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Grading in Games of Status:
Marking Exams and Setting Wages∗

Pradeep Dubey† and John Geanakoplos‡

December 2005

Abstract

We introduce grading into games of status. Each player chooses effort, pro-
ducing a stochastic output or score. Utilities depend on the ranking of all the
scores. By clustering scores into grades, the ranking is coarsened, and the incen-
tives to work are changed.
We first apply games of status to grading exams. Our main conclusion is that

if students care primarily about their status (relative rank) in class, they are
often best motivated to work not by revealing their exact numerical exam scores
(100, 99, ..., 1), but instead by clumping them into coarse categories (A,B,C).
When student abilities are disparate, the optimal grading scheme is always

coarse. Furthermore, it awards fewer A’s than there are alpha-quality students,
creating small elites. When students are homogeneous, we characterize optimal
grading schemes in terms of the stochastic dominance between student perfor-
mances (when they shirk or work) on subintervals of scores, showing again why
coarse grading may be advantageous.
In both the disparate case and the homogeneous case, we prove that ab-

solute grading is better than grading on a curve, provided student scores are
independent.
We next bring games of money and status to bear on the optimal wage

schedule: workers can be motivated not merely by the purchasing power of wages,
but also by the status higher wages confer. How should the employer combine
both incentive devices to generate an optimal pay schedule?
When workers’ abilities are disparate, the optimal wage schedule creates dif-

ferent grades than we found with status incentives alone. The very top type
should be motivated solely by money, with enormous salaries going to a tiny
elite. Furthermore, if the population of workers diminishes as we go up the
ability ladder and their disutility for work does not fall as fast, then the opti-
mal wage schedule exhibits increasing wage differentials, despite the linearity in
production.
When workers are homogeneous, the same status grades are optimal as we

found with status incentives alone. A bonus is paid only to scores in the top
status grade.

∗This is a revision, with a slightly altered title, of Dubey—Geanakoplos (2004).
†Center for Game Theory in Economics, SUNY, Stony Brook and Cowles Foundation, Yale Uni-

versity
‡Cowles Foundation, Yale University
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1 Introduction

Examiners typically record scores on a precise scale 100, 99, ..., 1. Yet when they
report final grades, many of them nowadays tend to clump students together in broad
categories A, B, C, discarding information that is at hand. Why?

Many explanations come to mind. Less precision in grading may reflect the nois-
iness of performance: a 95 may be statistically insignificantly better than a 94. Al-
ternatively, the professor may require less effort in dividing students among three
categories rather than a hundred. Finally, it may be that lenient grading is a device
by which professors lure students into their class; unable to call an exam with 70%
correct answers a 95, they call it an A instead.

We call attention to a different explanation. Suppose that the professor judges
each student’s performance exactly, though the performance itself may depend on
random factors, in addition to ability and effort. Suppose also that the professor
is motivated solely by the desire to induce his students to work hard. Third, and
most importantly, suppose that the students care about their relative rank in the
class, that is about their status. We show that, in this scenario, coarse grading often
motivates students to work harder.

Status is a great motivator.1 For many people, honors conferring status, but little
remuneration now or in the future, often bring forth the greatest effort.2 Ranks and
titles are ubiquitous, in academia, in the armed forces, in corporations, and in public
bureaucracies. They define a hierarchy which, even when its original purpose might
have been organizational (say to signal lines of authority), always creates incentives
for people to exert effort in order to obtain higher status.

One might think that finer hierarchies generate more incentives. But this is often
not the case. Coarse hierarchies can paradoxically create more competition for status,

1Veblen (1899) famously introduced conspicuous consumption, i.e., the idea that people strive to
consume more than others partly for the sake of higher status. A large empirical literature, starting
from Easterlin (1974), has shown that happiness indeed depends not just on absolute, but also on
relative, consumption.
The modeling of status has taken two forms. The cardinal approach makes utility depend on

the difference between an individual’s consumption and others’ consumption (see, e.g., Duesenberry
(1949), Pollak (1976), and Fehr—Schmidt (1999)). The ordinal approach makes utility depend on the
individual’s rank in the distribution of consumption (see, e.g., Frank (1985), Robson (1992), Direr
(2001), and Hopkins—Kornienko (2004)). Our model of status is in the ordinal tradition.

2This should be contrasted with the purely instrumental role status might play, for instance when
higher consumption signals higher wealth and hence eligibility as a marriage partner (see e.g., Cole—
Mailath—Postlewaite (1992, 1995, 1998) and Corneo—Jeanne (1998)). Like the authors in the previous
footnote, we take seriously the value of status to people, in and of itself, even if it never leads to any
other benefit. The historical origins of feelings of status are now lost. It may even be that in the
distant past status was purely instrumental, but gradually became internalized as a value in itself.
In the Genealogy of Morals, Nietzche claims that conscience arose in a similar way: people who broke
promises were severely punished, leading to the birth of guilt.
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and thus provide better incentives for work.
To analyze the incentive effects of status, Section 2 introduces games of “pure”

status, i.e., games in which the utilities are solely in terms of the relative ranking
of the players. The players choose effort levels, which then jointly yield (possibly
random) scores for each player. For simplicity, we focus on additive status, in which
a player gains one utile for each opponent he outranks and loses one utile for each
opponent who outranks him.

The designer defines a different game according to how he clumps scores into
grades, coarsening the ranking. There are many possible grading schemes, and we
look for those that elicit maximal effort.

The advantage of coarse grading can most succinctly be seen with two students
α and β who have disparate abilities, so that α achieves a random but uniformly
higher score even when he shirks and β works.3 Suppose, for example, that β scores
between 40 and 50 if he shirks, and between 50 and 60 if he works, while α scores
between 70 and 80 if he shirks and uniformly between 80 and 90 if he works. With
perfectly fine grading, α will come ahead of β, regardless of their effort levels. Since
they care only about rank, both will shirk.

But, by assigning a grade A to scores above 85, B to scores between 50 and 85,
and C to scores below 50, the professor can inspire β to work, for then β stands a
chance to acquire the same status B as α, even when α is working. This in turn
generates the competition which in fact spurs α to work, so that with luck he can
get an A and distinguish himself from β. Notice that very coarse grading (giving
everyone an A) would not elicit effort since then nobody has anything to gain by
improving his score. Optimal grading must be coarse, but not too coarse.

Coarse grading is also useful when students are homogeneous (ex ante identi-
cal). For example, suppose each student scores according to the normal distribution
N(μ, σ) with mean μ and standard deviation σ if he works, and according to N(μ̂, σ̂)
if he shirks, where μ > μ̂ and σ < σ̂. It is intuitively evident that an extraordinarily
high score is more likely to come from a lucky shirker than from a worker. We show
that the optimal grading scheme gives the same grade A to all scores above some
threshold xA, and is perfectly fine for scores less than xA.

Coarse grading no doubt reduces the screening content delivered by schools. But
our analysis reveals that if the schools sought to convey more information about the
quality of their students, they would produce students of lower quality!4

Our analysis presumes that each student knows his own ability and that the
students and the professor all know the distribution of abilities in the class. (They
do not necessarily know which student has which ability.) By virtue of repeated
meetings of the class, or similar classes held over many years, it is not unreasonable

3The hypothesis of disparate abilities is strong, but not as strong as it seems, and can be plausibly
interpreted. For example, one might imagine that students have many effort levels, and that when
the alpha students exert their second best effort they will come ahead of the beta students, no matter
how hard the betas work or how lucky they get. If the professor wants to motivate each student to
do his very best, then our analysis still applies.

4We take the “quality” of a graduating student to depend on both his (innate) ability and on how
hard he studied.
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to suppose that this distribution can be fairly well estimated by the professor and
the students alike.5

It should be emphasized that coarse grading does not involve what are commonly
called handicaps. Handicaps discriminate between contestants by bestowing an ad-
vantage on the weak. Handicaps thus presume knowledge of individual contestants’
abilities, as well as the “legality” of the discrimination. The grading we describe in
this paper is, in contrast, required to be completely anonymous in that grades depend
only on the exam scores of the students and not on their names. It is also required
to be monotonic in the scores: if a student gets a better score than another, he is
awarded at least as good a grade. On either count, handicaps are ruled out since they
would necessarily entail an artificial boost to the score/grade of the weak student.

In Section 3 we characterize the optimal grading scheme for an arbitrary number
of students of disparate abilities. Our first and most important conclusion is that in
order to create the largest incentives to work, the professor should always use coarse
grading. Our second conclusion is that optimal grading creates small elites, excluding
many from membership who have equal abilities and have also worked hard but have
been unlucky in the scores realized. In a population made up of equal numbers of
students of three disparate abilities, say alpha and beta and gamma, fewer A grades
will be given than B’s, and fewer B’s will be given than C’s. In particular, though
they all work hard, only some alphas get A and only some betas get B. If less able
students have higher costs from studying hard, as Spence (1974) suggested, then the
pyramiding becomes still more extreme.

In Section 4 we provide criteria for an optimal grading scheme when students are
homogeneous. The key analytical concepts in this analysis are stochastic dominance
and uniform stochastic dominance. We show that if a partition of scores into cells
(each cell signifying a distinct grade) is optimal, then the shirker’s performance (sto-
chastically) dominates the worker’s inside each cell; while across cells the worker’s
uniformly dominates the shirker’s. Using this condition, we precisely characterize the
optimal grading scheme for generic score densities. We find that fine partitions are
typically not optimal, though under certain circumstances they could be.

In moving from scores to grades, professors can grade on an absolute scale (say 85
to 100 is an A) or “on a curve” (say the top 10% get an A). Given that the students
only care about their relative rank, which kind of grading is better? We show in
Section 5 that if the students are disparate or homogeneous, then absolute grading
is always better than grading on a curve.6 (For instance, in the example of two
disparate students α and β, grading on a curve provides no incentives whatsoever.)

5Moldovanu, Sela and Shi (2005) take our model and reconsider our results, replacing our hypoth-
esis that the distribution of abilities in the actual class is known with the incomplete information
hypothesis that student abilities are independently drawn from that distribution, so that the dis-
tribution of abilities in the actual class may be different. With a continuum of students, which we
sometimes assume, the two hypotheses are the same. Moreover, with absolute grading and additive
status, which we concentrate on, our analysis covers the incomplete information case as well (as
explained in Section 3.4). Only when the student population is small, and the professor grades on a
curve, will there be a difference between complete and incomplete information.

6This principle may be valid with heterogeneous students, but we leave its exploration for future
research.
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The inferiority of grading on a curve is surprising, especially since it is so com-
monly used in practice. One explanation is that professors fear damaging their repu-
tation if their grade profile differs too much from the school norm. Another possibility
is that our theorem is no longer valid if the professor is significantly uncertain about
the distribution of students’ abilities, or if their scores are correlated, so that they
might all do well or all do badly depending on how well designed the exam is. We
leave these cases for future work.

Status pertains to situations far more general than grading exams. In Section 6
we analyze grading in games of money and status and apply it to the classical problem
of designing the optimal wage schedule. We show that an employer who recognizes
that his workers regard superior wages as an indication of status, over and above the
direct utility from consuming wages, will be able to get them to work harder and pay
them less money. To minimize his cost, the employer must combine both the status
incentives and the consumption incentives of wages. Doing so changes the classical
wage schedule, and also produces wage-grades that differ from the pure status grades
used by the professor.

If the workers are of many disparate abilities, the classical employer would not
need to choose wages that rise faster than the disutility of effort. But with status in
the picture, he will always pay an exorbitant salary to a tiny elite who perform the
best.

The combination of wages and status thus provides a new explanation for the
astronomical pay we often see at the top of some corporate hierarchies.

In general, the highest and lowest ability worker will be motivated more by money,
and the intermediate worker relatively more by status. The fine structure of the
optimal wage schedule in between depends on the distribution of abilities. If the
distribution is bell-shaped then, as we go up the ability ladder, wage differentials first
diminish and later increase. If it is downward sloping (i.e., the density of workers falls
as ability rises), then wage differentials increase. This is so even though productivity
is linear in total effort.7

We also characterize the optimal wage schedule when workers are homogeneous.
If risk neutral workers have just two possible effort levels, the classical employer
would pay a lump sum to output above some suitable threshold and nothing below.
The status conscious employer would in addition distinguish the lower outputs by
slight wage differentials, creating wage grades identical to those which arise from
pure status. By bringing status into play, he would lower his total wage bill.

We have pretty much characterized optimal grading schemes and optimal wage
schedules for the case of disparate agents, and for the case of ex ante homogeneous
agents. We leave to future work the general case of heterogeneous (and overlapping)
performances, and also the case where performances are correlated (for example,
because everyone might find the exam unexpectedly hard). We do, however, provide
an example to show why coarseness in the grading might still be important.

7These conclusions depend on the assumption that the disutility of effort does not vary much
across workers. Linearity in production rules out the standard explanations of increasing wage
differentials based on diminishing marginal productivity in the inputs of different kinds of labor, and
scarcity of workers at the top. The phenomenon is sustained here by status alone.
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We imagine an exam with K questions, and N students who have probabilities
p1 < p2 < · · · < pN of answering each question (independently) correctly, if they
work hard. If a student n shirks, his pn is reduced to pn−1. It turns out that coarse
grading increases the incentive for the best and the worst students to work, though
diminishing the incentives of students in the middle. But since the middle students
already have a big incentive to work, the optimal grading partition to incentivize
every student to work has to be coarse.

Finally we consider the problem the professor faces to motivate his students to
study for two exams, say when he gives a midterm and final. The problem is that if a
student does very badly on the midterm, and his rivals do very well, he will feel little
incentive to work for the final since he will be unable to affect his rank. One way
around this problem is to weight the final more than the midterm, and to average
the letter grades and not the scores from the two exams, to obtain the final course
grade.

2 Games of Status

In this section we precisely define what we mean by games of status, and the freedom
the principal has to create grades.

Imagine a set N of students who are taking an exam. Depending on their effort
levels (en)n∈N , they will get exam scores, (xn)n∈N , which might also depend on
random events, such as whether they were lucky enough to have studied the material
precisely relevant to the questions, or how they felt that day, or how accurately the
professor corrected the exams. It is natural to assume that a student’s score does not
depend on others’ efforts, but actually none of our mathematics requires it.8 Given
the exam scores x = (xn)n∈N , the professor must assign grades γ(x). Students are
assumed to care only about status (and not about the education they are getting).
We capture this by assuming that they obtain 1 utile for each student whose grade is
strictly lower, and they lose 1 utile for each student whose grade is strictly higher.9

We suppose that the students are told in advance how the professor converts scores
to grades, i.e., they know γ. Absolute grading is achieved by specifying intervals of
scores corresponding to each grade, say [85, 100] gives A, [70, 85) gives B, and so on.
Grading on a curve is based in contrast on relative performance alone, for example,
that the top 10% of students get A, the next 20% get B’s, and so on. Absolute and
relative grading are quite different, though both are widely used.

