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Abstract

In the empirical and theoretical literature a consumer’s utility func-
tion is often assumed to be quasilinear. In this paper we provide nec-
essary and sufficient conditions for testing if the consumer acts as if
she is maximizing a quasilinear utility function over her budget set.
If the consumer’s choices are inconsistent with maximizing a quasilin-
ear utility function over her budget set, then we compute the “best”
quasilinear rationalization of her choices.

Keywords: Quasilinear utilities, Afriat inequalities, Curve-fitting

JEL Classification: D11, D12

1Department of Economics, Yale University
2Department of Economics, Yale University



Rationalizing and Curve-Fitting Demand Data
with Quasilinear Utilities

Abstract
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1 Introduction

Theoretical models of consumer demand assume consumer’s choice is derived
from the individual maximizing a concave utility function subject to a budget
constraint. Given a finite set of price and consumption choices, if there exist
a concave, continuous and monotonic utility function such that these choices
are the maxima of this function over the budget set, then we say that the
data set is rationalizable.

Afriat (1967) provided the first necessary and sufficient conditions for a
finite data set to be rationalizable, that is for it to be a result of the consumer
maximizing her utility subject to a budget constraint. Afriat (1981) and
Varian (1983) subsequently derived necessary and sufficient conditions for
a finite data set to be rationalizable by homothetic or by separable utility
functions.

Quasilinear rationalizations are used in a wide range of areas in economics,
including theoretical mechanism design, public economics, industrial organi-
zation and international trade, one reason being that in this case changes in
consumer surplus are equivalent to changes in consumer welfare.
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Quah has shown that homothetic utility functions generate monotone de-
mand functions, i.e. x(p, I) is said to be monotone if x(p1, I) − x(p2, I) ·
(p1 − p2) ≤ 0. This is a multivariable version of the law of demand, i.e. an
increase in prices results in a decrease in demand. Demand functions gen-
erated from quasilinear utility maximization subject to a budget constraint
enjoy an additional property not possessed by monotone demand functions:
they are cyclically monotone. Such demand functions are said to satisfy the
strong law of demand 3. Cyclically monotone demand functions not only
have downwards sloping demand curves, in the sense that they are monotone
functions, but also their line integrals are path-independent and therefore
measure the change in consumer welfare for a given multidimensional change
in prices.

In the first part of this paper we show that a finite data set consisting
of pairs of price vectors and consumption vectors can be rationalized by a
quasilinear utility maximization subject to a budget constraint if and only
if the data set is cyclically monotone. Moreover we derive a linear program,
from the associated Afriat inequalities, that is solvable if and only if the data
is cyclically monotone.

Suppose the data is not cyclically monotone, then by our theorem there
is no quasilinear rationalization of the data. In this case we ask what is the
“best” quasilinear approximation to the data. We address this question in
the second section of the paper in two steps. First we show that our non-
parametric characterization of quasilinear rationalization extends to maxi-
mization of a random quasilinear utility function of the form u(x)+ ǫ ·x+x0,
subject to a budget constraint. Random quasilinear utility functions have
also been discussed by Brown and Wegkamp (2003). Their specification,
v(x, e) = u(x) + ǫ · x + x0 is a special case of the random utility model sug-
gested originally by Brown and Matzkin (1998). If the shocks are assumed
to be bounded, as in Brown and Wegkamp and Brown and Matzkin, then we
show that the random model, as in the deterministic case, is testable.

If the shocks are not bounded then any data set can be rationalized by a
random quasilinear utility function. This suggests another interpretation of
ǫ, as slack variables in fitting a quasilinear utility function to demand data.
In this case we choose the quasilinear approximation with least absolute
deviation as the “best”quasilinear rationalization of her choices.

3see Brown and Calsamiglia (2003) for further discussion
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2 The Strong Law of Demand and Quasilin-

ear Rationalizability

Afriat (1967) provides the first non-parametric test for consumer behav-
ior. He provides a necessary and sufficient condition on finite data for it to
be rationalizable by a neoclassical utility function.

Definition 1 Let (pr, xr), r = 1, ..., N be given. A utility function u ratio-
nalizes the data if for all r = 1, ..., N xr solves:

max
xǫRn

++

u(x)

s.t.prx ≤ I = prxr

Theorem 1(Afriat 1967) The following conditions are equivalent:

1. There exists a concave, monotonic, continuous, non-satiated utility

function that rationalizes the data.

2. The data (pr, xr), r = 1, ..., N satisfies Afriat inequalities, that is, there

exists Ur > 0 and λr > 0 for r = 1, . . . , N such that

Ur ≤ Ul + λlpl · (xr − xl) ∀r, l = 1, . . . , N

3. The data (pr, xr), r = 1, ..., N satisfies ”cyclical consistency”, that is,

prxr ≥ prxs, psxs ≥ psxt, · · · , pqxq ≥ pqxr

implies

prxr = prxs, psxs = psxt, · · · , pqxq = pqxr

Definition 2 Let (pr, xr), r = 1, ..., N be given.The data is quasilinear

rationalizable if for some yr > 0 and I > 0, xr solves

max
xǫRn

++

U(x) + yr
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s.t.prx + yr = I

where U is a concave function.

