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Decision Methods for Solving Systems

of Walrasian Inequalities

Donald J. Brown∗ Ravi Kannan†

Abstract

We propose two algorithms for deciding if systems of Walrasian inequalities are solvable.
These algorithms may serve as nonparametric tests for multiple calibration of applied general
equilibrium models or they can be used to compute counterfactual equilibria in applied general
equilibrium models defined by systems of Walrasian inequalities.
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JEL Classification: C63, C68, D51, D58

1 Introduction

Numerical specifications of applied microeconomic general equilibrium models are inherently inde-
terminate. Simply put, there are more unknowns (parameters) than equations (general equilibrium
restrictions). Calibration of parameterized numerical general equilibrium models resolves this in-
determinacy using market data from a “benchmark year”; parameter values gleaned from the
empirical literature on production functions and demand functions; and the general equilibrium
restrictions. The calibrated model allows the simulation and evaluation of alternative policy pre-
scriptions, such as changes in the tax structure, by using Scarf’s algorithm or one of its variants to
compute counterfactual equilibria. Not surprisingly, the legitimacy of calibration as a methodology
for specifying numerical general equilibrium models is the subject of an ongoing debate within the
profession, ably surveyed by Dawkins et al. (2002). In their survey, they briefly discuss multiple
calibration. That is, choosing parameter values for numerical general equilibrium models consistent
with market data for two or more years. It is the implications of this notion that we explore in this
paper.

Our approach to counterfactual analysis derives from Varian’s unique insight that nonparametric
analysis of demand or production data admits extrapolation, i.e., “given observed behavior in some
economic environments, we can forecast behavior in other environments”, Varian (1982, 1984). The
forecast behavior in applied general equilibrium analysis is the set of counterfactual equilibria.

Here is an example inspired by the discussion of extrapolation in Varian (1982), illustrating the
nonparametric formulation of decidable counterfactual propositions in demand analysis. Suppose
we observe a consumer choosing a finite number of consumption bundles xi at market prices pi, i.e.,
(p1, x1), (p2, x2), ..., (pn, xn). If the demand data is consistent with utility maximization subject to
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a budget constraint, i.e., satisfies GARP, the generalized axiom of revealed preference, then there
exists a solution of the Afriat inequalities, U , that rationalizes the data, i.e., if pi · x ≤ pi · xi then
U(xi) ≥ U(x) for i = 1, 2, ..., n, where U is concave, continuous, monotone and nonsatiated (Afriat,
1967; Varian, 1983). Hence we may pose the following question for any two unobserved consumption
bundles x̄ and x̂: Will x̄ be revealed preferred to x̂ for every solution of the Afriat inequalities ?
An equivalent formulation is the counterfactual proposition: x̄ is not revealed preferred to x̂ for
some price vector p and some utility function U , which is a solution of the Afriat inequalities on
(p1, x1), (p2, x2), . . . (pn, xn).

This proposition can be expressed in terms of the solution set for the following family of poly-
nomial inequalities: The Afriat inequalities for the augmented data set (p1, x1), (p2, x2), ..., (pn, xn),
(p, x̂) and the inequality p · x̄ > p · x̂, where p is unobserved. If these inequalities are solvable, then
the stated counterfactual proposition is true. If not, then the answer to our original question is
yes. Notice that n of the Afriat inequalities are quadratic in the unobservables, i.e., the product of
the marginal utility of income at x̂ and the price vector p.

We extend the analyses of Brown and Matzkin (1996) and Brown and Shannon (2000), where
the Walrasian and dual Walrasian inequalities are derived, to encompass the computation and
evaluation of counterfactual equilibria in Walrasian economies.

Brown and Matzkin (1996) characterized the Walrasian model of competitive market economies
for data sets consisting of a finite number of observations on market prices, income distributions and
aggregate demand. The Walrasian inequalities, as they are called here, are defined by the Afriat
inequalities for individual demand and budget constraints for each consumer; the Afriat inequalities
for profit maximization over a convex aggregate technology; and the aggregation conditions that
observed aggregate demand is the sum of unobserved individual demands. The Brown–Matzkin
theorem states that market data is consistent with the Walrasian model if and only if the Walrasian
inequalities are solvable for the unobserved utility levels, marginal utilities of income and individual
demands. Since individual demands are assumed to be unobservable, the Afriat inequalities for each
consumer are quadratic in the unobservables, i.e., the product of the marginal utilities of income
and individual demands.1

