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Prizes versus Wages with Envy and Pride

Pradeep Dubey∗, John Geanakoplos†, and Ori Haimanko‡

17 October 2005

Abstract

We show that if agents are risk neutral, prizes outperform wages when there
is sufficient pride and envy relative to the noisiness of performance. If agents
are risk averse, prizes are a necessary supplement to wages (as bonuses).
Keywords: Envy, Pride, Wages, Prizes, Bonus
JEL Classification: C72, D01, D23, L14.

1 Introduction

Suppose all your fellow workers got a pay raise of $1 but you didn’t. You would likely
feel worse off.
Suppose instead everyone, including you, took a pay cut of $α. Again you would

feel worse off.
How high would α need to be to make you feel indifferent between the two sce-

narios?
Alternatively, suppose all your fellow workers took a pay cut of $1 but you didn’t.

You would likely feel better off.
Suppose instead everyone, including you, got a pay raise of $β. Again you would

feel better off. How high would β need to be to make you indifferent?
For people whose utility does not involve comparisons with others, α = β = 0. But

for many people, α and β would need to be near 1; indeed several of our colleagues
gave numbers even higher. The numbers α and β roughly measure how powerful
feelings of envy and pride are. People typically care not only about their direct
personal reward, but also about their standing vis-a-vis others, feeling envy when
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their reward is lower, and pride when it is higher. Such attitudes appear to be quite
prevalent, especially when agents compete in a common work environment.1

Consider budding athletes. Many make extraordinary sacrifices to undergo train-
ing in the hope of winning a rare prize, for example an Olympic medal or a spot on
a professional sports team. Only a minute percentage achieve success.
A spot on an NBA basketball team can be worth a great deal, say a million

dollars, and so it is not surprising that such a prize elicits effort. But if that money
were divided up among the hundred people competing for the spot as wages, payable
conditional on the same effort they undertook for the prize, would the effort be
forthcoming? We think not, and not by a long shot. Why is a one in a hundred
chance of $1 million worth so much more than $10,000 for sure?
Status might be the answer. Prizes involve the explicit ranking of performances,

and are, by their very nature, public. The player who makes the team is universally
lauded for beating his ninety-nine competitors. This confers on him the pride of
status, over and above the direct utility of the $1 million (at the same time as it
inflicts envy on the losers). In contrast, wages are paid based on individual output,
regardless of how others perform, and are quite often secret.
Suppose, however, that wages were made as public as prizes. Could they not also

unleash feelings of pride and envy, and intensify the competition among workers?
Would wages then inspire more effort than prizes?
In fact, wages have an advantage over prizes in that they are flexible. A prize is

given to a worker who produces more than all the others, independent of the levels.
In contrast, piece-rate wages and productivity-indexed bonuses increase with an in-
dividual worker’s output. This linkage between output and remuneration appears to
be an important advantage of wages.
The motivating power of wages versus prizes has been considered before, most

famously in Lazear and Rosen (1981), who showed that wages can do at least as well
as prizes from the principal’s point-of-view. (Neither pride nor envy was postulated
to exist in their model.) In a follow-up paper, Green and Stokey (1983) showed
that, if agents are risk-averse and if their productivities are sufficiently correlated
via a common random shock, then prizes (or, as they called them, tournaments)
outperform wages. The reason is that the incentives provided by wages are reduced
on account of the shock and the risk aversion; while, on the other hand, the incentives
generated by prizes are invariant of the shock because it is common. Even with risk

1There is a large empirical literature, starting from Easterlin (1975), which has shown that
happiness depends not just on absolute, but also on relative, consumption. This externality has
been formally modeled along two different lines. The cardinal approach makes utility depend on
the difference between an individual’s consumption and others’ consumption (see, e.g., Duesenberry
(1949), Pollak (1976), and Fehr and Schmidt (1999)). The ordinal approach makes utility depend
on the individual’s rank in the distribution of consumption (see, e.g., Frank (1985), Direr (2001),
and Hopkins and Kornienko (2004)). Our model is in the cardinal tradition. The ordinal approach
is examined in Dubey and Geanakoplos (2004, 2005). There is a big difference between the two
approaches. Our results here on the efficacy of prizes rely heavily on cardinal envy and pride.
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neutrality, if worker outputs are correlated, one can imagine learning from the output
of one worker something about the effort of another worker, justifying prizes based
on relative performance. Index-linked incentive contracts are very common for this
reason. But in the absence of superior publicity for prizes, and without risk aversion,
or correlation in production, a puzzle remains as to how prizes could ever outperform
wages.
We shall explain the superiority of prizes over wages entirely on the basis of envy

and pride. In our model, agents are homogeneous and their outputs are independent;
furthermore, wages are as public as prizes. We show that if agents are risk neutral,
and the feelings of envy and pride exceed a threshold dependent on the noisiness in
output, then a single prize will generate strictly more effort than any (even non-linear)
wage schedule. If the agents are risk averse, then under similar conditions, any wage
schedule can be improved (giving higher incentives with less expected payments) by
reducing the wages and substituting a prize (bonus) based on relative performance.
Bonuses based on relative performance are widespread in the marketplace and

have been justified in many ways. Our explanation via envy and pride appears to be
new.2

When there is no noise or envy or pride, wages give the same incentives as prizes
to risk neutral agents, and outperform prizes for risk averse agents. With the in-
troduction of noise (randomness) in output, wages strictly dominate prizes in either
case: since outputs are independent, compensating a worker on the basis of rela-
tive performance only distorts his incentives (the shirker wins the prize with positive
probability just because of luck).
The situation dramatically reverses with envy and pride. Section 2 examines the

case of two risk neutral agents whose intensities of envy and pride are equal, i.e.
α = β. We show that for any level of noise σ below some upper bound σ̄, there is
a threshold α(σ) of envy-pride such that if α = β > α(σ), prizes will outperform
wages, while if α = β < α(σ), wages outperform prizes. For noise σ > σ̄, no amount
of envy-pride can restore the superiority of prizes.
In Section 3 we show that, no matter how large the noise and how small the envy-

pride, the superiority of prizes is restored with a large enough group of competitors,
since a shirker will very rarely be lucky enough to pass so many hard-working rivals.
It is true that envy-pride lowers the wages an employer needs to pay his agents,

because if one of them works less he will not only get a lesser wage, but also envy
those who are working and getting paid more. But the motivating power of envy-
pride is even stronger with prizes. The shirker not only reduces his (expected) prize,
he increases the (expected) prize of his rivals, generating more envy than in the wage

2In this paper we assume that the reward based on relative performance takes the form of a prize
(or bonus) with a fixed value. If the relative performance bonus were variable, paying the winner
according to the margin of victory, it might become still more attractive. We are content to show
that even without this flexibility, adding bonuses to wages will improve worker incentives, if there
is envy and pride.
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scenario.
In Section 4 we disentangle envy from pride. Were envy to disappear, pride by

itself would create more incentives for prizes than for wages. Pride does not really
enter the picture with wages, because a hard-worker will rarely beat his equally tal-
ented, hard-working rivals by much, even if there is noise. However, when everybody
strives hard for a prize, a single person always enjoys the pride of victory, no matter
how close the race. We passed over this earlier, when we took α = β, because then
the pride in victory is exactly neutralized by the envy in defeat. If α = 0, but β > 0,
prizes continue to be bolstered by pride, while wages retain only the direct utility of
money. (“To play for pride” is a time honored expression, as is “to work for wages”.)
We show that for any level of noise σ below some reasonably large upper bound, there
is a threshold β(σ) of pride such that if α ≤ β and β > β(σ), prizes will outperform
wages.
In Section 5 we observe that any prize-based incentive scheme imposes a big risk

