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1. INTRODUCTION

Many of the functions studied in economics, such as utility and
production functions, are known to be either monotone and concave or
monotone and convex, Beyond that characterization, however, there 1s no
specific parametric structure for them. Moreover, in many instances, the
values of these functions are only observed through a transformation
influenced by some random term. For example, in binary choice models the
utility of each alternative consists of a systematic part, which is a
function of observable attributes, and a random part. Both parts of the
utility function are unobservable. One can only observe whether the utility
difference between the two alternatives is positive. In certain situations,
economic theory can provide some indications about the monotonicity and
concavity of the systematic part. If the distribution of the random part
does not belong to a parametric family, however, this knowledge will
typically not be sufficient to identify the systematic part of the function.

This lack of identification contrasts with the case in which either or
both the systematic function of observable variables and the distribution of
the random part belong to parametric families. Matzkin (1987) showed that
when the distribution of the random term belongs to a parametric family, it
is possible to identify and consistently estimate the systematic function of
exogenous variables, which is assumed to be nonparametric, monotone, and
concave. Manski (1975,1985), Cosslett (1983), Stoker (1985), Han (1987),
Ichimura (1986), and Klein and Spady (1986), among others, showed that when
the systematic function of exogenous variables belongs to certain parametric

families, it 1is possible to identify and consistently estimate the



parameters of the systematic function, even when the distribution of the
random terms is not assumed to have any particular parametric structure,.

In this paper, I analyze the identification and estimation of three
microeconometric models in which neither the systematic function of
observable exogenous variables nor the distribution of the random term
belongs to a parametric family of functions or distributions. The main
result is that when the systematic function is a monotone and concave
function whose domain is a compact set, it is possible, under certain weak
additional conditions, to identify and estimate a representative of the
systematic function. This representative 1s a monotone transformation of
the systematic function. Hence, its 1isovalue sets coincide with the
isovalue sets of the systematic function.

The result of this paper complements the work of Matzkin (1988), where
it was shown that when the systematic function possesses properties such as
homogeneity of degree one or certain types of separability, it is possible
to identify and consistently estimate both the systematic function and the
distribution of the random term in binary threshold and choice models. (See
also Matzkin (1990a)). When the systematic function is monotone and
concave, estimation of this function by the methods developed in Matzkin
(1988) requires strong restrictions on the shape of its isovalue sets. 1In
contrast, the method developed in this paper only imposes minimal
restrictions on the isovalue sets of the systematic function.

The three microeconometric models studied are a binary choice model, a
generalized regression model, and a threshold crossing model. The random
term in the binary choice model is assumed to be median independent of the

exogenous observable variables, while the random terms in the generalized



regression model and the threshold crossing model are independent of the
observable exogenous variables. The distributions of the random terms are
otherwise unknown. The systematic functions are monotone increasing and
concave; they are also required to posses other weak properties, which will
be made explicit in the following sections. In the binary choice and
generalized regression models, I study the estimation of a representative of
the systematic function, while in the threshold crossing model, I study the
estimation of representatives of both the systematic function and the
distribution of the random term.

The approach proceeds by characterizing each subset of observationally
equivalent systematic functions by a unique least concave representative in
a compact set of Jleast concave representatives. This particular
characterization has three appealing properties. First, the isovalue sets
of the systematic functions can be obtained from the isovalue sets of their
least concave representatives. Second, the compactness of the set of least
concave functions allows us to devise consistent estimators for the
representative of the systematic function. Third, 1least concave
representatives enable us easily to obtain a consistent estimator of the
equivalence class to which the systematic function belongs from a consistent
estimator of its least concave representative. Being able to estimate the
equivalence class can be important when it is expected that information that
will be available later will help reduce the equivalence class.

Least concave functions have been previously studied in the theory of
representations of concavifiable preference relations (deFinneti (1949),
Debreu (1976), Kannai (1977,1980)). When a preference relation can be

represented by a concave utility function, one typically asks whether a



least concave utllilty tunction Ior that prererence exilsts. A tunction h
is a least concave utility function for a preference relation if any concave
utility function for the same preference is a concave and strictly
increasing transformation of h. Hence, the entire set of concave utility
functions for a given preference relation can be obtained by composing the
least concave utility function for that preference with any possible concave
and strictly increasing function. Debreu (1976) showed that any preference
relation that admits a concave utility function admits a least concave
utility function.

I show that a least concave representative of the systematic function
generating the observations is identified within a set of least concave
functions. I develop distribution-free methods of consistently estimating
this least concave representative.

To make the new estimation methods operational, a technique for
calculating the estimators is developed. The technique proceeds by first
maximizing a criterion function over a set of concave functions and second
obtaining the values of a least concave representative that generates, on
the observed vectors, the same preorder generated by this concave function.
The first step adapts methods studied in Matzkin (1987). The second step
involves solving a linear programming problem. By using this technique we
can approximate the wvalues, at each observed vector of exogenous variables,
and the gradients, at every point and up to a positive constant, of a least
concave representative that maximizes the criterion function.

The outline of the paper is as follows. In the next section, I present
a binary choice model and show that in that model the systematic subutility

function can not be identified. In Section 3, I present a set of least



concave functions and show that sets of observationally equivalent functions
can be characterized by a unique representative in that set. A method of
estimating the least concave representative of the systematic function is
presented in Section 4 and the calculation of this estimator is studied in
Section 5. Sections 6 and 7 show that a similar estimation approach can be
applied to generalized regression models and binary threshold crossing
models. The main conclusions of the paper are summarized in Section 8. All

the proofs are presented in the Appendix.
2. A NONIDENTIFIED MODEL

In this section, I present an example of a microeconometric model in
which it 1is not possible to identify the systematic function of the
observable exogenous variables. The example is a fully nonparametric binary
choice model with a median independent random term.

Binary choice models have been employed to analyze a wide variety of
problems in which an economic agent has to choose between two alternatives.
Examples include the choice between two modes of transportation and the
choice between purchasing or not purchasing a commodity.

In these models, the value of an observable dichotomous variable y is

*
determined by the value of an unobservable latent variable y  according to

*
y = sgn(y )

* *
where sgn(y ) ~1 if y = 0 and sgn(y*) = -1 otherwise. The value of
*
the variable y depends on a pair of vectors of observable exogenous

variables (xl,xz) and an unobservable random variable n through the



relationship:

y = bz - hYxy) - n

The pair =x = (xl, x2) possesses a marginal probability measure Px whose
support will be denoted by X x X .

In a choice of transportation example, Xy and X, denote,
respectively, the observable attributes of the first and second mode; h*
denotes the utility of the observable attributes; y* denotes the difference
between the utilities of the two alternative modes; and n is the
difference between the unobservable random subutilities of the modes.

I consider a particular binary choice model in which it is assumed that

*

h': X - R 1is monotone and concave but otherwise unknown and the marginal

*
distributions F of 15 are unknown but, for all x = (x

n|x x2), satisfy

1,
Fr) (0) = .5
nlx '
*
This weak set of assumptions is not restrictive enough to identify h

* %
from observations on (y,xl,xz). To show this, we let P(j|x1,x2;h ,F )

denote the probability of choosing alternative j (j=1,2) given the vector of

ttributes ( P h* F Fy (h n" 1,2;
a rioutes xl!xz): (j xltxza ) ) - "Ix( (xl) = (xz)) (j 16y
x-(xl,xz) € XxXX). The most information we can obtain from observations on
(y,xl,xz) is the function P(j|x1,x2;h*,F*). A concave and monotone

function h:X + R is observationally equivalent to h* if, given our knowledge
about the properties of h* and F:lx, it is not possible to distinguish
h* from h. This will be true if we can find a distribution Fﬂ[X that has
the same properties that F:lx is known to possess and is such that for

every xe(XxX), P(j|x),x,ih",F") = B(j|x,,%ysh,F) for j=1,2. Formally,

6
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DEFINITION 1: - A concave and monotone function h: X =+ R is
*
observationally eguivalent to h if there exists a distribution function

Fﬂlx satisfying F"IX(O) = .5 for every x = (xl,xz) € (XxX) and such that

* Kk
P(l|x1,x2,h JF ) = P(llxl,x ;h,F).

*
DEFINITION 2: The function h is identified within a set W of
*
concave and monotone functions h:X - R if h € W and there is no h € W

* *
such that h » h and h is observationally equivalent to h .

*
The next lemma states that h is not identified within the set of

concave and monotone functions defined on X.

LEMMA 1: There exists a concave and monotone function h: X - R that is

* *
observationally equivalent to h and is such that h = h .
3. EQUIVALENCE CLASSES AND LEAST CONCAVE REPRESENTATIVES

One possible way to deal with the nonidentification of h* is to look
for additional restrictions on h  that guarantee that h* is identified
within the smaller set of functions that satisfy those restrictions. This
was the approach taken in Matzkin (1988). 1In this paper, I propose to deal
with the nonidentification of h* in a different way.