What grading scheme γ should a professor use, if he wants to incentivize (whenever
feasible) all his students to put in maximal effort?10 No matter what scheme he

8When the score xn of one player depends (perhaps negatively) on the effort em, m 6= n of another
player, we can reinterpret our model as a parlor game.

9This is to keep matters simple. A “harmonic” utility might give 1/n utiles to a student who
alone has rank n, and (1/n + · · · + 1/(n +m − 1)) · (1/m) utiles to each of m students who rank
nth. Coming first instead of second provides a much bigger gain in utility than moving from 27th to
26th. Both additive and harmonic utilities are instances of “positional” status, that reward a player
solely on the basis of his own position in the hierarchy.
10We could have considered other goals, like what grading scheme would give the highest expected
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chooses, and no matter what efforts the students put in, total utility awarded via
grades will be zero, since for every utile gained by a higher-ranked student, there is a
utile lost by a lower-ranked student. Indeed when all students work hard, their total
net utility is minimized (since work inflicts disutility). Status seeking is the ultimate
rat race!

Nevertheless, by the right choice of γ, the professor can often motivate his status-
conscious students into working hard, and thus willy-nilly becoming educated.

2.1 The Performance Map

The strategy set En ⊂ R+ of each student n ∈ N consists of a set of effort levels that
are w.l.o.g. identified with the disutility they inflict on n. Efforts lead to (random)
performance scores. For x ∈ RN , the nth-component xn of x represents the score
(output) obtained by n. Let E ≡ Xn∈NEn and let ∆(RN) be the set of probability
distributions on RN . The performance map

π : E → ∆(RN)

associates stochastic scores with effort levels. Here π(e) gives the probability distri-
bution of score vectors when the students put in effort e ∈ E.11 We allow for the
possibility that n’s effort en might affect the score xm of other students m 6= n.

2.2 Grading

Let R denote all possible orderings of N with ties allowed. There is a grading map

γ : RN → R

which ranks students according to γ(x) when the scores obtained are x ∈ RN . Each
rank corresponds to a grade. Coarse grading pools different scores into the same
rank. We consider, in principle, only maps γ that are anonymous and monotonic:
the grades depend on the scores, not on the names, and a higher score implies at
least as high a grade.12 Our focus will be on two particular ways of generating γ.

2.2.1 Absolute Grading

Let P be a partition of R into consecutive intervals, each of which has nonempty inte-
rior and some of which are designated “fine.” When an interval13 [a, b) is designated
fine, it is taken to represent the partition {{x} : x ∈ [a, b)} consisting of singleton
total score, even when it is not feasible to induce all students to exert full effort. The results would
have a similar flavor, but we leave them for future research.
11 In the natural case (see our examples), higher effort levels tend to improve scores in the sense of

first-order stochastic dominance.
12Furthermore, if yi = xi for all i ∈ N\{j}, and yj ≥ xj , then the relative rank of j versus any

i 6= j in γ(y) is no worse than in γ(x).
13We use [a, b) as a proxy for [a, b), (a, b], (a, b) or [a, b]. Our analysis works equally in all cases.
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cells. An interval [a, b) not so designated will signify the standard unbroken interval,
and will also be called a cell in the partition P.14

Fix a partition P as above. Then for any a, b ∈ R we define a ÂP b iff the cell
in P containing a lies strictly above the cell in P containing b. This leads to an
absolute grading γP : RN → R where i ÂγP (x)

j iff xi ÂP xj. Thus γP(x) coarsens
the information in x, creating ties between players whose scores lie in the same cell
of P.

2.2.2 Grading on a Curve

Given scores x = (xn)n∈N ∈ RN , define the class rank ρn(x) of each student n by

ρn(x) = #{j ∈ N : xj > xn}+ 1.
Several students may have the same class rank. We define the “grading curve” Q to
be a consecutive partition of class ranks {1, 2, ..., |N |}. For any x ∈ RN , let γQ(x) be
given by

i >γQ(x)
j iff ρi(x) <Q ρj(x).

This defines the grading map γQ : RN → R.
In words, a grading curve is defined by the number nA of students getting A, the

number nB getting B, and so on. The grades are obtained by ranking student exam
scores, and taking the top nA scores and giving all the students who got them A. If
k > nA students tie with the top score, then all must get A, and the number of B’s
is diminished by the excess A’s, and so on.

2.3 Utilities

The exam payoff to a student n from being ranked according to R ∈ R is

#{j ∈ N : n >R j}−#{j ∈ N : j >R n}
reflecting the fact that n gets a utile for each student he beats, and loses a utile for
each student who beats him. He cares about (ordinal) status.

Note that it is not necessarily the case that a higher expected score means a
higher exam payoff. Coming behind by a lot with probability .49 and coming ahead
by a little with probability .51 yields positive exam payoff to the student with the
lower expected score.

A student n who exerts effort en ∈ En and obtains ranking R ∈ R gets net utility:
#{j ∈ N : n >R j}−#{j ∈ N : j >R n}− en

Notice again that the student is indifferent to learning. Had he put value on it,
our task of incentivizing him to work would have been much simpler.
14Recall that students care only about their relative grade in the class. The professor could ex

ante fix a different letter grade for each cell. Equivalently, he could wait until the realization of exam
scores, and ex post assign the letter grade A to the highest cell that includes at least one student’s
score, a B to the next highest cell that includes at least one score, and so on. That way some student
always gets an A, and the number of grades never exceeds the number of students in the class.
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2.4 The Game Γγ

Fix a grading function γ : RN → R. Then, given effort levels e ≡ (ek)k∈N ∈ E, the
payoff to n ∈ N is his expected net utility:

Expπ(e)[#{j ∈ N : n >γ(x) j}−#{j ∈ N : j >γ(x) n}]− en ≡ unγ(e)− en.

Here Expπ(e) denotes expectation w.r.t. the distribution π(e) over scores x ∈ RN and
unγ(e) denotes the expected exam payoff to n.

For e ≡ (ek)k∈N ∈ E and n ∈ N , denote e−n ≡ (ek)k∈N\{n}. Recall that e is a
Nash equilibrium (NE) of Γγ if the payoff each student n gets under e is at least as
good as the payoff under (e0n, e−n) for all e0n ∈ En.

Let ẽ ≡ (ẽn)n∈N be the strategy profile of maximal effort :

ẽn = max{e0n : e0n ∈ En}.
The key concern of our analysis is to design γ so as to ensure that ẽ is an NE –

hopefully the unique NE– of the game Γγ; or, even more, an NE in weakly dominant
strategies.

2.5 Optimal Grading

We shall concentrate on the case of two effort levels: high (work) Hn and low (shirk)
Ln, for each agent n. Let dn = Hn − Ln. We shall say that γ is efficient (within
a given class of grading schemes) if it supports work as a Nash equilibrium when
students have disutility d = (d1, ..., dn), and if there is no other grading scheme γ0

(in that class) that can support work as a NE with disutilities d0 ª d. Since we are
especially interested in the case where disutilities are unobservable, we shall focus
on maxmin grading schemes, i.e., those that satisfy the requirements of efficiency
when d and d0 are restricted to be symmetric vectors (of the form (λ, ..., λ)). We call
maxmin schemes optimal if they are also (genuinely) efficient. Our analysis centers
on the class of absolute grading schemes, so both efficiency and optimality will be
understood to pertain to this class, unless otherwise stated.

2.6 Injecting Randomization

We could also introduce randomness in γ without violating monotonicity or anonymity
of the grading scheme. For example, the professor could announce that he will flip
a coin just before grading the exam: if heads he will take the interval [86, 100] to be
an A, while if tails he will count any score in the interval [84, 100] as an A. We will
not investigate random grading because we shall assume that student performances
already contain noise. Were the performance map π deterministic, random grading
would be needed to induce maximal effort, as shall become evident.

Adding noise to scores does make γ random, but it violates monotonicity.15

15 In Dubey—Wu (2001) and Dubey—Haimanko (2003), noise was introduced by varying the sample
size on the stream of outputs produced by agents, which maintains monotonicity conditional on the
observed sample, but not with respect to the raw outputs.
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3 Disparate Students

3.1 Coarsening

We begin with the simplest example, illustrating the benefits of coarse grading.
First suppose N = {α, β}, i.e., there are just two students. Student n obtains

marks uniformly distributed on the interval JnH when he works and J
n
L when he shirks.

His score depends only on chance and on his own effort. We assume the students
have disparate abilities: JβL < JβH < JαL < JαH , i.e., α is so much more able than β,
that he always comes out ahead even when he shirks and his rival works. (See Figure
1.) Thus if the professor were to grade them finely, neither would work, since status
could not be affected by effort. More precisely, (Lα, Lβ) is the unique NE of the game
ΓγP where

eP ≡ {{x} : x ∈ R} denotes the finest partition – even more, it is an NE
in strictly dominant strategies.

The professor can do better with a judiciously chosen coarse partition P. Indeed
consider the partition P(p) ≡ {A,B,C} shown in Figure 1. Anything below JβH gets
grade C (including all scores in JβL obtained when the beta type shirks). All scores
in JβH and JαL get B, as well as the bottom (1− p) fraction of the scores in JαH . The
partition is completely characterized by the single parameter 0 ≤ p ≤ 1, specifying
the fraction of JαH that counts for the grade A (so that we may abbreviate γP(p) ≡ p,
without confusion).16

C B A
1 p− p

LJ β
LJ α

HJ α
HJ β Score

Figure 1: The Partition P(p)

The (grade) incentive In(p) to switch from effort level Ln to Hn for any student n
(assuming that his rival is working hard) is given by:

Iα(p) = uαp (Hα, Hβ)− uαp (Lα,Hβ)

Iβ(p) = uβp (Hα,Hβ)− uβp (Hα, Lβ).

It is easy to compute that

Iβ(p) = −p− (−1) = −p+ 1
and

Iα(p) = p− 0 = p.

16The randomness in scores if β works or shirks, or if α shirks, is irrelevant to this example. All
that matters is that the distribution of scores if α works be continuous. In this example, and in our
treatment of the general disparate case, if the assumed randomness were deterministic instead, we
could still achieve the same grading by randomizing the grading, e.g., in this example, the cutoff to
get an A.
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Denote dn = Hn−Ln, i.e., dn is n’s disutility for switching from shirk to work. Then
(Hα, Hβ) is a Nash equilibrium if and only if Iβ(p) = −p+1 ≥ dβ and Iα(p) = p ≥ dα.

Fix the disutilities d = (dα, dβ). The efficient p is defined by

p∗ = argmax
0≤p≤1

{λ : Iα(p) ≥ λdα, I
β(p) ≥ λdβ} = dα/(dα + dβ).

If the students have the same disutilities, i.e., dα = dβ = d, the optimal p∗ = 1/2
is given by

p∗ = argmax
0≤p≤1

min{Iα(p), Iβ(p)} = 1/2.

Note that In(1/2) = 1/2 for both students n.

Multiple Effort Levels and Less Disparateness The hypothesis of disparate
students is not as strong as it seems. One may imagine that each student has several
effort levels and that JnL is the performance interval for n ∈ N when n exerts his
second-highest effort. Now the two students are not as heterogeneous as before: all
we are postulating is that α is sufficiently more able than β so that his second-highest
effort leads to uniformly better scores than β’s highest effort. (The term dn = Hn−Ln

must be interpreted as the extra disutility incurred when n switches from his second-
highest to his highest effort.) In this setting, it is harder to sustain maximal effort as
an NE (more conditions will have to be met), and our analysis gives only necessary
conditions. It shows that any partition that induces both agents to work their hardest
must pool part of JαH with part of JβH .

3.2 Pyramiding

Notice that the optimal grading partition, given by p∗ = 1/2, implies:

Expected # of students getting A = p∗ =
1

2

Expected # of students getting B = 1 + (1− p∗) =
3

2
.

In other words, optimal grading creates a pyramid with fewer expected A’s than B’s
even though there are equal numbers of strong and weak students in the class.

Spence (1974) postulated that typically the weak student incurs more disutility
from effort than the strong, i.e.,

dβ > dα.

It is evident that the Spence condition has the effect of accentuating the pyramid,
since p∗ = dα/(dα+dβ) falls as dβ rises, diminishing the expected number of A’s and
increasing the B’s.
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3.2.1 Multiple Students of Each Type

Now we show that coarsening and pyramiding persist with many students of each
type. Suppose there are N β-type students of low ability and K α-type students of
high ability. The reader can check that the incentive functions become:

Iβ(p) = −pK − (−(N +K − 1))
= (−μHp+ 1)δ

where μH ≡ K/(N +K−1) gives the fraction of high ability in the population, when
a single low-ability student stands aside; and δ ≡ N +K − 1 ≡ utiles to a student
when he beats all the others.17 Similarly, one can compute

Iα(p) = δp.

Assuming dα = dβ, the optimal (maxmin) p = 1/(1 + μH) is obtained by solving
−μHp+1 = p. When K and N are large and equal, μH is nearly 1/2, and the optimal
p converges to 2/3. The pyramid remains. Indeed, the pyramid becomes more visible
since expected # of students getting A ≈ actual # of students getting A, etc., by the
law of large numbers.18

Thus we have found a coarse partition producing an absolute grading scheme that
gives incentive of (N +K − 1)(1/(1 + μH)) = (N +K − 1)2/(N + 2K − 1) to each
agent. We shall now prove that no other monotonic and anonymous scheme could
do better. In particular, grading on a curve cannot do better than the best absolute
grading scheme.

Theorem 1: Suppose there are N β-type students of low ability and K α-type
students of high ability. Let p∗ = (N +K − 1)/(N + 2K − 1). The absolute grading
partition P(p∗) is optimal in the class of all anonymous, monotonic grading schemes.