on workers, namely that they might not win the prize even when they work hard.
This is a terrible disadvantage for prizes if workers are risk-averse. Paying workers
entirely by way of a single prize to the victor is therefore untenable. But that does
not mean there is no role for prizes. It suggests a combination of wages and prizes.
Such mixed contracts are not necessary when agents are risk neutral, since a pure
wage or a pure prize is always at least as good as any mixture. But, without risk
neutrality, mixed contracts cannot be ignored.
We show that for any level of noise σ below some reasonably large upper bound,

there is a threshold α(σ) of envy-pride such that if α = β > α(σ), every optimal mixed
contract will entail a positive prize. Furthermore for any given envy-pride α = β > 0,
there exists a threshold of noise σ(α) > 0 such that this need for prizes remains
whenever σ < σ(α).
The intuition is roughly as follows. Suppose there are N workers earning only

wages. When there is no noise, a worker knows the wage w he will earn for sure.
Assuming differentiable utilities, he is nearly risk neutral for small variations in
consumption. So consider reducing the wage w by ε, and instead awarding a prize of
Nε. Then the expected utility for a worker from consumption stays almost the same.
But as we argued before with risk neutrality, the incentive created by envy-pride is
greater for the prize than the wage. Thus a small bonus increases incentives without
increasing total expected payout for the employer.
The efficacy of a single prize relies on each agent believing he has roughly as good

a chance as anyone else to win if he works. If agents had such disparate abilities
that only a few believed they could win, the others would despair and not work. In
this event it would be necessary to create handicaps to generate more competition.
Though handicaps are an important fact of life, we do not deal with them here. We
assume instead that the competitors think they are fairly evenly matched when their
efforts are equal. This assumption is most plausible when the agents do not know
their relative abilities. (For example, teenage athletes may realize they are gifted,
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but not know how they would stack up against competition after a long period of
arduous training, leading them to suppose that they are equal till proved otherwise.)
We could have allowed for significant heterogeneity in the disutility of effort and the
feelings of envy and pride. Our analysis would essentially remain intact. For details
see the longer version of this paper (Dubey, Geanakoplos, and Haimanko (2005)).

2 Pride and Envy

2.1 The Basic Model

We first consider two identical agents with utility

u(A,B, e) = A+ βmax(A−B, 0)− αmax (B −A, 0)− ce,

where A is the money the agent gets, B is the money his rival gets, and e is the
effort he exerts. The parameters β ≥ 0 and α ≥ 0 correspond to pride and envy,
and c > 0 is the marginal disutility of effort.3 In this Section we shall assume that
α = β, merging the effects of pride and envy. In Section 4, we shall disentangle the
two effects, taking α 6= β, and often letting one of them be zero. Thus for now write

u(A,B, e) = A+ α(A−B)− ce, (1)

and call α the envy-pride parameter.4

Let E ⊂ [0, 1] be the set of effort levels available to each agent, with 0 ∈ E and
1 ∈ E . (Thus E can be discrete or continuous. All we require is that it contain two
special levels: 0 ≡ “shirking”, and 1 ≡ “working at full capacity”.) If agent i ∈ {1, 2}
chooses effort level ei ∈ E , he produces ei + εσi units of output, where ε

σ
1 and εσ2 are

random noises (i.i.d. nonatomic random variables with mean zero), parameterized
by a scalar σ > 0 measuring their noisiness5. We denote by Gσ the cumulative
distribution function of the random variable εσ1 − εσ2 . Clearly, since ε

σ
1 and εσ2 have

positive variance and are nonatomic i.i.d., we have Gσ(0) = 1/2. We suppose that
as noise disappears, limσ→0Gσ(t) = 0 for every t < 0, and as noise goes to infinity,
limσ→∞Gσ(t) = 1/2 for every t.We also assume that Gσ is continuous and convex on
[−1, 0] (i.e., Gσ possesses a density function which is nondecreasing on [−1, 0] ). To

3Fehr and Schmidt (1999) studied the same utility function, but curiously they took β negative,
implying that people feel compassion when they are ahead. In conjunction with envy from being
behind, their formulation amounts to “inequity aversion”.

4Utility functions of this particular form were considered, e.g., in Fershtman et al (2003), Bolle
(2000), and Kirchsteiger (1994).

5Our model allows for negative outputs of the agents. This might make sense in certain contexts
(think of money managers who make losses). But the case of exclusively non-negative outputs can
be incorporated by putting a positive lower bound on effort levels and a suitably small upper bound
on the support of the random noise.
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include deterministic output in our analysis, we allow for σ = 0, in which case both
ε01 and ε02 are fixed at zero.
If each εσi is normally distributed, with mean zero and standard deviation σ, then

εσ1 − εσ2 is also normally distributed, with mean zero and standard deviation
√
2σ;

thus, Gσ (x) = 1
2σ
√
π

R x
−∞ e−

t2

4σ2 dt.
If the εσi are uniformly distributed on [−σ, σ], then6

Gσ (x) =

⎧⎪⎪⎨⎪⎪⎩
0, if x ≤ −2σ,

1
8σ2
(x+ 2σ)2 , if − 2σ ≤ x ≤ 0,

1− 1
8σ2
(−x+ 2σ)2 , if 0 ≤ x ≤ 2σ,
1, if x ≥ 2σ.

It is easy to check that all our hypotheses are satisfied for the normal and uniform
noise terms.

2.2 The Wage and Prize Games

We will compare two types of contracts that the principal may write. The first is
a piece-rate wage contract: each agent is paid rq, when the piece-rate is r and his
output is q. In the second contract, a prize P is awarded to the agent with the highest
output; in case of ties, a fair coin is tossed to decide who gets the prize. There is
always one winner.
Each of these contracts induces, in an obvious manner, a non-cooperative game in

which agents’ strategies are to choose effort levels. Denote these games with wages,
prizes by Γσα (r), Γ̃

σ
α (P ) .

The principal wishes to elicit maximal effort from the agents (i.e., e1 = e2 = 1) at
minimal expected cost to himself. Let

Mσ
α = 2min {r | (e1 = 1, e2 = 1) is a Nash equilibrium of Γσα (r)} ,

M̃σ
α = min

n
P | (e1 = 1, e2 = 1) is a Nash equilibrium of Γ̃σα (P )

o
.

Clearly Mσ
α , M̃

σ
α is the minimal expected payment by the principal needed to elicit

maximal effort via wages, prizes7.
Define, in either the prize or the wage game, the incentive to work for an agent i

to be the increase in his payoff when he switches from shirk (ei = 0) to work (ei = 1),
ignoring his disutility of effort and assuming that his rival j is working (ej = 1).
Then agent i will not want to unilaterally deviate from work to shirk iff his incentive
to work is no less than his disutility of effort ei = 1. It turns out that if this simple

6See (9) and (10) in Example 2.
7We have assumed a single prize for the best-performing agent. If the loser were also awarded,

incentives to exert maximal effort would become smaller. Thus a single prize will, in fact, always be
preferred by the principal.
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criterion is met for both agents, then (1, 1) is a Nash equilibrium (NE) of the relevant
game. In other words, if the deviation from 1 to 0 is not profitable, then neither is
the deviation to any ei ∈ E . The proof of this, as will be seen, relies on the linearity
of costs and the convexity of the distribution Gσ on [−1, 0].
Our first proposition uses the incentive criterion to establish explicit formulae for

Mσ
α and M̃σ

α .

Proposition 1.

Mσ
α =

2c

1 + α
(2)

and
M̃σ

α =
c

1
2
−Gσ (−1) ·

1

1 + 2α
(3)

Proof. In the game Γσα (r) the expected utility of agent i, when he chooses
effort level ei and his rival j chooses effort level ej, is rei + α(rei − rej) − cei =
(1+α)rei−αrej− cei. Thus, in order for (e1 = 1, e2 = 1) to be a Nash equilibrium of
Γσα (r), it is necessary and sufficient that r satisfy the incentive constraint: (1+α)r−
αr − c ≥ (1 + α)rei − αr − cei for every ei ∈ E . When ei = 1 we have an equality,
and when ei = 0 the incentive constraint reduces to the condition:

r ≥ c

1 + α
.