Definition 3 A demand function x(p, I) : Rn+1
++ → Rn

++ is cyclically mono-

tone if for any given I and finite set {p1, ..., pm} (m arbitrary):

x1 · (p2 − p1) + x2 · (p3 − p2) + · · · + xm · (p1 − pm) ≥ 0

This is equivalent to p(x, I) being cyclically monotone, that is that for
any given I and finite set {x1, ..., xm} (m arbitrary)

p1 · (x2 − x1) + p2 · (x3 − x2) + · · ·+ pm · (x1 − xm) ≥ 0

Definition 4 A demand function x(p, I) : Rn+1
++ → Rn

++ satisfies the strong

law of demand if it is cyclically monotone.

Definition 5 If u is concave on Rn, then β ∈ Rn is a subgradient of u

at x if for all y ∈ Rn : u(y) ≤ u(x) + β · (y − x).

Definition 6 If u is a concave function on Rn, then ∂u(x) is the set of
subgradients of u at x.

Theorem 2 (Rockafellar 1970) Let ρ be a multivalued mapping from Rn

to Rn. In order that there exists a closed proper concave function f on Rn

such that ρ(x) ⊂ Df(x) for every x, it is necessary and sufficient that ρ be

cyclically monotone.

In his proof he constructs the following function f on Rn:

f(x) = inf{x∗

m · (x − xm) + . . . + x∗

0 · (x1 − x0)}

where the infimum is taken over all finite sets of pairs (x∗

r , xr), r = 1, . . . , m
(m arbitrary) in the graph of ρ(x). Note that if the graph of ρ has only a
finite number of elements then the domain of f is all of Rn. Also note that
for this f , x∗

i is the subgradient at xi.

Theorem 3 The following are equivalent:
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1. The data (pr, xr), r = 1, ..., N is quasilinear rationalizable by a contin-

uous, concave, strictly monotonic utility function U .

2. The data (pr, xr), r = 1, ..., N satisfies Afriat’s inequalities with con-

stant marginal utilities of income, that is, there exists Gr > 0 and λ > 0
for r = 1, . . . , N such that

Gr ≤ Gl + λpl · (xr − xl) ∀r, l = 1, . . . , N

or equivalently there exist Ur > 0 for r = 1, . . . , N

Gr ≤ Gl + pl · (xr − xl) ∀r, l = 1, . . . , N

where Gr = Ur

λ

3. The data (pr, xr), r = 1, ..., N satisfies the strong law of demand.

Proof: (1) ⇒ (2): From the FOC of the quasilinear utility maximization
problem we know:

∃βr ǫ ∂U(x), s.t. βr = λrpr where λr = 1

Also, U being concave implies that U(xr) ≤ U(xl) + βl(xr − xl) for
r, l = 1, 2, ..., N . Since βl = pl ∀l = 1, . . . , N we get U(xr) ≤ U(xl) +
pl(xr − xl) ∀r, l = 1, ..., N

(2) ⇒ (3): For any set of pairs {(xs, ps)}, s = 1, ..., m we need that:
p0 · (x1 − x0) + p1(x2 − x1) + ... + pm(x0 − xm) ≥ 0.

From the Afriat inequalities with constant marginal utilities of income we
know:

U1 − U0 ≤ p0 · (x1 − x0)

U2 − U1 ≤ p1 · (x2 − x1)

· · ·

U0 − Um ≤ pm(x0 − xm)

Adding up these inequalities we get that the left hand sides cancel and
we get the condition that defines cyclical monotonicity.
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(3) ⇒ (1): By Theorem 2 we know there exists a utility function U such
that pr is the subgradient of U at xr, that is:

pr = ∂U(xr)

which together with λr = 1 constitutes a solution to the first order conditions
of the quasilinear maximization problem.

If we require strict inequality in (2) of Theorem 3, then it follows from
Lemma 2 in Chiappori and Rochet (1987) that the rationalization can be
chosen to be a C∞ function. It then follows from Roy’s identity that x(p) =

−∂V (p)
∂p

. Hence for any line integral we see that
∫ p2

p1
x(p)dp = −

∫ p2

p1
=

∂V (p)
∂p

dp = h(p1) − h(p2). That is, consumer welfare is well-defined and the
change in consumer surplus induced by a change in market prices is the
change in consumer’s welfare.