A decision method for this system of Walrasian inequalities constitutes a specification test for
multiple calibration of numerical general equilibrium models, i.e., the market data is consistent
with the Walrasian model if and only if the Walrasian inequalities are solvable. In our section on
decision methods, we first give an effective deterministic algorithm for this decision problem. The
algorithm is based on the simple intuition that if one knows the order of the utility levels over
the observations for each consumer, then all we have to do is to solve a Linear Program. We will
enumerate all possible orders and solve a Linear Program for each order. An important point is
that the number of orders is (N !)T , where, N is the number of observations and T the number
of agents. Hence the algorithm will run in time bounded by a function which is polynomial in
the number of commodities and exponential only in N and T . In situations involving a large
number of commodities and a small N , T , this is very efficient. Note that trade between countries
observed over a small number of periods is an example.

A more challenging problem is the computation of counterfactual equilibria. Fortunately, a
common restriction in applied general equilibrium analysis is the assumption that consumers are
maximizing homothetic utility functions subject to their budget constraints and firms have ho-

1The Afriat inequalities for competitive profit maximizing firms are linear given market data — see Varian (1984).
Hence we limit our discussion to the nonlinear Afriat inequalities for consumers.
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mothetic production functions. A discussion of the Afriat inequalities for cost minimization and
profit maximization for firms with homothetic production functions can be found in Varian (1984).
Afriat (1981) and subsequently Varian (1983) derived a family of inequalities in terms of utility
levels, market prices and incomes that characterize consumer’s demands if utility functions are
homothetic. We shall refer to these inequalities as the homothetic Afriat inequalities.

Following Shoven and Whalley (1992), see page 107, we assume that we observe all the ex-
ogenous and endogenous market variables in the benchmark equilibrium data sets, used in the
calibration exercise. As an example, suppose there is only one benchmark data set, then the
homothetic strict Afriat inequalities for each consumer are of the form:2

U1 ≤ λ2p2 · x1 and U2 ≤ λ1p1 · x2

U1 = λ1I1 U2 = λ2I2

where we observe p1, x1 and I1. Given λ1 and λ2 we again have a linear system of inequalities in the
unobserved U1, U2, x2, p2 and I2. A similar set of inequalities can be derived for cost minimizing
or profit maximizing firms with production functions that are homogenous of degree one.

As an application of our approach, Brown and Kannan (2004) revisited the Harberger model of
capital income taxation as exposited in Shoven and Whalley (1992). They discuss the simulation
and evaluation of a change in the taxation of capital in a homothetic two-sector general equilibrium
model, assuming the market data available in multiple calibration of numerical two-sector general
equilibrium models.

For the general case (with no assumptions on homotheitcity or knowledge of all price vectors)
, we develop the “VC algorithm”; here we give a brief description of this with details in Section 3.
First, let y be a vector consisting of marginal utilities of income and utility levels of each consumer
in each observation (so y ∈ R

k, where k = 2NT ). Let x be a vector comprising the consumption
vectors for each consumer in each observation (so x ∈ R

n, where n = NTL). Finally, let z be a
vector comprising the unknown price vector in the case of the counterfactual proposition. Then our
inequalities are multivariate polynomials in the variables (x, y, z); but they are multi-linear in the
x, y, z. We would like to find a solution (x, y, z) in case one exists. Suppose now that the proportion
of all (x, y, z) which are solutions is some δ > 0. A simple algorithm for finding a solution would
be to pick at random many (x, y, z) triples and check if any one of these solve the inequalities. The
number of trials we need is of the form 1/δ, In general, δ may be very small (even if positive) and
we have to do many trials. Instead consider another parameter - ε defined by

ε = Maxy ( proportion of (x, z) such that (x, y, z) solve the inequalities ) .

Clearly, ε is always at least δ, but it is typically much larger. Using the concept of Vapnik-
Chervonenkis (VC) dimension, we will give an algorithm which makes O(d/ε) trials, where d is
the VC dimension of the VC class of sets defined by our inequalities. We elaborate on this later,
but remark here that d is O(NT (log NTL)). Thus when at least one y admits a not too small
proportion of (x, z) as solutions, this algorithm will be efficient.