By linearity, this condition guarantees the incentive constraint for every ei ∈ E . Since
each agent gets rei = r (when ei = 1), (2) follows.
Next consider the prize game Γ̃σα (P ). When agent i chooses effort level ei and his

rival j chooses effort level ej , i wins the prize for sure if and only if ei+εσi > ej+ε
σ
j , i.e.,

εσj −εσi < ei−ej. Since noise is nonatomic, the probability of this event is Gσ(ei−ej).
Hence i’s payoff is8 Gσ(ei − ej)(1 + α)P − [1−Gσ(ei − ej)]αP − cei. Thus, in order
to implement (e1 = 1, e2 = 1) as a Nash equilibrium of Γ̃σα (P ), it is necessary and
sufficient that P satisfy

Gσ(0)(1+α)P − [1−Gσ(0)]αP − c ≥ Gσ(ei− 1)(1+α)P − [1−Gσ(ei − 1)]αP − cei

for every ei ∈ E . Recalling that Gσ(0) = 1/2, and letting τ = (ei − 1) ∈ E−1 (where
E−1 denotes the set {e− 1 | e ∈ E}) we find that P must be bounded from below by

c supτ∈E−1\{0}
τ

Gσ(τ)− 1
2

1 + 2α
.

8The formula remains valid when σ = 0.We takeG0(0) = 1
2 , since an anonymous tie-breaking rule

would allocate the prize to either agent with equal probability. And, of course, we take G0(x) = 0
if x < 0 and G0(x) = 1 if x > 0.
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Since Gσ is convex on [−1, 0], the supremum in this expression is attained for τ = −1,
which leads to (3).¥

Theorem 1 (Wages outperform Prizes without Envy or Pride). If there
is no envy or pride, and even a little noise, then wages outperform prizes: Mσ

0 = M̃σ
0

if Gσ(−1) = 0, and Mσ
0 < M̃σ

0 if Gσ(−1) > 0.

Proof. Immediate from Proposition 1.¥

The intuition behind Theorem 1 is straightforward. If agent i works (ei = 1)
in the prize game and so does his rival, i’s expected share of the prize is exactly
P/2. If he shirks (ei = 0) and his rival still works, his expected payoff does not fall
to zero, since with noise he may, with a stroke of luck, win anyway. His expected
payoff is Gσ(−1)P, which is positive if there is enough noise. On net his incentive to
work is P (1/2− Gσ(−1)). When the wage rate is set equal to P/2, his incentive to
work in the wage game is P/2, no matter what the noise. But if Gσ(−1) > 0, then
P (1/2 − Gσ(−1)) < P/2. Hence the prize P will need to be more than twice the
optimal wage r if Gσ(−1) > 0, and will never be less.

2.3 The Power of Envy and Pride

Envy makes it easier to motivate the agents to work, via wages or prizes.9 For wages,
this is because shirking entails not only a lesser payment, but also the envy of those
who are working and getting paid more.
But the motivating power of envy-pride is even stronger with prizes than with

wages. An agent who shirks not only reduces his (expected) prize, he increases the
(expected) prize of his rival, generating still more envy.10

This can most succinctly be seen if there is no noise. From (2) and (3) we see at
once that without noise, the principal needs to pay out total wages M0

α = 2c/(1 +α)
to motivate both agents to work, but a prize of only M̃0

α = 2c/(1 + 2α). Clearly the
required wage bill and the prize become smaller as the envy-pride factor α rises. When
α = 0, M0

0 = M̃0
0 = 2c whereas both M0

α and M̃0
α converge to zero as α →∞. With

enough envy-pride, the principal hardly needs to expend any money at all. But the
point is, he expends less on prizes than on wages for any degree of envy-pride α > 0.
The maximum savings in absolute terms from using prizes instead of wages occur
when α = 1/

√
2 ≈ .70, yielding a savings of M0

1/
√
2
− M̃0

1/
√
2
≈ 1.17c − .83c = .34c.

The presence of envy-pride reduces the wage bill from 2c to 1.17c, or about 41%, and

9As envy-pride increases, agents are obviously more easily motivated to work in the prize game
(see Proposition 1). This fact was noted in Grund and Sliwka (2005). However, they did not compare
prizes to wages.
10Notice that this effect relies on the cardinal approach to envy: envy increases as the gap grows

bigger.
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the switch from wages to prizes reduces the total payments from 1.17c to .83c, or
another 29%.
To put the matter another way, if the principal has a fixed pot of money P to

spend, but is unsure of the disutility c his employees feel about working, he should
offer a prize instead of wages. The maximum disutility c which can be overcome with
a prize of P is P (1 + 2α)/2, while with a total wage bill of P, it is only P (1 + α)/2.
The advantage of the prize is αP/2.
The general picture, with the possibility of noise, goes as follows.

Theorem 2 (Prizes outperform Wages iff Envy-Pride exceeds Noise
Threshold). Suppose the noise is not too large: Gσ(−1) < 1/4. Define the noise-
dependent threshold α∗ = 2Gσ(−1)/(1− 4Gσ(−1)). If envy-pride is greater than the
threshold, then prizes outperform wages: M̃σ

α < Mσ
α if α > α∗. In particular, if there

is no noise (and so Gσ(−1) = G0(−1) = 0), then α∗ = 0, and so prizes outperform
wages with the slightest envy-pride. If envy-pride is below the threshold, then wages
outperform prizes: Mσ

α < M̃σ
α if α < α∗.

Proof. Immediate from Proposition 1.¥

Another way of expressing the same idea is:

Theorem 20 (Prizes elicit Effort from a wider Range of Workers). Con-
sider a fixed pot of money P . The principal can elicit full effort from the agents11 via
wages if their disutility c ≤ (1+α)P/2 (≡incentive to work in the wage game). With
a prize, he can elicit full effort if c ≤ (1 + 2α)P/2− (1 + 2α)PGσ(−1) (≡incentive
to work in the prize game). If the noise term Gσ(−1) is small, prizes elicit full effort
from a wider range of workers.

Example 1. Suppose εσ1 and εσ2 are normally distributed with mean zero and
standard deviation σ. Then Theorem 2 applies whenever σ ≤ 1, since then Gσ(−1) ≤
G1(−1) ≈ 0. 24 < 1

4
. For instance, if σ = 1/2, then Gσ(−1) ≈ 0.0 8 and α∗ ≈ 0.

23 < 1 turns out to be quite low, i.e. when agents care one fourth as much about the
gap in payments as about their own payment, prizes dominate wages.12

Our third Theorem states that for any positive envy-pride parameter (however
small), prizes outperform wages provided that the random component in agents’
outputs is sufficiently low.

11I.e., (e1 = 1, e2 = 1) is a Nash equilibrium in the corresponding game.
12Note that, with normally distributed noise, the principal collects money from an agent with

positive probability in a wage contract (whenever the agent produces negative output, i.e., a “loss”
- see footnote 5). With prizes, he only hands out money. Inspite of this, the principal prefers prizes
to wages when the level of envy-pride is sufficiently high.
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Theorem 3 (Prizes outperform Wages with any Envy-Pride, if Noise is
small). Given α > 0, there exists σ0 > 0 such that whenever σ ≤ σ0, M̃σ

α < Mσ
α .

Proof. Since limσ→0Gσ (−1) = 0, by Proposition 1 limσ→0 M̃σ
α =

2c
1+2α

< 2c
1+α

=
Mσ

α .¥

Our next result emphasizes one drawback of prizes: too much noise destroys their
efficacy, even if there is envy-pride. When wages are based on a noisy measure of
output, a worker may be overpaid or underpaid w.r.t. his effort. But as long as the
noise is unbiased, and wages are linear, his expected wage is correct. In contrast,
when prizes are based on a noisy measure of relative output, the expected payment
a worker gets is biased toward P/2, diminishing the expected payment to the hard
worker and increasing the expected payment to the shirker. Theorem 4 shows that
when noise is high, prizes are worse than wages no matter how much envy-pride there
is.

