhl

�
h+ �lmE

�
�1 (x) jlh

�
l � �hmE

�
�1 (x) jhl

�
l + �lmE

�
�1 (x) jlh

�
h (16)

�hmE
�
�1 (x) jhl

�
h+ �lmE

�
�1 (x) jlh

�
l � tm � �llE

�
�1 (x) jll

�
(h+ l)� tll (17)

�llE
�
�1 (x) jll

�
2l � tll � �hmE

�
�1 (x) jhl

�
l + �lmE

�
�1 (x) jlh

�
l � tm (18)

�llE
�
�1 (x) jll

�
2l � tll � �hhE

�
�1 (x) jhh

�
2l � thh: (19)

Since all other types can always mimic type ll; the only relevant participation constraint is

�llE
�
�1 (x) jll

�
2l � tll � 0: (20)

Finally, the feasibility constraint (BB) can be simpli�ed due to the simple transfer schemes and the

constant per capita costs. Again appealing to the symmetric treatment of the goods (Proposition

2) we can express (BB) in per capita form as

�hhthh + 2�mtm + �lltll � 2cE�1 (x) � 0: (21)

4.2 Relaxed Problem: The Main Case

The most involved part of the design problem is the provision rule. This is di¢ cult because �j (x)

is weighted by the ex ante probability that x occurs in the objective function, while the relevant

12



probabilities in the constraints are conditional probabilities. To be able to link the unconditional

and conditional probabilities we need to be explicit about the (multinomial) probability distribution

of x. Given n agents, we denote the probability of outcome x 2 Xn by an (x), which follows a
multinomial with parameters (n; �hh; �m; �m; �ll) :12

Due to the symmetry, types are naturally ordered as hh being the �highest type�, hl and lh

being �middle types�and ll being the �lowest type�. Appealing to intuition from single-dimensional

problems, we conjecture that only adjacent downwards incentive constraints are relevant and will

therefore ignore the upwards constraints, (15),(18) and (19), as well as (16), the constraints between

type hl and lh, and the downward constraint between hh and ll; (14).13 Expressing the two

remaining constraints ((13) and (17)) explicitly in terms of the multinomial probabilities, we get

�hh
X

x2Xn�1

an�1 (x) �
1 (xhh + 1; xhl; xlh; xll) 2h� thh (22)

� �hm
X

x2Xn�1

an�1 (x) �
1(xhh; xhl + 1; xlh; xll)h+ �

l
m

X
x2Xn�1

an�1 (x) �
1(xhh; xhl; xlh + 1; xll)| {z }
=�2(xhh;xhl+1;xlh;xll)

h� tm

�hm
X

x2Xn�1

an�1 (x) �
1(xhh; xhl + 1; xlh; xll)h+ �

l
m

X
x2Xn�1

an�1 (x) �
1(xhh; xhl; xlh + 1; xll)| {z }
=�2(xhh;xhl+1;xlh;xll)

l � tm

� �ll
X

x2Xn�1

an�1 (x) �
1(xhh; xhl; xlh; xll + 1) (h+ l)� tll; (23)

where (22) states that type-hh agents do not have incentives to mimic type hl; and (23) states that

mixed type agents do not have incentives to mis-report as type ll: The participation constraint (20)

and the feasibility constraint (21) written explicitly in terms of the multinomial distribution are

�ll
X

x2Xn�1

an�1 (x) �
1(xhh; xhl; xlh; xll + 1)2l � tll � 0 (24)

�hhthh + 2�mtm + �lltll � 2c
X
x2Xn

an (x) �
1 (x) � 0: (25)

Again appealing to Proposition 2, good 2 can be eliminated from the objective function. Expressing

social surplus in per capita form, the relaxed programming problem is:14

max
f�1;�;tg

2
X
x2Xn

an (x) �
1 (x)

"�
�hhxhh + �

h
mxhl

�
h+

�
�lmxlh + �llxll

�
l

n
� c
#

(26)

s.t. (22),(23), (24), and (25),

� 2 [0; 1]4 ; �1 (x) � 0; 1� �1 (x) � 0 for each x 2 Xn; (27)

Lemma 1 There exists at least one optimal solution to (26).
12Explicitly, an (x) = an (xhh; xhl; xlh; xll) = n!

xhh!xhl!xlh!xll!
�
xhh
hh �

xhl
m �

xlh
m �

xll
ll :

13 In Section 4.6 we will check the conditions for when this procedure is valid. It turns out that the only potential

problem is ignoring the downward constraint between hh and ll:
14The multiplicative constant 2 in the objective function is redundant, but it aids interpretations by keeping the

units in the objective function and the constraints comparable.
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The proof is standard by �rst compactifying the constraint set and then applying Weierstrass

Theorem. Slater�s condition for constraint quali�cation holds, so the Kuhn-Tucker conditions are

necessary for an optimum. Since a solution to (26) exists, these conditions characterize an optimal

mechanism, provided that the constraints that have been ignored are satis�ed.

4.3 Linking the Multipliers

Taxes enter linearly into all constraints and are not constrained by boundaries. It is therefore

convenient to begin the analysis from the �rst order conditions with respect to t = (thh; tm; tll),

(w.r.t. thh) ��hh + ��hh = 0
(w.r.t. tm) �hh � �m + 2��m = 0
(w.r.t. tll) �m � �ll + ��ll = 0

: (28)

Here, �hh and �m are the multipliers associated with (incentive compatibility) constraints (22) and

(23), �ll is the multiplier for the (participation) constraint (24), and � is the multiplier for the

(resource) constraint (25). It is immediate from (28) that:

Lemma 2 In any solution to (26), the multipliers (�hh; �m; �ll;�) satisfy: �hh = �hh�; �m =

(�hh + 2�m) �; and �ll = �:

In all its simplicity, Lemma 2 is a key step in the solution of (26). Its role is similar to the

characterization of incentive feasibility in terms of a single integral constraint in single-dimensional

mechanism design problem (i.e., the approach in Myerson [19] and others). In multidimensional

problems, it is impossible to collapse all constraints into a single constraint. Instead, Lemma 2

allows us to indirectly relate all optimality conditions to a single constraint.

4.4 Inclusion Rules

We now characterize the optimal inclusion rules �: To ease the statement of the result, we de�ne

two linear functions G : [0; 1]! R and H : [0; 1]! R as

G (�) � (1� �) 2l +�
�
�hh + 2�m

�m
l � �hh

�m
h

�
; (29)

H (�) � (1� �) 2l +�
�
2

�ll
l � �hh + 2�m

�ll
(h+ l)

�
;

which allow us to express the optimal inclusion rules in terms of the multiplier on (25) as:

Lemma 3 LetM = (�1; �2; �; t) be a symmetric solution to (26) and let � = �= (1 + �) ; where �

is the associated multiplier on the resource constraint (25). Also, suppose that E
�
�j (x) j�i

�
> 0 for

all �i 2 � and j = 1; 2: Then,
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(i) �hh = �hm = 1; (ii) �
l
m =

8>><>>:
1 if G (�) > 0

y 2 [0; 1] if G (�) = 0

0 if G (�) < 0;

; (iii) �ll =

8>><>>:
1 if H (�) > 0

y 2 [0; 1] if H (�) = 0

0 if H (�) < 0:

Multiplying both sides of G (�) by �m; we see that G (�) � 0 if and only if

�

Term 1z }| {
[(�hh + 2�m) l � �hhh] + (1� �)

Term 2z }| {
2�ml � 0; (30)

where � = �= (1 + �) 2 [0; 1] : To understand Term 1 in expression (30), consider two candidate

inclusion rules. The �rst candidate is �lm = �ll = 0; and �hh = �hm = 1: That is, an agent is given

access to good j if and only if her announced valuation for good j is h: Since high valuation agents

are willing to pay h for access to a good, the expected revenue from such an inclusion rule is at most

2 (�hh + �m)h from each agent. The second candidate inclusion rule is �lm = �hh = �hm = 1 and

�ll = 0: That is, an agent is given access to both goods as long as one of her announced valuation

is high. Under this inclusion rule, all agent types except ll could be charged h + l for access to

both goods. This results in an expected revenue per agent of (�hh + 2�m) (h+ l) : The change in

revenue from increasing �lm from 0 to 1 is thus

(�hh + 2�m) (h+ l)� 2 (�hh + �m)h = (�hh + 2�m) l � �hhh;

which is Term 1 in (30). Term 1 thus captures the expected gain or loss in revenue from increasing

�lm from 0 to 1: Term 2 in expression (30), 2�ml; on the other hand, is simply the increase in the

expected per capita social surplus from increasing �lm from 0 to 1: In sum, this means that G (�)

is a weighted average of the optimality conditions for an unconstrained social planner and a pro�t

maximizing provider, where the weight on Term 1 � the e¤ect on revenue � is higher when the

shadow price of revenue, namely, �; is higher. If (�hh + 2�m) l� �hhh is positive, the mixed types
will get access to both goods for sure, whereas it otherwise depends on the shadow price on the

resource constraint.

Analogously, H (�) � 0 if and only if

� [2l � (�hh + 2�m) (h+ l)] + (1� �) 2�lll � 0:

The term 2l� (�hh + 2�m) (h+ l) is the revenue e¤ect (which could be positive or negative) when
�ll is increased from 0 to 1; and the term 2�lll re�ects the gain in social surplus from such a change.

Thus, H (�) is again a weighted average of the optimality conditions for an unconstrained social

planner and a pro�t maximizing provider. If 2l� (�hh + 2�m) (h+ l) > 0; then H (�) > 0 for sure
and �ll = 1 is optimal. Otherwise, the access decision for type ll will depend on the shadow price

on the resource constraint.
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4.5 Provision Rules

To discuss the optimal provision rules
�
�j (x)

	
j=1;2

; it is convenient to �rst de�ne

Q1
�x
n
;�
�

� xhh
n
h+

xhl
n
h+

xlh
n

max f0; G (�)g
2

+
xll
n

max f0;H (�)g
2

� c: (31)

Q2
�x
n
;�
�

� xhh
n
h+

xlh
n
h+

xhl
n

max f0; G (�)g
2

+
xll
n
max

f0;H (�)g
2

� c:

These functions can also be interpreted as maximizing a weighted average of surplus and revenue.

To see this, �rst consider � = 0, in which case [see de�nitions in (29)] G (0) = H (0) = 2l: The

value of Qj (x=n; 0) is thus simply the social surplus generated if good j is provided and nobody

is excluded. Similarly, as discussed in the previous section, G (1) is the gain or loss in revenue if

mixed types are allowed to consume their low valuation good.15 The constrained optimal provision

rule can be described in terms of Q1 and Q2 as:

Lemma 4 Let M be an optimal solution to (26) and � = �= (1 + �) where � is the multi-

plier associated with the constraint (25) at the optimal solution. Then, (1) �j (x) = 1 whenever

Qj (x=n;�) > 0; and (2) �j (x) = 0 whenever Qj (x=n;�) < 0:

To summarize, we have characterized the optimal inclusion and provision rules for any given

value of the Lagrange multiplier � associated with the feasibility constraint. Such characterization

provides some partial information regarding the asymptotic provision probability in the optimal

mechanism with bundling. For example, the above characterization tells us that �h > c is a

su¢ cient but not necessary condition for the provision probability to converge to one.16 To see

this, note that xn converges in probability to � = (�hh; �m; �m; �ll) : By continuity ofQ
j we therefore

have that Qj
�
x
n ;�n

�
converges in probability to

Qj (�;�n) = (�hh + �hl)h+ �m
max f0; G (�n)g

2
+ �ll

max f0;H (�n)g
2

� c; (32)

which is strictly positive if (�hh + �hl)h = �h > c, which by Lemma 4 guarantees provision with

probability 1 in the limit.