To develop the algorithm, we construct an ε-net - a small set S of (x, z) such that with high
probability, every set in the (x, z) space containing at least ε proportion of the (x, z) ’s has an
element of S. This ε-net is derived from the VC-property of the Walrasian inequalities. That
is, Laskowski (1992) has shown that any finite family of multivariate polynomial inequalities in

2Here we assume utility functions are homogenous of degree one.
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unknowns (x, y, z), defines a VC-class of sets. As is well known in computational geometry, VC-
classes imply the existence of “small” ε-nets.

In our setting, at each point in the ε-net the Walrasian inequalities define a linear program in
the y ’s , since the Walrasian inequalities are a system of multilinear polynomial inequalities. One
of these Linear Programs will yield a solution to our system. Of course, ε as defined above is not
known in advance. We just try first 1 as a value for ε and if this fails, we half it and so on until we
either have success or the value tried is small enough, whence we may stop and assert with high
confidence that for every y, the proportion of (x, z) which solve the inequalities is very small. (This
includes the case of an empty set of solutions.)

More generally our “VC-algorithm” is a decision method for any finite family of multilinear
polynomial inequalities, e.g., testable restrictions of strategic games — see Canvajal et al. (2004).
This algorithm is polynomial in the number of variables and 1/ε.

2 Economic Models

We consider an economy with L commodities and T consumers. Each agent has R
L
+ as her con-

sumption set. We restrict attention to strictly positive market prices S = {p ∈ R
L
++ :

∑L
i=1 pi = 1}.

The Walrasian model assumes that consumers have utility functions ut : R
L
+ → R, income It and

that aggregate demand x̄ =
∑T

t=1 xt, where

ut(xt) = max
p·x≤It

x≥0

ut(x).

Suppose we observe a finite number N of profiles of income distributions {Ir
t }T

t=1, market prices
pr and aggregate demand x̄r, where r = 1, 2, ..., N , but we do not observe the utility functions or
demands of individual consumers. When are these data consistent with the Walrasian model of
aggregate demand? The answer to this question is given by the following theorems of Brown and
Matzkin (1996) and Brown and Shannon (2000).

Theorem 1 (Theorem 1 (Brown and Matzkin)) There exist nonsatiated, continuous, strictly
concave, monotone utility functions {ut}T

t=1 and {xr
t}T

t=1, such that
ut(xr

t ) = maxpr·x≤Ir
t
ut(x) and

∑T
t=1 xr

t = x̄r, where r = 1, 2, ..., N , if and only if ∃ {ûr
t}, {λr

t}
and {xr

t}for r = 1, ..., N ; t = 1, ..., T such that

ûr
t < ûs

t + λs
tp

s · (xr
t − xs

t) (r �= s = 1, ..., N ; t = 1, ..., T ) (1)

λr
t > 0, (t = 1, 2, . . . T ; r = 1, 2, . . . N) (2)

ûr
t > 0 and xr

t ≥ 0 (r = 1, ..., N ; t = 1, ..., T ) (3)

pr · xr
t = Ir

t (r = 1, ..., N ; t = 1, ..., T ) (4)
T∑

t=1

xr
t = x̄r (r = 1, ..., N) (5)

(1), (2) and (3) constitute the strict Afriat inequalities; (4) defines the budget constraints for
each consumer; and (5) is the aggregation condition that observed aggregate demand is the sum
of unobserved individual consumer demand. This family of inequalities is called here the (strict)
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Walrasian inequalities.3 The observable variables in this system of inequalities are the Ir
t , pr and

x̄r, hence this is a nonlinear family of polynomial inequalities in unobservable utility levels ûr
t ,

marginal utilities of income λr
t and individual consumer demands xr

t .
Brown and Shannon (2000) proposed an equivalent family of polynomial inequalities in terms

of the “dual strict Afriat inequalities”:

v̂r
t > v̂s

t − λs
tI

s
t xs

t ·
(

pr

Ir
t

− ps

Is
t

)
(r �= s = 1, ..., N ; t = 1, ..., T ) (6)

λr
t > 0 and xr

t � 0 (r = 1, ..., N ; t = 1, ..., T ) (7)

Theorem 2 (Theorem 2 (Brown and Shannon)) There exist numbers v̂r
t , λr

t and vectors xr
t

for (r = 1, ..., N ; t = 1, ..., T ) satisfying the dual strict Afriat inequalities (6) and (7) if and only
if there exist numbers ûr

t , λr
t and vectors xr

t for (r = 1, ..., N ; t = 1, ..., T ) satisfying the strict
Afriat inequalities (1), (2) and (3)..