Proof: Consider an arbitrary monotonic and anonymous grading scheme. Let the
expected (exam) payoff to each α student, if all work, be a. (By anonymity each α
student must have the same expected payoff.) The expected payoff to each β student
must be −(K/N)a, since the total status payoff is always zero. Since the α students
come ahead of the β students, monotonicity implies that a ≥ 0.

The incentive to work for a β student is at most −(K/N)a− (−(N +K − 1)) =
(N + K − 1) − (K/N)a. By monotonicity, the incentive to work for an α student
is at most a− ((K − 1)/K)(−(K/N)a) = a+ ((K − 1)/N)a = ((N +K − 1)/N)a.
17The status incentive grows pro forma with the population. One could rescale status, dividing

by δ, without affecting our analysis, when comparing different populations, so that rank is given in
terms of population percentile. Is there 100 times more status in being the President of India’s 1
billion than of Greece’s 10 million?
18Observe that if the population changes to include more α-type students, this will lower the

fraction of the α-type students who get A. (Recall that all the β-type get B.) This is so since
p = 1/(1 + μH) is decreasing in μH . It is also interesting to observe that so long as there is at least
one β student, i.e., N ≥ 1, the proportion of A’s in the whole population is always less than 1/2,
since pμH = μH/(1 + μH) < 1/2.
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The reason is that even when the α student shirks, his expected payoff against the
β students is at least zero. His expected score against the other K − 1 α students
is at worst ((K − 1)/K) multiplied by the score a β student got when all K alpha
students were working.

Thus the maxmin incentive is at best maxamin{N +K−1− (K/N)a, ((N +K−
1)/N)a}, which is achieved for a = N(N +K − 1)/(N + 2K − 1), giving incentive
(N +K − 1)2/(N + 2K − 1), which is achieved via P(p∗). ¥

3.3 Many Disparate Student-Types

When there are types, the optimal absolute grading partition will entail +1 letter
grades (i.e., will divide the numerical score line into + 1 consecutive cells). Each
type i will have a positive probability 0 < pi ≤ 1 of obtaining grade i if he works;
but will lapse into the lower grade i− 1 with certainty if he shirks.

We illustrate the case of three disparate types: 1 (low ability), 2 (middle ability),
3 (high ability) in Figure 2.

C B AD

3
LJ 3

HJ2
LJ 2

HJ1
LJ 1

HJ
Score

11 p− 21 p− 31 p− 3p2p1p

Figure 2. The Partition P(p1, p2, p3)

Suppose there are N1, ...N students of type i = 1, ..., . Given the grading parti-
tion p = (p1, ..., p ), the incentive to work for the types is

I1(p) = p1[(N1 − 1) + (1− p2)N2]

Ii(p) = pi[(Ni − 1) + pi−1Ni−1 + (1− pi+1)Ni+1] for 2 ≤ i ≤ − 1
I (p) = p [(N − 1) + p −1N −1].

When working, a student of type 2 ≤ i ≤ −1 might get unlucky, with probability
1− pi, and find himself no better off than if he shirked. But with probability pi he
will be lucky, beating the fraction pi−1 of type i − 1 he otherwise would be equal
with, and coming equal with the fraction 1− pi+1, of type i+ 1 he would otherwise
have lost out against. In addition, he either beats (instead of equalling) or equals
(instead of losing to) every student of his own type. This gives the formula Ii(p) for
2 ≤ i ≤ − 1. Taking N0 = N +1 = 0 gives the formulas for I1(p) and I (p).

When there are vastly more students of some types than others, an optimal par-
tition will not necessarily equalize all the incentives. For example, suppose there are
one billion students of the lowest type 1, and just two students of types 2 and 3. An
efficient partition will always set p1 = 1, giving an incentive to work of at least one
billion (minus one) to type 1 students. A top student (of type 3) is only competing
against the students of type 3 and 2, and can therefore never have incentives exceed-
ing three utiles. This also shows that maxmin grading schemes need not be unique,
since choosing p1 < 1 (but not too small) will also achieve the maxmin.

13



Surprisingly, if 1 ≤ N1 ≤ · · · ≤ N , there will be a unique maxmin partition,
and it will indeed equalize all the incentives, and be optimal. Furthermore, it will
generate pyramiding. Indeed, each student of type i > 1 will have positive probability
of getting a grade lower than his type.

Theorem 2: Let 1 ≤ N1 ≤ · · · ≤ N . Then I ≡ maxp∈[0,1] min1≤i≤ Ii(p) is
achieved at a unique p̄; moreover, p̄1 = 1 and 0 < p̄i < 1 for i = 2, ..., , and all
agents have the same incentive: Ii(p̄) = I ∀i = 1, ..., . Therefore P(p̄) is optimal in
the class of all absolute grading schemes. Furthermore, there is a grading pyramid:
the ratio of students obtaining the highest grade to the number of top students is
equal to p̄ < 1, whereas the ratio of students getting the lowest observed grade to the
number of bottom students is p̄1 + (1− p̄2) = 1 + (1− p̄2) > 1.

Finally, consider an infinite sequence of disparate types with populations 1 ≤
N1 ≤ N2 ≤ · · · . For each , let I be the maxmin incentive for the status game
with types 1, ... , as above. Then I is monotonically increasing in , converging to
I∗ ≤ N1 +N2 − 1 as →∞.

Proof: Since each Ii(p) is continuous in p, I (p) is also continuous, and so I =
maxp∈[0,1] min1≤i≤ Ii(p) is achieved at some p̄. Clearly any maxmin p̄ À 0, for
otherwise I = I (p̄) = 0, which can be bettered by choosing all pi = 1.

Inspection of the formulae immediately reveals that raising p̄i raises Ii(p̄) and
Ii+1(p̄), but lowers Ii−1(p̄). Furthermore, for any 2 ≤ i ≤ , if p̄i = 1, then from
N1 ≤ · · · ≤ N we get Ii(p̄) ≥ Ni − 1 + p̄i−1Ni−1 ≥ p̄i−1[p̄i−2Ni−2 − 1 + Ni−1] =
p̄i−1[Ni−1−1+ p̄i−2Ni−2+(1− p̄i)Ni] = Ii−1(p̄), where the second inequality is strict
if p̄i−1 < 1.

Now we argue that for any maxmin p̄, Ii(p̄) = I for all i = 1, ..., . Take any
maxmin p̄ with the fewest number of coordinates i with Ii(p̄) = I . Suppose i is the
largest coordinate with Ii(p̄) = I . If i < , then Ij(p̄) > Ii(p̄) for all j > i. Lowering
p̄i+1, which is possible since p̄À 0, raises Ii(p̄), and lowers the irrelevant Ii+1(p̄) and
Ii+2(p̄). This either raises I or reduces the number of i at which I is attained, a
contradiction either way. Hence I (p̄) = I . Suppose Ii−1(p̄) > Ii(p̄) = I , for some
i = 2, ..., . Then from the last line of the last paragraph, p̄i < 1. But then raising
p̄i raises Ii(p̄) and Ii+1(p̄), lowering the irrelevant Ii−1(p̄). This either raises I or
reduces the number of i at which I is attained, a contradiction either way. Thus
Ii(p̄) = I for all i and any maxmin p̄.

Now we show that I is achieved at a unique p̄. Observe first that at any maxmin
p̄, p̄1 = 1, for if p̄1 < 1, increasing p̄1 will increase I1(p̄) without lowering any other
Ii(p̄), contradicting I1(p̄) = I for every maxmin p̄. But p̄1 = 1 and I1(p̄) = I
uniquely determines p̄2. But then p̄1, p̄2, and I2(p̄) = I uniquely determines p̄3, and
so on.

Observe that if p̄1 = p̄2 = 1, then obviously I1(p̄) < I2(p̄), contradicting all
Ii(p̄) = I . This shows p̄2 < 1. We showed earlier that for any 3 ≤ i ≤ , if p̄i−1 < 1
and p̄i = 1, then Ii(p̄) > Ii−1(p̄), contradicting their equality. Thus we have shown
that p̄i < 1 for all i = 2, ..., .
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Finally, we claim that I increases in , hence converging to some I∗. To verify this,
let I = I (p̄). Define p̂ = (p̂1, ..., p̂ , p̂ +1) = (p̄1, ..., p̄ , 1). Then I +1 ≥ I +1(p̂). But
Ii+1(p̂) = Ii(p̄) = I for all i = 1, ..., . Moreover, I +1

+1(p̂) = p̂ +1((N +1−1)+p̂ N ) =
1 · ((N +1− 1)+ p̄ N ) ≥ p̄ (N − 1)+ p̄ −1p̄ N −1 = p̄ (N − 1+ p̄ −1N −1) = I . But
I ≤ I1 ≤ N1 +N2 − 1 for all . ¥

3.4 A Continuum of Students and Incomplete Information

Fix andN1,N2, ...,N . We can consider optimal partitions for the population profile
(N1k, ..., N k), for k = 1, 2, .... In the limit we effectively have a game of status with
a continuum of players of type i with measure μi = Ni/(N1 + · · ·+N ). The entire
analysis of Theorem 2 holds, with Ni and Ni − 1 replaced by μi. Such a game is
of special interest because (when grading is absolute, and status is additive) it is
equivalent to a game with “incomplete information.”

Consider a variant of our games of status, in which there are N students, each
of whom is drawn (independently) from a distribution of disparate abilities, with
probabilities (μ1, ..., μ ). Each student is informed of his type, but not of the others’.
The number of students Ni that turn out to be type i is now random, and unknown
to them and to the professor. How should the exam be graded?

It is easy to see that with additive status and risk neutrality, the finite-player
incomplete-information game is equivalent to the continuum-player complete-information
game we have already analyzed (after normalizing payoffs by population size). Each
student optimizes the same way, whether he faces one student of type α and one of
type β, or two students, each of whom has a 50—50 chance of being α or β.

Thus we have already derived the optimal absolute grading scheme for the in-
complete information game. In order to compare incentives as → ∞, fix the
measures μ1 = μ2 = · · · = μ = 1 of being of any type 1, ..., . For reasonably
large , such as = 20, the incentive I ≈ I∗ is about 1.389 for each student.
Since p1 = 1, I∗ is also the measure of students receiving the lowest grade i = 1:
I1(p̄) = p̄1(2− p̄2) = (2− p̄2) = 1 + (1− p̄2).

In the table below we list the optimal (p1, ..., p20) and the measure of students for
each grade i = (1, ..., 20).

TABLE A. Pyram id ing
Partition Number of

G rade probabilities students in grade
Lowest 1 1 1.389726998

2 0 .610273002 0.887761199
3 0 .722511804 1.036040471
4 0 .686471333 0.9887908
5 0 .697680533 1 .00352003
6 0 .694160503 0.998897996
7 0695262507 1.000345096
8 0.69491741 0 .99989156
9 0.69502585 1.000032891
10 0 .694992959 0.999986499
11 0.69500646 0.999996886
12 0 .695009574 0 .99997551
13 0 .695034064 0.999925241
14 0 .695108824 0.999760849
15 0 .695347975 0.999235638
16 0 .696112336 0.997568329
17 0 .698544007 0.992284376
18 0 .706259632 0.975830841
19 0 .730428791 0.927161102

H ighest 20 0 .803267689 0.803267689
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Observe that there are more C’s than B’s, and more B’s than A’s, but for lower
grades the number of students stay equal until the very bottom is reached. The
bottom grade (aside from the failing grade i = 0 that nobody gets) i = 1 is the most
commonly given.19

4 Homogeneous Students

Until now we have concentrated on the case where students differ substantially in
their abilities. In that case, coarsening the grading allows the weaker student to
compete with the stronger. We turn now to the case where all students have the
same ability, and we show that coarsening still has a role to play.

Homogeneity simplifies our task, because the incentives of all the players are
aligned. Maxmin and optimal become identical. In Section 5 we shall prove that
absolute grading gives better incentives than grading on a curve. Hence in this
section we shall concentrate on absolute grading schemes, characterizing the optimal
scheme within this class, when the densities of scores are regular. It is worth noting
that homogeneity and additive status make absolute grading independent of how
many students N there are.

4.1 Examples

Imagine an exam with two questions covering the two halves of the course. Suppose
that if a student studies hard, he has probability p = .6 of getting any question right,
independently across questions. If he shirks and studies only half the course, he
has probability q = .8 of getting the corresponding question right, and zero chance
of getting the other question. Thus the probabilities for getting (0, 1, 2) questions
right are (.2, .8, 0) for the shirker and (.16, .48, .36) for the worker. Clearly the hard
working student will do better most of the time (his score stochastically dominates
the shirker’s score). How should the professor grade the exams?20

Fine grading gives the shirker an expected exam payoff of (1−p)2q− [p2q+p2(1−
q) + 2p(1− p)(1− q)] = −0.328. If both students work, then by symmetry and the
fact that total exam payoff is inevitably zero, the expected utility of each is 0. The
incentive to work with fine grading is thus 0.328.

Suppose instead that the professor uses just two grades, an A for a perfect exam,
and a B for anything else. Then the expected exam payoff of a shirker is −[p2q +
p2(1 − q)] = −p2 = −0.36. His incentive to work is thus 0.36, since again if they
19 It is worth noting that with one (instead of a continuum) of students of each of three types, the

optimal (p1, p2, p3) = (1, 1/2, 1) yielding incentive 1/2 to each, so that the expected number of A’s =
1, of B’s = 1/2 and of C’s = 3/2, giving us pyramiding but not in the strongest sense. But even here,
if we introduce the Spence condition d3 ¿ d2 ¿ d1 on disutility of effort, the inequalities Ii(p) ≥ di
will (as is obvious) require p3 < p2 < p1 by way of a solution, bringing back the full pyramid.
20Suppose the shirker could study either half of the course, so the professor cannot distinguish the

two students by attaching higher weight to the second question. We assume his grading depends
only on the total number of correct answers of each student.
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both work, each has an expected exam payoff of zero. Since 0.36 > 0.328, we see that
coarse grading gives higher incentives to work.

Before moving on to another example, observe that with only two students, grad-
ing on a curve either gives no incentive to work (when the curve has two A’s), or else
is identical to fine grading (when the curve has one A, one B). Hence in this example
grading on a curve is worse than absolute grading.

Consider another situation in which N identical students take an exam. Suppose
that if a student works hard, his score will be uniformly distributed on [50%, 100%],
that is, his score has density f(x) = 2 if 50% ≤ x ≤ 100%, and 0 otherwise,independent
of the others’ scores and effort levels. If he shirks, suppose his score has density
g(x) = 2x for 0 ≤ x ≤ 100%, and 0 otherwise, again independent of the others.