4.6 Checking the Remaining Constraints

While the value of the multiplier � is still unknown, we now know enough about the solution

to the relaxed program (26) to check when the constraints we have ignored are indeed satis�ed:

15The same is true about H (�) ; but given the non-triviality assumptions on the problem, giving access to type ll

always reduces revenue.
16Recall that the bundling mechanism in Section 3.2 achieves provision with probability one for some cases despite

�h < c: In contrast, in the model without bundling, �h > c is necessary and su¢ cient for asymptotic provision with

probability one.
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Lemma 5 Suppose that constraints (13) and (17), or equivalently constraints (22) and (23) in the

relaxed program (26), bind. Moreover suppose that �hmE
�
�1 (x) jhl

�
� �lmE

�
�1 (x) jlh

�
� �llE

�
�1 (x) jll

�
and �hhE

�
�1 (x) jhh

�
� �lmE

�
�1 (x) jlh

�
: Then, all the remaining incentive compatibility constraints

are satis�ed.

Algebra on the di¤erence between G (�) and H (�) shows that it is positive if and only if the

inequality in Claim 1 is satis�ed. That is,

Lemma 6 If �m � �hh�ll
1��ll , then G (�) � H (�) for any � � 0: The inequality is strict whenever

�m > �hh�ll
1��ll and � > 0: Conversely, �m < �hh�ll

1��ll and � > 0, then G (�) < H (�) :

Letting x 2 Xn�1 denote a realized numbers of agents of the four di¤erent types other than
i (which follows a multinomial with parameters (n� 1; �hh; �m; �m; �ll)) we have that, if �m �
�hh�ll= (1� �ll) ;

Q1
�
xhh + 1

n
;
xhl
n
;
xlh
n
;
xll
n
;�

�
= Q1

�
xhh
n
;
xhl + 1

n
;
xlh
n
;
xll
n
;�

�
/G (�) � 2l/ > Q1

�
xhh
n
;
xhl
n
;
xlh + 1

n
;
xll
n
;�

�
/G (�) � H (�)/ � Q1

�
xhh
n
;
xhl
n
;
xlh
n
;
xll + 1

n
;�

�
;

for any x 2 Xn�1: It follows that, if �m � �hh�ll= (1� �ll) ;

E
�
�1 (x) jhh

�
= E

�
�1 (x) jhl

�
� E

�
�1 (x) jlh

�
� E

�
�1 (x) jll

�
: (33)

Moreover, Lemmas 3 and 6 imply:

Lemma 7 In the solution to the relaxed problem (26), �hh = �hm = 1 and

1. if �m > �hh�ll
1��ll , then exactly one of the following is true: �

l
m = �ll = 0; 0 < �lm � 1 and

�ll = 0; �
l
m = 1 and 0 � �ll < 1; or �

l
m = �ll = 1:

2. if �m =
�hh�ll
1��ll , then �

l
m = �ll:

3. if �m < �hh�ll
1��ll , then exactly one of the following is true: �

l
m = �ll = 0; 0 < �ll � 1 and

�lm = 0; �ll = 1 and 0 � �lm < 1; or �lm = �ll = 1:

Together with (33) and the fact that the incentive constraints (22) and (23) in the relaxed

program (26) bind implies that Lemma 5 applies in the case when �m � �hh�ll= (1� �ll).17 We
conclude:
17One way to see that the constraints (22) and (23) in the relaxed program (26) must bind is that, otherwise, the

solution is ex post optimal, a contradiction to Proposition 3.
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Lemma 8 If �m � �hh�ll
1��ll , then any solution to (26) satis�es all disregarded incentive constraints.

The problem when �m < �hh�ll= (1� �ll) is that if (13) and (17) bind and �lmE
�
�1 (x) jlh

�
<

�llE
�
�1 (x) jll

�
, then the solution to the relaxed problem violates the constraint (14) that type-

hh does not have incentive to mis-report as type-ll. From Lemma 6, we know that if �m <

�hh�ll= (1� �ll) ; then H (�) > G (�), which implies that �ll may be higher than �
l
m: In a large

economy with many agents, E
�
�1 (x) jlh

�
is approximately equal to E

�
�1 (x) jll

�
(see Lemma A1

in Appendix A). Therefore, as long as the provision probability is bounded away from zero, the

constraint (14) will be violated. The intuition for this is that, if the incentive constraint between

hh and ll is ignored and there are few mixed types (when �m is small), it creates an incentive to

put the ll types �rst in line for the low valuation good. But, then it will be more appealing for

type hh to mimic ll than to mimic the mixed type. We will therefore treat this case separately (see

Section 4.7).

4.7 The Optimal Mechanism in a Large Economy

In this section, we provide a full characterization of the asymptotic properties of a sequence

of optimal mechanisms. As a �rst step we will check when it is even possible to provide a non-

negligible level of the public goods in a large economy. This is easier than characterizing the

fully optimal mechanism �rst and then checking what the asymptotic provision probability is in

the optimal mechanism. The result below thus saves the trouble of characterizing the optimal

mechanism for parameter con�gurations when it is asymptotically impossible to provide the public

good at all. We denote a mechanism in economy of size n as Mn =
�
�1n; �

2
n; � (n) ; t (n)

�
; where

� (n) = (�hh (n) ; �
h
m (n) ; �

l
m (n) ; �ll (n)) and t (n) = (thh (n) ; tm (n) ; tll (n)): The result is:

Lemma 9 Suppose that max f2�h; (�hh + 2�m) (h+ l)g < 2c and let fMng1n=1 be any sequence of
incentive feasible mechanisms. Then, limn!1 E�

j
n (x) = 0 for j = 1; 2:

The argument relies on that the probability that an agent is pivotal for the provision decision

converges to zero as the number of agents goes out of bounds. The question of whether the feasibility

constraint can be satis�ed at a non-zero asymptotic provision probability can therefore be analyzed

as if the goods are provided for sure. Making use of the downwards incentive constraints and the

participation constraint, one shows that the maximal revenue from each type converge towards the

revenue that could be collected if the goods are provided for sure. This is a monopoly pricing

problem, and the revenue maximizing selling strategy is either to only sell to only the high types

and collect 2�h; give both goods to everyone except type ll and collect (�hh + 2�m) (h+ l) ; or to

give access to everyone and collect 2l: By assumption, neither 2�h, (�hh + 2�m) (h+ l) ; or 2l is

enough.18

18Recall the nontriviality assumption l < c < h. If l � c; �rst best, always providing and never excluding anyone,
is implementable by charging 2c from each agent.
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In the main case, when the valuations are not too positive correlated, the asymptotic properties

of an optimal mechanism can be summarized as follows:

Proposition 4 Assume that �m > �hh�ll
1��ll . Let fMng1n=1 be a sequence of optimal mechanism.

Then, the following holds:

1. if max f2�h; (�hh + 2�m) (h+ l)g > 2c; then limn!1E�jn (x)! 1 for j = 1; 2;

2. if max f2�h; (�hh + 2�m) (h+ l)g < 2c; then limn!1 E�jn (x)! 0 for j = 1; 2;

3. if (�hh + 2�m) (h+ l) > 2c; then there exists N <1 such that �hm (n) = �lm (n) = 1 for every

n � N , and

lim
n!1

�ll (n) = ��ll =
(�hh + 2�m) (h+ l)� 2c
(�hh + 2�m) (h+ l)� 2l

2 (0; 1) :

4. If 2�h > 2c > (�hh + 2�m) (h+ l) ;then there exists N < 1 such that �ll (n) = 0 for all

n � N and

lim
n!1

�lm (n) = �l�m =
2�h� 2c

2�h� (�hh + 2�m) (h+ l)
2 (0; 1) :

In this case, allowing for bundling leads to strict gains in terms of economic e¢ ciency. As we

already know from the example in Section 3.2, there are cases when it is asymptotically infeasible

to provide the public goods at all in the absence of bundling, but where bundling leads to almost

sure implementation. In addition, the optimal bundling mechanism leads to strict e¢ ciency gains

relative the non-bundling regime because the probability of inclusion for low-valuation agents is

increased, even in cases when the goods can be provided without bundling. To see this, suppose

that �h > c so that both public goods will be asymptotically provided with probability one with or

without bundling. From Proposition 3, we know that under the best separate provision mechanism,

the probability for access to a low valuation agent is (�h� c) = (�h� l) : In contrast, Proposition
4 implies that the ex ante probability for access conditional on a low valuation for the case where

2c > (�hh + 2�m) (h+ l) is

�m
�m + �ll| {z }

prob of mixed type
given low valuation

2�h� 2c
2�h� (�hh + 2�m) (h+ l)| {z }

�l�m

: (34)

Some algebra shows that (34) is larger than (�h� c) = (�h� l) whenever �m > �hh�ll= (1� �ll) ;
which is precisely the condition under which Proposition 4 is applicable. Fewer consumers are

thus excluded in the optimal bundling mechanism. A similar calculation applies to the case where

2c < (�hh + 2�m) (h+ l) :

Next, we consider the case when the valuations are su¢ ciently strongly correlated so that

Proposition 4 does not apply. In this case it turns out that there are three binding incentive

compatibility constraints at the optimum: the two constraints in program (26) and the downward
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incentive constraint between hh and ll: The asymptotic characterization for this case is given by

the following proposition.

Proposition 5 Assume that �m � �hh�ll
1��ll . Let fMng1n=1 be a sequence of optimal mechanism.

Then, the following holds:

1. if �h < c; then limn!1 E�
j
n (x)! 0 for j = 1; 2;

2. if �h > c; then limn!1 E�
j
n (x) ! 1 for j = 1; 2, �hh (n) = �hm (n) = 1 and �

l
m (n) = �ll (n)

for all n, where

lim
n!1

�ll (n) =
�h� c
�h� l 2 (0; 1) :

Hence, in this case the solution is asymptotically identical to the solution for the surplus max-

imization problem when bundling is not allowed (i.e. Proposition 3).