The case of homothetic utilities is characterized by the following theorem of Brown and Matzkin
(1996).

Theorem 3 (Theorem 3 (Brown and Matzkin)) There exist nonsatiated, continuous, strictly
concave homothetic monotone utility functions {ut}T

t=1 and {xr
t}T

t=1 such that ut(xr
t ) = maxpr·x≤Ir

t
ut(x)

and
∑T

t=1 xr
t = x̄r

t , where r = 1, 2, ..., N if and only if ∃{ûr
t} and {xr

t} for r = 1, ..., N ; t = 1, ..., T
such that

ûr
t < ûs

t

ps · xr
t

ps · xs
t

(r �= s = 1, ..., N ; t = 1, ..., T ) (8)

ûr
t > 0and xr

t ≥ 0 (r = 1, ..., N ; t = 1, ..., T ) (9)

pr · xr
t = Ir

t (r = 1, ..., N ; t = 1, ..., T ) (10)

T∑
t=1

xr
t = x̄r (r = 1, ..., N) (11)

(8) and (9) constitute the strict Afriat inequalities for homothetic utility functions.

Both the Brown–Matzkin and Brown–Shannon analyses extend to production economies, where
firms are price-taking profit maximizers. See Varian (1984) for the Afriat inequalities characterizing
the behavior of firms in the Walrasian model of a market economy.

3 Decision Methods

In multiple calibration, two or more years of market data together with empirical studies on demand
and production functions and the general equilibrium restrictions are used to specify numerical
general equilibrium models. The maintained assumption is that the market data in each year is
consistent with the Walrasian model of market economies. This assumption which is crucial to the
calibration approach is never tested, as noted in Dawkins et al. (2002).

3Brown and Matzkin call them the equilibrium inequalities, but there are other plausible notions of equilibrium
in market economies.
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The assumption of Walrasian equilibrium in the observed markets is testable, under a variety of
assumptions on consumer’s tastes, using the necessary and sufficient conditions stated in Theorems
1, 2, and 3 and the market data available in multiple calibration. In particular, Theorem 3 can be
used as a specification test for the numerical general equilibrium models discussed in Shoven and
Whalley (1992), where it is typically assumed that utility functions are homothetic.

If we observe all the exogenous and endogenous variables, as assumed by Shoven and Whalley,
then the specification test is implemented by solving the linear program, defined by (1), (2), (3),
(4) and (5) for utility levels and marginal utilities of income or in the homothetic case, solving the
linear program defined by (8), (9), (10), and (11) for utility levels.

If individual demands for goods and factors are not observed then the specification test is
implemented using the algorithm presented here.

Following Varian, we can extrapolate from the observed market data available in multiple
calibration to unobserved market configurations. We simply augment the equilibrium inequalities
defined by the observed data with additional polynomial inequalities characterizing possible but
unobserved market configurations of utility levels, marginal utilities of income, individual demands,
aggregate demands, income distributions and equilibrium prices. Counterfactual equilibria are
defined as solutions to this augmented family of equilibrium inequalities.

In general, the Afriat inequalities in this system will be cubic because they involve the product
of unobserved marginal utilities of income, the unobserved equilibrium prices and unobserved in-
dividual demands. Here, we assume that the observations include the market prices and so, Afriat
inequalities are only quadratic in the product of the unobserved marginal utility of income and
individual demand. We now present the determinisitic algorithm for this case.

3.1 Deterministic Algorithm

Consider the strict Afriat inequalities (1), (2) and (3) of Theorem 1.
Since the set of ûr

t for which there is a solution to these inqualities is an open set, we are free
to add the condition : No two ûr

t are equal. This technical condition will ensure a sort of “non-
degenracy”. Under this condition, using the concavity of the utility function, it can be shown that
(1) and (2) are equivalent to

ûr
t > ûs

t =⇒ ps · xr
t > psxs

t (r �= s = 1, ..., N ; t = 1, ..., T ). (12)

The system (12) is not a nice system of polynomial inequalities. But now, consider a fixed
consumer t. Suppose we fix the order of the {ûr

t : r = 1, 2, . . . N}. Then in fact, we will see
that the set of feasible consumption vectors for that consumer is a polyhedron. Indeed, let σ be a
permuation of {1, 2 . . . N}. σ will define the order of the {ûr

t : r = 1, 2, . . . N}; i.e., we will have

û
σ(1)
t < û

σ(2)
t . . . < û

σ(N)
t . (13)

