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1 Introduction

Blackwell’s (1953) theorem states (among other things) that, in single-agent problems, if the
agent is an expected utility maximizer, then she always prefers more information to less regardless
of the set of actions available to her. By contrast, Wakker (1988) argues that if the agent is
not an expected utility maximizer, then there must be a pair of signals, one more informative
than the other, and a decision problem, such that the agent strictly prefers the less informative
signal.! The key to Wakker’s result is that his agent is not dynamically consistent: her behavior
within a decision tree is not always what she would choose ex ante if she could commit. Indeed,
the reason Wakker’s agent sometimes chooses a less informative signal is in an attempt to self-
commit. Machina (1989) argues that Wakker’s finding comes from too narrow a definition of
dynamic consistency. Machina proposed a broader definition; one that does not require preferences
to conform with expected utility theory, or even to be recursive.?

An open question confronted by this paper is whether an agent who is dynamically consistent in
the Machina sense, will always prefer more information to less. Like Machina, we consider agents
who violate the expected utility axioms, and whose preferences are not necessarily recursive. We go
beyond Machina, however, in that we also consider violations of the reduction of compound lottery
axiom. In an earlier paper (Grant, Kajii and Polak (forthcoming)), we considered what we called
intrinsic preference for information: desiring information not only to make actions contingent on
what you learn, but also (for example) to relieve anxiety. Such preferences entail violations of the
reduction axiom. In that paper, however, we only studied the special case where the agent has
just one action available to her.® In that context, of course, dynamic consistency is not an issue.
This paper extends the analysis to the many-action case. The question then becomes whether,
given dynamic consistency, the conditions for an agent to prefer more information in the special
single-action case are necessary and sufficient for an agent always to prefer more information in
the general many-action case.

The answer is: “almost”. The reason for the “almost”, is that non-expected utility maximizers
are sometimes not indifferent among randomizations over indifferent outcomes. If the agents can
perform randomizations for themselves, this is not a problem. But if they rely on the realizations
of a signal to serve as a randomization device, then we need some extra restrictions if they are
always to prefer more informative signals. The necessary and sufficient restriction turns out to be
(roughly) that the agent never strictly prefers to randomize. The exact restriction is implied by

— but does not imply — recursivity.

1 This work was later extended by Schlee (1990, 1991) and by Safra & Sulganik (1995).
2 Machina’s notion of dynamic consistency is similar to what McClennen (1990) calls “resolute choice”.

3 While we borrow a result from the earlier paper, we do not rehearse the proof. The reader is referred to that
paper for this and a fuller discussion of intrinsic preference for information in the single-action case.



Section 2 introduces a natural definition of dynamic consistency that captures Machina’s intu-
ition. We say that an agent is dynamically consistent if her actual behavior within a decision tree
conforms to that she would have chosen ex ante were she able to commit. We derive the latter by
looking at the agent’s preferences among trees. Section 3 contains the main result: necessary and
sufficient conditions such that a dynamically consistent agent always prefers more information to
less. Section 4 discusses this result. For example, our result simply assumes dynamically consis-
tent behavior. We suggest, by means of an example, that if an agent intrinsically strictly prefers

more information, then this agent might fail to be dynamically consistent.

2 Dynamic Consistency.

We are interested in preference between, and behavior within, decision trees. We focus on trees in
which an agent chooses an action after the resolution of a signal. Outcomes depend on the agent’s
action and on the state of nature. For an example, consider a farmer who chooses her fertilizer after
receiving a weather forecast. The success of her crop depends on the weather and on the fertilizer
she chooses. In this section, we allow for decision trees that are slightly more general than this in
that the set of available actions can depend on the realization of the signal. Perhaps a particular
kind of fertilizer might not be available if bad weather is forecast. Preference for information is
a statement about the agent’s preferences among such simple decision trees. Loosely (we will
be more precise in the next section), it states that the agent prefers trees associated with more
informative signals. Dynamic consistency is a statement about how the agent’s behavior within
such a decision tree conforms to the behavior she would choose, ex ante, if she could commit.

To formalize these ideas, let € be the set of states of nature, let X' be the set of consequences,
let A be a set of actions, and let C be the set of functions of the form ¢ : QxA — X, that assign
a consequence to each state-action pair. In the following, unless otherwise stated, both € and X
are taken to be the interval [0,1].* We will confine attention to trees involving finite signals and

finite action sets. A typical tree, T, then consists of:
e a finite set of signal realizations, (s1,...,S,);
e the posterior beliefs on the state space Q, (P, ..., P,), induced by these realizations;

o the finite action sets, (41,...,4,), each A; C A, associated with the realizations;

the (prior) probabilities, (q1,...,qn), of observing these realizations;

e and a consequence function ¢ in C.