To understand why the bundling option does not change anything in this case, recall that

asymptotic provision or non-provision is related to whether the maximal revenue for a monopolistic

provider of the goods �if provided �exceeds the costs.19 The revenue maximizing selling strategy

for a monopolist, if both public goods are provided, is either to sell goods separately at price h

(receiving an expected revenue of 2�h), or sell the goods as a bundle at price h + l (receiving

an expected revenue of (�hh + 2�m) (h+ l)), or to charge l for each good (receiving an expected

revenue of 2l). It is still possible that the revenue maximizing selling strategy is to charge h+ l for

the bundle in the current case where �m � �hh�ll= (1� �ll). However, whenever �h < c; we can

show using the non-triviality assumption that l < c, that

(�hh + 2�m) (h+ l) < (�hh + 2�m) (h+ c)

< (�hh + 2�m)

�
1

�
+ 1

�
c

=

�
2 +

�m (1� �ll)� �hh�ll
�hh + �m

�
c;

which is less than 2c when �m � �hh�ll= (1� �ll) : Thus, if it is impossible to balance the budget
when the goods are provided separately, and if �m � �hh�ll= (1� �ll), it it also impossible to
balance the budget if the goods are bundled. Finally, if (�hh + 2�m) (h+ l) > 2�h > 2c; the public

goods can be provided with probability one asymptotically both under the separate provision

mechanisms (described in part 2 of Proposition 5), or under the bundling mechanism (described in

part 3 of Proposition 4). However, the calculations immediately following Proposition 4 show that

if (�hh + 2�m) (h+ l) < 2c, the social surplus is actually smaller using the bundling mechanism.20

19 If both goods are provided for sure, it does not matter whether the goods are private or public. The relevant

revenue maximization problem that provides the condition for asymptotic provision versus non-provision is thus the

same as in Armstrong and Rochet [4] and Bolton and Dewatripont [8].
20Bolton and Dewatripont [8] consider a setup that only di¤ers from ours in that goods are rival and that they

study revenue maximization. They conclude that (pure) bundling is optimal under a condition slightly di¤erent from
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Bundling�Exclusion No Exclusion Exclusion

No Bundling
E�j�n ! 0

(Mailath and Postlewaite [16])

E�j�n ! 0; if �h < c

E�j�n ! 1; if �h > c

(Norman [21])

Bundling Allowed
E�j�n ! 0

(Mailath and Postlewaite [16])

E�j�n ! 0; if max f2�h; (�hh+2�m) (h+ l)g< 2c;
E�j�n ! 1; if max f2�h; (�hh+2�m) (h+ l)g> 2c

(This Paper)

Table 1: The Asymptotic Provision Probability under Di¤erent Bundling and Exclusion Possibilities.

Table 1 summarizes the asymptotic provision probabilities under di¤erent bundling and exclu-

sion possibilities, and contrasts the results proved in this paper with those in the literature.21

5 Discussion

The anti-trust legislation on bundling is somewhat vague both in the US and elsewhere; bundling

may be or may not be considered an illegal anti-competitive practice depending on the details of

the case. Our simple model shows that bundling by a benevolent provider in general is desirable.

Obviously, a for-pro�t monopoly provider may use the bundling instrument in a way that reduces

the welfare of the consumers even when there is bundling in the solution to the welfare optimization

problem. However, in the cases when the constrained optimum in the absence of bundling leads to

asymptotic non-provision and bundling leads to provision, it follows immediately that requiring a

for-pro�t monopolist to unbundle the goods would force the �rm out of business and unambiguously

make the consumers worse o¤. Indeed, this line of reasoning was an important part of the motivation

in the decision by the O¢ ce of Fair Trading [22] in the UK on alleged anti-competitive mixed

bundling by the British Sky Broadcasting Limited. In general, the spirit of our analysis should

carry over to �natural monopoly�environments with falling average costs, where the concern raised

by the results in our paper is that, even if goods are provided by a pro�t maximizer, bundling may

actually make some products viable that would not be available in the absence of bundling.

We also note that it does not seem crucial for the analysis that all goods are non-rival. This

suggests that an extension of the model that have both public and private goods may be interesting

from a public �nance perspective. Public provision of private goods is typically viewed as an ine¢ -

cient instrument to achieve some redistributive objective in the public �nance literature. However,

our condition, but, like in our analysis, the condition rules out too strong positive correlation. The reason for the

di¤erence is that we look at constrained e¢ ciency.
21Mailath and Postlewaite [16] considers a single-dimensional problem without use exclusion. However, the proba-

bilities of provision in a multidimensional setting can be bounded from above by a single-dimensional problem, where

the valuation is the maximum of the individual good valuations.

21



the logic of our results suggests that it is entirely possible that some private goods are included in

the government bundle in order to alleviate the free-riding problem in public good provision.
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A Appendix A: Proofs of Results in Section 4.

Proof of Lemma 1.

Proof. For each x 2 Xn; j = 1; 2; �i 2 � we have that �j (x) 2 [0; 1] ; �j�i 2 [0; 1] : Next, we note
that if tll < 0 and all constraints are satis�ed, then a deviation where taxes are changed from t to

t0 = (thh; tm; 0) and where inclusion and provision rules are unchanged will satisfy all constraints

in the relaxed program (26). Similarly, if all constraints hold and tm < �l � h the deviation

t0 = (thh; tm;�l � h;max (0; tll))

satis�es all constraints (in the relaxed program). A symmetric argument restricts tm � �h � l:

Finally, if thh < �3h� l; then a deviation to

t0 = (�3h� l;max (tm;�l � h) ;max (0; tll))

will leave all constraints satis�ed. We conclude that there is a lower bound t > �1 such that for

any mechanism where t�i < t for some �i; there exists an alternative mechanism that supports the

same allocation (and therefore generates the same surplus) where t�i � t: Also, if t�i > t = 2h for

some �i then at least one constraint in (26) must be violated. We therefore conclude that there is no

loss in generality to restrict t�i to be a number in
�
t; t
�
: All constraints and the objective function

are linear in the choice variables and therefore continuous, so we conclude that the optimization

problem has a compact feasible set and a continuous objective. It is easy to check that the feasible

set is non-empty, which proves the claim by appeal to the Weierstrass Theorem.

Proof of Lemma 3.

Notation for optimality conditions to program (26). The proofs that follow make direct use of the

Kuhn-Tucker conditions to the optimization problem (26). For easy reference, Table 2 summarizes

our notation for the multipliers associated with each constraint.

Constraint Multiplier

(22) Type hh IC �hh

(23) Type hl (lh) IC �m

(24) Type ll IR �ll

(25) Feasibility �

�hh; �
h
m; �

l
m; �ll � 0 hh; 

h
m; 

l
m; ll

1� �hh ; 1� �hm; 1� �lm; 1� �ll � 0 �hh; �
h
m; �

l
m; �ll

�1 (x)� 0  (x)

1� �1 (x)� 0 � (x)

Table 2: Notation of multipliers.
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Proof. [Step 1] The Kuhn-Tucker optimality conditions for �hh are given by

2
X
x2Xn

an (x) �
1 (x)

xhhh

n
+ 2�hh

X
x2Xn�1

an�1 (x) �
1(xhh + 1; xhl; xlh; xll)h+ hh � �hh = 0

hh�hh = 0; �hh(1� �hh) = 0; hh � 0; �hh � 0: (A1)

All terms except hh � �hh in the �rst order condition are strictly positive. Hence, �hh > 0; which
requires that �hh = 1 for the complementary slackness constraint to be ful�lled.

[Step 2] The �rst order condition with respect to �hm reads

0 = 2
P
x2Xn an (x) �

1 (x)hxhln � �hh
P
x2Xn�1 an�1 (x) �

1 (xhh; xhl + 1; xlh; xll)h

+�m
P
x2Xn�1 an�1 (x) �

1 (xhh; xhl + 1; xlh; xll)h+ 
h
m � �hm

(A2)

One checks that an (x) = n
xhl
�man�1 (xhh; xhl � 1; xlh; xll) holds for any x such that xhl � 1 by

using the functional form of the multinomial. HenceX
x2Xn

an (x) �
1 (x)h

xhl
n

=
X

x2Xn:xhl�1

n

xhl
�man�1 (xhh; xhl � 1; xlh; xll) �1 (x)h

xhl
n

= �mh
X

x2Xn:xhl�1
an�1 (xhh; xhl � 1; xlh; xll) �1 (x)

= �mh
X

x2Xn�1

an�1 (x) �
1 (xhh; xhl + 1; xlh; xll) : (A3)

Let bhm = hmP
x2Xn�1

an�1(x)�1(xhh;xhl+1;xlh;xll)b�hm = �hmP
x2Xn�1

an�1(x)�1(xhh;xhl+1;xlh;xll)

: (A4)

Substituting (A3) into (A2) and using Lemma 2, we obtain the condition

2�mh� �hhh+ �mh+ bhm � b�hm = 2�mh� �hh�h+ (�hh + 2�m) �h+ bhm � b�hm
= 2�mh+ 2�m�h+ bhm � b�hm = 0:

The �rescaled multipliers� are well-de�ned, weakly positive, and equal to zero if and only if the

�original multiplier�is equal to zero. Since 2�mh+ 2�m�h > 0; we conclude that b�hm > 0. Hence

�hm = 1 by the complementarity slackness condition.

[Step 3] The �rst order condition for �lm is

0 = 2
P
x2Xn an (x) �

1 (x) xlhn l � �hh
P
x2Xn�1 an�1(x)�

1(xhh; xhl; xlh + 1; xll)h

+�m
P
x2Xn�1 an�1(x)�

1(xhh; xhl; xlh + 1; xll)l + 
l
m � �lm

(A5)

A calculation following the same steps as (A3) shows that

P
x2Xn an (x) �

1 (x) xlhn l = �ml
P
x2Xn�1 an�1 (x) �

1(xhh; xhl; xlh + 1; xll): (A6)
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Substituting (A6) into (A5) and simplifying one obtains

0 = 2�ml � �hhh+ �ml + blm � b�lm = 2�ml � �hhh� + (�hh + 2�m) �l + blm � b�lm
= �m (1 + �)

"
(1� �) 2l +�

�
�hh + 2�m

�m
l � �hh

�m
h

�
+
blm � b�lm
(1 + �)�m

#

= �m (1 + �)

"
G (�) +

blm � b�lm
(1 + �)�m

#
(A7)

where blm and b�lm are de�ned like in (A4). We conclude that G (�) > 0 implies that b�lm > 0 and,

by complementary slackness, �lm = 1: Symmetrically, G (�) < 0 implies that blm > 0 and �lm = 0:

If G (�) = 0; then blm = b�lm = 0, imposing no restrictions on �lm:
[Step 4] The �rst order condition for �ll is

0 = 2
P
x2Xn:xll�1 an (x) �

1 (x) xlln � �m
P
x2Xn�1 an�1(x)�

1(xhh; xhl; xlh; xll + 1) (h+ l)

+�ll
P
x2Xn�1 an�1(x)�

1(xhh; xhl; xlh; xll + 1)2l + ll � �ll

Using the multinomial identity an (x) = n
xll
�llan�1 (xhh; xhl; xlh; xll � 1) and following the same

steps as in Step 3, we can rewrite the �rst order condition as

0 = �ll2l + � [2l � (�hh + 2�m) (h+ l)] + bll � b�ll
= �ll (1 + �)

(
1

1 + �
2l +

�

1 + �

�
2

�ll
l � �hh + 2�m

�ll
(h+ l)

�
+

bll � b�ll
�ll (1 + �)

)

= �ll (1 + �)

"
H (�) +

bll � b�ll
�ll (1 + �)

#
:

where bll and b�ll are de�ned like in (A4). Arguing as in Step 3 completes the proof.
Proof of Lemma 4.