Theorem 4 (If Noise is too large, Wages outperform Prizes no matter
how much Envy-Pride there is). If Gσ (−1) ≥ 1/4, then Mσ

α < M̃σ
α for every

α ≥ 0.

Proof. By Proposition 1, M̃σ
α ≥ 4c

1+2α
, and this is always above Mσ

α =
2c
1+α

.¥

2.4 Non-linear Wages

We have shown that prizes outperform wages when noise is small. Now we show that
this continues to hold even if we allow for non-linear wages.
A non-linear wage is given by a function w, defined for all possible outputs. These

functions are assumed to be nondecreasing, and to have the property that expected
wages are nonnegative even with zero effort, i.e. Ew(εσi ) ≥ 0 for i = 1, 2. This
guarantees that agents do not get expected negative wages under any level of effort.
Denote by M̄σ

α(w) the expected payment by the principal under wage contract w,
when both agents make effort 1. Also let M̄σ

α ≤Mσ
α be the infimum of M̄

σ
α (w) over all

(non-linear) w which implement maximal effort by both agents in Nash equilibrium.
First suppose that there is no random noise at all: agent i’s output precisely equals

his effort ei. It is easy to see that there is an optimal w achieving M̄0
α. This w pays zero

for all output levels below 1 (i.e. w(x) = 0 for x < 1), and w (1) is the minimal payoff
under which no agent i prefers ei = 0 to ei = 1 given that his opponent j is choosing
ej = 1. As in the computation ofMσ

α in the proof of Proposition 1, w (1) = c/(1+α),
and so

M̄0
α =

2c

1 + α
=M0

α.
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Since G0 (−1) = 0, (3) implies
M̃0

α =
2c

1 + 2α

Hence we have
M̃0

α < M̄0
α (4)

for all α > 0. Thus, when there is no noise, prizes outperform all wage contracts
for any given positive level of envy-pride. This continues to hold when the noise is
sufficiently low:

Theorem 5 (Prizes outperform Non-linear Wages with small Noise).
Given α > 0, there exists σ0 > 0 such that M̃σ

α < M̄σ
α whenever σ ≤ σ0.

Proof. Suppose that the assertion is false. Then one can find a sequence
(σk)

∞
k=1 , and a sequence (wk)

∞
k=1 of wage contracts such that σk → 0 as k →∞,

M̄σk
α (wk) ≤ M̃σk

α (5)

for all k, and wk implements maximal effort by both agents in Nash equilibrium when
agents’ outputs are affected by noises εσk1 , εσk2 . However, from (3) and the fact that
Gσk (−1)→ 0 as σk → 0, we obtain

M̃σk
α =

c
1
2
−Gσk (−1) ·

1

1 + 2α
−→k→∞

2c

1 + 2α
= M̃0

α. (6)

On the other hand, we claim

M̄σk
α (wk) ≥ M̄0

α for every k. (7)

Indeed, for every k construct a wage function wk where wk (x) = Ewk (ε
σk
1 ) for x < 1,

and wk (1) = Ewk (1 + εσk1 ). It is clear that, since agent i prefers ei = 1 to ei = 0 given
ej = 1 when there is noise εσki that affects his (and independently his opponent’s)
output under wage function wk, he also would prefer ei = 1 to ei = 0 under wk when
there is no noise. Thus M̄σk

α (wk) = M̄0
α(w̄k) ≥ M̄0

α. However, the combination of (5),
(6), and (7) contradicts (4).¥

3 Multiple Agents

When there are many agents, the scope for envy and pride increases. Coming first
(or last) among one hundred contestants gives more pleasure (or pain) than beating
a single opponent. The principal can take advantage of this situation to pay less,
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whether he uses wages or prizes. We suppress this effect, and assume that agents
care only about the average of others’ receipts.
But multiple agents bring another benefit to prizes alone. With two contestants,

an agent who shirks might get lucky and beat the other agent who works. However,
with ninety-nine other agents working, the shirker is almost sure to come behind one
of them. Thus sufficiently many agents tend to ameliorate the drawback of noise,
helping prizes to become more efficacious than wages as long as there is some envy-
pride.
Suppose that there are n identical agents. We assume that if agents 1, ..., n get

A1, ..., An and agent i is exerting effort ei, then i’s utility is

ui(A1, ..., An, ei) = Ai + α(Ai −
P

j 6=iAj

n− 1 )− cei.

As in Section 2, one can see that

Mσ
α =

nc

1 + α

and
M̃σ

α =
c

1 + n
n−1α

sup
τ∈E−1\{0}

τ

Gσ
n (τ)− 1

n

,

where Gσ
n is the cumulative distribution function of the random variable

max
j 6=i

εσj − εσi ,

and εσ1 , ..., ε
σ
n are the i.i.d. noise terms affecting agents’ outputs. It is easy to verify

the following analogues of Theorems 4 and 2.

Theorem 4*. If

sup
τ∈E−1\{0}

τ

Gσ
n (τ)− 1

n

≥ n2

n− 1 ,

then M̃σ
α > Mσ

α for every α ≥ 0.

Theorem 2*. Suppose

sup
τ∈E−1\{0}

τ

Gσ
n (τ)− 1

n

<
n2

n− 1 ,

Define

α∗(n) =
supτ∈E−1\{0}

τ
Gσ
n(τ)− 1

n

− n

n2

n−1 − supτ∈E−1\{0} τ
Gσ
n(τ)− 1

n

. (8)
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If α > α∗(n) then M̃σ
α < Mσ

α , and if α < α∗(n) then M̃σ
α > Mσ

α .

Now we show that the premise of Theorem 2∗ holds for large n and furthermore
α∗(n)→ 0 as n→∞. In other words, no matter how slight the envy-pride, and how
big the individual noise, prizes always outperform wages when there are sufficiently
many competitors.
It will be useful to first consider a concrete example.

Example 2. Assume that (εσk)
∞
k=1 is a sequence of i.i.d. random variables with

the uniform distribution on [−σ, σ] , for some fixed σ ≥ 1. For any n, let us denote
the random noise terms in agents’ outputs by εσ1 , ..., ε

σ
n. It is clear that for any t ≤ 0

Pr( max
1≤j≤n,j 6=i

εσj − εσi ≤ t | εσi = y) =

½
0, if y ≤ −σ − t;

1
(2σ)n−1 (y + t+ σ)n−1 , if − σ − t ≤ y ≤ σ.

Thus, for every −1 ≤ t ≤ 0, Gσ
n is given by

Gσ
n(t) =

Z σ

−σ−t
Pr( max

1≤j≤n,j 6=i
εσj − εσi ≤ t | εσi = y)

1

2σ
dy (9)

=
1

(2σ)n

Z σ

−σ−t
(y + t+ σ)n−1 dy =

1

(2σ)nn
(t+ 2σ)n . (10)

The density function of Gσ
n is clearly increasing on [−1, 0], and therefore Gσ

n is convex
on this interval, which implies

sup
τ∈E−1\{0}

τ

Gσ
n (τ)− 1

n

=
1

1
n
−Gσ

n (−1)
=

n

1− ¡2σ−1
2σ

¢n .
Clearly n

1−( 2σ−12σ )
n < n2

n−1 for all sufficiently large n, and thus Theorem 2* can be

applied. It follows from (8) that

α∗(n) =

n

1−( 2σ−12σ )
n − n

n2

n−1 − n

1−( 2σ−12σ )
n

=

¡
2σ−1
2σ

¢n
n

n−1
¡
1− ¡2σ−1

2σ

¢n¢− 1
=

(n− 1) ¡2σ−1
2σ

¢n
n
¡
1− ¡2σ−1

2σ

¢n¢− (n− 1) = (n− 1) ¡2σ−1
2σ

¢n
−n ¡2σ−1

2σ

¢n
+ 1
→n→∞ 0

Thus the minimal level of envy-pride required for prizes to outperform wages becomes
vanishingly small as the number of competitors increases.
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The reader can check that only two properties of the uniform distribution play a
role in establishing the above result:

Gσ
n is convex on [−1, 0] and n2Gσ

n (−1)→ 0 as n→∞. (11)

These two properties are common, however, to all distributions of the random noise
variables (εσk)

∞
k=1 which have bounded support [−σ, σ] and possess a continuously

differentiable and positive density function fσ on it. Indeed, for every −1 ≤ t ≤ 0,
Gσ
n is given by

Gσ
n(t) =

Z σ

−σ−t
Pr( max

1≤j≤n,j 6=i
εσj−εσi ≤ t | εσi = y)fσ (y) dy =

Z σ

−σ−t
F σ (y + t)n−1 fσ (y) dy,

(12)
where F σ denotes the cumulative distribution function of the random noise variable.
Using (12),

∂

∂t
Gσ
n(t)

=

Z σ

−σ−t
(n− 1)F σ (y + t)n−2

∂

∂t
F σ (y + t) fσ (y) dy

+F σ ((−σ − t) + t)n−1 fσ (−σ − t)

=

Z σ

−σ−t
(n− 1)F σ (y + t)n−2 fσ (y + t) fσ (y) dy,

and (for n ≥ 3)
∂

∂2t
Gσ
n(t) =

Z σ

−σ−t
(n− 1)(n− 2)F σ (y + t)n−3 fσ (y + t)2 fσ (y) dy

+

Z σ

−σ−t
(n− 1)F σ (y + t)n−2

∂

∂t
fσ (y + t) fσ (y) dy

+(n− 1)F σ ((−σ − t) + t)n−2 fσ ((−σ − t) + t) fσ (−σ − t)

= (n− 1)
Z σ

−σ−t
F σ (y + t)n−3

∙
(n− 2)fσ (y + t)2 + F σ (y + t)

∂

∂t
fσ (y + t)

¸
fσ (y) dy.

Since miny∈[−σ,σ] fσ (y) > 0, it is clear that

(n− 2)fσ (y + t)2 + F σ (y + t)
∂

∂t
fσ (y + t) > 0

for every y ∈ [−σ − t, σ] and for all sufficiently large n.We conclude that ∂
∂2t

Gσ
n(t) > 0

and thus the function Gσ
n is convex on [−1, 0] for all sufficiently large n. Next, (12)

implies that
Gσ
n(−1) ≤ F σ (σ − 1)n−1 .
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Since F σ (σ − 1) < 1,
lim
n→∞

n2Gσ
n (−1) = 0.

Both conditions in (11) therefore hold, and this allows us to generalize the conclusion
of Example 2 as Theorem 6 below: the minimal level of envy-pride required for
prizes to outperform wages becomes vanishingly small as the number of competitors
increases, even if the distribution of random noises is not uniform.

Theorem 6 (Prizes outperform Wages even with large Noise, if there
are enough Competitors). Suppose that (εσk)

∞
k=1 is a sequence of i.i.d. random

variables with zero mean and values in [−σ, σ] for some σ ≥ 1, that possess a positive
and continuously differentiable density function. For any n, suppose the random noise
terms in agents’ outputs are given by εσ1 , ..., ε

σ
n. Then limn→∞ α∗(n) = 0.

4 Pride vs Envy

We return to the utility function

u(A,B, e) = A+ βmax (A−B, 0)− αmax(B −A, 0)− ce,

disentangling pride β from envy α.
Now it becomes possible to ask whether it is pride or envy that makes prizes a

better incentive mechanism than wages.
One indication that pride is the real motivator is that people say they "play for

pride". That is much less often said about regular work. Indeed workers are more
likely to say they need the money, or they are afraid of the embarrassment of being
unemployed, or of falling behind their peers.
This is revealed in our mathematics. The incentive to work for wage rate r, when

there is no noise, is
r + αr.

This is the sum of the money incentive r, and the envy αr of earning zero while the
rival works and receives r.
The payoff to an agent who works in the prize game, excluding the disutility of

work, is 1
2
(P + βP )+ 1

2
(−αP ) ; if he shirks, he gets −αP. Thus the incentive to work

with prize P is
1

2
P +

1

2
αP +

1

2
βP.

Setting the prize fund P equal to the total wage bill 2r, we see that prizes provide
an extra incentive of βr, independent of α. Thus no matter how large or small envy
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α is, the slightest inclination towards pride β > 0 will cause prizes to outperform
wages. Without pride (but with envy), prizes and wages are equivalent.
We now present a more precise analysis. Even when there is noise, prizes outper-

form wages provided there is enough pride. To show this, we first establish a variant
of Proposition 1 below, replacing α by the vector (α, β) in our previous notation:

Proposition 10. Let

ϕσ ≡
1

2
E (εσ1 − εσ2 | εσ1 − εσ2 ≥ 0)

and
ψσ ≡ E (εσ1 − εσ2 − 1 | εσ1 − εσ2 ≥ 1)Pr (εσ1 − εσ2 ≥ 1)

(note that 0 < ∆σ ≡ ϕσ − ψσ ≤ 1
2
if σ > 0). Then

Mσ
α,β ≥

2c

1 + α+ (β − α) (ϕσ − ψσ)
(13)

and
M̃σ

α,β =
c

1
2
−Gσ (−1) ·

1

1 + α+ β
. (14)

Proof. In the game Γσα,β (r) the expected utility of agent i, when he chooses effort
level ei and his rival j chooses effort level ej, is

rei + αrE
¡
ei + εσi − ej − εσj | ei + εσi − ej − εσj ≤ 0

¢
Pr
¡
ei + εσi − ej − εσj ≤ 0

¢
+βrE

¡
ei + εσi − ej − εσj | ei + εσi − ej − εσj ≥ 0

¢
Pr
¡
ei + εσi − ej − εσj ≥ 0

¢− cei.

In order for (e1 = 1, e2 = 1) to be a Nash equilibrium of Γσα,β (r), it is necessary that
(under the piece-rate r) effort level 1 is not less attractive to an agent than effort
level 0, given that his rival chooses effort level 1. Thus, we must have

r + αrE
¡
εσi − εσj | εσi − εσj ≤ 0

¢
Pr
¡
εσi − εσj ≤ 0

¢
+βrE

¡
εσi − εσj | εσi − εσj ≥ 0

¢
Pr
¡
εσi − εσj ≥ 0

¢− c

≥ αrE
¡
εσi − εσj − 1 | εσi − εσj ≤ 1

¢
Pr
¡
εσi − εσj ≤ 1

¢
+βrE

¡
εσi − εσj − 1 | εσi − εσj ≥ 1

¢
Pr
¡
εσi − εσj ≥ 1

¢
,

i.e.,
r(1− αϕσ + βϕσ)− c ≥ r(−α (ψσ + 1) + βψσ).
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(Here we use the obvious fact that E
¡
εσi − εσj − 1 | εσi − εσj ≤ 1

¢
Pr
¡
εσi − εσj ≤ 1

¢
+

ψσ = −1.) This implies
r ≥ c

1 + α (1 + ψσ − ϕσ) + β (ϕσ − ψσ)
,

and (13) follows.
Next consider the prize game Γ̃σα,β (P ). Here the expected utility of agent i, when

he chooses effort level ei and his rival j chooses effort level ej, is Gσ(ei−ej)(1+β)P −
[1−Gσ(ei − ej)]αP − cei (and, if ei = ej and σ = 0, replace Gσ(ei − ej) by 1

2
— see

Footnote 8). Thus, in order to implement (e1 = 1, e2 = 1) as a Nash equilibrium of
Γ̃σα,β (P ), it is necessary and sufficient that P satisfy

Gσ(0)(1+β)P − [1−Gσ(0)]αP − c ≥ Gσ(ei− 1)(1+β)P − [1−Gσ(ei − 1)]αP − cei
(15)

for every ei ∈ E . As in the proof of Proposition 1, the minimal P that satisfies (15)
for every ei ∈ E is:

c supτ∈E−1\{0}
τ

Gσ(τ)− 1
2

1 + α+ β
.