1

0

2

50 100 Score

f

g

Figure 3: Score Densities

Assume all other students are working hard, and a single student is debating
whether to work or shirk. If he works, his expected exam payoff will be 0. If he
shirks, his expected exam payoff is equal to the probability he comes ahead of a
worker, less the probability he comes behind, all multiplied by N − 1.

The probability the shirker comes behind a worker is
R 1/2
0 2xdx +

R 1
1/2 2x2(1 −

x)dx = 7/12. The probability the shirker comes ahead of a worker is therefore
1 − 7/12 = 5/12, and we conclude that shirking gives an expected exam payoff
(N − 1)( 512 − 7

12) = −16(N − 1). This shows that the incentive to study hard is
1
6(N − 1), which must be compared to the disutility of effort.
Suppose instead that just two grades are issued, namely A for scoring between

50% and 100%, and B for scoring between 0 and 50%. If a student works, along
with all his N − 1 rivals, then all will receive a score above 50% and therefore all will
receive A. Each student will get a payoff of 0. If a single student fails to study, then
his expected payoff is (N−1) multiplied by −1 R 1/20 2xdx+0

R 1
1/2 2xdx = −1/4 giving

an incentive to study of 14(N − 1).Since this is greater than 1
6(N − 1), we see that

giving only two grades creates significantly higher incentives to work than perfectly
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fine grading.
We will show later that our partition of scores

P = {[0, 50%), [50%, 100%]}

into just two grades yields the optimal absolute grading partition.
With three students the incentive to work under P is (1/4)(3 − 1) = 1/2. Now

consider grading on a curve. Giving everybody an A provides no incentive at all.
Giving three grades is just like the perfectly fine partition with absolute grading
and is therefore not as good as the optimal partition ([0, 50), [50, 100)). (Indeed we
computed that fine grading gave incentive 1/3). With a curve that gives two B’s and
one A, the incentive to work is 99/324 < 1/2, while with a curve that gives one B
and two A’s it is 63/324 < 1/2. Once again absolute grading is better than grading
on a curve.

As a third example, suppose an exam contains K questions, and that a student
who studies has (independent) probability p of getting each question right, while if
he shirks the probability drops to q < p. It will turn out that the optimal grading is
perfectly fine.

As a final example, suppose that we are grading the relative performances of two
hedge funds. Suppose that a hedge fund that works on research will generate log
returns normally distributed with mean μ and standard deviation σ, while a hedge
fund that shirks will generate returns distributed according to μ̂ < μ and σ̂ > σ. If
the fund managers cared only about their relative grade, would they be motivated to
work harder if the grade was simply their return? Intuitively that seems wrong, since
an extraordinarily high return is more likely from the high variance shirker, despite
his lower expected return. We shall see that the optimal grading scheme indeed does
not reward higher returns after some point.

4.2 The General Theory with iid Students

We turn now to the general situation. Observe first that as long as the students are
identical, their expected exam scores must be zero if they all work, as we noted in the
examples. The incentive to work therefore is precisely the negative of the expected
(exam) payoff to a shirker who competes against workers. It follows that there is no
simplification gained by assuming that each student’s performance is independent of
the others’ effort levels. If in the second example we continued to let (f, g) be the score
densities of the (workers, shirker), and introduced h 6= f as the score density when
all work, our analysis would remain absolutely unchanged; h would be irrelevant.

On the other hand, the following independence assumption does play an important
simplifying role.

Assumption: Conditional on any choice of effort levels (e1, ..., en), students’ exam
scores are independent.

We shall maintain this assumption for the rest of the paper.
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Our analysis of the optimal absolute grading partition begins by asking whether
the shirker’s payoff can be lowered below zero by a single cut at θ, creating a two
cell partition {(−∞, θ), [θ,∞)}. We shall find that if the worker’s score distribution
f stochastically dominates the shirker’s score distribution g, then any cut will help,
while under the reverse domination, every cut will hurt.

Next we consider a partition and ask whether cutting a cell in the partition into
two cells will further help incentives or set them back. The answer depends on who is
the better player, conditional on both scores lying inside the same cell. If the shirker
is better, we must not reveal this, since we are trying to minimize his score, and keep
the cell uncut. For example, the shirker may be very unlikely to get a score above
90. But conditional on both the shirker and worker getting above 90, it may be more
likely that the shirker does better. (The shirker may have memorized the answers to
last year’s exam. In the unlikely event that this year’s exam questions are the same
he will get 100; otherwise he will get 0.)

The guiding principle in creating optimal partitions is to mask regions of the score
space where the shirker is better than the worker, and to ensure that across cells the
worker is better, so that the partition reveals the deficiencies of the shirker. This
characterization will be used in Section 5 to prove that absolute grading is better
than grading on a curve, and then again in Section 6 to derive the optimal wage
schedule when workers are homogeneous.

Lemma 1: Suppose two students H and L take an exam, yielding independent
scores xH and xL. If the grading partition is {(−∞, θ), [θ,∞)}, then the expected
exam payoff to L is

P (xL ∈ [θ,∞))− P (xH ∈ [θ,∞)).
Similarly, if the grading partition includes cells [a, θ), [θ, b), for a < θ < b, then
conditional on both xH and xL being in [a, b), the expected exam payoff to L is

P (xL ∈ [θ, b))
P (xL ∈ [a, b)) −

P (xH ∈ [θ, b))
P (xH ∈ [a, b)) .

Proof: In the first case, the expected exam payoff to L is

P (xL ∈ [θ,∞) ∧ xH ∈ (−∞, θ))− P (xH ∈ [θ,∞) ∧ xL ∈ (−∞, θ)).

With independence, this becomes

P (xL ∈ [θ,∞))P (xH ∈ (−∞, θ))− P (xH ∈ [θ,∞))P (xL ∈ (−∞, θ))

= P (xL ∈ [θ,∞))(1− P (xH ∈ [θ,∞))− P (xH ∈ [θ,∞))(1− P (xL ∈ [θ,∞)))
= P (xL ∈ [θ,∞))− P (xH ∈ [θ,∞)).

The second case is analogous. ¥
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Corollary: If P is a partition of scores including the cell [a, b) and if P∗ modifies
P by cutting [a, b) at θ, into [a, θ) and [θ, b), leaving all the other cells intact, then
the move from P to P∗ increases the expected exam payoff to L by

P (xL ∈ [a, b))P (xH ∈ [a, b))
∙
P (xL ∈ [θ, b)
P (xL ∈ [a, b) −

P (xH ∈ [θ, b))
P (xH ∈ [a, b))

¸
.

Proof: This follows from Lemma 1 after observing that if either xL /∈ [a, b) or
xH /∈ [a, b), the payoff is the same under P or P∗. ¥

This should remind the reader of stochastic dominance.

4.2.1 Stochastic Dominance

Definition: We say that the random variable x (stochastically) dominates the in-
dependent random variable y on the interval [a, b) if, whenever P (x ∈ [a, b)) > 0 and
P (y ∈ [a, b)) > 0, we have

P (x ∈ [θ, b)|x ∈ [a, b))− P (y ∈ [θ, b)|y ∈ [a, b)) ≥ 0,
i.e.,

P (x ∈ [θ, b))
P (x ∈ [a, b)) ≥

P (y ∈ [θ, b))
P (y ∈ [a, b))

for all θ ∈ (a, b). In this case we write
x % y on [a, b).

If the inequality is strict for all θ ∈ (a, b), we write x Â y on [a, b) and call it strict
dominance. If [a, b) = (−∞,∞), then we simply write x % y or x Â y.

Stochastic dominance has an extremely important role to play in monotonic grad-
ing schemes, including absolute grading.

Lemma 2: Suppose x % y. Let the exam scores x and y be independent of the exam
scores of every student n = 1, ..., N − 1. Let γ be any monotonic grading scheme for
N students. Then the expected exam payoff to the last student N is at least as high
under an exam score of x as it is under y.

Proof: By independence, the payoffs from exam scores x and y depend only on their
distributions. According to Theorem 1.A.1 of Shaked—Shanthikumar, there exist x̂
and ŷ with the same distributions as x and y respectively, such that x̂ ≥ ŷ with
probability one. But then for any realization of the other N − 1 scores, x̂ will clearly
get a (weakly) higher payoff than ŷ. ¥

It follows that if a shirker has exam scores distributed according to xL while the
worker’s is distributed according to xH , and xL & xH , then no monotonic grading
scheme can provide any incentive to work. We might as well give all students an A.
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In both our examples of this section, the worker scores stochastically dominated
the shirker’s scores, and indeed this is what gave the student an incentive to work
under all the grading schemes.

It will be useful to also consider a strengthened form of domination.

Definition: We say that x uniformly dominates y on the interval [A,B) if x dom-
inates y on every subinterval [a, b) ⊂ [A,B). In this case we write x %U y on [A,B).

Uniform domination can be characterized in terms of likelihood ratios in a manner
that makes it much more handy to work with. But first we must restrict the random
variables slightly.

Density Assumption: Whenever we consider several random variables (exam scores)
together, either all will be discrete or else all will be continuous, i.e., have measurable
density functions on (−∞,∞) with no atoms. In either case we can speak of the
density f(t), for t ∈ (−∞,∞) or t ∈ {α1, α2, ..., αk} ⊂ (−∞,∞).

Lemma 3: Let x and y be independent on [A,B) with density functions f and g,
respectively. Then x uniformly dominates y on [A,B) if and only if the likelihood
ratio f(t)/g(t) is increasing almost everywhere on [A,B), where f(t)/g(t) can be
defined suitably arbitrarily if f(t) = g(t) = 0.

Proof: This follows from Theorem 1.C.2 in Shaked—Shanthikumar. ¥

It is critical in understanding the first two examples of this section to observe
that although the worker’s scores (stochastically) dominates the shirker’s, there are
subintervals on which the shirker’s score uniformly (stochastically) dominates the
worker’s. Thus in the first example, q/(2p(1−p)) = .8/.48 > .2/.16 = (1−q)/(1−p)2,
so on the cell {0, 1} the shirker uniformly dominates the worker. In the second
example of this section xL uniformly dominates xH on [50, 100].

Another instance of uniform domination occurs in the third example, where an
exam has K independent questions, and a student has a probability p of getting any
answer correct. If another student independently has probability q of getting each
question right, then the likelihood ratio condition reduces to21³

K
k

´
pk(1− p)K−k³

K
k−1
´
pk−1(1− p)K−k+1

>

³
K
k

´
qk(1− q)K−k³

K
k−1
´
qk−1(1− q)K−k+1

21The notion of domination does not rely on independence. For example, suppose that with
probability π the two students have chance p1 > q1 of getting each question, while with probability
1 − π they have chance p2 > q2 of getting each question; still the score of the first student would
uniformly dominate that of the second. This suggests that much of our analysis can be extended to
nonindependent scores, but we have not undertaken this extension here.
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or
p

1− p
>

q

1− q
.

Thus if p > q, the first score uniformly dominates the second score over the range of
all scores.

When f and g are differentiable, f(t)/g(t) is increasing if and only if f 0(t)/f(t) ≥
g0(t)/g(t). Let N(μ, σ) denote the normal distribution with mean μ and standard
deviation σ. If x ∼ N(μ, σ) with density f(t) and y ∼ N(μ̃, σ̃) with density g(t) then

f 0(t)
f(t)

=
−(t− μ)

σ2
;
−(t− μ̃)

σ̃2
=

g0(t)
g(t)

∀t ∈ (−∞,∞).

If μ > μ̃ and σ = σ̃, then x uniformly dominates y on all of (−∞,∞). More generally,
x will uniformly dominate y on the interval including all t such that

t

σ2
− t

σ̃2
<

μ

σ2
− μ̃

σ̃2

and y will uniformly dominate x on the complementary interval. Thus if σ2 < σ̃2,
then x uniformly dominates y on the lower tail, and y uniformly dominates x on the
upper tail. This is crucial in understanding the fourth example.22

Domination and uniform domination can be defined exactly the same way for any
totally ordered set, such as a partition P. The likelihood ratio criterion for uniform
domination appearing in Lemma 3 also carries over to partitions. Given a density f
and a partition P, define the density

fP(x) =

(
f(x) if {x} ∈ P
1

b−a
R b
a f(t)dt if x ∈ [a, b) ∈ P

where the integral is understood to be a sum in the discrete case. The analogue of
Lemma 3 still holds: x uniformly dominates y on [A,B) with respect to P if and only
if fP(t)/gP(t) is increasing on [A,B).

4.2.2 Optimal Partitions

We are now ready to state some theorems about the optimal absolute grading parti-
tion when students have conditionally independent scores. It turns out that uniform
stochastic dominance plays the central role in determining whether there should be
masking (i.e., giving the same grade to different scores). If a worker’s score uniformly
stochastically dominates a shirker’s, then the grading should be perfectly fine (so that
doing better always means getting a strictly higher grade). Conversely, if on some
subinterval of scores [A,B) the shirker uniformly stochastically dominates the worker,
then all scores in [A,B) should be given the same grade. When the score densities are

22The attentive reader might be puzzled, since the binomial exam scores “converge” to normal as
K →∞, yet we never see the tail where xq dominates xp . That is because this tail is always beyond
K. In fact it is not the exam scores, but normalized exam scores, which converge to normal, and the
means of xp and xq are diverging at the rate K (not

√
K).
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piecewise differentiable or discrete, (−∞,∞) can be divided into intervals over which
uniform stochastic dominance goes one way or the other, and so the optimal absolute
partition can be determined. The non-regular case is more subtle, and we have not
completely characterized the optimal grading. But we give necessary conditions for a
partition to be optimal and slightly stronger sufficient conditions for it to be optimal,
based on whether the shirker score stochastically dominates the worker score inside
each partition cell, and whether the worker uniformly stochastically dominates the
shirker score across (outside) partition cells.

The phrase “N iid students who can work or shirk” means that each student has
two effort levels, and that assuming any one student shirks while the others work,
he has score xL with density g while each other student k has an independent score
xk ∼ xH , with density f . (Here ∼ denotes identical in distribution.) We begin with
a simple theorem showing that when xH &U xL, perfectly fine grading is optimal,
even in the wider class of all monotonic and anonymous grading schemes.

Theorem 3 (Fine Grading Can Be Optimal): Let there be N iid students who
can work or shirk. Suppose xH &U xL. Further, suppose xH and xL are either
discrete or have piecewise continuous densities f and g with no atoms. Then fine
grading is optimal in the class of all monotonic, anonymous grading schemes.