Proof. The �rst order condition with respect to �1 (x) is

2an (x)

�
(�hhxhh+�hmxhl)h+(�lmxlh+�llxll)l

n � c
�
+ �hh [2�hhan�1 (xhh � 1; xhl; xlh; xll)h]

��hh
�
�hman�1 (xhh; xhl � 1; xlh; xll)h� �hman�1 (xhh; xhl; xlh � 1; xll)h

�
+�m

�
�hman�1 (xhh; xhl � 1; xlh; xll)h+ �lman�1 (xhh; xhl; xlh � 1; xll) l

�
��m [�llan�1 (xhh; xhl; xlh; xll � 1) (h+ l)] + �ll2�1llan�1 (xhh; xhl; xlh; xll � 1) l
��an (x) 2c+  (x)� � (x) = 0;

(A8)

where the convention is that an�1 (xhh � 1; xhl; xlh; xll) = 0 if xhh = 0; and so on. Using the

following identities between multinomials,

an�1 (xhh � 1; xhl; xlh; xll) = an(x)
�hh

xhh
n ; an�1 (xhh; xhl � 1; xlh; xll) = an(x)

�m
xhl
n

an�1 (xhh; xhl; xlh � 1; xll) = an(x)
�m

xlh
n ; an�1 (xhh; xhl; xlh; xll � 1) = an(x)

�ll
xll
n ;

(A9)
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exploiting the relationships between multipliers in Lemma 2, and substituting �hh = �hm = 1 due

to Lemma 3, we can simplify (A8) to

2

�
(xhh+xhl)h+(�lmxlh+�llxll)l

n � c
�
(1� �)

+�hh�
h
2 1
�hh

xhh
n h� 1

�m
xhl
n h� �

l
m

1
�m

xlh
n h
i

+(�hh + 2�m) �
h
1
�m

xhl
n h+ �

l
m

1
�m

xlh
n l � �ll

1
�ll

xll
n (h+ l)

i
+�2�1ll

1
�ll

xll
n l � �2c+

(x)��(x)
an(x)

= 0;

(A10)

where � = �= (1 + �) : This condition can be interpreted as a weighted average of surplus (the

term multiplied by 1� �) and pro�t maximization (the terms multiplied by �). Collecting terms
in (A10) and simplifying we get

2xhhn h+ 2xhln h� 2c+
xlh
n �

l
m

G(�)z }| {�
(1� �) 2l +�

�
�hh + 2�m

�m
l � �hh

�m
h

��

+xll
n �ll

H(�)z }| {�
(1� �) 2l +�

�
2

�ll
l � �hh + 2�m

�ll
(h+ l)

��
+ (x)��(x)

an(x)

/(31) / = 2Q1
�
x
n ;�

�
+ (x)��(x)

an(x)
= 0;

(A11)

where the equality uses the fact (from Lemma 3) that �lm = 0 if G (�) < 0 and �ll = 0 if H (�) < 0:

The result follows.

Proof of Lemma 5.

Proof. De�ne Ahh = �hhE
�
�1 (x) jhh

�
; Ahm = �hmE

�
�1 (x) jhl

�
; Alm = �lmE

�
�1 (x) jlh

�
and All =

�llE
�
�1 (x) jll

�
. The hypothesis that (13) and (17) bind can then be restated as

Ahh2h� thh = Ahmh+A
l
mh� tm (A12)

Ahmh+A
l
ml � tm = All (h+ l)� tll: (A13)

Constraint (14): if hh announces ll, the payo¤ is

All2h� tll| {z }
hh announces ll

= All (h+ l)� tll +All (h� l) /(A13)/ = Ahmh+A
l
ml � tm +All (h� l)

= Ahmh+A
l
mh� tm +

�
All �Alm

�
(h� l)

.
All � Alm

.
� Ahmh+A

l
mh� tm / (A12)/ = Ahh2h� thh| {z } :

truth-telling

(A14)

Constraint (15): if lh or hl announces hh; the payo¤ is

Ahh (h+ l)� thh| {z }
mixed type announces hh

= Ahh2h� thh +Ahh (l � h) /(A12)/ = Ahmh+A
l
mh� tm +Ahh (l � h)

= Ahmh+A
l
ml � tm +

�
Alm �Ahh

�
(h� l)

.
Alm � Ahh

.
� Ahmh+A

l
ml � tm| {z }

truth-telling

:
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Constraint (16): follows trivially since Ahm � Alm:

Constraint (18): if ll announces lh or hl; the payo¤ is

Ahml +A
l
ml � tm| {z }

ll announces mixed type

= Ahmh+A
l
ml � tm � (h� l)Alm /(A13)/ = All (h+ l)� tll � (h� l)Alm

= All2l � tll + (h� l)
�
All �Alm

�.
All � Alm

.
� All2l � tll| {z }
truth-telling

: (A15)

Constraint (19): if ll announces hh; the payo¤ is

Ahh2l � thh| {z }
ll announces hh

= Ahh2h� thh �Ahh2 (h� l) /(A12)/ = Ahmh+A
l
mh� tm �Ahh2 (h� l)

= Ahmh+A
l
ml � tm +Alm (h� l)�Ahh2 (h� l) /(A13)/

= All (h+ l)� tll +Alm (h� l)�Ahh2 (h� l) (A16)

= All2l � tll +
�
Alm +All � 2Ahh

�
(h� l) � All2l � tll| {z }

truth-telling

:

Proof of Lemma 6.

Proof. If � = 0; then G (�) = H (�) : For � > 0; G (�)�H (�) has the same sign as

� =
�hh + 2�m

�m
l � �hh

�m
h�

�
2

�ll
l � �hh + 2�m

�ll
(h+ l)

�
= ��hh

�m
(h� l) + 2l �

�
2

�ll
l � (1� �ll)

�ll
(h+ l)

�
�
�m �

�hh�ll
1� �ll

�
� �(1� �ll)

�ll
(h� l) + 2l �

�
2

�ll
l � (1� �ll)

�ll
(h+ l)

�
= 2l

�
1� 1

�ll
+
(1� �ll)
�ll

�
= 0;

where the inequality on the third line is strict if �m > �hh�ll= (1� �ll) :

Proof of Lemma 9.

The proof of Lemma 9 uses the following fact:

Lemma A1 For every � > 0, there exists N such that
��E�1n (x)� E ��1n (x) j�i��� � � for all �i 2 �

and n � N:

The proof of this result, which is a restatement of the paradox of voting, is omitted (see Fang and

Norman [12] for details). The implication is that, if n is large, the perceived provision probability

is almost independent of her announcement. We use this below in order to be able to separate the

maximal revenue that can be raised per �unit of probability of provision�from the provision rule.

Proof of Lemma 9 (Continued):
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For contradiction (taking a subsequence if necessary) suppose that limn!1 E�1n (x) = �� > 0:

Let � � 2c � max f2�h; (�hh + 2�m) (h+ l) ; 2lg > 0 (recall that l < c < h): Denote the in-

clusion probabilities in mechanism Mn by � �
�
�hh (n) ; �

h
m (n) ; �

l
m (n) ; �ll (n)

�
and let A (n) ��

Ahh (n) ; A
h
m (n) ; A

l
m (n) ; All (n)

�
be de�ned as in Lemma 5. Rearrange (13), (14), (17), and (24)

as
thh � tm +Ahh (n) 2h�Ahm (n)h�Alm (n)h
thh � tll +Ahh (n) 2h�All (n) 2h
tm � tll +A

h
m (n)h+A

l
m (n) l �All (n) (h+ l)

tll � All (n) 2l

(A17)

Purely for expositional simplicity, de�ne two functions B : [0; 1]4 ! R and T : [0; 1]3 ! R as

follows:

B (z1; z2; z3; z4) � 2lz4 + (�hh + 2�m) [z2h+ z3l � z4 (h+ l)] + �hh [2z1h� z2h� z3h] ;

T (thh; tm; tll) = ahhthh + 2�mtm + �lltll: (A18)

Combining all but the second of the inequalities in (A17), one shows that T (t (n)) � B (A (n)) ;

and from all but the �rst inequality it follows that

T (t (n)) � All (n) 2l + 2�m

h
Ahm (n)h+A

l
m (n) l �All (n) (h+ l)

i
+ �hh [Ahh (n) 2h�All (n) 2h]

= B (A (n)) + �hh

h
Alm (n)�All (n)

i
(h� l) (A19)

Let " = ���
2c > 0: From Lemma A1 and the hypothesis that limn!1 E�

1
n (x) = �� > 0, we know that

there exists N such that E�1n (x) >
1
2�
�, Ahh (n) = E

�
�1n (x) jhh

�
�hh (n) �

�
E�1n (x) + "

�
�hh (n) ;

Ahm (n) = E
�
�1n (x) jhl

�
�hm (n) �

�
E�1n (x) + "

�
�hm (n) ; A

l
m (n) = E

�
�1n (x) jlh

�
�lm (n)�

�
E�1n (x) + "

�
�lm (n) ;

and All (n) = E
�
�1n (x) jll

�
�ll (n) �

�
E�1n (x) + "

�
�ll (n) for every n � N . Hence, there exists N

such that

T (t (n)) �
�
E�1n (x) + "

�
min

n
B (� (n)) ; B (�(n)) + �hh

h
�lm(n)� �ll(n)

i
(h� l)

o
(A20)

De�ne

V = max
�2[0;1]4

min
n
B (�) ; B (�) + �hh

�
�lm � �ll

�
(h� l)

o
: (A21)

Note that B (�) and B (�) + �hh
�
�lm � �ll

�
(h� l) �hh are both increasing in �hh and �hm; so the

solution to the maximization problem in (A21) must have �hh = �hm = 1: The only question is thus

the inclusion probabilities �lm and �ll:

Possibility 1: Suppose that �lm > �ll in a solution to (A21). Since B is linear in � it follows

that we may assume that �ll = 0 and that �
l
m = 1 solves max�ll;�lm2[0;1]2 B

�
1; 1; �lm; �ll

�
and that

V = B (1; 1; 1; 0) = (�hh + 2�m) (h+ l)

Possibility 2: Suppose �lm = �ll solves (A21). Then, �
l
m = �ll 2 argmaxx2[0;1]B (1; 1; x; x) :

Evaluating, we see that B (1; 1; x; x) = x2l + 2 (�hh + �m)h (1� x) : Hence, either �ll = �lm = 0

and V = 2�h, or �ll = �lm = 1 with V = 2l.
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Possibility 3: Suppose that �lm < �ll in a solution to (A21). We can then without loss assume

that �lm = 0 and that �ll = 1 solves max�ll �ll2l + 2�m [h� �ll (h+ l)] + �hh [�hh2h� �ll2h]. The
associated value of the maximand is then 2l (1� �m) < 2l; therefore this could not be a solution

to the problem.

To summarize, V = max f2�h; (�hh + 2�m) (h+ l) ; 2lg which is equal to 2c � �: Combining

with (A20), it follows that

T (t (n))� 2E�1n (x) c = ahhthh (n) + 2�mtm (n) + �lltll (n)� 2E�1n (x) c (A22)

�
�
E�1n (x) + "

�
(2c� �)� 2E�1n (x) c = �E�1n (x) � + " (2c� �)

< ��
��

2
+ 2c" = 0;

implying that the (25) is violated when n is su¢ ciently large. Hence, limn!1 E�1n (x) = 0:

Proof of Proposition 4.