Since Gσ is convex on [−1, 0], the supremum in this expression is attained for τ = −1,
which leads to (14).¥

Theorem 7 (Prizes outperform Wages with Pride alone). Suppose the
noise is not too large: Gσ(−1) < (1−∆σ)/4. (This holds, for instance, when Gσ(−1) <
1/8.) Then there exists β0 > 0 such that whenever β ≥ β0 and α ≤ β prizes outper-
form wages: M̃σ

α,β < Mσ
α,β.

Proof. If α ≤ β then, using Proposition 10,

M̃σ
α,β

Mσ
α,β

≤ 1 + α+ (β − α)∆σ

2(1
2
−Gσ (−1)) (1 + α+ β)

=
1

α+β
+ α

α+β
(1−∆σ) +

β
α+β

∆σ

2(1
2
−Gσ (−1))

³
1 + 1

α+β

´
≤

1
β
+ 1

2
(1−∆σ) +∆σ

2(1
2
−Gσ (−1))

³
1 + 1

2β

´ .
The expression on the right converges to

1
2
(1−∆σ)+∆σ

2( 1
2
−Gσ(−1)) =

1
2
(1+∆σ)

2( 1
2
−Gσ(−1)) when β → ∞,

which is below 1 given that Gσ(−1) < (1 − ∆σ)/4. Thus, there exists β
0 > 0 such

that whenever β ≥ β0 and α ≤ β,
M̃σ
α,β

Mσ
α,β

< 1, implying that prizes outperform wages.¥

In Theorem 7 we could have allowed for higher levels of envy, not only those
below the pride parameter. What is important is that the envy parameter should not
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exceed some multiple of the pride parameter: α ≤ Kβ for some fixedK > 1. Theorem
7 will remain valid, by similar arguments, provided the assumption of low noise is
strengthened: Gσ(−1) < (1−∆σ)/2(K+1). (Since limσ→0Gσ(−1) = limσ→0∆σ = 0,
this inequality holds for all sufficiently small σ.)

It turns out that, with noise, envy alone can sometimes ensure that prizes are
better than wages. In Section 2, with α = β, we found that noise had no effect on the
incentives provided by wages (since by risk neutrality we could replace each agent’s
random wage with its expected value), while it hurt prizes (since it occasionally
enables the shirker to win). But when α > 0 and β = 0, noise can hurt wage
incentives more than prize incentives.

Example 3. Just as in the proof of Theorem 7, one can check that

M̃σ
α,β

Mσ
α,β

≤
1
α
+ (1−∆σ) +

1
2
∆σ

2(1
2
−Gσ (−1))

¡
1 + 1

2α

¢
if β ≤ α. Since limα→∞

1
α
+(1−∆σ)+

1
2
∆σ

2( 1
2
−Gσ(−1))(1+ 1

2α)
=

1− 1
2
∆σ

2( 1
2
−Gσ(−1)) , the condition

Gσ(−1) < ∆σ/4 (16)

ensures the existence of α0 > 0 such that whenever α ≥ α0 and β ≤ α prizes out-
perform wages: M̃σ

α,β < Mσ
α,β. While there is no universal condition that would

guarantee (16) (unlike the analogous condition in Theorem 7, which was implied by
Gσ(−1) < 1

8
), (16) holds for normally distributed random noises for some values of

the standard deviation σ. For instance, when σ = 0.4,

Gσ(−1)−∆σ/4

=
1

2 · 0.4√π
Z −1

−∞
e−

t2

4·0.42 dt−1
4

µ
1

2 · 0.4√π
Z ∞

0

te−
t2

4·0.42 dt− 1

2 · 0.4√π
Z ∞

1

(t− 1)e− t2

4·0.42 dt

¶
≈ −.0 156 8 < 0,

and thus in this case prizes outperform wages for all sufficiently large levels of envy.

5 When Agents are not Risk Neutral: Wages Plus
Prizes and the Need for a Bonus

The biggest objection to prizes is that they force agents to face a huge uncertainty
about who will get the prize, even if they work hard. It comes to the fore when
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agents are risk averse. But even here we find that wages supplemented by prizes are
always an improvement on wages alone. These supplementary prizes are common in
practice, where they are known as bonuses.
Let the utility function of each of the two agents be given by

u(A,B, e) = U(A)− αV (max{B −A, 0}) + βV (max{A−B, 0})− ce,

where, as before, A is the amount paid to the agent, B the amount paid to his rival,
α his envy parameter, β his pride parameter, e his choice of effort level, and c > 0
the disutility from effort.13 We assume that U and V are continuously differentiable,
and that their derivatives are strictly positive14; furthermore both U and V vanish
at zero.
We do not need to assume that either U or V is concave, though that is the case

we mostly have in mind. In that case, beating a rival with nearly the same income
by a dollar confers a lot of pride, but if you are a king and he is a pauper, an extra
dollar of disparity does not add much more to your pride.
For simplicity, we will assume α = β. The i.i.d. random noises εσ1 and εσ2 are now

taken to be supported on a compact interval [−λ, λ] , for all σ. As before, Gσ denotes
the cumulative distribution function of εσ1 − εσ2 , and we assume that G

σ is convex on
[−1, 0].
Up until now we only considered “pure” contracts which could take the form of

either a prize P or a piece-rate wage r. Now we allow for mixed contracts (P, r) :
each agent is paid rq when his output is q, plus a prize (bonus) P if his output is
more than his rival’s (tossing a coin in case of ties). The contract (P, r) induces15 a
game Γσα(P, r) in the obvious manner.
Let Πσ

α denote the set of mixed contracts which elicit full effort, i.e.,

Πσ
α =

©
(P, r) ∈ R2+ | (e1 = 1, e2 = 1) is a Nash equilibrium of Γσα(P, r)

ª
.

The principal’s payout is P +2r when (e1 = 1, e2 = 1) is played in Γσα(P, r). Thus the
set of optimal contracts is

Π∗σα = argmin {P + 2r | (P, r) ∈ Πσ
α} .

With risk neutral agents, there was no need to consider Πσ
α because pure contracts

are just as good as any mixture: there always exists (P, r) ∈ Π∗σα such that either
P = 0 or r = 0.16

13We could have more generally considered u(A,B, e) = U(A)− αVenvy(max{B − A, 0})+
βVpride(max{A−B, 0}) −ce instead of supposing V = Vpride = Venvy. Similar results would obtain
but at the cost of more notation.
14U is defined on R, while V on R+.
15The underlying components c, U, V of the utility are held fixed, while (P, r) and σ, α = β vary.
16This is obvious from the linearity of the optimization problem when agents are risk neutral. See

the appendix in Dubey, Geanakoplos, and Haimanko (2005) for the details.