Let 7 denote the set of all such trees; that is, trees of the form: ((s;, P;, As; q;)P_q;¢). Let =1

be a complete and transitive preference relation over such trees. This preference relation describes

4 The analysis can rcadily be extended to outcome sets that are gencral compact metric spaces if we assume that
all welfare-relevant risk can be characterized as risk over the ranks of outcomes; see Grant, Kajii & Polak (1992).



a choice, made ex ante, among trees. For example, by selecting ex ante among different crops to
plant, each with a different response to the weather, our farmer can choose which consequence
function she faces. By selecting ex ante among news sources, she can choose her signal. By
selecting ex ante among supply contracts, she can choose the set of available fertilizers. Different
trees can be associated with different priors over the relevant states of nature. For example, if we
think of € as being the weather during the peak growing season, then selecting ex ante among
different crops or different planting times can affect this distribution.

Within each given tree, the agent chooses an action at each decision node; that is, after each
signal realization. More generally, the agent might randomize over the available actions but, for
the moment, consider just non-random behavior. Let b be a behavior function that, for each tree
7 in 7, assigns an action from A; to each signal realization s; of 7. Let b, be the corresponding
behavior in the specific tree 7, and b, (s;) be the corresponding action taken in the tree 7 after
seeing the specific signal realization s;. That is, b,(s;) is an element of A;. The behavior b(T) is
not to be thought of as a ‘plan of action’ (or ‘strategy’) formed ex ante, but rather as a description
of the agent’s actual behavior within the tree 7. These do not necessarily coincide. That is, what
the agent actually does within the tree 7 is not necessarily the same thing as she would choose
were she able to commit to those choices ex ante.

Given a decision tree, each behavior function b induces a two-stage lottery over outcomes.
In our example, suppose that there are two weather states, wet or dry. Suppose there are two
possible forecasts of the weather, s; and s9, which occur with probabilities ¢; and go respectively.
The posterior probability of wet given s; is py, and given sg is pa. There are two types of fertilizer
available at each state, a; and ag. If ay is chosen then the crop yield is = if wet and 2’ if dry.
Conversely, if ag is chosen, then the yield is 2/ if wet and z if dry. Let us refer to this tree as
7. Suppose that the agent’s behavior in this tree, bs, is to choose a; at s; and ag at s;. Then
the induced two-stage lottery assigns first-stage probability ¢; to the second-stage lottery [x,ps;
z', (1 — p1)], and assigns first-stage probability g, to the second-stage lottery [z, (1 — p2);a’, pa].

More formally, let £(X) be the set of probability measures on X. Let M (P, a,c) be the
probability measure in £(X) where, for any subset E of X, M(P,a,c)(E) =P({w € Q: ¢(w,a) €
E}). That is, given a probability distribution P over the set of states, M(P, a,c)(E) is the
probability that an outcome in E occurs if the action a is chosen. Let Lo(L(X)) be the set of
probability measures on L£(X) with finite support. Let 1)(b-;7) be the two-stage lottery induced
by the behavior function b in the tree 7. This is the element of Lo(L(X)) that assigns to each
(second-stage) lottery F in £(X) the sum of all the ¢; in the set {q; : M(P;, b, (s;),¢c) = F}.?

A special class of trees are those where the agent is ‘committed to an action ahead of time’.

5 Notice that, by the definition of a two-stage lottery, if [(M(P1,br(51),¢),q1;-..; (M(Pn,br(s2),¢), gn] and
(M(Py1,b(s1),¢),q15- . ; (M(Pn,b.(sn),c),qn] both assign the same total first-stage probability to cach second-
stage lottery in £(X) then they are identified as the same element of Lo(L£(X)).



Formally, let the set of commitment trees be the subset of 7 for which each action set A; is a
singleton. In our farmer story, an example of a commitment tree would be one in which the only
fertilizer available after seeing forecast s; is a1, and the only fertilizer available after seeing ss is as.
In this tree, the farmer is committed beforehand to the same fertilizers that her behavior b> would
have chosen within the less restrictive tree 7 described above. That is, the only possible behavior
in this commitment tree induces the same two-stage lottery over outcomes as that induced by b»
in the tree 7.

We are going to use the agent’s preferences among commitment trees to help define dynamic
consistency. Let 9 denote the restriction of >=7 to the set of commitment trees. Since the agent’s
behavior within each commitment tree is degenerate, each such tree maps directly to a two-stage
lottery in Lo(L£(X)). Therefore, we will interpret =5 as representing the agent’s preferences over
such two-stage lotteries.’