The next Lemma is used in the proof of Proposition 4:

Lemma A2 For any � > 0 there exists N such that Pr
���Q1 �xn ;�n��Q1 (�;�n)�� � �

�
� � for

every n � N:

Proof. We notice that Q1
�
x
n ;�n

�
=
Pn
i=1

yi(�i;�n)
n ; where yi (�i; �n) is given by

yi (�i; �n) =

8>><>>:
h� c if �i 2 fhh; hlg

max f0; G (�n)g � c if �i = lh

max f0;H (�n)g � c if �i = ll:

(A23)

Since yi (�i; �n) has bounded support, there exists �2 < 1 such that the variance of Yi (�i; �n) is

less than �2 for any �n 2 [0; 1] : Moreover, fY (�i; �n)gni=1 is a sequence of i.i.d. random variables

and E�iyi (�i; �n) = Q1 (�;�n). Hence, Chebyshev�s inequality is applicable, which implies that for

any " > 0,

Pr
����Q1 �x

n
;�n

�
�Q1 (�;�n)

��� � �
�

= Pr
����Pn

i=1
yi(�i;�n)

n � E�iyi (�i; �n)
��� � �

�
� Var [Yi (�i; �n)]

n�2
� �2

n�2
: (A24)

Hence, Pr
���Q1 �xn ;�n��Q1 (�;�n)�� � �

�
� � for all n � N = �2=�3 <1.

Proof of Proposition 4 (Continued).

(Part 1) From (32), Q1 (�;�n) � (�hh + �m)h � c = �h � c for any �n 2 [0; 1] (recall

� � �hh + �m); hence limn!1Q1 (�;�n) � �h� c: If �h > c, part 1 is therefore immediate from
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Lemmas 4 and A2. Suppose instead that (�hh + 2�m) (h+ l) > 2c � 2�h: Then, for any �n 2 [0; 1]

Q1 (�;�n) = �h+ �m
max f0; G (�n)g

2
+ �ll

max f0;H (�n)g
2

� c � �h� c+ �mG (�n)

2

= (1� �n) [�h+ �ml � c] + �n
�
(�hh + 2�m) (h+ l)

2
� c
�

>

�
(�hh + 2�m) (h+ l)

2
� c
�
> 0;

where the �rst inequality comes from the fact that �h+�ml >
(�hh+2�m)(h+l)

2 : By Lemma A2 (let " =

Q1 (�;�n) and note that Pr
�
Q1 � 0

�
� Pr

���Q1 � EQ1�� � EQ1
�
), it follows that limn!1 Pr

�
Q1
�
x
n ;�

n
�
� 0
�
=

0. Appealing to Lemma 4 completes the proof.

(Part 2) Immediate from Lemma 9.

(Part 3) Consider the sequence of mechanisms
ncMn

o
, where for each n

b�1n (x) = 1 for all x 2 Xn

b�hh (n) = b�hm (n) = b�lm (n) = 1;b�ll (n) = ��ll �
(�+ �m) (h+ l)� 2c
(�+ �m) (h+ l)� 2lbthh (n) = btm (n) = (h+ l)� ��ll (h� l)btll (n) = ��ll2l:

It is easy to check that (22),(23), (24), and (25) are all satis�ed with equality. Moreover, Lemma

5 applies, so all other incentive constraints are also satis�ed. Hence, cMn is incentive feasible for

any n: The associated expected per capita surplus is s
� cMn

�
= 2 (�h+ �ml + �ll�

�
ll � c) : Now,

suppose for contradiction that there does not exist N such that b�lm (n) = 1 for all n � N: Then

(taking a subsequence if necessary) b�lm (n) < 1 for all n, which (Lemma 7) implies that �ll (n) = 0
for all n (in the subsequence). The per capita surplus generated by the optimal mechanismMn in

the nth economy in the sequence, denoted s (Mn) ; is then

s (Mn) =
2E�1n (x)

�
(xhh + xhl)h+

�
�lm (n)x

�
l � cn

�
n

� 2 (�h+ �ml)� 2E�1n (x) c

Since E�1n (x) ! 1 as n ! 1 (Part 1) it follows that for every " > 0 there exists N such that

s (Mn) � 2 (�h+ �ml � c) + " < s
� cMn

�
for " su¢ ciently small. Hence we have arrived at a

contradiction, implying that there does exist N such that b�lm (n) = 1 for all n � N: It remains

to be shown that �ll (n) ! ��ll for any sequence of optimal mechanisms. First assume that there

is a subsequence such that �ll (n) ! �0 < ��ll: Arguing just like above one shows that for every

" > 0; there exists N < 1 such that s (Mn) � 2 (�h+ �ml + �ll�
0l � c) + ": Hence, for " =

�ll (�
�
ll � �0) l > 0 we have that

s
� cMn

�
� s (Mn) � 2�ll

�
��ll � �0

�
l � " = �ll

�
��ll � �0

�
l > 0;

again contradicting the optimality sequence fMng for n is su¢ ciently large. Finally, suppose there
is a subsequence such that �ll (n) ! �0 > ��ll: We will now show that this implies that, for some
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su¢ ciently large n; the mechanisms in the sequence are not incentive feasible. De�ne

" =

�
(�hh + 2�m) (h+ l)

2
� l
�
(�0 � ��ll)
(4h+ 1) c

> 0

Applying (A20), it follows that there exists N1 such that the per capita revenue in mechanismMn

satis�es

T (t (n)) �
�
E�1n (x) + "2h

�
B (1; 1; 1; �ll (n)) � (1 + "2h)B (1; 1; 1; �ll (n))

for all n � N; where, after some algebra

B (1; 1; 1; �ll (n)) � �ll (n) 2l + (1� �ll (n)) (�hh + 2�m) (h+ l) :

Moreover, since l < c < (�hh+2�m)(h+l)
2 ;we also have that B (1; 1; 1; �ll (n)) is decreasing in �ll (n) :

Let �1 � �0 � ��ll > 0 and �
2 = (�hh+2�m)(h+l)

2 � l > 0: Given that �ll (n)! �0 > ��ll there exists N2

such that �ll (n) � ��ll +
�1

2 ; implying that

B (1; 1; 1; �ll (n)) � B

�
1; 1; 1; ��ll +

�1

2

�
(A25)

= ��ll2l + (1� ��ll) (�hh + 2�m) (h+ l)| {z }
=B(1;1;1;��ll)=2c

+ �1

 
l � (�hh + 2�m) (h+ l)

2| {z }
!

=��2

and since E�1n (x)! 1 we have that there exists N3 such that the expected per capita costs satis�es

2E�1n (x) c � (2� ") c: Hence, for any n � max fN1; N2; N3g it follows that

T (t (n))� E�1n (x) c = ahhthh (n) + 2�mtm (n) + �lltll (n)� E�1n (x) c (A26)

� (1 + "2h)
�
2c� �1�2

�
� (2� ") c

= ��1�2 + "
�
(4h+ 1) c� 2h�1�2

�
< ��1�2 + " [(4h+ 1) c]

=

�
l � (�hh + 2�m) (h+ l)

2

�
(�0 � ��ll)
(4h+ 1) c

+ " = 0:

We conclude that the feasibility constraint (25) is violated for n large enough, contradicting the

hypothesis that there is a subsequence such that �ll (n) ! �0 > ��ll: Since there must be some

convergent subsequence and since no subsequence can converge to anything else than ��ll we conclude

that �ll (n)! ��ll as n goes out of bounds.

(Part 4) The proof of this proceeds along the same steps as in Part 3 and is omitted. The

only di¤erence is that one in this case begins by arguing that if there is no N such that �ll (n) = 0 for

all n � N then the mechanism eventually violates incentive feasibility. To establish that �lm (n)!
2�h�2c

2�h�(�hh+2�m)(h+l) proceeds along the same lines as in Part 3. One checks that a sequence of

mechanisms
ncMn

o
where both goods are provided for sure and where b�lm (n) = 2�h�2c

2�h�(�hh+2�m)(h+l)
and b�ll (n) = 0 for each n is incentive feasible. Then, one argues that any sequence of mechanisms
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where �lm (n) is bounded away from
2�h�2c

2�h�(�hh+2�m)(h+l) from below is eventually dominated by
cMn;

and that any sequence of mechanisms where �lm (n) is bounded away from
2�h�2c

2�h�(�hh+2�m)(h+l) from

above is eventually violating the feasibility constraint.

Proof of Proposition 5.

To prove Proposition 5, we need to add the constraint (14) to the relaxed program. In terms

of the binomial probability distribution an�1, (14) reads,

2�hh
X

x2Xn�1

an�1 (x) �
1(xhh+1; xhl; xlh; xll+1)h�thh � 2�ll

X
x2Xn�1

an�1 (x) �
1(xhh; xhl; xlh; xll+1)h�tll:

(A27)

The relevant programming problem is to thus to solve,

max
f�1;�;tg

2
X
x2Xn

an (x) �
1 (x)

"�
�hhxhh + �

h
mxhl

�
h+

�
�lmxlh + �llxll

�
l

n
� c
#

(A28)

s.t. (22), (23), (24), (25) and (A27),

� 2 [0; 1]4 ; �1 (x) � 0; 1� �1 (x) � 0 for each x 2 Xn: (A29)

We let  hh denote the multiplier on the new constraint (A27) and keep the rest of the notation

same as before. The �rst order conditions with respect to t are now

(w.r.t. thh) ��hh �  hh + ��hh = 0;
(w.r.t. tm) �hh � �m + 2��m = 0;
(w.r.t. tll) �m +  hh � �ll + ��ll = 0:

; (A30)

which immediately implies that:

Lemma A3 In the solution to problem (A28), there are three possibilities:

(i). Only constraints (22) and (23) bind, in which case �hh = ��hh; �m = �(�hh + 2�m) and

�ll = �;

(ii). Only constraints (A27) and (23) bind, in which case  hh = ��hh; �m = 2��m and �ll = �;

(iii). All constraints (22), (A27) and (23) bind, in which case �hh +  hh = ��hh; �m =

2��m + �hh 2 [2��m;� (�hh + 2�m)] ; and �ll = �:

We now consider these possibilities in turn:

Lemma A4 Suppose that �m � �hh�ll
1��ll and �h > c: Then it cannot be an optimal solution to (A28)

if only constraints (22) and (23) bind.

Proof. In this case, the solution to (A28) must solve (26). But when �m � �hh�ll= (1� �ll) ;
we have from Lemma 6 that H (�) � G (�) for any �; which by Lemma 7 implies that All =
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E�1 (xjll) �ll � E�1 (xjlh) �lm = Alm in the solution to the relaxed problem. Moreover, by the same

calculation as those when we check constraint (14) in the proof of Lemma 5, we have

All2h� tll| {z }
hh announces ll

= Ahh2h� thh +
�
All �Alm

�
(h� l) � Ahh2h� thh| {z }

truth-telling

;

which contradicts the hypothesis (A27) does not bind.

Lemma A5 Suppose that �m � �hh�ll
1��ll and �h > c: Then it cannot be an optimal solution to (A28)

if only constraints (A27) and (23) bind.