19



But if agents are not risk-neutral, mixed contracts may well beat pure contracts.
We leave the exploration of the exact structure of optimal mixed contracts for future
research. But we shall delineate two scenarios in which any optimal mixed contract
must necessarily entail a positive bonus, i.e., P > 0 for every (P, r) ∈ Π∗σα . In the
first scenario (Theorem 8 below) envy-pride is fixed at an arbitrary positive level.
Bonuses are needed, provided the noise is sufficiently small. In the second scenario
(Theorem 9 below), the noise is fixed and not too large. Again bonuses are needed,
for sufficiently high envy-pride.
The intuition for Theorem 8 is roughly as follows. Suppose the two agents are

earning only wages. When there is no noise, a hard-working agent knows the wage
w = r1 he will earn for sure. Assuming differentiable utilities, he is nearly risk
neutral for small variations in consumption. So consider reducing the piece-rate by ε,
and instead awarding a prize of 2ε to the highest performance. Then the expected
consumption utility of a hard-working agent stays almost the same. But as we argued
before with risk neutrality, the incentive created by envy-pride is greater for the prize
than the wage. Thus a small bonus increases incentives without increasing the total
expected payout of the principal.
This argument demonstrates the need for a bonus but sheds no light on its optimal

size, which may be quite big. The argument, moreover, only works for small prizes
and small noise. As the prize gets larger, risk aversion kicks in and the prize becomes
a less attractive substitute for wages. As noise increases, the luckiest worker, who
already has the highest wage and therefore the lowest marginal utility for money, will
get the prize, reducing its ex ante consumption utility.

Theorem 8 (Bonus is needed with sufficiently low Noise, given any fixed
Envy-Pride). Assume that: (i) E is a finite set; (ii) there exist B <∞ and b > 0
such that U 0(x) ≤ B for every x ∈ R and b ≤ V 0(x) ≤ B for every x ∈ R+. Then,
given α > 0, there exists σ0 > 0 such that P > 0 for every (P, r) ∈ Π∗σα whenever
σ ≤ σ0.

Proof. Fix α > 0. Suppose to the contrary that there exists a vanishing sequence
{σk}∞k=1 of positive numbers and (P ∗k , r∗k) ∈ Π∗σkα such that P ∗k = 0 (and, w.l.o.g.,
r∗ ≡ limk→∞ r∗k exists and 0 < r∗ < ∞). Consider (P k

ε,δ, r
k
ε,δ) =

¡
ε, r∗k − 1

2
ε (1 + δ)

¢
.

We shall show that there exist small enough ε > 0 and δ > 0 such that (P k
ε,δ, r

k
ε,δ) ∈ R2+

elicits full effort from both agents in a Nash equilibrium of Γσkα (P
k
ε,δ, r

k
ε,δ) when k is

large (and the noise parameter σk is small). Since

P ∗k + 2r
∗
k = 2r

∗
k > 2r

∗
k − εδ = P k

ε,δ + 2r
k
ε,δ,

it will follow that (P ∗k , r
∗
k) are not optimal when k is large, a contradiction.
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Now we turn to establishing the existence of the requisite (P k
ε,δ, r

k
ε,δ). First notice

that in order to implement (e1 = 1, e2 = 1) as a Nash equilibrium of Γσkα (P
k
ε,δ, r

k
ε,δ), it

is necessary and sufficient for the following incentive conditions to hold:

1

2
E

µ∙
U(P k

ε,δ + rkε,δ(1 + εσki ))
+αV (P k

ε,δ + rkε,δ(ε
σk
i − εσkj ))

¸
| εσki > εσkj

¶

+
1

2
E

µ∙
U(rkε,δ(1 + εσki ))

−αV (P k
ε,δ + rkε,δ(ε

σk
j − εσki ))

¸
| εσki < εσkj

¶
− c

≥ Gσk (ei − 1)

·E
µ∙

U(P k
ε,δ + rkε,δ(ei + εσki ))

+αV (P k
ε,δ + rkε,δ(ei + εσki − 1− εσkj ))

¸
| ei + εσki > 1 + εσkj

¶
+(1−Gσk (ei − 1))

·E
µ∙

U(rkε,δ(ei + εσki ))
−αV (P k

ε,δ + rkε,δ(1 + εσkj − ei − εσki ))

¸
| ei + εσki < 1 + εσkj

¶
− cei

for every ei ∈ E\ {1} . Denote by Ik (ε, δ, ei) the difference between the left-hand side
and the right-hand side of the above inequality. Thus, each of the above incentive
conditions is equivalent to

Ik (ε, δ, ei) ≥ 0. (17)

Observe that the derivative of Ik with respect to ε, evaluated at ε = 0, is given by

1

2
E

µ∙
U 0(r∗k(1 + εσki ))

¡
1− 1

2
(1 + δ) (1 + εσki )

¢
+αV 0(r∗k(ε

σk
i − εσkj ))

¡
1− 1

2
(1 + δ) (εσki − εσkj )

¢ ¸ | εσki > εσkj

¶

+
1

2
E

µ∙
U 0(r∗k(1 + εσki ))

¡−1
2
(1 + δ) (1 + εσki )

¢
−αV 0(r∗k(ε

σk
j − εσki ))

¡
1− 1

2
(1 + δ) (εσkj − εσki )

¢ ¸ | εσki < εσkj

¶
−Gσk (ei − 1)

·E
µ∙

U 0(r∗k(ei + εσki ))
¡
1− 1

2
(1 + δ) (ei + εσki )

¢
+αV 0(r∗k(ei − 1 + εσki − εσkj ))

¡
1− 1

2
(1 + δ) (ei − 1 + εσki − εσkj )

¢ ¸ | ei + εσki > 1 + εσkj

¶
− (1−Gσk (ei − 1))

·E
µ∙

U 0(r∗k(ei + εσki ))
¡−1

2
(1 + δ) (ei + εσki )

¢
−αV 0(r∗k(1− ei + εσkj − εσki ))

¡
1− 1

2
(1 + δ) (1− ei + εσkj − εσki )

¢ ¸ | ei + εσki < 1 + εσkj

¶
,

for every ei ∈ E\ {1} . Since the random noises belong to a bounded interval by our
assumption in this section, they converge to zero in probability as σ → 0. Bearing in
mind that Gσ(t) →σ→0 0 for t < 1 and that U 0, V 0 are continuous and bounded, as
k →∞ the above expression converges to:

1

2

µ
U 0(r∗)

µ
1− 1

2
(1 + δ)

¶
+ αV 0(0)

¶
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+
1

2

µ
U 0(r∗)

µ
−1
2
(1 + δ)

¶
− αV 0(0)

¶
−U 0(r∗ei)

µ
−1
2
(1 + δ) ei

¶
+ αV 0(r∗(1− ei))

µ
1− 1

2
(1 + δ) (1− ei)

¶
= −1

2
U 0(r∗)δ − U 0(r∗ei)

³
−ei
2
(1 + δ)

´
+ αV 0(r∗(1− ei))

µ
1− 1− ei

2
(1 + δ)

¶
.

The last expression is bounded from below by

−1
2
U 0(r∗)δ + αV 0(r∗(1− ei))

µ
1− 1− ei

2
(1 + δ)

¶
≥ −1

2
Bδ + αb

µ
1

2
(1− δ)

¶
.

This is positive for δ∗ ≡ αb
2(αb+B)

, and so ∂
∂ε
Ik (ε, δ

∗, ei) |ε=0> 0 for all large enough k.

Thus, since the incentive constraint (17) for any given ei ∈ E\ {1} holds for (P ∗k , r∗k) =
(P k

0,δ∗, r
k
0,δ∗), it also holds for (P

k
ε,δ∗ , r

k
ε,δ∗) for all large enough k and some ε = ε (k) > 0.

Since E is finite, there are only finitely many incentive constraints, and thus all of them
hold simultaneously for (P k

ε,δ∗, r
k
ε,δ∗) for all large enough k and some ε = ε∗ (k) > 0.

Therefore (P k
ε∗(k),δ∗ , r

k
ε∗(k),δ∗) elicits full effort from both agents in a Nash equilibrium

of Γσkα (P
k
ε∗(k),δ∗ , r

k
ε∗(k),δ∗). As was said, this contradicts the optimality of (P

∗
k , r

∗
k) when

k is large.¥

A complementary theorem shows that for any fixed noise below some reasonably
large upper bound, a bonus is again needed if there is enough envy-pride. The in-
tuition for this result is that as envy-pride gets very large, the optimal piece-rate
(assuming no prize) goes to zero. Since the noise is bounded, the final consumption,
being the product of the piece-rate and output, also goes to zero. Thus consump-
tion is practically certain, and the agents become nearly risk-neutral. Hence, as in
the previous theorem, reducing the wage a tiny bit and substituting a tiny prize is
necessarily beneficial.