Proof: Consider the case of two students, a worker and a shirker. A monotonic
grading scheme γ differs from fine precisely on the set

W = {(xL, xH) ∈ R2 : xL 6= xH , yet γ gives xL and xH the same grade}.

Suppose first that the densities f and g are discrete. By anonymity, (α, β) ∈ W if
and only if (β, α) ∈W . But from the uniform domination xH &U xL, we know that
if β > α, then f(β)/g(β) ≥ f(α)/g(α). Hence replacing the masking grading γ on
W with fine grading lowers the expected exam payoff to the shirker byX

(α,β)∈W
α<β

[f(β)g(α)− g(β)f(α)] ≥ 0.

Next suppose that f and g are piecewise continuous. SinceW is measurable it can
be approximated arbitrarily closely (in Lebesgue measure) by a union of small squares
Q = {(xL, xH) : α− ε ≤ xL < α+ ε and β − ε ≤ xH < β + ε} whose interiors do not
contain any points of discontinuity of f and g. By anonymity, we may assume that the
mirror squareQ∗ = {(xL, xH) : β−ε ≤ xL < β+ε and α−ε ≤ xH < α+ε} is also part
of the approximation. These squares have area approximately equal to ε2f(α)g(β) or
ε2g(α)f(β). If β > α, then by uniform stochastic dominance, f(β)g(α) ≥ g(β)f(α).
The masking on W thus hides the fact that xH would have come ahead of xL more
often than behind xL when both variables are in W . Hence masking W does not
improve the incentive to work. A similar argument could be given with more than
two students. ¥
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Now we focus on absolute grading, giving conditions under which a cell [a, b)
should not be cut by any optimal partition.

Theorem 4 (Coarseness in the Optimal Grading): Let there be N iid students
who can work or shirk. Suppose that on some interval [a, b), xL uniformly dominates
xH . Then for any partition P that cuts [a, b), there is another partition P∗ that gives
at least as much incentive to work without cutting [a, b). If xL strictly uniformly
dominates xH on [a, b), then every optimal grading partition is coarse on [a, b).

Proof: Consider the following picture:

βα a θ b

Figure 4: Cutting (a, b) at θ

Let P be a partition that cuts [a, b) just once, that is, suppose that θ ∈ (a, b),
and that [α, θ) ∈ P and [θ, β) ∈ P, where α ≤ a < θ < b ≤ β, where −α or
β might be infinite. (The cases where the closed end comes on the right instead
of the left are handled the same way.) For the rest of the proof all probabilities
will be taken conditional on xL and xH being in [α, β]. For ease of notation, we
suppress this conditionality. Thus when we write P (xL ∈ [a, b)), we really mean
P (xL ∈ [a, b))/P (xL ∈ [α, β)), etc.

>From the Corollary to Lemma 1, we know that the expected payoff to L in P
(conditional on both xL and xH in [α, β)) is

P (xL ∈ [θ, β))− P (xH ∈ [θ, β)).

Suppose first that P (xL ∈ [θ, b)) ≥ P (xH ∈ [θ, b)). Then

P (xL ∈ [b, β))− P (xH ∈ [b, β))
≤ P (xL ∈ [θ, β))− P (xH ∈ [θ, β)).

It follows from the Corollary to Lemma 1 that the partition obtained from P by
moving the cut from θ to b (i.e., by replacing [α, θ) and [θ, β) with [α, b) and [b, β))
weakly lowers the expected exam payoff to L, without cutting [a, b), as was to be
proved.

Suppose on the other hand that P (xL ∈ [θ, b)) < P (xH ∈ [θ, b)). From the
dominance of xL over xH on [a, b), we conclude that P (xL ∈ [a, θ)) < P (xH ∈ [a, θ)).
It follows immediately that

P (xL ∈ [a, β))− P (xH ∈ [a, β))
< P (xL ∈ [θ, β))− P (xH ∈ [θ, β))
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showing that the partition obtained from P by moving the cut from θ to a (i.e.,
by replacing [α, θ) and [θ, β) with [α, a) and [a, β)) lowers the expected payoff to L,
without cutting [a, b], as was to be shown.

It only remains to consider the case where P cuts (a, b) multiple times. If there
are a finite number of cuts, that case can be reduced to the case where (a, b) is cut
once, by arbitrarily choosing any cut θ ∈ (a, b), and then choosing the highest cut
c < θ and the lowest cut d > θ, and replacing (a, b) with (a, b)∩(c, d). By the uniform
dominance of xL over xH on [a, b), xL dominates xH on [a, b)∩ [c, d). The same proof
can then be repeated. This reduces the number of cuts by 1. The reduction can then
be iterated.

Finally, suppose there is a subinterval [c, d) ⊂ [a, b) on which P is perfectly fine.
Change P to P∗ by completely masking [c, d). Since xL dominates xH on [c, d), this
masking can only (weakly) lower the expected exam payoff to L. In this way we
reduce the problem to finitely many cuts. This proves the first claim of the theorem.
The second claim is proved the same way. ¥

Theorem 4 shows that if work leads to a normal distribution N(μ, σ) of scores,
and shirk leads to N(μ̃, σ̃), where σ 6= σ̃, then one tail of scores will be completely
masked in any optimal partition.

Theorem 4 also leads to a sufficient condition for the optimality of a partition
P. We say that xL uniformly dominates xH inside a partition P if xL &U xH inside
every cell [a, b) ∈ P. We say that xH uniformly dominates xL outside a partition P
if xH &U xL on P, i.e., across the cells of P.

Theorem 5 (Uniform Inside and Outside Domination Implies Optimality):
Let there be N iid students who can work or shirk. Let P be a partition such that for
every cell [a, b) ∈ P, xL %U xH on [a, b), and such that xH %U xL on the partition
P. Then P is optimal.

Proof: Suppose P 0 does better than P. From Theorem 4, we know that there is
P 00 that does at least as well as P 0, and which does not cut any cell in P. But every
cell in P 00 is refined by cells in P. Since xH %U xL on P, it follows that the payoff to
xL is weakly lower in P than in P 00, a contradiction. ¥

Suppose that all students are homogeneous, with independent, and normally dis-
tributed exam scores. If work raises a student’s expected exam score, without chang-
ing its variance, then Theorem 5 implies that an optimal grading scheme is to post
the exact scores.

Similarly, if the K exam questions are identical, independent trials, and if hard
work allows a student to raise his probability of getting each answer right, then again
an optimal grading scheme is to reveal the exact scores.

But consider the two leading examples of this section. There we found that giving
just two grades, A and B, improved incentives beyond what could be achieved by
fully revealing the scores. Theorem 5 and Lemma 3 guarantee that these are indeed
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optimal partitions. In the first example, xL uniformly dominates xH on {0, 1}, while
xH uniformly dominates xL across the partition cells {0, 1}, {2}, since .36/.64 > 0/1.
In the second example, inside the cell [0, 50), xH has probability zero, so xL trivially
uniformly dominates it. Inside the other cell [50, 100), f(t)/g(t) = 2/2t = 1/t is
strictly falling, so xL uniformly dominates xH . Across cells we can check that xH
uniformly dominates xL. On [0, 50), we can define the effective density of a worker
as fP(t) = 0, and that of a shirker as gP(t) = .5. On [50, 100) the effective densities
become fP(t) = 2 and gP(t) = 1.5. Clearly fP(t)/gP(t) is increasing.

In our next theorem we describe necessary conditions for a partition to be optimal,
when agents are homogeneous. The “outside” condition, that xH %U xL on P, is the
same as the sufficient “outside” condition appearing in Theorem 5. But the “inside”
condition xL % xH on each cell [a, b) in P is weaker than the sufficient “inside”
condition xL %U xH appearing in Theorem 5. For the theorem we need to impose
slightly stronger conditions.

Definition: The exam performances xL and xH , with densities f and g, are called
generic iff f and g are both discrete or both continuous, and there is a countable set
{· · · < ai < ai+1 < · · · } such that f(t)/g(t) is strictly increasing on [ai, ai+1) for all
even i and strictly decreasing for all odd i.

Theorem 6 (Optimality Implies Domination): Let there be N iid students who
can work or shirk. Let P be an optimal absolute grading partition. Then for any cell
[a, b) ∈ P, xL % xH on [a, b). Furthermore, if exam performances are all discrete,
or all have piecewise differentiable densities, or are generic, then xH %U xL on the
totally ordered set P.

Proof: Consider any cell [a, b) in P such that P (xL ∈ [a, b))P (xH ∈ [a, b)) > 0.
Suppose there is some θ ∈ [a, b) with

P (xL ∈ [θ, b))
P (xL ∈ [a, b)) −

P (xH ∈ [θ, b))
P (xH ∈ [a, b)) < 0.

Change P to P∗ by replacing [a, b) with [a, θ) and [θ, b). By the Corollary to Lemma
1, this must lower the expected exam payoff to the shirker against each worker. But
this means that P∗ is a better partition than P, a contradiction proving that xL % xH
on [a, b).

Consider two consecutive cells [a, b) and [b, c) in P whose union (a, b] ∪ (b, c] has
positive probability of being reached by both xL and xH . Then it is clear from the
Corollary to Lemma 1 that

P (xH ∈ [b, c))
P (xH ∈ [a, c)) ≥

P (xL ∈ [b, c))
P (xL ∈ [a, c)) ,

otherwise the partition P∗ obtained from P by replacing the two cells [a, b) and [b, c)
with the single cell [a, c) would lower the expected exam score to L, contradicting
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the optimality of P. Hence the likelihood ratio property holds for fP and gP across
consecutive masked intervals. This same logic applies when exam scores are discrete.

The partition P must consist of intervals, each of which is fine or masked. If
fP(x)/gP(x) is increasing, then by Lemma 3 we have that x &U y on P. Suppose
to the contrary that there is α < β with fP(α)/gP(α) > fP(β)/gP(β). Then we can
assume that either (1) α and β are in the same fine interval, or (2) α is in a fine
interval and β is in the next (coarse) interval, or the reverse (3).

Suppose α and β are in the same fine interval. If the exam scores are generic,
then on some open interval (a, b) ⊂ (α, β), f(t)/g(t) is strictly decreasing, hence (by
Theorem 4) (a, b) should be masked, contradicting the optimality of P. If f and g
are piecewise differentiable, and there is a point θ ∈ (α, β) of differentiability with
(d/dt)(f(θ)/g(θ)) < 0, then on some small interval (a, b), with θ ∈ (a, b) ⊂ (α, β),
f(t)/g(t) is strictly decreasing, again contradicting Theorem 4. Otherwise there must
be a jump down of f/g at a nondifferentiable point θ ∈ (α, β).

Nearby, f(t)/g(t) > M > m > f(s)/g(s) for all a < t < θ < s < b. Modify P by
masking the interval [θ − ε, θ + ε) ⊂ [a, b). We claim that this will lower the payoff
to xL, contradicting the optimality of P. Conditional on both xH and xL falling
into [θ − ε, θ + ε), P{xL ∈ (θ, θ + ε) and xH ∈ [θ − ε, θ)} − P{xH ∈ (θ, θ + ε) and
xL ∈ [θ−ε, θ)} > K > 0, independent of ε. But conditional on both xL and xH lying
in (θ, θ+ ε), or both lying in [θ− ε, θ), the probability of xL coming ahead minus the
probability of xH coming ahead converges to 0 as ε → 0, because of the continuity
of f and g on [θ− ε, θ). Thus perfectly fine grading on [θ − ε, θ + ε) gives L an edge
that should have been eliminated by masking.

It only remains to consider the case where the drop in fP(x)/gP(x) occurs at θ
because θ is the cut between a perfectly fine cell [c, θ) of P and a masked cell [θ, d)
of P (or vice versa). We argue that P could not be optimal, because moving the cut
from θ to θ − ε would lower the payoff to xL. We rely on the continuity of f to the
left of θ, which holds for the generic case or the piecewise differentiable case.

Indeed, the change in expected payoff to L from moving the cut to θ − ε is

P (xH ∈ [θ, b))P (θ − ε ≤ xL < θ)− P (xL ∈ [θ, b))P (θ − ε ≤ xH < θ)

+ P (θ − ε ≤ xH < θ)P (θ − ε ≤ xL < θ)[P (xH > xL|θ − ε ≤ xL, xH < θ)

− P (xL > xH |θ − ε ≤ xL, xH < θ)].

Observe that the third term goes to zero as ε2 when ε→ 0, whereas the first two
terms are of the order of ε. As ε → 0, P (θ − ε ≤ xH < θ) converges to εf(θ), and
P (θ − ε ≤ xL < θ) converges to εg(θ). Thus if f(θ−)/g(θ−) > fP(θ+)/gP(θ+), then
the first two terms add to less than zero. This shows that the extra masking obtained
by lowering the cut θ to θ − ε reduces the expected exam payoff to L, contradicting
the optimality of P. ¥

We can use Theorems 4 and 6 to completely characterize the optimal partitions for
the normally distributed case, and more generally, for the generic case, even though
Theorem 5 cannot be applied. Consider again the situation where f ∼ N(μ, σ) and
g ∼ N(μ̃, σ̃) with σ < σ̃. We have seen that the function f(t)/g(t) is differentiable and
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single-peaked, strictly rising for −∞ < t ≤ x̄ and strictly falling for x̄ ≤ t <∞. See
Figure 5. Thus the normal case is differentiable and generic. We know from Theorem
4 that any partition that cuts (x̄,∞) can be strictly improved by a partition that
leaves (x̄,∞) uncut.

maskedperfectly fine

( )

( )

f x

g x

−∞ ∞
Ax x

Figure 5: Normally Distributed: μ > μ̃, σ > σ̃

Moreover, since f(t)/g(t) is strictly increasing on (−∞, x̄), we know from Theorem
6 that if there is any cut in (−∞, x̄), say at xA, then (−∞, xA) should be perfectly
fine. It follows that the optimal partition must be of the form {(−∞, xA), [xA,∞)}
with (−∞, xA) perfectly fine and [xA,∞) completely masked, and xA < x̄. The point
xA is uniquely defined by the greatest x ≤ x̄ such that

f(xA)

g(xA)
=

P (xH ≥ xA)

P (xL ≥ xA)
.