Proof. In this case, one can �rst show from the �rst order conditions that �hh = �hm = 1: Next, the

�rst order condition with respect to �lm is

2
X
x2Xn

an (x) �
1 (x) l

xlh
n
+ �m

X
x2Xn:xlh�1

an�1(xhh; xhl; xlh � 1; xll)�1(x)l + lm � �lm = 0:

Since all terms except the non-negativity multipliers are strictly positive, it must be that �lm = 1:

The �rst order condition with respect to �1 (x) reads

2an (x)

�
(�hhxhh+�hmxhl)h+(�lmxlh+�llxll)l

n � c
�
+  hh [2�hhan�1 (xhh � 1; xhl; xlh; xll)h]

� hh2�llan�1 (xhh; xhl; xlh; xll � 1)h
+�m

�
�hman�1 (xhh; xhl � 1; xlh; xll)h+ �lman�1 (xhh; xhl; xlh � 1; xll) l

�
��m [�llan�1 (xhh; xhl; xlh; xll � 1) (h+ l)] + �ll2�llan�1 (xhh; xhl; xlh; xll � 1) l
��an (x) 2c+  (x)� � (x) = 0:

; (A31)

where, just like in (A8), the convention is that an�1 (x) = 0 if x�i = 0. Using that �hh = �hm =

�lm = 1;  hh = ��hh; �m = 2��m and �ll = � and the multinomial identities in (A9), we can

simplify (A31) to

0 = 2

�
(xhh + xhl)h+ (xlh + �llxll) l

n
� c
�
� �xll

n
�ll

�
2�hhh+ 2�m (h+ l)

�ll

�
+

 (x)� � (x)
(1 + �)an (x)

De�ne

bQ (x;�; �ll) = 2 �(xhh + xhl)h+ (xlh + �llxll) ln
� c
�
� �xll

n
�ll

�
2�hhh+ 2�m (h+ l)

�ll

�
;

we may write the optimal provision rule in terms of the normalized multiplier and the (still un-

known) inclusion probability for type ll as

�1 (x) =

(
1 bQ (x;�; �ll) > 0
0 bQ (x;�; �ll) < 0 :

It is easy to check that for any x 2 Xn�1 and � > 0; we have thatbQ (xhh + 1; xhl; xlh; xll;�; �ll) = bQ (xhh; xhl + 1; xlh; xll;�; �ll)
> bQ (xhh; xhl; xlh + 1; xll;�; �ll)
> bQ (xhh; xhl; xlh; xll + 1;�; �ll) ;
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implying that E
�
�1 (x) jlh

�
� E

�
�1 (x) jll

�
: Hence, letting Ahh; Ahm; A

h
m and Ahm be de�ned as in

Lemma 5, we have

2Ahhh� thh /(A27) binds/ = 2Allh� tll = 2All (h+ l)� tll +All (h� l)

/(23) binds/ = Ahmh+A
l
ml � tm +All (h� l)

= Ahmh+A
l
mh� tm| {z }

payo¤ from announcing hl

+
�
All �Alm

�
(h� l)

But, �ll � �lm = 1 and E
�
�1 (x) jll

�
� E

�
�1 (x) jlh

�
imply that All � Alm: Thus 2Ahhh � thh �

Ahmh+A
l
mh� tm; contradicting the hypothesis that there is slack in (22).

Lemma A6 Suppose that �m � �hh�ll
1��ll and �h > c: Then there exists N such that 0 < �ll (n) < 1

and 0 < �lm (n) < 1 in the solution to (A28)

Proof. (Sketch) Lemmas A4 and A5 imply that (22), (A27) and (23) all bind, which can only

happen when All = Alm. Hence, if �ll (n) = 0; then �lm (n) = 0 and vice versa. But if �ll (n) =

�lm (n) = 0; one can construct an alternative sequence of incentive feasible mechanisms with b�ll (n) =b�lm (n) = �h�c
�h�l for every n and provide the good with probability 1 that will eventually outperforms

the assumed optimal solution. Moreover, if there is a subsequence such that �ll (n) = 1 for all n,

then (since the pivot probability is eventually negligible and E�n (x) ! �� > 0) �lm (n) ! 1 along

the same subsequence and vice versa since otherwise All (n) = Alm (n) cannot hold for every n:

Arguing as in the proof of Part 3 of Proposition 4, one can show that the mechanism must be

infeasible when n is su¢ ciently large (the idea is that the per capita revenue is approximately ��2l

and the per capita cost is ��2c):

Proof of Proposition 5 (Continued):

From Lemma A6, we know that when n is su¢ ciently large, 0 < �lm (n) < 1 and 0 < �lm (n) < 1.

The optimality condition for �lm (n) is the same as that for program (26); and the only change for

the optimality condition of �ll (n) is that a term � hh
P
x2Xn:xll�1 an�1(xhh; xhl; xlh; xll�1)�

1(x)2h

is added to the �rst order condition. Hence, for 0 < �lm (n) < 1 and 0 < �lm (n) < 1, to satisfy the

optimality conditions it must be that

0 = 2�ml � �hhh+ �ml;
0 = 2�lll � �m (h+ l)�  hh2h+ �ll2l:

(A32)
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The �rst order condition with respect to �1 (x) is

2an (x)

�
(�hhxhh+�hmxhl)h+(�lmxlh+�llxll)l

n � c
�
+ (�hh +  hh) [�hhan�1 (xhh � 1; xhl; xlh; xll) 2h]

��hh
�
�hman�1 (xhh; xhl � 1; xlh; xll)h� �lman�1 (xhh; xhl; xlh � 1; xll)h

�
� hh [�llan�1 (xhh; xhl; xlh; xll � 1) 2h]
+�m

�
�hman�1 (xhh; xhl � 1; xlh; xll)h+ �lman�1 (xhh; xhl; xlh � 1; xll) l

�
��m [�llan�1 (xhh; xhl; xlh; xll � 1) (h+ l)] + �ll2�1llan�1 (xhh; xhl; xlh; xll � 1) l
��an (x) 2c+  (x)� � (x) = 0;

(A33)

which, by using that �hh = �hm = 1; may be rearranged as

xhh
n

h
2h+ (�hh +  hh)

1
�hh
2h
i
+ xhl

n

h
2h+ (�m � �hh) 1

�m
h
i

+xlh
n

h
2�lml +

�lm
�m
(�ml � �hhh)

i
+ xll

n

h
2�lll +

�ll
�ll
[�ll2l �  hh2h� �m (h+ l)]

i
�2c (1 + �) + b (x)� b� (x) = 0

(A34)

But,

�lm
�m
(�ml � �hhh) = �lm

�m

0B@�m2l + �ml � �hhh| {z }
=0 by (A32)

� �m2l

1CA = �2�lml;

�ll
�ll
[�ll2l �  hh2h� �m (h+ l)] =

�ll
�ll

2642�lll � �m (h+ l)�  hh2h| {z }
=0 by (A32)

+ �ll2l � 2�lll

375 = �2�lll;
(�hh +  hh)

1
�hh
2h = 2�h (Lemma A3),

(�m � �hh) 1
�m

= 2� (Lemma A3).

Hence, the optimal provision rule is to provide if and only if�xhh
n
+
xhl
n

�
2h (1 + �)� 2c (1 + �) > 0:

This provision rule for good 1 depends only on the number of high valuation agents for good 1.

Hence, E
�
�1n (x) jlh

�
= E

�
�1n (x) jll

�
; which implies that �ll (n) = �lm (n) and thus All (n) = Alm (n) :

We conclude that the solution to the problem must coincide with the solution for the problem where

goods 1 and 2 are treated separately. The asymptotic provision and inclusion probabilities can thus

be taken from Proposition 3, which completes the proof.
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B Appendix B: Proofs for Results in Section 2.

Proof of Proposition 1.

Claim B1 For any incentive feasible mechanism G of the form (3), there exist an incentive feasible
mechanism

G =

��
�j ; �j1; :::; �

j
n

�
j2J

; (ti)i2I

�
; (B35)

that generates the same social surplus, where �j : �n ! [0; 1] is the provision rule for good j;

�ji : � ! [0; 1] is the inclusion rule for agent i and good j;and ti : � ! R is the transfer rule for

agent i:

Proof. Consider an incentive feasible mechanism G. Pick k 2 [0; 1] arbitrarily and de�ne,

�j (�) = E��
j (�; #) =

Z 1

0
�j (�; #) d# (B36)

�ji (�i) =

8><>:
E�i�

j(�;#)!ji (�;#)

E�i�
j(�;#)

=

R
�n�i

R 1
0 �

j(�;#)!ji (�;#)d#dF(��i)R
�n�i

R 1
0 �

j(�;#)d#dF(��i)
if
R
�n�i

R 1
0 �

j (�; #) d#dF (��i) > 0

k if
R
�n�i

R 1
0 �

j (�; #) d#dF (��i) = 0

ti (�i) = E�i� (�) =

Z
�n�i

� (�) dF (��i) ;

for each � 2 �n; j 2 J and i 2 I: This is a mechanism of the form in (B35), and we will call it

G. Use of the law of iterated expectations on �j (�) and ti (�i) shows that (BB) is una¤ected when

switching from G to G: It remains to show that the surplus is unchanged, and that (IC) and (IR)
continue to hold under G: The utility of agent i of type �i 2 � who announces �̂i 2 � is

E�i
hP

j2J �
j
�
�̂i; ��i; #

�
!ji

�
�̂i; ��i; #

�
�i � �

�
�̂i; ��i

�i
in mechanism G (B37)

E�i
hP

j2J �
j
�
�̂i; ��i

�
�ji

�
�̂i

�
�i � ti

�
�̂i

�i
in mechanism G: (B38)

If
R
�n�i

R 1
0 �

j
�
�̂i; ��i; #

�
d#dF (��i) = 0; we trivially have that the payo¤s in (B37) and (B38) are

identical, whereas if
R
�n�i

R 1
0 �

j
�
�̂i; ��i; #

�
d#dF (��i) > 0; we have that

E�i�
j
�
�̂i; ��i

�
�ji

�
�̂i

�
�i = E�i�

j
�
�̂i; ��i; #

� E�i!ji ��̂i; ��i; #� �j ��̂i; ��i; #�
E�i�

j
�
�̂i; ��i; #

� (B39)

= E�i!
j
i

�
�̂i; ��i; #

�
�j
�
�̂i; ��i; #

�
�i:

Trivially, E�iti (�i) = ti (�i) = E�i� (�) ; which combined with (B39) implies that the payo¤s in

(B37) and (B38) are identical. Since the equality between (B37) and (B38) were established for

any i; �i and �̂i; it follows that all incentive and participation constraints (IC) and (IR) hold for

mechanism G given that they are satis�ed in mechanism G. Moreover, [again by (B39)]

E�i
hP

j2J �
j (�) �ji (�i) �i

i
= E�i

hP
j2J !

j
i (�; #) �

j (�; #) �i

i
; (B40)
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so it follows by integration over � and summation over i that

E
hP

i2I
P
j2J �

j (�) �ji (�i) �i

i
= E

hP
i2I
P
j2J �

j (�; #)!ji (�; #) �i

i
; (B41)

By construction, we also have that �j (�) = E��
j (�; #) for every �: Thus E

�
�j (�)Cj (n)

�
=

E
�
�j (�; #)Cj (n)

�
; implying that

X
j2J

E�j (�)

"X
i2I

�ji (�i) �i � C
j (n)

#
=
X
j2J

E�j (�; #)

"X
i2I

!ji (�; #) �i � C
j (n)

#
: (B42)

Hence, G and G generate the same social surplus.