The method proposed in this paper studies a least concave
representative of the class of functions that are observationally

*
equivalent to h . This representative can be strongly consistently



estimated. From this estimator we can obtain estimators for the isovalue
* *
sets of h and for the equivalence class of h .
In the next subsection I present the definition of least concave

functions and study some of their properties.
3.1. LEAST CONCAVE FUNCTIONS

To explain the concept of a least concave function I follow Debreu
(1976): Let h:X - R be a concave function on a convex set XCRK and
consider the set VU of all monotone transformations of h. Define on U
the relation "u 1is more concave than v" by "there exists a concave
function g:R = R such that u = gev ."2 A least concave representative

of U 1is a least element of U with respect to the relation "more concave

than." The next definition states this formally.

DEFINITION 3: Suppose that h:X -R is a concave function, where XCRK
is a convex set. A function h:X + R is a least concave representative of
h if for any strictly increasing function f:R - R such that f+h is
concave there exists a concave function g:R -+ R such that

feh = geh.

In other words, h 1is a least concave representative of h 1if any concave

function that is a monotone transformation of h is a concave

transformation of k. Note that the function g() in Definition 3 is
2

necessarily strictly increasing. As an example, suppose that h:R” - R is

given by the strictly concave function h(xl’XZ) - log(xl) + log(xz). Then,



a least concave representative of h is given by the linearly homogeneous
function E(xl,xz) - (-xloxz)l/2 . (See Kannai (1980).)

Note that all functions that are monotone transformations of h
possess the same isovalue sets as h., In particular, since h is a monotone
transformation of its least concave representative h, the isovalue sets of h
coincide with the isovalue sets of h, i.e. for all xeX,

{ xeX | h(x) = h(k) )} = { xX | h(x) = h(x) ).

Definition 3 immediately implies that any two concave functions are
strictly increasing transformation of each other if and only if they possess

the same least concave representatives.

LEMMA 2: Let h:X = R and h'’:X - R be concave and let h be a
least concave representative of h . There exists a strictly increasing
function f:R » R such that h' = f+h if and only if h is a least

concave representative of h'.

The set U of concave functions that are monotone transformations of
h is not complete with respect to the relation "more concave than"; i.e.,
given any two functions h,h’ in U, it is possible that h is not more
concave than h' and h’ 1s not more concave than h. Nevertheless, U
Possesses a least element with respect to this relation. This surprising

result, which is due to Debreu (1976), is stated in the next lemma,

LEMMA 3 (Existence): Suppose that h:X - R is a concave function on a

convex set XCRK. Then, there exists a least concave representative h of h.



Least concave representations are unique up to increasing linear
transformations. This fact, which can be easily shown, is stated as a lemma

for further reference.

LEMMA 4 (Uniqueness): Suppose that h:X - R 1is a concave function on
a convex set XCRK. If h and h’ are both least concave representatives
of h, then there exist a € R and b € R_H_ such that for all x € X

h(x) = a + b h'(x)

The next two lemmas show that least concave representatives possess

certain properties of the functions they represent.

LEMMA 5 (Linearity): Suppose that h:X + R 1is linear and h:X » R is

a least concave representative of h. Then h is linear.

LEMMA 6 (Continuous Differentiability): Suppose that h:X - R 1is a
concave function, h is a least concave representative of h, and x €
int(X) is such that h(x) < h({xx’) for some x' € X. If h is
continuously differentiable at x then E' is continuously differentiable

at x.

I next define a compact set of C2 least concave functions. The
compactness of this set will be employed to obtain a nonparametric estimator
*
for the least concave representative of h .
To guarantee the compactness of the set of functions, we need to impose

10



some uniform bounds on the values, gradients, Hessians, and Gaussian
curvatures of the functions in the set and we need to require some Lipschitz
properties of the functions and their gradients and Hessians.

Let x and X be elements of RK and let X denote the set

{ x € RK | x <= x<x).
For any C2 concave function h:X - R, let Dh(x) and Dzh(x) denote,
respectively, the gradient and Hessian of h at xeX, let D

h(x) and D, h(x)

2
J ij
denote respectively the jth and ijth elements of Dh(x) and Dzh(x), and let
c(h,x) denote the Gaussian curvaturel of h at x. The functions h, Dh(x),

and Dzh(x) are called V-Lipschitzian (V > 0) 1if for all x,yeX, and

1,j=1,...,K, |h(x) - h(y)| =V |x - y] . |%hm)- %h@)|sv|h -yl

2
ij

To impose bounds on the values, subgradients, Hessians, and Gaussian

and lDijh(x) - DL h(y)| =V |x - y", respectively.

curvatures of the functions, let «, ¥, and ¢ be strictly positive real

numbers with a < y and ¢ > 0. Let V2 and V, be strictly positive

3

numbers. Let BL,BU € RK be such that 0 < Bt < Bg (k=1,...,K) and B; >
0. Let A = (Aij) and C = (Cij) be KxK matrices such that Aij < Cij
(i,j=1,...,K). Require, further, that A, C, BL, BU, and c¢ satisfy that
for all matrices T= (Tij) and vectors t such that Aij < Tij < Cij
(i,j=1,...,K) and B? st B? (j=1,...,J), the determinant of the matrix

[-T t } 1

T K+l
-t 0 Il
is not smaller than c.

We can now employ this to define a compact set W . We let W be the

set of all functions h: X + R such that

11



(1) h is a C2 least concave representative of some concave function
h:X - R,
(i1) h(x) =a , h(x) =7,
(iii) ¥x € X V¥i,j BP < D.h(x) =< BQ, A,. < D2 h(x) < C,,, and
h) h) J ij ij i]

(iv) Dh(e) is V, -Lipschitzian and Dzh(-) is V3-Lipschitzian.

2

The set of concave functions that possess least concave representatives

in W will be denoted by W. Functions in W are monotone increasing,
concave, and strictly increasing with respect to the Kth coordinate. By
Lemma 4 and condition (ii), all functions in W possess a unique

representative in W.

Let d denote the C2 distance; which is defined by

d(h,h’) = sup__. | h(x) - h'(x) |
+ Sup'X&X,j’l,...,K ” Djh(x) - Djh'(x) "
+ sup I D% h(x) - D2.h’(x) I
x€X,i,j=1,..,K ij ij

The next theorem establishes the compactness of W with respect to d.

THEOREM 1: W is compact with respect to the metric d.

3.2. CHARACTERIZATION OF EQUIVALENCE CLASSES USING LEAST CONCAVE

REPRESENTATIVES

12



The set of least concave functions presented above can be employed to
characterize sets of observationally equivalent concave functions. 1 next
show this for the binary choice model that was presented in Section 2. 1In
Sections 6 and 7, I apply the same characterization to a generalized
regression model and a binary threshold crossing model.

The next theorem shows that if h* € W , then the set of functions in
¥ that are observationally equivalent to h* possess a common (and unique)
least concave representative in W.

THEOREM 2: Suppose that h,h* € W. Let h and & denote
respectively the least concave representatives in W of h and h*. Then,

R —
h is observationally equivalent to K" if and only if h =h

Hence, the set of functions that are observationally equivalent to h*
can be characterized by the least concave representative of h* in W.
From this result and Lemma 2 it follows that h is observationally
equivalent to h* if and only if h is a strictly increasing
transformation of h*. Note that the isovalue sets of all functions in W
that are observationally equivalent to h* coincide with the isovalue sets
of the least concave representative E* of h*. From Lemma 4 and condition
(ii) in the definition of W, the least concave representative in W of
h* is unique.

The definition of least-concavity together with Theorem 2 and the

definition of W imply that

- *
{ he W | h is observationally equivalent to h )

—%
= { h:X~+R I h=g+h" for some concave and strictly increasing function g }.
13



Hence, if we obtain an estimator for the least concave representative,

—% *

h™ , of h we can easily obtain an estimator for the equivalence class to
*

which h  belongs. In the next section, I show how to obtain an estimator

for h .

4., CONSISTENT ESTIMATION OF A LEAST CONCAVE REPRESENTATIVE OF h*

To obtain an estimator for h”, we can modify the Maximum Score
Estimation Method, which was introduced by Manski (1975, 1985). Manski
developed this method to estimate a parametric function h* in a binary
choice model with median independent random term. In the model that Manski
studied, h* was assumed to be a linear function and F* was assumed to be
unknown.