At x = x̄, f(x̄)/g(x̄) > P (xH ≥ x̄)/P (xL ≥ x̄). As x falls to the left of x̄, f(x̄)/g(x̄)
also falls, but P (xH ≥ x)/P (xL ≥ x) rises as long as f(x)/g(x) > P (xH ≥ x)/P (xL ≥
x). Since f(x̄)/g(x̄) > 1 and limx→−∞ f(x)/g(x) = 0, xA exists.

If x > xA, then the partition {(−∞, x), [x,∞)} violates the outside condition of
Theorem 6, while if x < xA it violates the inside condition on the cell [x,∞), as seen
by cutting this cell at xA.

The general picture is as follows

Theorem 7 (Optimal Partitions for Generic Densities): Consider the case of
generic densities f and g. In any optimal partition P, all the cuts are in the rising
segments (ai, ai+1) of f/g, where i is even. If there is a cut in (ai, ai+1), then the
set of all cuts in (ai, ai+1) is a fine interval [αi, βi) ⊂ (ai, ai+1) in P , or else a point
αi = βi. In either case,

f(βi)

g(βi)
=

R y
βi
f(t)dtR y

βi
g(t)dt

where y is the smallest cut to the right of βi, and

f(αi)

g(αi)
=

R αi
x f(t)dtR αi
x g(t)dt

where x is the biggest cut to the left of αi. Thus the optimal partition has at most
one more cell than the number of extremal points of f/g.
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Proof: Immediate from Theorems 4 and 6, and Lemma 3, using the same logic as
in Figure 5. ¥

masked

−∞ ∞
AxCx 1a 2a

fine fine

Bx 3a

masked

( )

( )

f x

g x

Figure 6: Generic Regular Densities

5 Grading on a Curve

We have assumed that students care only about their relative grade. It would seem
therefore that relative grading, i.e., grading on a curve, would provide the best in-
centives. But in fact the contrary is true. We shall prove that when all the students
are disparate or homogeneous, it is always better to grade according to an absolute
scale, no matter how many students are in the class.

With a large number of students of each type, there is practically no difference
between grading on a curve and absolute grading. Giving an A to top 10% of students
can be replicated with very high probability by giving an A to all scores above xA,
for some appropriate threshold xA.

5.1 Disparate Students

Let there be Ni students of type i = 1, ..., , as in Section 3.3. Grading on a curve
means specifying integers K = (KA,KB, ...,KZ) with KA +KB + · · ·+KZ = N =
N + · · ·+N1, where the top KA student exam scores get A, the next KB get B and
so on. (The probability of ties is zero.)

If there is only one disparate student of each type, then the student of type i will
score below − i students and above i−1 students whether he works or shirks. With
grading on a curve, his letter grade must therefore be independent of his effort, and
so grading on a curve provides no work incentive whatsoever.

Consider a general population N = (N1, ..., N ), and any grading on a curve
K = (KA,KB, ...,KZ). We can find an absolute grading scheme that creates the
same incentives to work for types 2, ..., , and at least as much for type 1.
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Let μi measure the distribution of scores of a type i agent when he works (so
μi(T ) = Prob(xHi ∈ T ) for every T ⊂ R). Define μ ≡ Pi=1Niμi. For any relative
grade α, cut R at the minimum point x such that

KA + · · ·+Kα = μ[x,∞).

It is easy to check that the absolute partition defined by these cuts does the job.

5.2 Homogeneous Students

Theorem 8 (Absolute Grading Beats Grading on a Curve): Let there be
N iid students who can work or shirk. Let all their score densities be piecewise
differentiable. Let P be an optimal absolute grading partition. Then P gives at least
as much incentive for work as any grading on a curve.

The proof relies on the inside and outside domination criteria for any optimal
partition given in Theorem 6. Starting from an optimal partition, we prove the
stronger result that conditional on the number of students who get each absolute
grade, no grading on a curve will do better.

For the proof we first establish a simple lemma.

Lemma 4: Denote scores in [θ,∞) as A. Suppose N − 1 students work hard, and
each has probability p of getting an A, while one student shirks and has probability
q < p of getting an A. Suppose all scores are independent. If exactly K students wind
up with A, the conditional probability that the shirker got A is less than K/N , while
the probability any hard worker got A is more than K/N .

Proof: The conditional probability the shirker got A is

q

µ
N − 1
K − 1

¶
pK−1(1− p)N−K

q

µ
N − 1
K − 1

¶
pK−1(1− p)N−K + (1− q)

µ
N − 1
K

¶
pK(1− p)N−K−1

which is strictly monotonically increasing in q (as can easily be seen by dividing
numerator and denominator by the numerator). But when q = p, symmetry implies
that the expression must be exactly K/N . Hence the probability the shirker got A is
less thanK/N . Since exactly the proportion K/N students did get A, the probability
of the good students getting A must then be more than K/N . ¥

Proof of Theorem 8: Let Q be any partition of class rank {1, 2, ..., |N |}, repre-
senting an arbitrary grading on a curve.

For any possible exam scores x = (xn)n∈N , and any absolute interval G in P
(whether coarse or fine), let μG(x) be the number of exam scores lying in G. For any
curved grade γ, let μγG(x) be the number of scores in G that also get curved grade
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γ. Note that since there are no ties, (μγG)G∈P can be deduced from μ ≡ (μG)G∈P . A
picture helps to clarify the situation.

δ γ β α

ABC

Figure 7. Absolute vs. Relative Grading

In the picture there are 4 A’s, 3 B’s, and 3 C’s on the absolute scale. The relative
scale gives grade α to the top score, β to scores 2 and 3, γ to {4, 5, 6, 7, 8, 9}, and δ
to the 10th highest score. We can deduce that μγA = 1, μ

γ
B = 3, and μγC = 2.

Define the join P∨Q of P and Q as follows: given scores (xn)n∈N , the exam grade
for xn is strictly higher according to P ∨Q than the exam grade for xm iff either the
absolute letter grade for xn is strictly higher than for xm, or the relative grade for
xn is strictly higher than for xm. Conditional on μ, that is achieved by cutting the
curved grade cell γ into three curved grades γA, γB, and γC with cardinalities 1, 3,
and 2, respectively.

We will now argue that if we grade according to the join P ∨Q then the expected
exam payoff of the shirker is no more than it was in Q. If a relative grade, such as γ
in Q, is refined in P ∨Q, we show that the expected score of the shirker, conditional
on μ and on his being in γ to begin with, will not go up. Since splitting γ does not
affect scores against students outside γ, it suffices to show that the expected exam
score of the shirker against the other students in γ must be at most zero.

Let μ be an arbitrary interval distribution of scores such that μG ≤ 1 for every fine
interval G in P. By subdividing fine intervals into smaller and smaller fine intervals,
the probability that two scores fall in a single fine interval goes to zero, so we can
restrict attention to such μ.

Let γ be any curved grade with P (xL ∈ γ|μ) > 0. Let P∗ be the collection of
intervals G in P such that μγG ≥ 1. Clearly P∗ has a finite number of elements.

Let q̃ be the probabilities of a shirker getting each absolute grade, conditional on
the grade distribution μ and the shirker being in γ.

We shall show that if C < B are intervals in P∗ with q̃B > 0, then q̃C > 0 and

q̃B
q̃C
≤ μγB

μγC
.

Suppose γ includes the top μγC ≤ μC scores in C. If C is fine, then by hypothesis
μγC = μC = 1, and P (xL ∈ C ∩ γ|μ & xL ∈ C) = 1. If the interval C is masked, then
by Theorem 6 the shirker dominates inside the cell, hence in either case

P (xL ∈ C ∩ γ|μ & xL ∈ C) ≥ μγC
μC

.
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By Bayes Law,

q̃C = P (xL ∈ C|μ & xL ∈ γ)

= P (xL ∈ C ∩ γ|μ & xL ∈ C)P (xL ∈ C|μ)/P (xL ∈ γ|μ).

Thus

q̃C ≥ μγC
μC

P (xL ∈ C|μ)
P (xL ∈ γ|μ) .

Similarly, if only the bottom part of scores in B are included in γ, then

P (xL ∈ B ∩ γ|μ & xL ∈ B) ≤ μγB
μB

.

Thus arguing as with C,

q̃B ≤ μγB
μB

P (xL ∈ B|μ)
P (xL ∈ γ|μ) .

If q̃B > 0, then P (xL ∈ B|μ) > 0, and by Lemma 4,
P (xL ∈ B|μ)
P (xL ∈ C|μ) ≤

μB
μC

.

Hence P (xL ∈ C|μ) > 0. Therefore
q̃B
q̃C
≤ μγBP (xL ∈ B|μ)

μBP (xL ∈ C|μ)
μC
μγC
≤ μγB

μγC
,

as claimed.
It follows that the shirker’s expected exam payoff according to P ∨Q against the

other
P

G∈P∗ μ
γ
G − 1 scores in μ must be non-positive. Thus, conditional on μ alone,

the expected exam payoff of a shirker is lower when grading by P ∨ Q than when
grading by Q.

Thus we have shown that the expected exam payoff to a shirker is lower under
P ∨Q than under Q.

To conclude the proof, we need only show that the expected exam payoff of the
shirker in P is even lower (weakly) than his expected exam payoff in P ∨ Q. This
follows at once from the fact (see Theorem 2) that conditional on being in a masked
cell of P, the score of the shirker dominates the score of a worker. But then, by
Lemma 2, any monotonic grading scheme within cells of P (as is induced by P ∨Q)
will weakly increase the payoff of the shirker. ¥

6 Games of Money and Status: Setting Optimal Wage
Schedules

Suppose now that the agents are workers in a firm who obtain direct utility from the
purchasing power of wages and status utility from higher wages.

32



In keeping with our focus on ordinal status, we assume that if the N workers are
paid wages w = (w1, ..., wN), they obtain utility

un(w) = wn +#{j : wn > wj}−#{j : wj > wn}.
The employer seeks to minimize his total wage bill, subject to providing incentives

to work of at least dn, for each worker n. The wage schedule he sets must be an
anonymous and monotonic function of outputs.

As before, wages can be awarded on the basis of absolute performance or relative
performance (analogous to grading on a curve). If the status payoff were eliminated,
leaving behind only utility for money, then paying relative wages would resemble a
tournament with multiple prizes: one can think of different players who are awarded
the same prize as receiving the same grade.23

With status, we shall focus instead on wage schedules that are based on absolute
performance, paying each worker according to his own output.24 We conjecture that,
as with games of pure status, absolute wages are better for the employer than relative
wages anyway. (In the case of disparate workers, this is obvious from Section 5.1.)

Our model is thus the same as the classical wage problem, except that we have
attached status to wages (and assumed participation constraints are not binding).

6.1 Disparate Workers

First consider the disparate case with Ni ≥ 1 workers of type i = 1, ..., , exactly as
in Section 3, with exam scores reinterpreted as output produced. (Thus if a worker
of type i shirks, he still produces more output than any worker of type i − 1.) We
saw there that the principal could provide the greatest status incentives to work by
clumping outputs into +1 grades. Now we ask the question: given that the principal
can use both status and wages as motivators, should he use them in equal proportion
for all workers? Or should he, for example, reserve status mostly for higher worker
types?

Since workers are disparate, strictly monotonic wages (such as piece-rate con-
tracts) are suboptimal, because they squander the motivating power of status. Ex-
actly as in Section 3, it will be optimal to set + 1 different grade wages, with the
upper (pi)-fraction of i’s outputs assigned wage wi and the lower (1 − pi)-fraction
assigned wage wi−1 for 1 ≤ i ≤ , where w0 = 0. (In order to signal that grade i
confers higher status than grade i−1, the principal will need to assign wi > wi−1. To
guarantee compactness, we allow him the freedom to set wi = wi−1 and still create
a difference in status, e.g., via a title.25 It will turn out that under the conditions of
Theorem 9, he will never exercise this freedom.)
23 In much of the tournament literature, the focus is on a single prize (see, e.g., Lazear—Rosen

[1981] and Green—Stokey [1983]). Even when multiple prizes are allowed for, it is optimal to hand
out only one (see Moldovanu—Sela [2001]). We reach a different conclusion because, in contrast to
tournaments, the status of coming ahead is not merely instrumental in getting a bigger prize but is
valued in and of itself.
24The focus of Moldovanu—Sela—Shi (2005) is on relative wages.
25We could have postulated instead that wi confers higher status than wj if, and only if, wi ≥ wj+δ

for some threshold δ > 0. Then our last constraint in the principal’s optimization problem would
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The employer’s optimization problem is given below. One critical aspect of the
problem is that we have capped the maximum wage at an arbitrary, but high, level
M . The employer seeks to minimize his wage bill, subject to incentivizing everyone
to work:

min
p,w

X
i=1

[(1− pi)wi−1 + piwi]Ni = min
p,w

(X
i=1

wi−1Ni +
X
i=1

pi(wi −wi−1)Ni

)
s.t. Ĩ1 ≡ p1[(N1 − 1) + (1− p2)N2] + p1(w1 −w0) ≥ d1

...

Ĩi ≡ pi[(Ni − 1) + (1− pi+1)Ni+1 + pi−1Ni−1] + pi(wi −wi−1) ≥ di, for 1 < i <
...

Ĩ ≡ p [(N − 1) + p −1N −1] + p (w −w −1) ≥ d

0 ≤ pi ≤ 1
0 = w0 ≤ w1 ≤ · · · ≤ w ≤M

Note that each agent i’s incentive Ĩi consists of the old (from Section 3.3) status
incentive Ii plus a wage incentive pi(wi−wi−1). We assume that the capM >

P
i=1 di.

If there were no status attached to higher wages, the employer would simply pay
each worker type its disutility of effort, setting pi = 1 and wi − wi−1 = di for all
i = 1, ..., . Wages would never rise faster than disutilities as the ability i increased.
But Theorem 9 shows that when wages confer status, it is uniquely optimal (no
matter what the population distribution N1, ...,N ) to pay an astronomical wage to a
tiny number of top performers. The shape of the wage schedule for the other workers
depends on N1, ..., N , as well as d1, ..., d , and will be described in Section 6.1.1.

Theorem 9 (Elite Performers Get Exorbitant Wages): Let there be dis-
parate types of workers, with Ni ≥ 1 of each type i = 1, ..., . Suppose their disutilities
(d1, ..., d ) of work are such that at any feasible wage schedule (p, w) they each get a
wage incentive (in addition to their status incentive),26 i.e., pi(wi − wi−1) > 0 for
each i = 1, ..., .