Claim B2 For every incentive feasible mechanism of the form (B35), there exists an anonymous

simple incentive feasible mechanism g of the form (5) that generates the same surplus.

Proof. Consider an incentive feasible simple mechanism G on form (B35). For k 2 f1; ::::; n!g ;
let Pk : I ! I denote the k-th permutation of the set of agents I. Note that P�1k (i) gives the

index of the agent who takes agent i0s position in permutation Pk: Moreover, for any given � 2 �n;
let �PK =

�
�P�1k (1); :::; �P�1k (n)

�
2 �n denote the corresponding k-th permutation of �.22 For each

k 2 f1; :::; n!g ; let Gk =
��

�jk; �
j
k1; :::; �

j
kn

�
j=1;2

; tk1; :::; tkn

�
be given by

�jk (�) = �j
�
�Pk
�

8 � 2 �n; j 2 J ; (B43)

�jki (�i) = �j
P�1k (i)

(�i) 8 �i 2 �; j 2 J ; i 2 I;

tki (�i) = tP�1k (i)(�i) 8 �i 2 �; i 2 I;

and let g =
��e�j ;e�j1; :::;e�jn�

j=1;2
;et1; :::;etn� be given by

e�j (�) = 1
n!

Pn!
k=1 �

j
k (�) 8 � 2 �n; j 2 Je�ji (�i) = Pn!

k=1 E�i[�
j
k(�)]�

j
ki(�i)Pn!

k=1 E�i[�
j
k(�)]

8 �i 2 �; i 2 I; j 2 Jeti (�i) = 1
n!

Pn!
k=1 tki (�i) 8 �i 2 �; i 2 I:

(B44)

We now note that: (1) for each j 2 J ; e�j (�) = e�j ��0� if �0 is a permutation of �: This is immediate
since the sets

n
�jk (�)

on!
k=1

=
�
�j (Pk (�))

	n!
k=1

and
n
�jk
�
�0
�on!

k=1
=
�
�j
�
Pk
�
�0
��	n!

k=1
are the same;

(2) for j 2 J and each pair i; i0 2 I;e�ji (�) = e�ji0 (�) : That is, the inclusion rules are the same
for all agents. To see this, consider agent i and i0, and suppose that �i = �i0 : We then have

that
n
E�i

h
�jk (�)

i
�jki (�i)

on!
k=1

and
n
E�i0

h
�jk (�)

i
�jki0 (�i0)

on!
k=1

are identical and that E�i
�e�j (�)� =

22To illustrate, suppose n = 3;m = 2; � = (�1; �2; �3) = ((1; 2) ; (3; 2) ; (2; 1)) : Consider, for example, pur-

mutation k given by Pk (1) = 2; Pk (2) = 1; Pk (3) = 3: Then P�1k (1) = 2; P�1k (2) = 1; P�1k (3) = 3 and

�Pk =
�
�
P�1
k

(1)
; �
P�1
k

(2)
; �
P�1
k

(3)

�
= (�2; �1; �3) = ((3; 2) ; (1; 2) ; (2; 1)) :
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E�i0
�e�j (�)�; and (3) for each pair i; i0 2 I;eti (�) = eti0 (�) ; which is obvious since the sets ftki (�i)gn!k=1

and
�
tki
�
�0i
�	n!
k=1

are identical. Together, (1), (2) and (3) establishes that g is anonymous and

simple.

Now we show that g is incentive feasible and generates the same expected surplus as G. First,

since G and Gk are identical except for the permutation of the agents, we have, for k = 1; :::; n!;

X
j2J

E

(
�jk (�)

"X
i2I

�jki (�i) �
j
i � C

j (n)

#)
=
X
j2J

E

(
�j (�)

"X
i2I

�ji (�i) �
j
i � C

j (n)

#)
: (B45)

Hence,

X
j2J

E

(e�j (�)"X
i2I

e�j (�i) �ji � Cj (n)
#)

=
X
j2J

E

(
1

n!

n!X
k=1

�jk (�)

"X
i2I

Pn!
k=1 E�i�

j
k (�) �

j
ki (�i)Pn!

k=1 E�i�
j
k (�)

�ji � C
j (n)

#)

=
X
j2J

X
i2I

E�i

(
1

n!

n!X
k=1

E�i�
j
k (�) �

j
ki (�i) �

j
i

)
� E

"
1

n!

n!X
k=1

�jk (�)

#
Cj (n)

=
1

n!

n!X
k=1

X
j2J

E

(
�jk (�)

"X
i2I

�jki (�i) �
j
i � C

j (n)

#)
=
X
j2J

E

(
�j (�)

"X
i2I

�ji (�i) �
j
i � C

j (n)

#)
; (B46)

where the last equality follows from (B45). Hence the surplus generated by g is identical to that

by original mechanism G: To show that g is incentive feasible we �rst note that E�jk (�) = E�
j (�)

and E
P
i2I tki (�i) = E

P
i2I ti (�i) for all k, since the agents�valuations are drawn from identical

distributions and Gk and G only di¤er in the index of the agents. Thus

E
P
i2I eti (�i)�Pj2J Ee�j (�)Cj (n) = E

P
i2I

1
n!

Pn!
k=1 tki (�i)�

P
j2J E

1
n!

Pn!
k=1 �

j
k (�)C

j (n)

= E
P
i2I ti (�i)�

P
j2J E�

j (�)Cj (n) ; (B47)

so g satis�es (BB) if G does. Second, (IC) holds for any permuted mechanism, that is,

E�i
P
j2J �

j
k(�)�

j
ki (�i) �

j
i � tki(�i) � E�i

P
j2J �

j
k(
b�i; ��i)�jki(b�i; ��i)�ji � tki(b�i; ��i) (B48)

for all i 2 I; and �i;b�i 2 �. Hence,
E�i

X
j2J

e�j(�)e�j (�i) �ji � et(�i) = E�iX
j2J

"
1

n!

n!X
k=1

�jk (�)

# Pn!
k=1 E�i

�
�jk (�)

�
�jki (�i)Pn!

k=1 E�i
�
�jk (�)

� �ji �
1

n!

n!X
k=1

tki (�i)

=
1

n!

n!X
k=1

"
E�i

X
j2J

�jk (�) �
j
ki (�i) �

j
i � tki (�i)

#
� 1

n!

n!X
k=1

"
E�i

X
j2J

�jk(
b�i; ��i)�jki(b�i; ��i)�ji � tki(b�i; ��i)

#

= E�i
X
j2J

1

n!

n!X
k=1

�jk(
b�i; ��i)�jki(b�i; ��i)�ji � 1

n!

n!X
k=1

tki(b�i; ��i) =X
j2J

E�ie�j(b�i; ��i)e�ji �b�i� �ji � et(b�i); (B49)
where the inequality follows from (B48). Hence g is satis�es (IC). Finally, g also satis�es the (IR)

because (see the second line in (B49)) all the permuted mechanisms satisfy participation constraints.

Proposition 1 follows by combining Claims B1 and B2.

Proof of Proposition 2.
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Notation: This proof requires us to be explicit about the coordinates of the vector � when

permuting J . We therefore need some extra notation for this proof (only). We write ��ji =�
�1i ; :::; �

j�1
i ; �j+1i ; :::; �mi

�
for a type vector where good j has been removed. Analogously, ��j =�

��j1 ; :::; ��jn

�
stands for the type pro�le with good j coordinate removed for all agents and

�j =
�
�j1; :::; �

j
n

�
is the vector collecting the valuations for good j for all agents. Furthermore,

��j�i =
�
��j1 ; :::; ��ji�1; �

�j
i+1; :::; �

�j
n

�
and �j�i =

�
�j1; :::; �

j
i�1; �

j
i+1:::; �

j
n

�
are used for the vectors ob-

tained respectively from ��j and �j by removing agent i: These conventions are used also on the

distributions, so, for example, F�j�i denotes the cumulative distribution of �
�j
�i : Conditional distri-

butions are denoted in the natural way: for example F�j�i
�
�j �ji

�
denotes the joint distribution of

��j�i conditional on �
j
i : Since no integrals are taken over subsets of the range of integration, we also

conserve space and write
R
� h (�) dF (�) rather than

R
�2�n h (�) dF (�) when integrating a function

h over � and similarly for integrals over various components of �:

Proof. Consider a simple anonymous incentive feasible mechanism g. For k 2 f1; :::;m!g let

Pk : J ! J be the k-th permutation of J and �Pki =

�
�
P�1k (1)
i ; :::; �

P�1k (m)
i

�
2 � be the per-

mutation of �i when the goods are permuted according to Pk: Let �Pk =
�
�Pk1 ; :::; �Pkn

�
2 �n

denote the corresponding permutation of �:23 For each k 2 f1; :::;m!g de�ne mechanism gk =

(
n
�jk

o
j2J

;
n
�jk

o
j2J

; tk), where for every � 2 �n;

1. �jk (�) = �P
�1
k (j)

�
�Pk
�
for every j 2 J ;24

2. �jk (�i) = �P
�1
k (j)

�
�Pki

�
for every j 2 J ;25

3. tk (�i) = t
�
�Pki

�
:

By construction, each gk is simple. Each gk is also anonymous by the anonymity of g: Using
the de�nition of gk and manipulating the result by observing that the labeling of the variables is
irrelevant, we get:26

E�jk (�) �
j
k(�i)�

j
i =

Z
�

�jk (�) �
j
k(�i)�

j
idF (�) /def of gk/ =

Z
�2�n

�P
�1
k

(j)
�
�Pk

�
�P

�1
k

(j)
�
�
Pk
i

�
�jidF (�)

=

Z
�j

�Z
��j

�P
�1
k

(j)
�
�Pk

�
�P

�1
k

(j)
�
�
Pk
i

�
�jidF

�j
�
��j

��� �j�� dFj ��j� (B50)

/relabel/ =

Z
�
P
�1
k

(j)

24Z
(��j)Pk

�P
�1
k

(j) (�) �P
�1
k

(j) (�i) �
P�1
k

(j)

i dF�j

0@���j�Pk ���� �P
�1
k

(j)| {z }
j-th argument

1A35 dFj ��P�1k
(j)
�

23To illustrate, suppose n = 2;m = 3; and � = (�1; �2) = ((1; 2; 0) ; (3; 2; 1)) : Consider, for example, pur-

mutation k given by Pk (1) = 2; Pk (2) = 1; Pk (3) = 3: Then P�1k (1) = 2; P�1k (2) = 1; P�1k (3) = 3 and

�
Pk
1 =

�
�
P�1
k

(1)

1 ; �
P�1
k

(2)

1 ; �
P�1
k

(3)

1

�
= (2; 1; 0) ; �

Pk
2 =

�
�
P�1
k

(1)

2 ; �
P�1
k

(2)

2 ; �
P�1
k

(3)

2

�
= (2; 3; 1) ; �Pk =

�
�
Pk
1 ; �

Pk
2

�
=

((2; 1; 0) ; (2; 3; 1)) :

24This implies that �
P�1
k

(j)

k

�
�Pk

�
= �j (�) for every j 2 J :

25This implies that �
P�1
k

(j)

k

�
�
Pk
i

�
= �j (�i) for every j 2 J .