Following Manski (1975, 1985), we define the population score function
by
(1) s(h)

- E[ y sgn(h(xl) - h(xz)) ]

-Ply 20, h(x)) - h(x) = 0] + P[ v <o, h(x)) - h(x,) <0 ]

P[y 20, h(x)) - h(x)) <0 ] - P v <o, h(x)) - h(x,) 2 0 ].

and we define the sample score function by

@ sz, m

- N-1 E?_l yi sgn( h(xi) - h(x;) )

14



* i i * i i
- PN[ y 2 0, h(xl) - h(XZ) 20] + PN[ y <0, h(xl) - h(xz) < 0]

Bl y 20, hGD) - h(x;) <01 - P y <0, hx}) - h(x)) 2 0 1,

nl n

where PN denotes the empirical distribution of the vector (y,xl,xz) and

i i i, |N .
{ (y ,xl,xz) }i-l are observations on the vector (y,xl,xz).

We define the least concave maximum score estimator to be the function

ﬁN: X + R that maximizes S (z(N),-) over the set W.

N

Note that from (2) it follows that the value that SN(Z(N)’

») attains

at any function h depends only on the preordering induced by that function
1 N

on X ,...,x . That is, any two functions h and h’ that are such that
for any i,j | h(xi) > h(xj) <m> h’(xi) > h(xj) ] will yield the same
value of SN. This property will be employed in the computation of EN.

That the estimator ﬁN is strongly consistent will be shown under the

following set of assumptions:

ASSUMPTION A.1: For all (xl,xz)E(XXX) MEDIAN[y*lxl,xz] - h*(xl) - h*<x2)'

ASSUMPTION A.2:  For all (x,x,) € (XxX) 0 < Pr( y 20| x,x,) <1,

ASSUMPTION A.3: The observable vector X = (xl,xz) possesses an
absolutely continuous probability measure Px’ whose

support is (XxX).

i i

ASSUMPTION A.4: The observations ({ (yl,xl,xz) )?_1 are independent.

ASSUMPTION A.5: h € W.

—%
These assumptions guarantee that h is identified within W (Theorem

—%
3) and ﬁN is a consistent estimator of h  (Theorem 4).

15



THEOREM 3 (Identification): Suppose that Assumptions A.l-A.5 are

satisfied. Then, h* uniquely maximizes the population score function

S(+) over W.

THEOREM 4 (Comnsistency): Suppose that Assumptions A.l-A.5 are
—%
satisfied. Then, with probability one, lim d(HN, h) =0.

N

To calculate HN, we need to maximize SN over W. In the next

section I present a technique to solve this maximization problem.

5. MAXIMIZATION OF CRITERION FUNCTIONS OVER SETS OF LEAST CONCAVE

FUNCTIONS

In this section I describe a technique to find a least concave function
that maximizes the wvalue of a criterion function. I consider criterion
functions whose values at any concave function h depend only on the
preordering that is induced by h on a finite number of observed points on

X. The criterion function SN considered in the above section, for

example, satisfies this property.

DEFINITION 4: Let {xl,...xN) denote the set of observed points in
X. Let z(N) = (yl,xl) )Ig_l . A criterion function SN(Z(N),-):W -+ R
will be said to be order-dependent if SN( z(N), h) = SN( z(N), h')

whenever for all i,j € (1,...,N) [ h(xi) > h(xj) S > h’(xi) > h'(xJ) ]

16



(N

In other words, a criterion function SN(Z , *) 1s order-dependent

if it attains the same value at any two functions that generate identical

preorderings on { xl, e ,xN }.

When a criterion function S..(z , ) is order-dependent, it is

n¢

possible to divide the problem of maximizing SN(Z(N),') over any set W

of least concave functions into two separate problems. In the first
problem, SN(z(N),-) is maximized over a set of concave functioms, ﬁ, whose
least concave representatives characterize the set v. In the second

problem, a least concave function h in W 1is found, that induces the same

preordering on the vectors {xl,‘..,xN} as the concave function found in

z(N),o) is order-dependent and h induces

(M)

the first problem. Since SN(

the preorder that was found to maximize SN(z ,*), it follows that h
maximizes SN(Z(N),').

The next theorem shows how to find the values and subgradients3 of a
least concave function that induces on { ;g,xl,...,xN,; H the same
preordering as a function g(¢) does. The function g(+) 1is assumed to be
concave, monotone increasing, and strictly increasing in the Kth

coordinate, and the least concave function is restricted to attain the

values a and <, respectively, at x and X.

THEOREM 5: Let g(z),g(xl),. . ,g(xN),g(J_r) be the values of a function

1 N = . : .
X, X ,...,X ,X . Assume that g is monotone increasing, concave, and

=

at

strictly increasing with respect to the Kth coordinate. Let p € KL’ and

17



consider the following minimization problem:

N
Minimize (3) ‘Z P; hi
i=]
subject to
4) B =< h. + B. (x -x) i,j=0,... N+1,
i J J
(5) B, 20, B, >0 i,j=0,... N+,
6) F, < & if g(xl) < gxl)  1,j=0,1,...,N,N+I,
) B - B, if gxl) - goxd) i,j=0,1,... N,N+1,
0 N+l = 20 _
(8) X =x, X =x, h = a, and hN+1 -
L P S S i & * b lution to thi
et o'y By an 50""’ﬂN+1 e a solution o this

minimization problem. Then, there exists a least concave function h such

that

(i) h generates on (g,xl,...,xN,xN+1) the same preordering as g does,
- *

(ii) h(xi) - hi (i=0,1,...,N,N+1),

(iii) for a.e. x € X, the subgradient DE(x) of h at x satisfies
- *
Dh(x) = a(x) Bj , where a(x) > 0 is a real number and j is such

that h; + 5; (x - x)) = min ( B} + §; (x - x) | =0,1,... N+ ).

Theorem 5 describes how to obtain the values at each xi and the
gradients, at a.e., x, of a least concave representative. We mnote that the
choice of p 1s irrelevant as long as p € RE+ and that, typically, many of
the constraints in (6)-(8) will be redundant, so they can be eliminated.

The above result suggests a way of obtaining a least concave function:

18



M

over W. First find the values of a function

®

that maximizes SN(

g(+) that maximizes.SN(z over the set W. Second, use the values

g(z),g(xl),...,g(xN),g(i) to obtain the values of a least concave function

that maximizes SN(z(N),-) over W, by using the result of Theorem 5.

Unfortunately, the full characterization of the set W is unknown,
because the functions in W are required to satisfy conditions (iii)-(iv) in

the definition of W (see Section 3). Hence, instead of maximizing

s (zN) NN

,*) over W, we propose to maximize S ) over the larger set

¢

of concave and monotone functions that are strictly increasing in their Kth

n¢

argument. The solution to the second step obtained from the maximizer

function g of such first step maximization may not belong to W. If such

is the case, a new function g yielding perhaps a lower value of
SN(Z(N),') must be selected till a solution of the second step maximization
is found.

To find a function g(+) that maximizes SN(Z(N),') over a set of

concave and monotone functions that are strictly increasing in their Kth
argument, we can follow the technique presented in Matzkin (1987). We find

ﬁo,...,ﬁN,ﬁN+l

real valued and vector valued Dﬁo,...,DﬁN,DﬁN+1 that

solve the following problem:

maximize (9) SN( z(N),ﬁo,...,ﬂN,ﬂN+l )

subject to
oy & < &3+ pad &t - D 1,§=0,1,... N,N+1,

(11) 0 < DR, o0« Dﬁi i=0,1,...,N,N+1.

19



The algorithm developed in Matzkin (1990b) can be used to calculate a
solution to this problen. This algorithm looks for points inside the
constraint set that yield larger values of the objective function by
searching along randomly chosen segments whose endpoints are determined by
parametric concave functions.

To find the values of a least concave function that belongs to W and
induces on { z,xl,...,xN,§ } the same preordering as the function g does,

we can solve the following problem, which is based upon the result in

Theorem 5:
N
Minimize (12) = P h,
. i i
i=1
subject to
a3y K < K if g(xh) < g(xd) 1,§=0, ... N+1,
(14) K - R if g(xt) = gxd) 1,j=0, ... ,N+1,
1 j 513 .
(15) K~ =< k' + DhY (x° - x7) i,j=0,1,...,N,N+1,
(16) B- < bR < BY 1=0,1,... N,N+1,

0 N+1 - 0
(17) X =X, X =x, h =a, and EN+1 -y

(18) a = bl < ¢ 1,5=0,1,... N,N+1,

a9y | ofd - oAl | < v ) - KL 1,§=0, ..., N+1;k=1,... K
% Ek - 2 'J AL ) 3 LA 1
2.5t 2.is i1

(20) | D -D | = v | x* - x| k=1,...,K,,
Pr PP 3 1,5,¢,5=0,1, ... N+1,

2.1, . .
where D°A ’J is a matrix whose k,r element is
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The vector p can be chosen arbitrarily from Rf+. The values of R
, Dﬁi , and DzﬁiJ are interpreted as the values, gradients, and Hessians

ﬁo,...,ﬂN,ﬁN+1 and

of a function h . The constraints in (15) restrict
Dﬁo,...,DﬂN,DﬁN+l to be, respectively, the values and gradients of a
concave function. The constraints in (16) impose the monotonicity of h and
the uniform boundedness of its gradients. Constraint (17) guarantees that
h satisfies condition (ii) in the definition of W. The concavity of h
together with (17) and the uniform bounds on the subgradients guarantee the
uniform Lipschitz property on the values of the function. Constraint (18)
is necessary for the wuniform boundedness of the Hessians of h, and
constraints (19) and (20) are necessary for the Lipschitzian restrictions on
the gradients and Hessians of h. It is possible that a function h
satisfying constraints (18)-(20) does not ;atisfy at every point of its
domain conditions (iii)-(iv) in the definition of W. This problem tends to
disappear, however, when the number of observations is large.