Then define P (σ, It) to be the set of x = (x1
t , x

2
t , . . . x

N
t ) satsifying the following :

xr
t ∈ RL

++ (14)

pσ(s) · xσ(r)
t > pσ(s)x

σ(s)
t N ≥ r > s ≥ 1 (15)

pr · xr
t = Ir

t 1 ≤ r ≤ N (16)
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Lemma 4 P (σ, It) is precisely the set of (x1
t , x

2
t , . . . x

N
t ) for which there exist λr

t , û
r
t satisfying (13)

so that ûr
t , λ

r
t , x

r
t together satisfy (1), (2), (3) and (4).

Now, fix a set of T permutations - σ1, σ2, . . . σT , one for each consumer. We can then write a
linear system of inequalities for P (σt, It) for t = 1, 2 . . . T and the consumption total (5). If this
system is feasible, then there is a feasible solution with the utilities in the given order. Clearly, if
all such (N !)T systems are infeasible, then there is no rationalization.

Remark If for a particular consumer t,

p1

I1
t

≥ p2

I2
t

≥ p3

I3
t

. . . ≥ pN

IN
t

,

then, by Lemma 1 of Brown, Shannon, we may assume that the ur
t are non-decreasing. For such

a consumer, only one order needs to be considered. Note that the above condition says that in a
sense, the consumer’s income outpaces inflation on each and every good.

3.2 The VC algorithm

A collection C of subsets of some space χ picks out a certain subset E of a finite set {x1, x2, ..., xn} ⊂
χ if E = {x1, ..., xn} ∩ A for some A ∈ C. C is said to shatter {x1, ..., xn} is C picks out each of
its 2n subsets. The VC-dimension of C, denoted V (C) is the smallest n for which no set of size n
is shattered by C. A collection C of measurable sets is called a VC-class if its dimension, V (C), is
finite.

Let y be a vector consisting of marginal utilities of income and utility levels of each consumer
in each observation (so y ∈ R

k, where k = 2NT ). Let x be a vector comprising the consumption
vectors for each consumer in each observation (so x ∈ R

n, where n = NTL). Finally, let z be
a vector comprising the unknown price vector in the case of the counterfactual proposition (so
z ∈ R

L). The Walrasian inequalities (1) through (5) define a Boolean formula Φ(x, y, z) containing
s ∈ O(N2T + NTL) atomic predicates where each predicate is a polynomial equality or inequality
over n + k + L variables - x, y, z. Here Φ is simply the conjunction of the inequalities (1) through
(5). For any fixed y, let Fy ⊆ R

n+L be the set of (x, z) such that Φ(x, y, z) is satisfied. Let

ε = Maxy ( proportion of (x, z) such that (x, y, z) solve the inequalities ) .

Note that if the set of solutions has measure 0 (or in particular is empty), then ε = 0.

Theorem 5 (Goldberg-Jerrum (1995)) The family {Fy : y ∈ R
k} has VC-dimension at most

2k log2(100s).

The next proposition is a result from Blumer et.al. (1989).

Proposition 6 If F is a VC-class of subsets of X with VC-dimension d, and ε, δ are positive reals
and m ≥ (8d/εδ2) log2(13/ε), then a random 4 subset {x1, x2, ..., xm} of X (called a ε -net) satisfies
the following with probabilty at least 1 − δ :

S ∩ {x1, ..., xm} �= φ ∀S ∈ F with µ(S) ≥ ε.

4picked in indepedent, uniform trials
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For fixed ȳ, z̄, the Walrasian inequalities define a linear program over y ∈ R
k
+. Hence each point

in the ε-net defines a linear program in the y ’s. Now, the random algorithm is clear : we pick a
random set of m (x, z) pairs, where ε is as defined above and solve a Linear Program for each. For
the correct ε, we will succeed with high probability in finding a solution. We do not know the ε
apriori, but we use a standard trick of starting with ε = 1 and halving it each time until we have
success or we can conclude with an upper bound on ε which is small.

A preliminary version of the VC-algorithm was introduced in Brown and Kannan (2003). But
the bound here on the VC dimension using Theorem 5 and hence the running time are substantially
better than those derived in that report.
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