We have now defined an agent’s preference relation over two-stage lotteries and her behavior
within all trees in 7. Informally, it is natural to say that an agent is dynamically consistent
if her behavior within each tree induces a two-stage lottery that is best among those lotteries
that were achievable in that tree, where ‘best’ means according to her ex ante preference relation
over such lotteries. In our farmer story, in the game 7 described above, there are four possible
(non-random) behaviors. We can denote these by (a1,a1), (a1,a2), (a2,a;1) and (ag,az). If each of
these behaviors induces a different two-stage lottery then there are also four achievable two-stage
lotteries: ¥((a1,a1);7), ¥((a1,a2);7), ¥((az,a1);7) and ¥((az,az2); 7). More generally, let B(T)
be the set of two-stage lotteries that can be induced by some non-random behavior b, in the tree

T.

Definition 1 A preference relation between commitment trees =9 (i.e., a preference relation over
two-stage lotteries), and a (non-random) behavior within trees b, are dynamically consistent if,

for all trees T in T and all achievable two-stage lotteries X in B(7), ¥(br,T) =2 X.

The above notion of dynamic consistency links ex ante preferences and actual (interim) be-
havior. This definition is closely related to those of Johnsen & Donaldson (1985), McClennen
(1990), Machina (1989), and Karni & Schmeidler (1991). Like theirs, our definition of dynamic
consistency does not restrict preferences to be expected utility, or to be recursive, or to respect
reduction of compound lotteries.

If an agent can predict her own behavior in any tree (that is, she knows her behavior function

b), then, given an ex ante choice between two decision trees, she should choose the one in which

6 This interpretation implicitly assumes away ‘framing effects’; that is, if two commitment trees map to the same
two-stage lottery then the agent is indifferent between them. Formally, if two commitment trees 7 and 7/ are such
that, the (total) probability assigned by 1(br;7) to each (second-stage) lottery F in £(X) equals that assigned by
P(byr;T') to F, then 7 ~7 7/. (Since these are commitment trees, the behaviors within the trees, by and by, arc
uniquely determined.)



her behavior will induce the two-stage lottery that is better according to her ex ante preferences.
This idea is usually called “sophisticated choice” to distinguish it from “myopic choice” where the

agent fails to predict correctly.” The following formalizes this standard idea.

Definition 2 An agent is sophisticated if her preference relation between trees =1 and her (non-

random,) behavior within trees b are such that, for all pairs of trees T and 7" in T, 7 =7 7" if and

only if (br,7) =o PY(byr, T').

Combining these ideas, an agent who is both sophisticated and dynamically consistent, given
an ex ante choice between two decision trees, should first look at the set of achievable two-stage
lotteries in each tree. She should then pick the tree that permits the best two-stage lottery
according to her ex ante preferences. Since she is dynamically consistent, she knows that her
behavior within the tree will indeed induce this lottery. Again, the following formalizes this

standard idea.

Observation If an agent whose preference relation between trees is =1, and whose (non-random)
behavior within trees is b is both dynamically consistent and sophisticated then, for all pairs
of trees T and T in T, T =7 7' if and only if there is a achievable two-stage lottery X in

B(7) such that X =9 X' for all achievable two-stage lotteries X' in B(7').

Random behavior. So far, we have defined dynamic consistency for non-random behavior,
and we have determined what this implies for sophisticated ex ante choices among trees. We
now want to extend these ideas to allow for randomization. A complication that arises once we
allow the agent to randomize is that the precise two-stage lottery that is induced by such behavior
depends on the time at which the randomization takes place. In our farmer story, an example
of random behavior in the tree 7 could be for the farmer, at the weather forecast sy, to choose
fertilizer a; with probability « and fertilizer a; with probability (1 — «); and, at the weather
forecast sy, to choose fertilizer as with probability 1. If the farmer observes the randomization
device at the same time as she observes the forecast then this random behavior induces the two-
stage lottery that assigns first-stage probability ag; to the second-stage lottery [z, p1; 2/, (1 —p1)];
assigns first-stage probability (1 — a)g; to the second-stage lottery [z, (1 — p1); 2, p1]; and assigns
first-stage probability g to the second-stage lottery [z, (1 — p2); ', po]. It is as if there were three
weather reports that the farmer could use to condition her fertilizer choice: a report si; that
occurred with probability ag; an identical report s1o that occurred with probability (1 — «)qq,
and the report so.