The solution to the above problem provides us then with an
approximation of the wvalues at g,xl,...,xN,xN+1 and the subgradients, at
a.e. point and up to a positive constant, of a least concave function that
maximizes SN(Z(N),-) over W.

As a final comment in this section, we note that constraints (16)-(20)
could be added to the maximization problem described by (9)-(11), without
reducing the set of least concave functions over which SN(Z(N),~) is
maximized. Since W is included in the set of concave and monotone

functions satisfying conditions (ii)-(iv) in the definition of W, the set of
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least concave representatives of the functions in this set necessarily
includes W. Imposing constraints (16)-(20) in the maximization problem
described by (9)-(11) will, in particular, be useful when the solution to
the second step maximization obtained from the solution of (9)-(1ll) does not

exist.
6. A GENERALIZED REGRESSION MODEL

The nonidentification of the systematic function h* that was shown to
hold for the binary choice model in Section 2 can occur in various other
models. 1 present two such other models, a generalized regression model and
a binary threshold crossing model. In these models, neither the systematic
function h* of observable exogenous variables nor the distribution F*' of
the random term is parametric.

For each of these models, I show that although h* is not identified,
it is possible to estimate a least concave representative of h*, which
possesses the same isovalue sets as h*. The computation technique presented
in the previous section can be applied to calculate the estimator of the
least concave representative of h* also in these models.

A generalized regression model is stu&iéd next. Section 7 deals with

the binary threshold crossing model.
6.1. THE MODEL

Generalized regression models include, as special cases, the linear

regression model, Box and Cox transformations, proportional and additive
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hazard models, censored regression models, and threshold crossing models.
(See Han (1987) for details.)
In generalized regression models, an observable real variable y obeys

the relationship

y=G(h ), n ,

where x € X 1is a vector of observable exogenous variables and 75 1is an
unobservable random variable. The values of X and 15 are assumed to be
distributed independently of each other with probability measures Px and
Pﬂ , respectively. The function G is nonconstant and monotone increasing
in each of its arguments.

I consider the particular case in which h*:X -+ R belongs to the set
W, of monotone and concave functions that possess least concave
representatives in the set W defined in Section 3, and the functions Pﬂ and
G are such h*(xl) < h*(xz) implies that for some t, Pnlxl[c(h*(xl),q) =< t]
> PanZ[G(h*(xz),q) < t].A The functions h* and G and the distribution
functions of x and 15 are assumed to be otherwise unknown.

In this model it is not possible to identify h* from observations on
the vector (y,x). To see this, note that the most we can observe from this
data is the probability of observing any value of y smaller than t given
Xx. A function h 1is observationally equivalent to h* if there exist
functions G’ and Pé possessing the same properties that G and Pﬂ are

" known to possess and are such that, for any t, the probability of observing

any value of y smaller than t given G’ , Pé , and h 1is the true

probability of this event. Formally,
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. *
DEFINITION 5: The function h € W is gobservationally equivalent to h

if there exists a monotone Iincreasing, nonconstant function G’ and a

distribution Pé such that

(i)V Xl’XZ e X [ h(xl) < h(xz) implies that for some t

Pr"|xl[ G(h(xl),r;) =t] > Pr'llxz[ G(h(xz),n) < t ] and
(ii)V x € X and all values t of y

*
P,’|X1[ Gh (x)ym) =t ] = P'I!XZI G'(h(x,),m) =t ].

As the next lemma shows, there exist functions in W that are

*
observationally equivalent to h .

LEMMA 7: There exists a concave and monotone function h € W that is

* *
observationally equivalent to h and is such that h » h .

Nevertheless, it 1is possible to <characterize each class of
observationally equivalent functions in W by a unique function in W,
* _ - -
THEOREM 6: Suppose that h, h € W. Let h and h denote
*
respectively the least concave representatives in W of h and h . Then,

S —"
h is observationally equivalent to B if and only if h=nh .
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6.2. ESTIMATION

As with the binary choice model previously studied, in this model we
can also develop an estimator for E*. To obtain such an estimator, we
modify the Maximum Rank Correlation Method (see Han (1987) and Matzkin
(1990a)). Han developed this method to estimate the function h* in a
generalized regression model where h* was linear in a finite dimensional
parameter ﬂ*. Matzkin (1990a) modified Han's method to estimate a
nonparametric function h* .

Following Han (1987) and Matzkin (1990a), we define the rank

correlation function by

20) sz m) -

-1 . . : . . . . s
- () = {1medh s redhi it s 1 e imeh) <nehiat <}

where 1[+] 1is a loglcal operator that equals 1 if [+] is true and O
otherwise, and Ep denotes the summation over the [g] combinations of two
distinct elements (i,j) from (1,...,N)}.
We define the least concave maximum rank correlation estimator to be
any function EN: X =+ R that maximizes SN(Z(N),') over the set W.
Theorem 7 and 8 below show that this estimator 1s strongly consistent

when the following assumptions are satisfied:

ASSUMPTION B.1: For all i,j, ql is independent of nj.
ASSUMPTION B.2: For all i n is independent of x .
ASSUMPTION B.3: For all i,j, xi is independent of xj.

ASSUMPTION B.4: Px is absolutely continuous and its support is X.
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. s * % 3
ASSUMPTION B.5: For all xl,xJEX such that h (xl) < h (xJ), there exists

t*eR h that P [i<t*]>P [i<t*]
suc a < =< s
nix 'Y nlx b7

where Pﬂlx denotes the probability with respect to nl
conditional on xi.

ASSUMPTION B.6: G:h*(X) + R is monotone increasing in each coordinate and
nonconstant.

*
ASSUMPTION B.7: h € W.

THEOREM 7 (Identification): Suppose that Assumptions B.1-B./ are
—k
satisfied. Then, h uniquely maximizes the expectation of the rank
correlation function SN(z(N), h).
THEOREM 8 (Consistency): Suppose that Assumptions B.I1-B.]/ are
- . - _*
satisfied. Then, llqum d(ﬁN, h) = 0 a.s.

Since the rank correlation  function (20) 1is order-dependent, the

computation of HN can be performed using the technique presented in Section 5.
7. A THRESHOLD CROSSING MODEL
7.1. THE MODEL
Threshold crossing models have been applied to a variety of problems in

economics, medicine, and other fields. Subjects studied include labor force

participation, acceptance of loan applications, and health status.
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In this model an observable dichotomous variable y 1is determined by
. :
y=1[h(x)-n20],

where 1[+] is the logical operator that equals 1 if [¢] 1is true and O
otherwise, x 1is a vector of observable exogenous variables in X, and ¢
is an unobservable random term. The vector x possesses a probability
measure Px whose support is the closure of X.

In the loan application acceptance model, for example, x may denote
assets and income of the applicant and h* the expected value to the bank
of accepting his loan application; y equals one if the application 1is
accepted and y -equals zero otherwise.

I consider the particular case of this model in which the function h*
belongs to W , the set of all concave functions that posses least concave
representatives in W , and the random term # 1s independent of x and
possesses a strictly increasing and continuous distribution function F*
The functions h* and F* are otherwise unknown.

As 1 show below, also in this model h* can not be identified. Denote
the probability that y = j given x by P(j| x; h,F). &nd note that
PG| x; h*,F* ) (j=1,2) 1is the most we can obtain from the data. The
definition of the model implies that P(l| x; h*,F) = F (h'(x)) and P(2|
X; h*,F*) -1 - P(1| x; h*,F*). let T = { F: [a,y] » [0,1] | F is monotone

increasing ). Then,

DEFINITION 6é: The pair (h,F) € (WXT') is observationally equivalent to

* * E 3
the pair (h ,F) if for allx € X P(j| x; B ,F) = P(j| x; h,F) j=I,2.
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LEMMA 8: There exists a pair (h,F) € (WXI') that is observationally

* ok * %k
equivalent to (h ,F-) and is such that (h,F) » (h ,F ).

* _%
Hence, in this model we can not identify (h ,F ) within (W x T).
Nevertheless, the next theorem shows that we can characterize the set of

* %
pairs (h,F) that are observationally equivalent to (h ,F ) in (W x I).