Then there is a unique optimal status partition and wage schedule (p,w). In fact
pi = 1 for all i = 1, ..., − 1, so that any two workers of the same type below get
the same status and wage. But p ≤Pi=1 di/M , and w = M . In other words, for
large M , a tiny elite p N out of the highest type is paid the exorbitant salary M ,
while the rest of their type obtain the same status and pay as type − 1.

Proof: It will be useful to keep in mind throughout that raising pi has the effect of
raising Ĩi and Ĩi+1 and lowering Ĩi−1 without disturbing other incentives. Similarly,

read: 0 = w0, wi + δ ≤ wi+1 for 1 ≤ i ≤ − 1, w ≤ M . It is worth noting that as d → ∞,
pi(wi − wi−1)→∞ since the status incentive terms Ii(p) are bounded by N1 + · · ·+N . Thus the
constraints wi + δ ≤ wi+1 are automatically satisfied for large enough d (given any δ).
26This is guaranteed if, for example, Ni−1+Ni+Ni+1 < di for all i (with N0 = N +1 = 0). Would

anybody work for free, just for the status of coming ahead of all his peers?
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raising wi raises Ĩi and lowers Ĩi+1, with no other effect.
Raising p1 improves the status incentive for agents of type 1 and 2, without

disturbing the incentives of the others, allowing the employer to reduce w1. Thus
p1 = 1.

Inductively assume that p1 = · · · = pi−1 = 1 for i < . Suppose pi < 1.
Set w̃i−1 = wi−1 + εNi and p̃i = pi + ε. Then the status incentive of i − 1 goes

down by εNipi−1 = εNi, but his wage incentive goes up by the same amount: since
pi−1 = 1, pi−1(w̃i−1 −wi−2) = pi−1(wi−1 −wi−2) + εNi.

Also, the status incentive of i goes up by

∆Ii(ε) ≡ ε[(Ni − 1) + (1− pi+1)Ni+1 +Ni−1].

This allows us to reduce his wage incentive by the same amount. So, set w̃i to satisfy

p̃i(w̃i − w̃i−1) ≡ pi(wi −wi−1)−∆Ii(ε).
For small ε, ∆Ii(ε) is small, so pi(wi − wi−1) > 0 implies that p̃i(w̃i − w̃i−1) > 0,
which in turn implies w̃i > w̃i−1, retaining the monotonicity of the revised wages.
We shall be assuming ε small enough to guarantee monotonicity in all future wage
revisions, without explicitly saying so.

Note that

w̃i =
pi
p̃i
wi + w̃i−1 − pi

p̃i
wi−1 − 1

p̃i
∆Ii(ε)

=
pi

pi + ε
wi +

µ
1− pi

pi + ε

¶
wi−1 + εNi − 1

pi + ε
∆Ii(ε)

< wi + εNi − ε[(Ni − 1) + (1− pi+1)Ni+1 +Ni−1]
≤ wi − ε(Ni−1 − 1) ≤ wi

since wi > wi−1 and pi + ε < 1 (if pi < 1 and ε is small) and Ni−1 ≥ 1.
Finally, the status incentive of i+ 1 goes up by

∆Ii+1(ε) ≡ εpi+1Ni.

Therefore the wage incentive of i + 1 can be reduced by the same amount. So set
w̃i+1 to satisfy

pi+1(w̃i+1 − w̃i) = pi+1(wi+1 −wi)−∆Ii+1(ε).
Since w̃i < wi, clearly w̃i+1 < wi+1. Hence recursively setting

w̃j − w̃j−1 = wj −wj−1 for j > i+ 1

further lowers wages without changing incentives.
It only remains to show that the wage bill defined in the employer minimization

problem has gone down. The only terms that increase are

wi−1Ni and pi−1(wi−1 −wi−2)Ni−1
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while many terms are reduced, including

pi(wi −wi−1)Ni and pi+1(wi+1 −wi)Ni+1.

The increases add up to
εNiNi + εNiNi−1,

while just these two reductions add to

∆Ii(ε)Ni +∆Ii+1(ε)Ni+1

= εNi[(Ni − 1) + (1− pi+1)Ni+1 +Ni−1] + εpi+1NiNi+1

= εN2
i + εNiNi−1 + εNi(Ni+1 − 1).

Since Ni+1 ≥ 1, the reduction is at least as big as the increase. But we have ignored
many other strictly positive reductions (for example in wi+1Ni+1). This contradiction
proves that pi = 1, for i = 2, ..., − 1.

Now suppose w < M . Since p (w − w −1) > 0, clearly p > 0. Lower p by ε.
This raises the status incentive of type −1 workers by εN , enabling us to lower the
wage incentive for type − 1 by the same amount.

Recalling that p −1 = 1, set w̃ −1 to satisfy

(w̃ −1 −w −2) = (w −1 −w −2)− εN .

This drop in p unfortunately lowers the status incentive of type by ε(N − 1 +
N −1). Therefore we must raise the wage incentive of , choosing w̃ to solve

(p − ε)(w̃ − w̃ −1) = p (w −w −1) + ε(N −1 +N − 1).
Fortunately, there is no group + 1 to be affected by the change in p , which is why
it will turn out to be optimal to lower p as long as w < M , whereas it was shown
to be optimal to raise pi all the way to 1 for any i < .

Indeed the terms in the wage bill that change are

w −1N + p −1(w −1 −w −2)N −1 + p (w −w −1)N .

The net change in those terms is

−εN2 − εN N −1 + ε(N −1 +N − 1)N
= −εN < 0

showing that the wage bill can be reduced, a contradiction. This proves that w =M .
Clearly, for any 1 ≤ i ≤ − 2, the wage incentive

wi −wi−1 = pi(wi −wi−1) = di − Ii = di − (Ni +Ni−1 − 1).
This recursively proves that wi is uniquely determined (starting from w0 = 0), for
i = 1, ..., − 2. Also

w −1 −w −2 = d −1 − [N −2 +N −1 + (1− p )N − 1]
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and

M −w −1 =
d

p
− [N −1 +N − 1]

(recalling that w ≡ M in the last equation). It can be checked27 that there is a
unique solution w −1, p of these two simultaneous equations, so that the optimal
wage schedule is determined uniquely.

Summing the inequalities wi −wi−1 ≤ di over i = 1, ..., − 1 gives

w −1 ≤ d1 + · · ·+ d −1.

Since the wage incentive of is at most d , we have

p (M −w −1) ≤ d ,

hence

p ≤ d + p w −1
M

≤ d +w −1
M

≤
P

i=1 di
M

. ¥

Theorem 9 shows that when workers are disparate, the interplay of status incen-
tives and wage incentives produces an optimal hierarchy that is substantially different
from what was generated in the game of pure status discussed in Section 3. In the
pure status case, it was essential that workers of the same type could end up with
different status, so we found pi < 1 for all 2 ≤ i ≤ . The opportunity to motivate
workers via money ensures that only the top group should be split into different
status groups, so now pi = 1 for 1 ≤ i ≤ − 1.

Theorem 9 also gives an explanation via status for the exorbitant pay often seen at
the very top of some real world hierarchies. It is cheaper to incentivize the managing
directors of type − 1 as much as possible via status rather than wages. To achieve
this they must be able to get the same status as most of the senior managing directors
of type , if they work hard. This fixes the wage of the latter group at the managing
director’s level. In order to incentivize the senior managing directors, they are given
to understand that the CEO will be chosen from among their rank, and even though
the chance of getting selected is small, the salary is huge.

This stratagem of paying a huge salary to the tiny fraction of top performers in
a group is counterproductive at any level below , because monotonicity would force
the employer to pay all workers of higher type at least as much.

6.1.1 Wage Differentials for Disparate Workers

The conclusions about exorbitant pay for the CEO and pi = 1 for all i = 1, ..., − 1
are quite robust; they hold regardless of the distribution of abilities N1, ...,N , or the
disutilities of work d1, ..., d .

But the wage differentials wi − wi−1 for i < do depend on the Nj ’s and dj’s.
Our analysis is based on the following corollary:

27Adding the two equations yields a quadratic in the single unknown p . This quadratic is convex
and has a negative value at p = 0 and therefore a unique positive solution.
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Corollary to Theorem 9: Under the conditions of Theorem 9, I1 = N1 − 1 <
I2 = N1+N2− 1; Ii = Ni−1+Ni−1 for i = 3, ..., − 2. Also, I −1 = N −2+N −1+
(1− p )N − 1 ≈ N −2 +N −1 +N − 1. Finally, I = p (N −1 +N − 1) ≈ 0.

Thus for 2 ≤ i ≤ − 2,
(wi −wi−1)− (wi−1 −wi−2) = (di − di−1) +Ni−2 −Ni.

Proof: The incentive formulae are trivially generated by plugging pi = 1 for 1 ≤
i ≤ − 1 into the status incentives for each agent, and by observing that p ≤P

i=1 di/M ≈ 0 if M is large.
The wage differentials were explicitly computed in the proof of Theorem 9. ¥

A natural case to consider is the one where the populationNi declines in size as the
ability type increases. If disutilities do not fall as fast (i.e., if Ni−2 −Ni > di−1 − di,
which occurs for example, if disutilities are constant), then we conclude from the
corollary that wage differentials escalate as we go up the ability ladder from i = 2 to
i = − 2. See Figure 8.

Wage

2i = 2i = −
Ability level

Figure 8: Pyramidical Ability Distribution

Another natural case arises in a population that is bell-shaped around the mean
ability. When Ni −Ni−2 > di − di−1 for small i and Ni−2 −Ni > di−1 − di, for large
i, we get a wage schedule which is first concave and then convex. See Figure 9.

Wage

2i = 2i = −
Ability level

Figure 9: Bell-Shaped Ability Distribution
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The simplest case is when Ni = N ∀i and di = d ∀i. Below we graph the situation
exactly, for all , when = 6, Ni = 2, and di = 3.

1
HJ 2

HJ 3
HJ 4

HJ 5
HJ 6

HJ

2
3
4
5

M

Wage

Output

Figure 10

6.2 Homogeneous Workers

Consider again the model of Section 4, but with scores interpreted as output produced
by homogeneous workers. We begin by showing that if no status attached to higher
wages, then the employer should use trigger wages, paying a constant wage to any
output above a threshold, and nothing for output below it. When status enters
the picture, the optimal wage schedule is exactly the same, except that the constant
wage is reduced by the status incentive. The reason is that the top cell in the optimal
pure status partition (derived in Section 4) begins precisely at the threshold wage
of the pure wage game. Thus for the homogeneous case, wage incentives and status
incentives run in parallel, and reinforce each other.28

Recall that f and g are the output densities of the worker and shirker. For
simplicity we shall suppose29 that the possible outputs lie in a finite set Q ⊂ R,
and that for all x ∈ Q, either f(x) > 0 or g(x) > 0. A (monotonic, anonymous,
absolute) wage schedule is simply a nondecreasing function w mapping outputs to
wages, w : Q→ R+. The set of all such w is denoted W.

The following lemma shows that if an employer does not have any recourse to
status incentives, but must motivate his employees exclusively via wage incentives,
then he should pick a trigger wage, i.e., a wage schedule w ∈W which is zero below
a trigger output θ and a positive constant M for all outputs at least θ.

28For cells below the top, the employer will pay the same zero wage, but allocate titles to the
different cells to generate the same status as in the pure status game described in Section 4.
29 If Q is a compact interval, we can approximate it by a fine finite grid and then use a limiting

argument to derive the analogous result for a continuum of outputs.
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Lemma 6: If g does not stochastically dominate f , the problem

min
w∈W

X
x∈Q

f(x)w(x)

s.t.
X
x∈Q

[f(x)− g(x)]w(x) ≥ d

is solved by every trigger wage of the form

w∗(x) =
½
0 if x < θ
M if x ≥ θ

where

θ ∈ Q∗ ≡ argmax
θ∈Q

P
x≥θ f(x)P
x≥θ g(x)

and

M =
dP

x≥θ[f(x)− g(x)]
.

Proof: Consider first the class WT ⊂ W of all trigger wages. Since g does not
dominate f , there is a θ with

P
x≥θ[f(x) − g(x)] > 0. Hence there are feasible

w ∈ WT satisfying the constraint. In fact there are only a finite number of such θ,
and once θ is specified, M(θ) is determined by the constraint. The optimal trigger
wage is then given by the pair (θ,M(θ)) that minimizes the expected wage. But since

argmin
θ∈Q

P
x≥θ f(x)MP

x≥θ[f(x)− g(x)]M
= argmax

θ∈Q

P
x≥θ f(x)P
x≥θ g(x)

,

it is obvious that w∗ is a best wage schedule in WT .
But any w ∈W is simply a convex combination of w̃ ∈WT . Since the minimand

and the constraint are linear in the vector (w(x))x∈Q, the convex combination can
never be better than the best summand. Hence w∗ is also optimal in W. ¥

Lemma 7: Let θ ∈ Q∗, and let P be an optimal, absolute status incentive partition
(as defined in Section 4). Then the cell [a, b) in P containing θ has a = θ or else
a ∈ Q∗.

Proof: Take any θ ∈ Q∗. Suppose there is a cell [a, b) in P with a < θ < b. Since
θ ∈ Q∗, P

x≥θ f(x)P
x≥θ g(x)

≥
P

x≥a f(x)P
x≥a g(x)

(1)

and P
x≥θ f(x)P
x≥θ g(x)

≥
P

x≥b f(x)P
x≥b g(x)

if b ≤ max{q ∈ Q}. (2)
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Hence, P
a≤x<θ f(x)P
a≤x<θ g(x)

≤
P

x≥θ f(x)P
x≥θ g(x)

(3)

and P
θ≤x<b f(x)P
θ≤x<b g(x)

≥
P

x≥θ f(x)P
x≥θ g(x)

. (4)

Putting these last two inequalities together,P
a≤x<θ f(x)P
a≤x<θ g(x)

≤
P

θ≤x<b f(x)P
θ≤x<b g(x)

. (5)

If a /∈ Q∗, then inequality (1) is strict, and hence inequalities (3) and (5) are strict.
But strict (5) contradicts Theorem 6, according to which g stochastically dominates
f inside [a, b). Thus a ∈ Q∗. ¥

Lemma 8: Let P be an optimal, absolute status incentive partition. Suppose [a, b)
is a cell in P with a ∈ Q∗. Then for every cell [c, d) in P with c ≥ b, c ∈ Q∗. Thus
if [e,∞) is the top cell in P, then e ∈ Q∗.