26 It is important to point out that, in reaching the fourth equality in (B50), we can relabel the integrating varibles

(since they are dummies) but not the integrating functions.
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where we recall, �
��j
�Pk � ��P�1k (1); :::; �P

�1
k (j�1); �P

�1
k (j+1); :::; �P

�1
k (n)

�
: (B51)

By exchangeability, we have

dF�j

0@���j�Pk ��� �P
�1
k (j)| {z }

j-th (vector) argument

1A (B52)

= dF�j
�
�P

�1
k (1); :::; �P

�1
k (j�1); �P

�1
k (j+1); :::; �P

�1
k (n)jj-th (vector) argument = �P

�1
k (j)

�
= dF�j

�
��j jj-th (vector) argument = �P

�1
k (j)

�
= dF�P

�1
k (j)

�
��P

�1
k (j)jP�1k (j) -th (vector) argument = �P

�1
k (j)

�
;

and

dFj
�
�P

�1
k (j)

�
= dF�

P�1
k

(j)
�
�P

�1
k (j)

�
: (B53)

Using (B50), (B52) and (B53), we have that

E�jk (�) �
j
k(�i)�

j
i (B54)

=

Z
�
P
�1
k

(j)

24Z
(��j)Pk

�P
�1
k

(j) (�) �P
�1
k

(j) (�i) �
P�1
k

(j)

i dF�j

0@���j�Pk ���� �P
�1
k

(j)| {z }
j-th argument

1A35 dFj ��P�1k
(j)
�

=

Z
�
P
�1
k

(j)

264Z
(��j)Pk

�P
�1
k

(j) (�) �P
�1
k

(j) (�i) �
P�1
k

(j)

i dF�P
�1
k

(j)

0B@��P�1k
(j)j �P

�1
k

(j)| {z }
P�1
k

(j)-th argument

1CA
375 dFP

�1
k

(j) �
�P

�1
k

(j)
�

=

Z
�

�P
�1
k

(j) (�) �P
�1
k

(j) (�i) �
P�1
k

(j)

i dF (�) = E�P
�1
k

(j) (�) �P
�1
k

(j)(�i)�
P�1
k

(j)

i :

Moreover, exchangeability implies that Etk (�i) = Et
�
�Pki

�
= Et (�i) : The ex ante utility,

E
h Pm

j=1
�jk (�) �

j
k(�i)�

j
i � tk (�i)

i
=

� Pm
j=1

E�P
�1
k (j) (�) �P

�1
k (j)(�i)�

P�1k (j)
i

�
� Et (�i),

Same elements in J and�
P�1k (1) ; :::; P�1k (m)

	 ,
=

h Pm
j=1

E�j (�) �j(�i)�
j
i

i
� Et (�i) ; (B55)

is thus unchanged when changing from g to gk. The same steps as in (B50) through (B54) (only

somewhat simpler) establishes that E�jk (�) = E�
P�1k (j) for every j, implying that

E
h Pm

j=1
�jk (�)C

j (n)� P
i
tk (�i)

i
=

h
C (n) E

Pm
j=1

�jk (�)�
P
i
Etk (�i)

i
(B56)

=
h
C (n) E

Pm
j=1

�j (�)� P
i
Et (�i)

i
= E

h Pm
j=1

�j (�)C (n)� P
i
t (�i)

i
;

so the feasibility constraint is una¤ected when changing from g to gk: Next, write Write U(�i; �0i; g)

and U(�i; �0i; gk) for the expected utility from announcing �
0
i when the true type is �i in mechanisms

g and gk respectively. Next, by a calculation in the same spirit as (B50) through (B54):
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E�i�
j
k

�
��i; �

0
i

�
=

Z
��i

�jk
�
��i; �

0
i

�
dF�i (��i) /def of gk/ =

Z
��i

�P
�1
k

(j)
��
��i; �

0
i

�Pk� dF�i (��i)
=

Z
�
j
�i

"Z
�
�j
�i

�P
�1
k

(j)
��
��i; �

0
i

�Pk� dF�j�i ���j�i ��� �j�i�
#
dFj�i

�
�j�i

�
(B57)

/relabel/ =

Z
�
P
�1
k

(j)

�i

"Z
�
�P�1

k
(j)

�i

�P
�1
k

(j)
�
��i; �

0Pk
i

�
dF�j�i

��
��j�i

�Pk ���� �P�1k
(j)

�i

�#
dFj�i

�
�
P�1
k

(j)

�i

�

/exchangeability/ =

Z
�
P
�1
k

(j)

�i

"Z
�
�P�1

k
(j)

�i

�P
�1
k

(j)
�
��i; �

0Pk
i

�
dF

�P�1
k

(j)

�i

�
�
�P�1

k
(j)

�i

���� �P�1k
(j)

�i

�#
dFj�i

�
�
P�1
k

(j)

�i

�
=

Z
��i

�P
�1
k

(j)
�
��i; �

0Pk
i

�
dF�i (��i) = E�i�

P�1
k

(j)
�
��i; �

0Pk
i

�
That is, the perceived probability of getting j when announcing �0i in mechanism gk is the same as

the perceived probability of getting good P�1k (j) when announcing
�
�0i
�Pk ; so that

U(�i; �
0
i; gk) = E�i

Pm
j=1

�jk
�
��i; �

0
i

�
�jk(�

0
i)�

j
i � tk

�
�0i
�

(B58)

=
Pm
j=1

�
P�1k (j)

k (
�
�0i
�Pk)�jiE�i�P�1k (j)

�
��i; �

0Pk
i

�
� t
��
�0i
�Pk� ;

whereas

U(�i; �
0
i; g) =

mX
j=1

�jk(�
0
i)�

j
iE�i�

j
k

�
��i; �

0
i

�
� t
�
�0i
�
) (B59)

U(�i; �
0
i; g)

��
�i=�

Pk
i

�0i=�
0Pk
i

=
Pm
j=1 �

j
k(
�
�0i
�Pk)�P�1k (j)

i E�i�
j
k

�
��i; �

0Pk
i

�
� t
��
�0i
�Pk�

=
Pm
j=1

�
P�1k (j)

k (
�
�0i
�Pk)�jiE�i�P�1k (j)

k

�
��i; �

0Pk
i

�
� t
��
�0i
�Pk�

= U(�i; �
0
i; gk);

which establishes that type �i who announces �0i in mechanism gk gets the same utility as type �
Pk
i

who announces
�
�0i
�Pk in mechanism g: Hence incentive compatibility and individual rationality

of gk follows from incentive compatibility and individual rationality of g: Now, construct a new

mechanism eg = (�e�j	
j2J ;

�e�j	
j2J ;

et) by letting
e�j (�) = 1

m!

Pm!
k=1 �

j
k (�) =

1
m!

Pm!
k=1 �

P�1k (j)
�
�Pk
�

(B60)

e�j (�i) =

Pm!
k=1 �

j
k (�i) E�i�

j
k (�)Pm!

k=1 E�i�
j
k (�)

=

Pm!
k=1 �

P�1k (j)
�
�Pki

�
E�i�

P�1k (j)
�
�Pk
�

Pm!
k=1 E�i�

P�1k (j)
�
�Pk
�

et (�i) = 1
m! tk (�i) =

1
m! t
�
�Pki

�
let P : J ! J be an arbitrary perturbation of the set of goods. Then,

e�P�1(j) ��P � = 1
m!

Pm!
k=1 �

P�1k (P
�1(j))

��
�P
�Pk� = 1

m!

Pm!
k=1 �

P�1k (j)
�
�Pk
�
= e�j (�) ; (B61)
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since the sets
n
�P

�1
k (P

�1(j))
��
�P
�Pk�om!

k=1
and

n
�P

�1
k (j)

�
�Pk
�om!

k=1
are identical. Furthermore

e�P�1(j) ��Pi � = Pm!
k=1 �

P�1
k (P

�1(j))
k

�
(�Pi )

Pk
�
E�i�

P�1
k (P

�1(j))
k

�
(�P )

Pk
�

Pm!
k=1 E�i�

P�1
k (P�1(j))

k

�
(�P )

Pk
�

=

Pm!
k=1 �

P�1
k

(j)
�
�
Pk
i

�
E�i�

P�1
k

(j)(�Pk)Pm!
k=1 E�i�

P�1
k

(j)(�Pk)
= e�j (�i)

(B62)

for the same reason. It is obvious that et ��Pi � = et (�i) ; which together with (B61) and (B62)
establishes that eg is symmetric. To complete the proof we need to show that eg is incentive feasible
and generates the same surplus as g: We note that

Ee�j (�)e�j (�i) �ji = 1
m!

Pm!
k=1 E�

j
k (�)

Pm!
k=1 �

j
k(�i)E�i�

j
k(�)Pm!

k=1 E�i�
j
k(�)

�ji

= 1
m!E�i

Pm!
k=1

�
E�i�

j
k (�)

Pm!
k=1 �

j
k(�i)E�i�

j
k(�)Pm!

k=1 E�i�
j
k(�)

�ji

�
= 1

m!E
hPm!

k=1 �
j
k (�i) �

j
k (�) �

j
i

i
) E

Pn
j=1

he�j (�)e�j (�i) �ji � et (�i)i = 1
m!

Pm!
k=1 E

hPm
j=1 �

j
k (�i) �

j
k (�) �

j
i � tk (�i)

i
/(B54) & (B55)/ = E

hPm
j=1 �

j (�i) �
j (�) �ji � t (�i)

i
;

(B63)

which establishes that the ex ante utility from eg and g are the same for all agents. Moreover,
E
hPm

j=1 e�j (�)Cj (n)�Pn
i=1
et (�i)i = E hC (n)Pm

j=1
1
m!

Pm!
k=1 �

j
k (�)�

Pn
i=1

Pm!
k=1

1
m! tk (�i)

i
=
Pm!
k=1 E

h
C (n)

Pm
j=1 �

j
k (�)�

Pn
i=1 tk (�i)

i
/ (B56)/

= 1
m!

Pm!
k=1 E

hPm
j=1 �

j (�)C (n)�
Pn
i=1 t (�i)

i
= E

hPm
j=1 �

j (�)Cj (n)�
Pn
i=1 t (�i)

i
;

(B64)

so the budget balance constraint is una¤ected. All incentive compatibility constraints hold since,

U(�i; �
0
i; eg) =

mX
j=1

e�j(�0i)�jiE�ie�j ���i; �0i�� et ��0i� (B65)

=
Pm!
k=1 �

j
k(�

0
i)E�i�

j
k(��i;�

0
i)Pm!

k=1 E�i�
j
k(��i;�

0
i)

E�i
h
1
m!

Pm!
k=1 �

j
k

�
��i; �

0
i

�i
� 1

m!

Pm!
k=1 tk

�
�0i
�

= 1
m!

Pm!
k=1

h
�jk
�
�0i
�
E�i�

j
k

�
��i; �

0
i

�
� tk

�
�0i
�i

/ (B58)/ = 1
m!

Pm!
k=1 U(�i; �

0
i; gk) � / IC for each k/ 1

m!

Pm!
k=1 U(�; gk ) = U(�; eg):

By the same calculation, U(�; eg) = 1
m!

Pm!
k=1 U(�; gk) � 0; since all participation constraints hold

for each k: This completes the proof.
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