LEMMA 9: Suppose that (h,F) € @WxT). let h and h denote
respectively the least concave representatives of h and h*. Define F
and F , respectively, by: for all x € X, F(h(x)) = F(h(x)) and
sk sk * % * _*
F (h (x)) = F (h (x)). Then, (h,F) is observationally equivalent to (h ,F )

if and only if h - H* and F = F.

—% —%

From an estimator for (h ,F ), we can obtain estimator of the

* _*
equivalence class of (h ,F ).
* _*
{ (h,F) e WxT) | (h,F) 1is observationally equivalent to (h ,F ) )
= { (h,F) , for some concave and strictly increasing function
—% —* -1

g [e,y] * R, h=g+h and F=F + g ).

—% =k
In the next subsection I show how an estimator for (h , F ) can be obtained.
7.2. ESTIMATION

To develop an estimator for (E*,?*), I follow Cosslett (1983) and
Matzkin (1988). Define the conditional log-likelihood function of a sample
(¥

of N 1independent observations =z = {yl, xi)§‘1 at any function h: X -

R and monotone increasing function F: R -+ [0,1] by
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(€3p] N i i i i
(21) z(z*7, h, F) = Z ( y log(F(h(x")) + (1 - y") log(l — F(h(x7)) )
i=1
And for any function h: X - R, define the concentrated log-1likelihood

function by

(22) sy ™ hy = max 2 M, np

Fer

The least concave maximum likelihood estimator 1is defined to be the pair

(EN,FN ) such that HN: X - R maximizes SN(Z(N), +) over the set W and

. - ) )
FN' R -+ [0,1] maximizes Z(z , BN, ) over T .
Theorems 10 and 11 show that this estimator is strongly consistent when

the following assumptions are satisfied:

ASSUMPTION C.1: The random term # is distributed independently of x
with a cumulative distribution function F* .

ASSUMPTION C.2: F*¥ 1is strictly increasing.

ASSUMPTION C.3: The vector x possesses a Lebesgue density g whose
support is X and whose probability measure is Px.

ASSUMPTION C.4: The probability density g is bounded.

*
ASSUMPTION C.5: h eW.

THEOREM 10 (Identification): Suppose that Assumptions C.1-C.5 are

satisfied. If (h,F) € WxT) and (h,F) » (R ,F'), then for some AC X ,

| s raneo) e 0 <[ g0 FE ) ap
A A
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THEOREM 11 (Consistency): Suppose that Assumptions C.1-C.5 are
satisfied. Then, with probability one,

) =0 and lim. d. (., F) =0,

lim d(h oo 90 (Fyo

N—+o

N;

where the metric dr: ' xXT - R is defined by

d.(F, F') = J |F¢e) - Fr(e)| dt,

: . 5
(the integration is with respect to the Lebesgue measure over [a,v]) .

Hence a strongly consistent estimator for the unique representative of
* % .
(h ,F') can be obtained by maximizing (21) over (W X I').

The function S z(N),h) in (22) is order-dependent (see Cosslett

¢
(1983)). Hence, the maximization of (22) over W can be performed by

following the technique introduced in Section 5.

8. CONCLUSION

I have considered the problem of estimating fully nonparametric models
in which the values of the systematic is not identified. In these models,
neither the systematic function of observable exogenous variables nor the
distribution of the random term possesses a parametric structure. I have
shown that, when the systematic function is monotone and concave, it is
possible to obtain a consistent nonparametric estimator for a representative
of this systematic function. The isovalue sets of this representative
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coincide with the isovalue sets of the systematic function. The method has
been described in three microeconometric models.

The estimation method proceeds by characterizing each set of
observationally equivalent functions with a unique 1least concave
representative in a compact set of least concave functions. Given its least
concave representative, the entire equivalence c¢lass can be obtained by
composing this representative with monotone increasing and concave
functions.

I have introduced a technique of estimating the values, at each
observed point, and the gradients, at a.e. point and up to a positive
constant, of the least concave representative of the systematic functionm.
This technique proceeds in two steps. In the first step, a criterionm
function is maximized over a set of monotone increasing and concave
functions. In the second step, the values, at the observed vectors of
exogenous variables, and the gradients, at a.e. point, of a least concave
function are obtained.

The three models that have been studied are a binary choice model, a
generalized regression model, and a binary threshold crossing model. The
random term in the first model is median independent of the exogenous
observable regressors, while the random terms in the second and third models
are independent of the regressors. In the first and second models, I have
concentrated on estimating the representative of the systematic function.
In the third model, I have studied the estimation of the representatives of
both the systematic function and the distribution of the random term. In
all these models, I have shown that the proposed estimators for the least

concave representatives are strongly consistent.
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Summing up, the method introduced in this paper provides a way of
estimating fully nonparametric models in which the restrictions on the
functions and distributions are not strong enough to be able to identify the

systematic function generating the observations.
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APPENDIX

PROOF OF LEMMA 1: Let f be a strictly concave and strictly
increasing function, and define h by h-f-h* . Then, h is concave,
monotone increasing, and h = f-h* » h* .

We next show that since f 1is strictly increasing, f-h* and n* are
observationally equivalent. Take any function F of (%,x) such that for

each x = (x1 (1) F(+,x) is a monotone increasing function of 5, (ii)

1x2 1

F(0,x) = .5, and (iii) the value of F(s,x) at [f+h (x,) - f-h*(xz)]

1)

colncides with the value of F.;_ at [h (xq) - h (x,)], i.e.
nlx 1 2

L1.1) F( £+h" £oh* o n*

( . ) ( . (x].) - . (xz): xl:xz ) - 7I|X ( (xl) - (xz))

(To see that such a function F always exists, note that since f 1is

strictly increasing,

[ £fh¥(xy) - f-h*(xz) >0] <> [hi(x,) - h*(xz) >0 1.

1) 1)
. .
This, (L1.1), and the fact the Fﬂ’x(O) = .5 imply that

[ F( £+h (x,) - f-h*(xz), x,%,) 2 .5 ) if | £ohT(x,) - f-h*(xz) > 0] and

1)
D )r XpoXy) S .5 1 Af f-h*(xl) - f-h*(xz) < 0],

which will always be consistent with the requirement that F(+,x) be

1)
[ F( £h (x,) - £h (x x

monotone increasing and F(0,x) = .5 )

Define Fﬂ|x by Fnlx(n) = F(n',x) for all xe(XxX). Then, for all

%€ (XxX)
P(1] x,,%,; h,F) = F( £+h (x,) - £oh (X,), Xq,X,)
1’72 1 277 T1'72
¥ (h" n
= 7I|X( (xy) - h (x,))
* %
- P(1] X, X,; b, F).
Hence, h is observationally equivalent to h. Q.E.D.
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PROOF OF LEMMA 2: Suppose that h’ = f<h for some strictly increasing
function f. To see that h is a least concave representative of h’, let
s be strictly increasing. Then, se¢h’ = se¢feh 1is a strictly increasing
transformation of h. It follows that for some concave function g, s+h’ =
g-ﬁ. Hence, h 1is a least concave representative of h’.

Next, if h is a least concave representative of h and h', then
there exist strictly increasing (and concave) functions g and s such
that h = geh and h’ = s+h. Thus, the strictly increasing function f =

s-g.1 satisfies h' = f+h.

PROOF OF LEMMA 3: Define the binary relation > on X by: Vx,y € X
X >y <==> h(x) = h(y). Then, > possesses a concave representation. It
follows by Debreu (1976, Theorem) that there exists h such that h 1is a

least concave representative of h. Q.E.D.

PROOF OF LEMMA 4: See Debreu (1976).

PROOF OF LEMMA 5: Since h is a least-concave representative of h,

there exists a concave function g such that h = geh. We will show that

g 1is linear. Suppose otherwise that there exists h1 , EZ , 53 in
h(x) with Hl < EZ < E3 and such that
R, - & B, - &
55y > 2 gEy s 2l gy
2 hy -k &1 hy - hy c



or equivalently,

g(Ez) - g(EJ) S 32 - El
1 2 3 i
Let x° , x and x be three collinear elements in X such that h(x™)
- g(ﬁi) (i= 1, 2, 3). (The existence of these elements is guaranteed by

the continuity of h and the convexity of X.) Since h 4is linear and h

is concave it follows that

I« - =" h(xp -hx)  gE) - gd) Ky -k Ix% = <}
- > 2z
"x3 - xln h(xy) - h(x)) g(E3) - g(ﬁl) h, - h ”x3 - xlu

which is a contradiction. Hence, g is linear. Then, since h = (g)~1-h,

h is linear. Q.E.D.

PROCF OF LEMMA 6: See Debreu (1976, Proposition) or Benveniste and

Scheinkman (1979).

PROOF OF THEOREM 1: The set of 02 functions with uniformly
Lipschitzian and uniformly bounded values, gradients, and Hessians is
compact with respect to d. Hence, it is only necessary to show that any
convergent sequence of monotone, concave, and least concave functions in W
that satisfy (ii) converge to a function satisfying these same properties.