On the other hand, suppose the farmer only observes the realization of the randomization

device when the true state is revealed. We can think of this as the farmer choosing a random

7 See, for example, O’Donoghuc & Rabin (1996).



action at s;. In this case the random behavior induces the two-stage lottery that assigns: first-
stage probability ¢; to the second-stage lottery [z, ap1+(1—a)(1—p1); 2/, a(1—p1)+(1—a)p;]; and
assigns first-stage probability ¢o to the second-stage lottery [z, (1 — p2); 2/, p2|. These are different
two-stage lotteries. As we shall see in Section 3, once we move away from standard preferences (in
particular, once we drop the reduction of compound lotteries axiom), this distinction can matter.

More generally, we can think of two types of randomized behavior within our set of deci-
sion trees 7. With early-resolution randomization, the realization of the ‘randomizing device’ is
contemporaneous with the resolution of the signal: the agent can be thought of as selecting a
non-random action at the second stage, with that choice depending jointly on the realizations of
the randomizing device and of the signal. With late-resolution randomization, the resolution of
the randomizing device is contemporaneous with the final resolution of the state: that is, the agent
mixes at the second stage. If the agent has access to randomization devices, it seems natural to
allow her both early- and late-resolution random behaviors. Let b be a random behavior function.
It describes how the agent randomizes (both early and late) within each tree in 7. Let b, describe
the early and late randomizations of the agent in the specific tree 7. Let 7#(57, 7) be the two-stage
lottery induced by the random behavior b, in the tree 7. And let B(7) be the set of two-stage
lotteries that can be induced by some random behavior b, in the tree 7.

Clearly a commitment tree cannot commit an agent to randomize. Nevertheless, both dynamic
consistency and of sophistication allowing for randomization can be defined exactly analogously
to their definitions when randomization is excluded. A preference relation between commitment
trees >4 (i.e., a preference relation over two-stage lotteries) and a random behavior within trees
b, are dynamically consistent if, for all trees 7 in 7 and all achievable two-stage lotteries X in
B(7), ¥(bs,7) =2 X. An agent whose preference relation between trees is =7, and whose random
behavior within trees is b is sophisticated if, for all pairs of trees 7 and 7/ in T, 7 = 7’ if and only
if (by,7) =2 Y(by,7’). If an agent whose preference relation between trees is =7, and whose
random behavior within trees is b is both dynamically consistent and sophisticated, then, for all
pairs of trees 7 and 7 in 7, 7 =7 7’ if and only if there is a achievable two-stage lottery X in

B(7) such that X =5 X’ for all achievable two-stage lotteries X’ in B(7').

3 Preference for Information

In this section, we provide necessary and sufficient conditions for a sophisticated dynamically
consistent agent always to prefer more information to less. The conditions will be restrictions on
the agent’s ex ante preferences and, in particular, on her preferences over commitment trees (that
is, over two-stage lotteries).

The following generic definitions are useful. Let Z be a convex set in a linear space, and let

Lo(Z) denote the set of probability measures on Z with finite support. It is conventional to write



[21,P1; .+ Zn, Pn] to denote the measure (or lottery) in Lo(Z) that assigns, to each z in Z, the
probability » ;. __p;. Writing lotteries in this way does not imply that there are n elements in
the support of this lottery, since the z; need not be distinct. For example, [z1,p1; 21, (p — p1);
29, (1 — p)] is identical to [z1,p; z2, (1 — p)].

Definition 3 An elementary linear bifurcation of a measure [(2;,p;)71,] in Lo(Z) is a measure

of the form [21,p15..; 2k—1, Pk—1; 25 BPk; 2 s (1 — B)Pki Zhe41, P15 -5 Zms Pm| in Lo(Z), where (3 is
in [0,1], and z, = Bz, + (1 — F)z).

These two lotteries are identical except that the ‘kth outcome’; zp, of the first lottery is the
conditional mean of the two outcomes zj, and 2z in the second lottery. That is, the probability
weight on the kth outcome is distributed between two outcomes in mean-preserving way. It
does not follow from this definition that the support of the original lottery is a subset of the
support of the elementary linear bifurcation: the outcomes z;, and z; could both coincide with
outcomes in the support the original lottery. This will be important when we consider preference
for randomization below.