Theorem 9 (Bonus is needed with sufficiently high Envy-Pride, given
any fixed Noise). Suppose that Gσ (−1) < 1

4
. Then there exists α0 > 0 such that,

if α > α0, then P > 0 for every (P, r) ∈ Π∗σα .

Actually, more is true. Even a pure prize contract can do better than a wage
contract under the conditions of Theorem 9:

Theorem 10 (Prizes outperform Wages even without Risk Neutrality,
provided there is sufficient Envy-Pride). Suppose that Gσ (−1) < 1

4
. Then there

exists α0 > 0 such that M̃σ
α < Mσ

α if α > α0.
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Proof. Recalling that α = β, it will be convenient to write

u(A,B, e) = U(A) + αW (A−B)− ce

where W (x) = sign(x)V (|x|). Denote by rα the minimal piece-rate at which, in the
wage game Γσα, effort level 1 is not less attractive to an agent than effort level 0, given
that his rival chooses effort level 1. Thus rα is the smallest among all non-negative
numbers r that satisfy the inequality

EU(r(1 + εσi )) + αEW (r (1 + εσi )− r
¡
1 + εσj

¢
)− c

≥ EU(rεσi ) + αEW (rεσi − r
¡
1 + εσj

¢
),

(18)

or

E [U(r(1 + εσi ))− U(rεσi )]+αE
£
W (r (1 + εσi )− r

¡
1 + εσj

¢
)−W (rεσi − r

¡
1 + εσj

¢
)
¤ ≥ c.

Let
K ≡ min[ min

−λ≤x≤1+λ
U 0(x), min

0≤x≤1+2λ
V 0(x)] > 0.

Using the definition of W, for all r ≤ 1

[U(r(1 + εσi ))− U(rεσi )] + α
£
W (r (1 + εσi )− r

¡
1 + εσj

¢
)−W (rεσi − r

¡
1 + εσj

¢
)
¤
(19)

≥ K(1 + α)r. (20)

Consequently, for all large enough α, substituting r = c
K(1+α)

≤ 1 into (18) turns it
into a valid inequality by (19)-(20), and hence rα ≤ c

K(1+α)
. (In particular, limα→∞ rα =

0.) Substituting r = rα in (18), we can therefore use the first-order (linear) approxi-
mation U 0(0) · x for U(x), and V 0(0) · x for W (x), around 0, to derive an existence of
γα ≥ 0 such that

U 0(0) · rα + αV 0(0) · 0− c+ γα ≥ U 0(0) · 0 + αV 0(0) · (−rα)

holds for every α, and limα→∞ γα = 0. Thus, (U 0(0) + αV 0(0)) · rα ≥ c − γα, or
rα ≥ c−γα

U 0(0)+αV 0(0) . The minimal piece rate that implements (e1 = 1, e2 = 1) as a Nash

equilibrium in the wage game Γσα should therefore be at least
c−γα

U 0(0)+αV 0(0) . Conse-
quently,

Mσ
α ≥

2(c− γα)

U 0(0) + αV 0(0)
(21)

for all sufficiently large α.
Arguing as in the proof of Proposition 1, one can show that the minimal prize M̃σ

α

that implements (e1 = 1, e2 = 1) as a Nash equilibrium in the prize game Γ̃σα satisfies

1

2
U(M̃σ

α )− c = Gσ(−1)(U(M̃σ
α ) + αV (M̃σ

α))− [1−Gσ(−1)]αV (M̃σ
α ). (22)
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It follows that M̃σ
α = F−1α

³
c

1
2
−Gσ(−1)

´
, where Fα (x) ≡ U(x) + 2αV (x). Since 2αV ≤

Fα on R+, M̃
σ
α ≤ V −1

³
1
2α

c
1
2
−Gσ(−1)

´
≤ eK

2α
for some eK > 0 and for all large enough

α (and in particular limα→∞ M̃σ
α = 0). We can therefore use (22) and the linear

approximation U 0(0) · x for U(x), and V 0(0) · x for V (x), around 0, to derive the
existence of a δα ≥ 0 such that
1

2
U 0(0) · M̃σ

α − c− δα ≤ Gσ(−1)(U 0(0) + αV 0(0)) · M̃σ
α − [1−Gσ(−1)]αV 0(0) · M̃σ

α

holds for every α and limα→∞ δα = 0. Thus

M̃σ
α ≤

c+ δα
(U 0(0) + 2αV 0(0))

· 1
1
2
−Gσ(−1) (23)

for all sufficiently large α.
Since Gσ (−1) < 1

4
, it follows from (21) and (23) that lim supα→∞

M̃σ
α

Mσ
α
≤ 1

4
·

1
1
2
−Gσ(−1) < 1, and thus indeed M̃σ

α < Mσ
α for all sufficiently large α.¥

References

1. Bolle, F. (2000). “Is Altruism Evolutionarily Stable? And Envy and Malevo-
lence?”, Journal of Economic Behavior and Organization 42, pp. 131-133.

2. Direr, A. (1991). “Interdependent Preferences and Aggregate Saving,” Annales
d’Economie et de Statistique 63, pp. 297-308.

3. Dubey, P. and J. Geanakoplos (2004). “Grading Exams: 100.99,98,...or A,B,C?
Incentives in Games of Status,” Cowles Foundation Discussion Paper 1467.

4. Dubey, P. and J. Geanakoplos (2005). “Grading in Games of Status: Marking
Exams and Setting Wages,” Cowles Foundation Discussion Paper 1467R.

5. Dubey, P, J. Geanakoplos, and O. Haimanko (2005). “Prizes vs Wages with
Envy and Pride,” Discussion Paper #05-18 of Monaster Center for Research
in Economics, Ben-Gurion University, Israel.

6. Duesenberry, J.S. (1949). Income, Saving and the Theory of Consumer Behav-
ior. Cambridge: Harvard University Press.

7. Easterlin, R. (1974). “Does Economic Growth Improve the Human Lot?”, in
Paul A. David and MelvinW. Reder, eds., Nations and Households in Economic
Growth: Essays in Honor of Moses Abramowitz. New York: Academic Press,
pp. 87-125.

24



8. Fehr, E. and K.M. Schmidt (1999). “A Theory of Fairness, Competition, and
Cooperation,” Quarterly Journal of Economics 114, pp. 817-868.

9. Frank, R.H. (1985). Choosing the Right Pond: Human Behavior and the Quest
for Status. New York: Oxford University Press.

10. Fershtman, C., H. Hvide and Y. Weiss (2003). “A Behavioral Explanation of the
Relative Performance Evaluation Puzzle,” Annales d’Economie et de Statistique
(Special Issue on Discrimination and Unequal Outcome) 72, pp. 349-362.

11. Green, J.R. and N.L. Stokey (1983). “A Comparison of Tournaments and Con-
tracts,” Journal of Political Economy 91, pp. 349-64.

12. Grund, C. and D. Sliwka (2005). “Envy and Compassion in Tournaments,”
Journal of Economics and Management Strategy 14(1), pp. 187-207.

13. Hopkins, E. and T. Kornienko (2004). “Running to Keep in the Same Place:
Consumer Choice as a Game of Status” American Economic Review, 94(4),
pp. 1085-1107.

14. Kirchsteiger, G. (1994). “The Role of Envy in Ultimatum Games,” Journal of
Economic Behavior and Organization 25, pp. 373-389.

15. Lazear, E. and S. Rosen (1981). “Rank-Order Tournaments as Optimal Labor
Contracts,” Journal of Political Economy 89, pp. 841-64.

16. Pollak, R. (1976). “Interdependent Preferences,” American Economc Review
66 (3), pp. 309-320.

25