It is clear that the limiting function is concave, monotone, and satisfies
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(ii). Moreover, the 1limiting function possesses Gaussian curvatures
uniformly bounded below by ¢, because its gradients and Hessians are
limits of the gradients and Hessians of the functions in the sequence. By
Kannai (1977)6, the limit of a convergent sequence of 1least concave
functions in W converges to a least concave function. Hence, the limiting

function satisfies the desired properties.

Q.E.D.

PROCF OF THEOREM 2: Suppose that h is observationally equivalent to
*
h . We show that then there exists a strictly increasing function f such

*

that h = f+h . Suppose that such a function does not exist. Then, we must
be able to find some (xl,xz) € (XxX) such that either

*
and h (x

[ h(x)) > h(x < h*(xz) ] or

1)
* *
and h (Xl> >h (XZ) ].

2)
[ h(x;) < h(x,)
*
Suppose w.l.0.g. that the first case is true, Then, since both h and h
are continuous and strictly increasing with respect to the Kth coordinate,
* *
there exists (xi,xé)E(XxX) such that h(xi) > h(xé) and h (xi) < h (xé).
It then follows that for any strictly increasing distribution function Fﬂlx
such that F (0) = .5:
n|x

Fn|x(h(xi) - h(xé)) > .5 while F ]x(h*(x - h*(xé)) < .5

*
] 1)
Thus,

Pll v "h* * v v
(1|x{,x53h ,F) < P(1]x],x5;h,F),

which violates the hypothesis that h is observationally equivalent to h*.
Hence, h = f-h* for some strictly increasing function f. It follows

by Lemma 2 that h and h* possess the same least concave representatives.

Since the least concave representative in W of any function in ¥ is
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—% —_
unique, h = h .

—% —
Conversely, suppose that h = h. Then, by Lemma 2 there exist a
*
strictly increasing function £ such that h=feh . As shown in the proof

of Lemma 1, this implies that h 1is observationally equivalent to h*. Q.E.D.

In the proof of Theorem 3 we will make use of the following auxiliary

lemma. This lemma will be used also in the proofs of theorems 7 and 9.

LEMMA 0: Suppose that h and h’ belong to the set of least concave

functions W defined in Section 3 and h » h’. Then, there exist xi and

, < s ¢ ’
x, in X, and neighborhoods Xl ¢ X and X2 c X of x; and X,

respectively, such that for all xl € Xl and x2 € X2 ,

h(xl) < h(xz) and h’(xl) > h'(xz)

PROOF OF LEMMA O: We first show that there exists no strictly
increasing function f such that h = f+h'. Suppose such a function f
exists. Then h 1is a least concave representative of h’ and h’' 1is a

least concave representative of h. This is possible only if f 1is linear.
But if f is linear, Lemma 4 and the definition of W imply that h = h',
a contradiction. Hence, there does not exist a strictly increasing function
f such that h = feh' . Thus, there must exist xi and x! in X such

2

that either

h(xl) 2 h(x and h’(xi) < h'(xé), or

2)
h(xi) > h(xé) and h'(xi) < h'(xé).

By the definition of X and the continuity and monotonicity of h and h'
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it follows that xi and xé can be assumed to belong to int(X). Then,
the continuity of h: and h’ and the strict monotonicity of h and b’
in the Kth coordinate imply that there exist neighborhoods, X1 c X and X2 c
X of xi and xé , respectively, such that for all Xy € X1 and X, € X2,

h(x.) > h(x,) and h'(x.,) < h'(x,).
1 2 1 2 Q.E.D.

PROOF OF THEOREM 3: For any h € W such that h = R, let
- ~%
X o= (%, %) E(RX) | sgn(h(x;) - h(x,)) = sgn(h (x;) - h'(x,)) ).
Then, from the definition of S(+) it follows that

S(E*) - s(h) = E [y [sgn(® (xR (x,)) - sg(hix)) - h(xy)) 1)

- 2 J Ely | Xys X ] sgn(ﬁ*(xl) - ﬁ*(xz)) dPx ,

X
Since
* * *
MEDIAN(y | X;, X1 = ho(x)) - hi(x,)
—_% —% * *
sgn(h (xl) - h (xz)) = sgn(h (xl) -h (xz)) , and

Ely | Xy x2] = 2 Pr( y* =0 I x) -1,
it follows that
—% —%
sgn(h (%)) - h (x))) = sgn E[ y | =]

Thus, for all x € X, E[ y | x ] sgn( H*(xl) 'E*(Xz) ) = | Ely | x 1 |

It then follows that S(h') - S(h) > 0 if

(T3.1) I dPx >0

*n

=%
To show that (T3.1) is satisfied, we note that since h and h belong
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to W and h = E*, Lemma O implies that there exist neighborhoods Xl and

X2 in int(X) such that for all Xy € X1 and Xy € X2 ,

H*(xl) - E*(xz) >0 and h(x)) - h(x,) < 0.

Since by our assumptions on Px’ Px( Xl X X2) > 0, it follows that

J dap > J @ > 0.
X X, xX

X, 142

- -k
Hence, for all h € W such that h = h', S(h) > S(h). Q.E.D.

PROOF OF THEOREM 4: We will show the statement of the theorem in a

sequence of steps.

Step 1 (Uniform Convergence): l SN(h) - S(h) l + 0 a.s.

SuPhGW

We will show that with probability one,
(T4.1) SUp 10 | PN[y = 0, h(xl)-h(xz) 2 0] - Plyz 0, h(xl)-h(xz) > 0]] = o,

where PN is the empirical distribution of (y,xl,xz). The uniform

convergence of the other terms of the sample score function SN(-) can be

shown similarly.
For any h € W, h is monotone increasing and concave. Hence,
{ (x),%,) € X x X | h(x;) = h(x,) ) =
. 7
{ (Xl, X2) | X, € Cy, x, €C, for some monotone increasing and

convex sets Cl’ 02 such that C1 C 02 }.

Thus,

) C PK x PK

(T4.2)  {(x),%,) € XX | h(x;) = h(x .

)
23



where PK is the set of all convex subset of X. Since PK does not depend

on h, (T4.2) holds for all h in W. Moreover, since PK x PK C P2K , the

set of all convex sets in RZK,

*
sup | B[y 20, h(x;) - h(x,) = 0] - P[y" 20, h(x,) - h(x,) = 0] |
N 1 2 1 2
hew
< | *5 0 C.,xC *20 c,xC, 1 |
< sup PN[y >0, (xl,xz) € Cx 2 ] - Ply =0, (xl,xz) € 1X 2 ]
K K
CGC2 € P XP
* *
< sup | Ply 20, (x;,%,) € 0xC) ] - P(y 20, (xy,%x,) € CxC) ] |.
C e P2K
By Rao (1962, Theorem 7.1) , the last term converges to 0 a.s. Hence,
(T4.1) follows. Q.E.D.

Step 2 (Continuity of S(e): S(+) 1is a continuous function on W.

Denote x

1 by X - (xl,xK) , where Xy denotes the Kth coordinate of

(K-1)xK
X, . Let P, -
1 (xl,xz)

denote the probability measure of (il,xz) € R
and let f(xK|i1,x2) denote the probability density of Xp conditional on
(ﬁl,xz). By Assumption A.3, f(xK|i1,x2) is a Lebesgue density.

We will show that the term P[y* > 0,-h(x1)-h(x2) > 0] is continuous
in h. The continuity of the other terms in S(¢) can be shown in a similar
way.

Let (ﬁl,xz) be given. Suppose that hk -+ h with respect to d.
Define functions T (k=1,2,...) and r by rk(xK) - hk(il,xK) and
r(xK) - h(il,xK) for all X such that (ﬁl,xx)eX. " These functions are
strictly increasing and continuous and sup | rk(xK) - r(xK) I -+ 0. Our aim

is to show that rél(hk(xz)) - r’l(h(xz)).
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Let & > 0 be given. Since r(+) is strictly increasing and continuous

and X 1s compact, there exists § > 0 such that for all xK,xk such that
Gepoxgd s Gy XX
(14.3) | R | r(x) - rixp) | > 6.
To see this, note that if XK - xﬁ > ¢, r(xK) - r(xﬁ) > r(xﬁ+:) - r(xk) > 0.
Hence, since r(xk+c) - r(xk) is a continuous function on a compact set, it
must attain a minimum, strictly positive, value on its domain. Similarly,
if X - xﬁ < g, r(xK) - r(xﬁ) < r(xk+z) - r(xé) <0 . So, r(xﬁ+s) - r(xé)
attains a maximum, strictly negative, value on its domain.

Since  sup | r, (%) - r(xK) | =0 , | rk(xK) - r(xK) | < 6/4 for all
Xy and all large enough k. Hence,

1f | r () - rGg) | =6/, | rGg) - xxg) | < 6.