3 Random Quasilinear Rationalizations

If consumers have random quasilinear utility functions can anything happen?
No, not if each individual’s distribution of utility shocks to her marginal util-
ities are bounded, where agents have random utility functions of the form
V (x, e) = U(x) + ǫ · x + x0. Assuming U(x) is strictly concave, smooth and
monotonic, each realization of ǫ gives rise to a quasilinear utility function
having all of the properties previously derived, i.e. for a fixed ǫ, the random
demand function x(p, ǫ) is cyclically monotone. Of course a finite family
of observations of such demand functions need not be cyclically monotone,
since each observation can in principle be drawn from a “different” cyclically
monotone demand function. It is therefore surprising that the hypothesis of
random quasilinear rationalization of a data set is refutable, if the shocks
are bounded and the bounds are known a priori. As a consequence, this
hypothesis is testable in the sense of Brown and Matzkin (1995), i.e. there
exists a finite family of polynomial inequalities involving only observations
on market data that are solvable if and only if the data can be rationalized
with a random quasilinear utility function. These inequalities will involve
the known bounds on the shocks.

Definition 7 U(x) + ǫ · x + x0 is a random quasilinear rationalization of
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the data (pr, xr), r = 1, ..., N if ∃ǫ1, . . . , ǫr, x0r and I > 0 such that xr is the
solution to

max U(x) + ǫr · x + x0r

s.t. pr · x + x0 = I

Definition 8 The data set (pr, xr), r = 1, ..., N , satisfies the Random Afriat
Inequalities, RAI, if it satisfies the Afriat inequalities for a random quasilinear
utility function of the form V (x, ǫ) = U(x)+ ǫ ·x+x0. That is, if they satisfy
the following:

Ur ≤ Ul + (pl − ǫl) · (xr − xl) for r, l = 1, . . . , N

pr − ǫr >> 0 for r = 1, . . . , N

Ur > 0 for r = 1, . . . , N

ǫr >> 0∀r = 1, . . . , N

These are linear inequalities in the unknown Ur and ǫr. Hence they can
be solved in polynomial time using interior point linear programming algo-
rithms.

The utility shock ǫ has compact support if there exists ǫmin and ǫmax such
that ǫmin ≤ ǫ ≤ ǫmax, where the quasilinear model is a special case of the
random quasilinear model if ǫmax = 0.

Figure 1 shows that for two observations, all possible pairs of budget lines
defined by the gradients of U(x) at x1 and x2, given consumption x1 and x2,
violate WARP. Hence rationalizatios with random quasilinear utilities of the
form U(x) + ǫ · x + x0, where ǫ has compact support is refutable.

Figure 2 shows that for two observations, without bounds on the shocks,
the model is not refutable. With unbounded shocks we can generate the
interior of the positive orthant of the price vector and therefore WARP will
never be violated.

Theorem 4 Let the data set (pr, xr), r = 1, ..., N be given. The data can

be rationalized by random quasilinear preferences of the form U(x)+ ǫ ·x+x0

if and only if it satisfies RAI. Moreover, the model is refutable if and only if

the shocks are bounded and the bounds are known a priori.
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good 1

good 2

x2

p1-εmax

p1-εmin

p1

p2-εmin
p2

p2-εmax

x1

Figure 1: Two goods two observation example with bounded shocks

This result can be viewed as a relaxed version of Theorem 3. If one
empirically tests for quasilinear utilities it would be extremely surprising to
find that the Afriat inequalities for λr = 1 ∀r were satisfied, i.e. that a
quasilinear function ratinalizes the data. As in any empirical test we would
like to allow for some error in the individual’s choice.4 One way of doing this
is to say that individuals make small mistakes in evaluating their marginal
utilities when making a consumption choice. This suggests the following
family of Afriat inequalities with q’s and p’s:

Ur ≤ Ul + ql · (xr − xl) ∀r, l = 1, . . . , N

qr ≤ pr ∀r = 1, . . . , N

Note that if we define ǫr = pr−qr, this reduces to the family of inequalities
for random quasilinear utilities. We now compute the solutions to the set of
inequalities with unknowns Ur, qr for r = 1, . . . , N and pick the solution with
least absolute deviation (LAD). This solution is our “best” approximation.

4 Afriat (1972) and Varian (1990) provide the Critical Cost Efficiency Index as a mea-
sure of goodness-of-fit that is measured by the minimal distortion in wealths required to
rationalize the data. This is the measure used by Andreoni and Miller (2002) to rationalize
altruism with experimental data.
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good 1

good 2

x2

p1

q1

ε1

p2

x1

q2

ε2

Figure 2: Two goods two observation example with unbounded shocks, ǫr ≤
pr for r = 1, 2, and a pair of budget sets where consumption choices do not
violate WARP.

Our notion of curve-fitting demand data with quasilinear utilities extends
naturally to the wide class of economic models formulated as solutions to a
finite family of polynomial inequalities consisting of the Afriat inequalities
for consumers or producers and possibly other polynomial inequalities such
as budget constraints or feasibility constraints, e.g. market clearing. We
simply relax the Afriat inequalities for agents by introducing slack variables
for the gradients of the utility and production or cost functions. In partic-
ualr, if we apply our relaxation method to the Brown-Matzkin inequalities
characterizing a Walrasian equilibrium, we obtain the “best” Walrasian ap-
proximation to the observed market data with respect to minimizing least
absolute deviations. It is in this sense that economists may use competitive
markets as approximations to actual market structures.
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