Proof: >From the outside condition of Theorem 6, f uniformly dominates g across
cells of P. Hence P

x≥cf(x)P
x≥c g(x)

≥
P

x≥a f(x)P
x≥a g(x)

,

hence c ∈ Q∗.
>From Lemma 7 we know that at least one cell [a, b) in P has a ∈ Q∗. ¥

We now consider the general problem of selecting the optimal wage schedule,
taking into account its status incentives and wage incentives together.

Let P be a partition of Q into consecutive cells. A wage schedule w is consistent
with P, if w is constant on each cell of P. The set of all wage schedules in W that
are consistent with P is denoted W(P).

Let Π be the (finite) set of partitions of Q into consecutive cells.
Consider the problem of finding an optimal wage schedule w:

min
w,P

X
x∈Q

f(x)w(x)

s.t.

⎧⎨⎩
I(P) +Px∈Q[f(x)− g(x)]w(x) ≥ d

P ∈ Π
w ∈W(P)

where I(P) denotes the status incentive generated by P, as defined in Section 4.
We are now ready to state the main result of our section.
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Theorem 10: Let P be any optimal, absolute status partition, and let [a,∞) denote
its top cell. Then there is an optimal wage schedule (P, w) which has P as its
partition, and a trigger wage at θ = a.

Proof: By Lemma 8, a ∈ Q∗. By Lemma 6, there is a trigger wage, with trigger at
a, that minimizes the wage bill given the constraint that the wage incentive exceed
d− I(P). Clearly this trigger wage is consistent with P.

No other consistent pair (P 0, w0) can do better. P 0 provides an incentive I(P 0) ≤
I(P), since P is status optimal, and therefore the wage w0 must generate a bigger
wage incentive d − I(P 0). It must therefore generate at least as high a wage bill as
w. ¥

As in the disparate case, we find that the top echelon of performers are rewarded
well beyond all the others. The difference is that in the disparate case it was only a
tiny elite, while here it is every score in the top cell, which might be quite big.

7 Concluding Comments

7.1 Heterogeneous Students

Consider the situation in which students are neither identical nor disparate. To be
concrete, suppose that an exam consists of K questions. Each student n = 1, ..., N
who works has a probability pn of getting any question right, where answers are
independent across students and questions. Suppose that if n shirks this probability
drops to pn−1 where 0 = p0 < p1 < p2 < · · · < pN = 1, and pn − pn−1 = 1/N for all
n.

We have seen that working gives each student an exam performance that uni-
formly dominates his performance from shirking. Were all the students identical (say
pn(work) = 1/2 for all n, and pn(shirk) < 1/2 for all n) then the optimal grading
partition would be perfectly fine, by Theorem 5. But on account of the heterogeneity,
each student must compete with the performance of other students who are not like
him.

A standard variant of the central limit theorem shows that as N gets large, the
class performance converges to the distribution given by p = 1/2. For pn near 0
(and pn near 1), a student n will almost surely finish near the bottom (near the
top) whether or not he works. Thus with perfectly fine grading the best and worst
students have little incentive to work. The interesting thing is that coarse grading will
increase their incentive to work. Since students in the middle with pn near 1/2 can
surpass a large number of others by switching from shirk to work, they already have
huge incentives to work. Even if coarse grading diminishes the middling students’
incentives, it is still the most effective device to incentivize all students to work, i.e.,
to maximize the minimum incentive.

We illustrate this by considering the case whereK = 26 andN = 10. We simulate
the situation with 226 = 67, 108, 864 students. In Table B we report the expected
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exam payoffs for ability levels p = .1, .2, ..., .9, who work, when scores are partitioned
into grades {[0, g), [g, 2g), ..., [rg, 27)}, where rg ≤ 26 < (r + 1)g, for g = 1, ..., 9.
Higher g corresponds to coarser partitions. For g = 1 we get the perfectly fine
partition where all scores are reported. For g = 9, the grading partition corresponds
to just three grades {[0, 9), [9, 18), [18, 27)}. Note that low-ability types get very low
expected exam payoffs, losing to nearly everyone in the class.

In Table C we give the incentives to work, obtained from Table B by subtracting
expected exam payoffs for pn−1 from expected exam payoffs for pn. Notice how
coarsening the partition helps all the very bad and very good students.

Finally, in Table D we compare the incentives from the partition g = 9 that gives
just three grades to the fine partition g = 1 that reports scores exactly. Everybody
except the middling students p = .5 and p = .6 have higher incentives to work from
coarse grading. The maximin is also higher for g = 9 than for g = 1.

TABLE B. Expected Exam Payoff s
High Size of partition ce lls
ab ility 1 2 3 4 5 6 7 8 9
0 .1 -67060341.99 -67027557 .41 -66954572.62 -66798284.52 -66452484 .31 -66279793.62 -66334980 .98 -65969700 .87 -64533683.04
0 .2 -65768474.36 -65404074 .77 -64749982.27 -63751432.39 -62476223 .82 -58974576.83 -56995198 .89 -58766361 .91 -60749201.08
0 .3 -57811907.91 -56762591 .46 -55061210.25 -52705913.55 -50553306 .28 -47476806.64 -38901651 .72 -35793564 .73 -40511823.36
0 .4 -35591919.04 -34470982 .35 -32739333.56 -30669192.43 -27533025 .36 -27565352.02 -22987902 .24 -15390212 .32 -14405735 .5
0 .5 0 0 0 0 0 0 0 0 0
06. 35591919.04 34470982 .29 32739333.56 30546272.77 28812711 .55 23743732.17 25973646 .66 24445855 .03 14405735 .5
0 .7 57811907.91 56765291 .32 55061210.25 52885114.95 49945236 .31 46357223.89 41579600 .03 47925472 .56 40511823.36
0 .8 65768474.36 65404074 .52 64749982.27 63667698.85 61935421 .24 61917720.25 55004931 .85 56537217 .42 60749201.08
0 .9 67060341.99 67027557 .12 66954572.62 66823769.13 66651744 .43 65837255.16 65894986 .17 61737403 .64 64533683.04

TABLE C. Incentives
High S ize of partition cells
ab ility 1 2 3 4 5 6 7 8 9
0 .2 1291868 1623483 2204590 3046852 3976260 7305217 9339782 7203339 378482
0 .3 7956566 8638783 9688772 11045519 11922918 11497770 18093547 22972797 20237378
0 .4 22219989 22294309 22321877 22036721 23020281 19911455 15913749 20403352 26106089
0 .5 35591919 34470982 32739334 30669192 27533025 27565352 22987902 15390212 14405735
06. 35591919 34470982 32739334 30546273 28812712 23743732 25973647 24445855 14405735
0 .7 22219989 22294309 22321877 22338842 21132525 22613492 15605953 23479618 26106089
0 .8 7956566 8638783 9688772 10782584 11990185 15560496 13425332 8611745 20237378
0 .9 1291868 1623483 2204590 3156070 4716323 3919535 10890054 5200186 3784482

TABLE D. Advantage of Coarse Grading
Incentives from Incentives from
probab ilities fine partition

g = 9 g = 1
p = .2 3784481.96 1291867 .625
p = .3 20237377.72 7956566 .455
p = .4 26106088.86 22219988.87
p = .5 14405734 .5 35591919.04
p = .6 14405734 .5 35591919.04
p = .7 26106088.86 22219988.87
p = .8 20237377.72 7956566 .455
p = .9 3784481.96 1291867 .625

7.2 Midterms

The introduction of midterms before a final makes it even more necessary to have
coarse grading. It is not always good enough to average midterm and final scores,
and then clump them. It will sometimes be strictly better to clump midterm scores
into grades, and to clump final scores into grades, and then to average the grades.

The point can be easily seen via our simple example (see Section 3.1) of two
disparate students.
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We imagine a two-period game in extensive form between the students. In period
1, both simultaneously choose effort levels (work or shirk) for the midterm. Their
performance is as in Figure 1. The scores of the midterm are made public, i.e., each
student finds out not only his own, but his rival’s score. Then they enter period 2
and again simultaneously choose effort levels for the final. The performance is once
more given by Figure 1. (It is independent of past history and depends only on the
current effort level.) Suppose students care only about their (relative) grade for the
course. Suppose also that the professor wants them to work for both exams. How
should the two exam grades be combined into a course grade?

One common practice would be simply to add the midterm score (weighted by
1− λ) to the final exam score (weighted by λ), and then to assign a letter grade to
the aggregate score in accordance with a partition P(p) (see Figure 2).

We shall see that with such a grading scheme, it is often not feasible to incentivize
both students to work on both exams under all circumstances (i.e., at all information
sets of the game tree).

But if the midterm and final are given letter grades, and then the course grade is
aggregated from the exam letter grades, then it becomes much easier to incentivize
them.

7.2.1 Optimal Grading

Suppose the disutility each student feels studying is dM for the midterm and dF for
the final. Let a be the expected score of α when both students work on both exams.
Then since the total score must be zero, β’s expected payoff is −a. Furthermore, by
monotonicity a ≥ 0.

The worst the payoff to β can be when he shirks is —1. Hence the benefit to
working on both exams compared to shirking on both is at most −a− (−1) = 1− a.
On the other hand, by disparateness and monotonicity, the worst payoff to α when
he shirks is 0. Hence the corresponding benefit to α is at most a. Thus the maximum
disutility that can be overcome is dM + dF ≤ min{a, 1− a} = 1/2.

It is natural to suppose that dM ≤ dF , since most finals are partly cumulative.
We present a grading scheme that indeed incentivizes both agents to work so long

as dM + dF ≤ 1/2, and dM ≤ dF .
On the final, we give the same three grades C, B, A as in Figure 2, with p = .5.

On the midterm, however, we grade more finely, by splitting B into B+ if the score
is in the bottom half of JαH , and B— if it is in JβH ∪ JαL .

For the course grade, we average the midterm and final grades by giving a C if
either exam was a C, giving an A if the midterm is B+ or A and the final is an A,
and giving a B otherwise.

If both work on both exams, β gets B— on the midterm, a B on the final, and a
B for the course. Meanwhile, α gets a course grade of A with probability 1/2 and B
with probability 1/2. The expected payoff to β is —1/2 and to α is 1/2.

No matter how both students have done on the midterm (assuming they both
worked), α needs an A on the final to get an A for the course. If he shirks he falls to
B, giving himself a course payoff of 0, and if β shirks on the final, his grade plummets
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to C, giving him a course payoff of —1. Thus both have incentive 1/2 to work on the
final.

On the midterm, if α shirks he guarantees himself a B for the course, losing a
course payoff of 1/2. But knowing that, he would also shirk on the final, saving
disutility of 1/4. Thus his incentive to work on the midterm is 1/4. Similarly, if
β shirks on the midterm his course grade drops to C, and his course payoff to —1.
Knowing this he will shirk on the final, saving disutility of 1/4. Thus for β as well,
the incentive to work on the midterm is 1/4.

7.2.2 The Failure of Weighted Average Grading

We now show that the standard method of adding midterm and final scores gives a
smaller set of pairs (dM , dF ) that can be induced to work on both exams. Interest-
ingly, we find that even to support this smaller set, the weight placed on the final
should be greater than the weight on the midterm.

Let us turn to a precise calculation. Denote JnL = [a
n
L, b

n
L] and JnH = [a

n
H , b

n
H ] for

n = α, β in Figure 1; and, for concreteness, suppose JαH ≡ [ε, 1] where 0 < ε < 1/6.
Also suppose dM + dF = 1/2 and 1/5 < dM ≤ 1/4.

Suppose the course grade is obtained by averaging the midterm score (weighted
by 1 − λ) and the final score (weighted by λ), and then assigning a letter grade
according to the old partition P(p, q) pictures below:

C B A

0 Laβ
Lbβ

Haβε = 1 Hbβ= Hbα
Lbα

Laα
Haα

(1 )q− (1 )p− pq

Figure 14

We shall show that there is no choice of (λ, p, q) ∈ [0, 1]3 which can incentivize α and
β to work for both exam.

LetWα
M (Sα

M) denote the choice of work (shirk) by α in the midterm, etc. Assume
α has chosenWα

MWα
F . If β chooses W

β
MWβ

F , his payoff is q−1− qp; and if he chooses
Sβ
MSβ

F , it is −1. Thus to incentivize β to switch from Sβ
MSβ

F toW
β
MWβ

F we must have

q − 1− qp− (−1) = q(1− p) ≥ dF + dM =
1

2
(1)

which implies

p ≤ 1
2
. (2)
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Similarly, assuming β has chosen Wβ
MWβ

F , the incentive condition for α to switch
from Sα

MSα
F to W

α
MWα

F yields

pq ≥ 1
2

(3)

which implies

p ≥ 1
2
. (4)

For (2) and (3), we get p = 1/2; and then, (3) implies q = 1. (From p = 1/2, it is
incidentally immediate that λ > 1/2, otherwise α will have no incentive to work after
getting aαH on the midterm. But we shall show that λ must be much bigger, given
the special interval JβH we have chosen.)

Consider the scenario where β gets 1 in the midterm (and α has chosenWα
MWα

F ).
If β works for the final he gets B for sure. But if β shirks for the final, he also gets
B for sure (losing all incentive to work), unless

(1− λ) · 1 + λ · 0 < ε

i.e.,
λ > 1− ε. (5)

Now (assuming still that α has chosen Wα
MWα

F ) if β chooses W
β
MW β

F , β’s payoff is
−p = −1/2. But if β switches to SβMSβ

F he can still get B provided (1−λ)aβL+λx > ε
(where x ≡ β’s score in the final), which (given (5) and ε < 1/6 < 1/2) in particular
happens whenever x ≥ 2ε. The probability of this latter event is Pr(ε) ≡ (1−2e)/(1−
ε). Thus Sβ

MW β
F yields to β a payoff of at least

(1− Pr(ε)) ·−1 + Pr(ε) ·−p ≡ π∗.

Thus, to incentivize β to switch from Sβ
MWβ

F to W
β
MWβ

F we must have

−p− π∗ ≥ dM >
1

5
(6)

But −p − π∗ = p(Pr(ε) − 1) + 1 − Pr(ε) ≤ 1 − Pr(ε) = ε/(1 − ε) < 1/5 (where the
inequality follows from our assumption that ε < 1/6), so it is impossible to satisfy
(6).
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