By (T4.3) it then follows that I Xg - xk l < e£. So,

| r () - xxp) | =676 = | x - x| <e.

In particular, if X and xﬁ are such that rk(xK) - hk(x2) and r(xk) -

h(x and k 1is large enough such that | h (x,) - h(x,) | < 6/4,

2)
| ril(hk(xz)) - r'l(h(xz) | < e.

Let r'l(t)-EK if for all xKe[KK,E] r(x) <t and r'l(t)-;K if for all

XKG[KK’;] r(xK) z t ; let ril(t) be defined similarly. Then, it follows

that if hk + h with respect to 4,

rél(hk(xz)) -+ r-l(h(xz) for all x,€X.

We next note that

Pl y 20, h(x)) - hix,) = 0 ]

*K
- J [ J P[y 20| x ] Foo | %, %)) dxg dp

- (xy.%,)
(%) rlnxy) v
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Since the term in brackets is measurable, uniformly bounded, and, by the
above argument, continuous in h, it follows from the Lebesgue Dominated
Convergence Theorem that P[ y = 0, h(xl) - h(xz) = 0 ] is continuous in h.

Q.E.D.

Step 3 (Consistency):

This follows from the compactness of W (Theorem 1), Theorem 3, and
Steps 2 and 3. (See, for example, the proof of Step 4 in Matzkin (1990a).)

Q.E.D.

PROOF OF THEOREM 5: Define a function h: X - R by
* * i
(15.1)  h(x) = min { hy + f, (x - x7) | i=0,1,...,N+1 .

Then, h is a monotone increasing, concave, strictly increasing in the Kth
coordinate, and such that
i * .

(T5.2) h(x") = hi (i= 0,...,N+1).

(See Matzkin (1987).) By Lemma 3, there exists a least concave function h
that represents h. By Lemma 4 we can assume that ﬁ(g) = a and E(;)-7 .
The function h is monotone increasing, concave, and strictly increasing in
the Kth coordinate. Moreover, since by (T5.2), (6), and (7), h induces

the same preorder on (xo,.,.,xN+1) as g does, it follows that h also

N+1

induces this same preorder on {xo,...,x ). This proves (i).

Next, we show that

(15.3) R(x') = by (i=1,...,N).

Suppose first that for some i € (1,...,N+1)} E(Xi) > h: . Since h
is a least concave representative of the function h defined in (T5.1), h
-f.«h for some concave function f: h(X) - R . By (T5.2) and the fact
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that h(x) = a and h(x)=y, f(a) = a and f(y) = v. Since f is

concave, H(xl) € [a, 7], and a and vy belong to h(x),

_ 4 E(xi) - a _ v - H(Xi) _
f(h(x™)) =z ——m fthx)) + ———  f(h(x)).
¥ - @ Yy - «@
Hence,
FR(xD)) - a Rzl - @
.—.—.——_Z—.—_—.———
Y - o« 7 - @

But then, since h(x1) > h: - h(xl) and f(h(x1)) = hxD),

h(x') - a FR(xY)) - @ R(xl) - a hx)) - a
- > > ,
v - a Y - @ Y - a Y - a

which is a contradiction. Hence,

(T5.4) hB(x) < h:, for all i-1,...,N+l.

- *
Suppose now that for some i, h(xi) < hi . By (T5.4) this implies that

o ; —%
T5.5 = p, Ry < N hxd) = = h,

( ) 3=1 Pj (%) 3=1 Pj (x7) j=1 Py P
But, the properties of h imply that E(xl),“.,ﬁ(xN) satisfy (4)-(8)

* *
for some ﬂO""'ﬂN+1' Hence, (T5.5) contradicts the fact that hl""’hN
solves the minimization problem in (3)-(8). This contradiction implies
that
- 1 *
(T5.6) h(x") = hi , for all i=1,...,N.
From (T5.4) and (T5.6), h(x') = h: for all 1 = 1,...,2N+1.

This proves (T5.3) and hence, (ii) is proved.
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To prove (iii), we mnote that since h = feh for some strictly
increasing and concave function £, it follows that at any x € X such that
i  is differentiable at x and f 1is differentiable at h(x), one has
that Dh(x) = Df(h(x))+Dh(x), where Df(h(x)) > 0 since f 1is strictly
increasing. Hence, at any such x
(T5.7) Dh(x) = a(x) Dh(x)
for a(x) = (1/Df(h(x))) > 0.

We next show that the set of x's at which feh 1is not differentiable
has Lebesgue measure zero. To prove this, we note that concave functions
are differentiable a.e. Hence, the set, d(f), of values t at which f is
not differentiable has Lebesgue measure zero. Since h is continuous and
strictly increasing on its Kth coordinate, the set of all points x at
which h(x)ed(f) has Lebesgue measure zero. Hence, the set of points x
at which f is not differentiable at h(x) has Lebesgue measure zero.
From this latter result it follows that, since the set of points at which
h is not differentiable has Lebesgue measure zero, the set of points at
which (T5.7) is not satisfied has Lebesgue measure zero.

The result of (iii) now follows by (T5.1).

PROOF OF LEMMA 7: Let f be a 02 strictly increasing function such
* . * *
that feh is concave and f<h = h (take, for example, a strictly concave
*
f). Let h = f+h . Then, helW. Define the function r:(h(X)xR) =+ R2 by

V(t,n) € (h(X)XR), r(t,n) = (£ (t),n), and let G' = G-r. Then,
(L7.1) G' 1is nonconstant and monotone increasing in each argument and

(L7.2) V(x,m) G(h (x),n) = G'(h(x),n).
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Then, since h 1is a monotone

Let x be such that h(xl) < h(x

1'%2 2

* * *
increasing transformation of h , h (xl) < h (xz). It then follows from

our assumptions on G and Pﬂ that for some t,

* *
Pﬂlxl( G(h (x),n) <=t) > Pﬂlxz( G(h (x),n) < t).
By (L7.2) this implies that
*
By, (61 ROOD €8 = By (GRG0, 5 )
< t).

* *
> Pﬂlxz( G(h (x),n) <= t) = Pn|x2( GCth (x),n)

Hence,
*
(L7.3) P ( G'(hx),n) <t) > P ( G(h (x),n) < t).
nlx, ‘ nlx,
From (L7.2) it also follows that, for all y,

(L7.4) ) (GG, < 3) = By (6 (hG),m) < 3).

n|

Hence, by (L7.1), (L7.3), and (L7.4) it follows that h is

*
observationally equivalent to h . Q.E.D.

PROOF OF THEOREM 6: Suppose that h € ¥ is observationally equivalent
to h*. We show that then there exists a strictly increasing function f
such that h-f-h*. Suppose that such a function f does not exist. Then,
there must exist (xl’XZ) € (XxX) such that either
[ h(x)) > h(xy) and h'(x)) < h'(x)) ] or
[ h(x;) = h(x,) and h*(xl) > h*(xz) ].
Suppose w.l.o.g. that h(xl) > h(xz) and h*(xl) < h*(xz) . Then, since
both h and h* are continuous and strictly increasing with respect to the
Kth coordinate, there exists (xi,xé) € (XxX) such that h(xi) > h(xé) and

* *
h (xi) < h (xé). Qur assumptions on Pﬂ and G 1imply then that for any

45



monotone increasing and nonconstant function G’ and any distribution P;,

there exists some value t of y such that,

Pélxi( G'(h(x),n) <= t) ﬂlxé( G'(h(x),n) < y) while

1A

* *
Pﬂlxi( G(h (x),n) =t) > Pﬂlxé( G(h (x),n) =y).

This can only be possible if either

1A

(G (h(x),n) <=t) »P | o ( G(h*(x),ﬂ) t) or
n xl

'lel

*
Pn|Xé( G'(h(x),n) <= t) = Pﬂlxi( G(h (x),n)

A

t).

But, either of these possibilities contradicts the hypotheses that h is
observationally equivalent to h*. Hence, h = f-h* for some strictly
increasing function f. It follows by Lemma 2 that h and h* possess
common least concave representatives. Hence, Lemma 4 and condition (ii) in
the definition of W imply that h = 5,

—%

Conversely, suppose that h = h . Then, by Lemma 2 there exists a

*
strictly increasing function f such that h = feh . As can be seen from

the proof of Lemma 7, this implies that h 1is observationally equivalent to

*
h . Q.E.D.

PROOF OF THEOREM 7: For all h € W, let

ryy = (D > b1 1y ¥+ imeah < nedhl iy’ )

Then,
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(-) [N( )]- x[ ﬂ!x l2J prij()]n an

- 1meh > neh1 g 6T > v s amad) <nadyr ot <)

As is shown in Matzkin (1990a, Step 2, (2.a)), Assumptions B.1, B.2,

B.5, and B.6 guarantee that

(T7.2) B (xY) < b (x3) implies that 1 Gt >yl = Pl < ).

=%
By Lemma 0 it follows that if h € W and h = h there exist

neighborhoods Xi and Xj in X such that for all x € Xi and xj € Xj

17.3) Bl < BYd) and hxD) > hed)

and by Assumption B.3 the probability measure of Xiij is strictly
positive. Since the functions in W are continuous and strictly increasing
with respect to their Kth coordinate, Assumption B.3 implies that

ij i
(T7.4) vh eW Pr{ (x,x") | h(x") =h(x) } =0.
From (T7.1)-(T7.4) it then follows, by the arguments given in Matzkin
(1990a, proof of Step 2), that

h  uniquely maximizes E[SN(h)] over W. Q.E.D.

PROOF OF THEOREM 8: Let rij(h) be defined as in the proof of Theorem
7. As it was shown in that proof,
(T8.1) vh e W Pr( (x,x3) | h(x}) = h(x) ) = 0.
Since convergence of { hk } €W to heW implies that

vx € X, By (%) + h(x),
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it follows by the arguments given in Matzkin (1990a, Step 1, proof of
(1.a.3)) that

(T8.3) (h) is continuous on W a.s.

rij
It then follows that
(T8.4) E[SN(h)] is continuous on W
(see Matzkin (1990a, Step 1, proof of (1.b.3)).
By the compactness of W (Theorem 1), (T8.2)-(T8.4), and the measurability of
r.,. it follows that
ij

(T8.5) SN(h) converges a.s. uniformly to E[SN(h)]
(see Matzkin (1990a, proof of Step 3)).

The compactness of W, (T8.3), (T8.5), and Theorem 7 imply then that

—%
ﬁN +h a.s.

(see Matzkin (1990a, proof of Step 4)). Q.E.D.

PROOF OF LEMMA 8: Let h € W be such that for some strictly increasing

. * * * -1
function f: [a,y] =+ [a,y], h = feh and h = h ; let F = F «f ~. Then,
(h,F) € (WxI') and for all x € X

* * -1

F (h (x)) = Fef "(feh(x)) = F(h(x)).

*

Hence, P(j|x;h",F') = P(j|x;h,F) for all x € X and for j=1,2. Thus, (h,F)

* %
is observationally equivalent to (h ,F ). Q.E.D.

PROOF OF LEMMA 9: Suppose that (h,F) € (WxI') 1is observationally
* _*
equivalent to (h ,F ). We show that then there exists a strictly

*
increasing function f such that h = f+h . Suppose that such a function f
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does not exist. Then, there must exist some (xl,xz) € (XxX) such that
either
h n <h
[ h(xl) > (XZ) and (xl) < (Xz) ] or
* *
[ h(xl) < h(xz) and h (xl) <h (xz) ].

* *
Suppose w.l.o0.g. that h(xl) > h(xz) and h (xl) < h (x Then, since

2)-
*
both h and h are continuous and strictly increasing with respect to the
Kth coordinate, there exists (xi,xé) € (XxX) such that
* L * L
h(xl) > h(xé) and h (xl) < h (xz).
*
Our assumptions on F and F imply then that
* % * %
F(h(xi)) = F(h(xé)) and F (h (xi)) < F (h (xé)).
Hence,
* _* * _*
either P(1|xi;h,F) = P(1|x{;h ,F) or P(1|x5;h,F) = P(llxé;h JF).
But, either of these possibilities contradicts the hypothesis that (h,F) is
* _* ‘
observationally equivalent to (h ,F ). This contradiction shows that there
*
exists a strictly increasing function f such that h = f+h . By Lemma 2 h
*
and h possess common least concave representatives. Lemma 4 and the
definition of W imply then that h = E*
- —%
It remains to show that F = F ., To show this, we note that, since
* _*x * _*
(h,F) is observationally equivalent to (h ,F ), F (h (x)) = F(h(x)) for
- =% =% % ==
all x € X. Hence, by the definitions of F and F , F (h (x)) = F(h(x))
- = —* - - =
for all x € X. Since h = h*, this implies that F = F . Hence, (h,F) =
—% =%
(h ,F ).
- = "
Conversely, suppose that (h,F) = (h*,F ). Then, the definitions of
= —*
F and F  1imply that
* % % _% _—
F(h (x)) =F (h (x)) = F(h(x)) = F(h(x)) for all x € X.

* _*
Hence, (h,F) is observationally equivalent to (h ,F ). Q.E.D.
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—% % —*
PROOF OF THEOREM 10: Let (h,F) » (h ,F ). Suppose first that h = h .
Then by Lemma 0, there exist X1 c X and X2 ¢ X such that for all 3 € X1
and X, € X2
—% —%
(T10.1) h(x,) < h(x,) and h (x;) >h (x,).
1 2 1 2
—% —%
Since, by Assumption C.2 and the definition of F , F is strictly
increasing and, by the definition of T, F 1is increasing, (T10.1) implies

that for all Xy € X1 and Xy € X2’

(T10.2) F(h(x))) < F(h(x,)) and ?*(E*(xl)) > f*(ﬁ*(xz)).

It is then impossible that both

F(h(x))) = F (B (x)) and F(h(xy) = F (B (x,)).
—% =%
Suppose w.l.0.g. that F(h(xl)) » F (h (xl)) and
-k %
F(h(x)) < F (B (x)).

—% %
( The analysis is analogous when F(h(xl)) > F (h (xl)).) Since F and

—% —% —%
F are increasing and h and h are continuous on X, Feh and F «h

are continuous at a.e. X Hence, there exists & > 0 such that for a.e.
—% %
X € N(xl,é) , F(h(x)) < F (h (x)). Since, by Assumption C.3, N(x1,6)

possesses positive probability, it follows that

500 FhG) G0 = [ g FE G a0
N(x,$) N(x,6)

50



—% —* —%
Suppose now that h = h but F = F . Then, since both F and F
are monotone increasing on [a,y], there exists a t € (a, 7v) such that t
=% =%
is a point of continuity of both F and F and F(t) » F (t). Let x €X
—% —%
be such that h (x) = t. Since h 1is continuous at x, there exists a
neighborhood N of =x such that for all x' € N
—* —* _% —*
F(h(x')) = F(h (x')) < F (h (x')) if F(t) < F (t) and
—% —% —% =%
F(h(x')) = F(h (x')) > F (h (x')) 1if F(t) > F (©v)

Since, by Assumption C.3, N possesses positive probability,

J g(x) F(h(x)) dP(x) » J g(x) F (R (x)) dP(x)

N N Q.E.D.

PROOF OF THEOREM 11: We will first show that our model satisfies the
assumptions used in Lemmas 1-5 in Matzkin (1988). The result of the theorem
will then follow from these lemmas, Theorems lAand 10, and the compactness
of T, by the arguments described in Matzkin (1988, proof of Theorem 3).

The definition of W and C.7 imply that Assumptions W.l and W.2 in
Matzkin (1988) are satisfied; and Assumptions TI.1 - TI'.3 in Matzkin (1988)
are implied by our assumptions on F and I . By Assumptions C.4, C.5,
and C.6 in this paper, Assumptions G.1 - G.3 in Matzkin»(1988) hold.
Theorem 1 in this paper shows that Assumption W.5 in Matzkin (1988) is
satisfied. Assumption W.6 in Matzkin (1988) holds from our Assumption C.5
and the continuity' and strict monotonicity with respect to the Kth
coordinate of the functions in W. Hence, our model satisfies Lemmas 1-5 in

Matzkin (1988).

Since our set I 1is compact with respect to dr (see Cosslett (1983)),
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it follows from Theorems 1 and 10 that

limg  d(fy, £*y =0 and Um  d(fy,

(see Matzkin (1988), proof of Theorem 3).
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F) =20

a.

S.

Q.E.D,
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NOTES

The Gaussian curvature of a C2 function h at x € RK is the

determinant of the matrix

- Dzh(x) Dh(x) 1

- Dh(x) T 0 ok ) L

By feg we mean the composition of the functions f and g.

A vector B(h,x) 1is a subgradient of a concave function h : X + R

at x € X 1if for all y e X, h(y) - h(x) = g(h,x) (y - x).

Note that the monotonicity of G(e) and the independence of 5 from x

already imply that Pﬂlxl[ G(h(xl),n) st] =2 Pﬂlle G(h(xz),n) < t].

Since the domain of the functions in r is bounded, dP is

topologically equivalent to the metric on the set of distribution

functions that was employed by Cosslett (1983) and Matzkin (1988).

Kannai (1977,pp.52) notes that the least concave function constructed

in his Theorem 2.4 is continuous on KxP , where P
conc,reg conc,reg
the set of C2 preference orderings for which the Gaussian curvature
of the indifference surfaces { x | X ~ y )} never vanishes and K is a
compact set on which the preference orderings are defined.
K K

A set C CR is monotone increasing if for all x € C and all e € R

such that e,z 0 (k=1,...,K), (x +e) € C.2