We use the standard Blackwell (1953) definition of more information. A signal is defined by
its (finite) list of possible realizations S, and its likelihood function A : S x Q —[0,1], where for

any win Q, > g A(s|w) =1. Then:

Definition 4 The signal (S, ) is more informative than the signal (S’ ,)\/) with respect to the
prior belief m on Q if there exists a function a: S’ x S — [0,1] such that ", a(s’,s) =1 for all
sin S, and N'(s'|w) =X, a(s’, s)A(s|w) for all w in Q such that w(w) > 0 and all s" in S’

For example, in our farmer story, suppose that there are two possible weather-forecast services,
each of which gives two possible forecasts, (s1, s2) and (s}, s5). As before, suppose that the weather
is either wet or dry. If the weather is going to be wet, the probability of the first service reporting
s1 18 A1, and the probability of the first service reporting sg is A2. The second forecast service,
however, operates by listening to the first service forecast, copying it down quickly, and then re-
broadcasting it in its own words. This copying can lead to errors. Let a; be the probability that
s1 gets wrongly re-reported as s}, and let ay be the probability that sy gets wrongly re-reported as
s} Intuitively, the imperfectly copied weather forecast service is less informative than the original,
and this is confirmed by Blackwell’s definition. For example, if it is wet, the probability of the
second service reporting s} is (1 — ag)A1 + agAe.

To apply the apparatus of the previous section, we want to associate signals with decision trees

in 7. In our farmer story, suppose that the farmer’s prior probability of it being wet is m. Suppose

8 More generally, we say that one signal is more informative than another if it is more informative with respect
to all priors.



that he has the same two fertilizers (with the same consequences for his crop) as in the tree 7.
The first weather-forecasting service then induces a tree like 7 where ¢ :=7wA; + (1 — 7)(1 — A2),
p1 = mA1/q; and where ¢; and po are defined similarly.

More generally, for each signal (S, ), given a prior belief 7 on Q, we can compute the un-
conditional probability of observing each realization. We can ignore signal realizations that occur
with zero probability, so let (s1,...,snx) C S denote the list of signal realizations that occur
with positive probability. For each such s;, let g; in (0, 1] denote this probability, and let P; de-
note the posterior belief on ) induced by that realization. Thus, given a prior 7, a consequence
function ¢ in C, and a fixed finite action set A € A, the signal (S, ) induces the decision tree
((si, Pi, As qi)ieqs o).

These trees induced in this way are special in that the action set, A, is the same for each
realization. We shall call such trees Blackwell decision trees. Informally, we say that an agent
always prefers more information if he always prefers the Blackwell decision trees induced by more
informative signals, regardless of the (fixed) set of actions he has available. That is, information
loving is a statement about the agent’s ex ante preferences among decision trees, =7. More

formally,

Definition 5 An agent is an information lover if: for all priors m on €, all consequence functions
c in C, and all finite action sets A € A, if the signal (S, \) is more informative than the signal
(8", \') with respect to w, then the Blackwell tree induced by (S,)) is weakly preferred to that

induced by (S’,\') according to the agent’s (ex ante) preference relation =7.

Blackwell (1953) showed that, regardless of their prior beliefs, available action sets and con-
sequence functions, all atemporal expected utility maximizers are information lovers. The term
‘atemporal’ here means that preferences respect the reduction of compound lotteries axiom (here-
after, ‘reduction’ ). Expected utility implies (among other things) that preferences respect the
independence axiom. We will relax both reduction and independence. A loose intuition for Black-
well’s result is that more information weakly enlarges the set of reduced lotteries achievable by the
agent. Given reduction, the agent only cares about reduced lotteries. Thus, given a larger choice
of such lotteries, the agent must be weakly better off. The reason this intuition is loose is that,
strictly speaking, the achievable set is only enlarged if we allow the agent to randomize. Given
independence, however, the agent will never strictly prefer to randomize: any utility level that can
be attained by randomization can also be attained by some non-random choice. Once we drop
reduction and independence, both steps in the above argument fail: the set of available multi-stage
lotteries is not increased by more information; and the agent may strictly prefer randomization.
We discuss each in turn.

The first major maintained hypothesis for Blackwell, then, was that preferences over two-stage



lotteries, =2, satisfy the reduction axiom. This axiom is very restrictive. It is equivalent to saying
that, if an agent has only one action available to her, she would be indifferent to information.
In our story, however, uncertainty about the weather may cause the farmer to suffer anxiety. If
so, she may want to get a weather forecast even if there is no actions she can take contingent on
what she learns (say, she has only one fertilizer available). This case provides extra reason for
the farmer to be an information lover. On the other hand, the farmer might enjoy the hope that
ignorance permits. If so, she might strictly prefer not to get the forecast unless she can make her
actions contingent on what she learns. In this case, the farmer is not an information lover, since
the definition requires her (weakly) to prefer more informative signals regardless of her available
action set.

In an earlier paper (Grant, Kajii & Polak, forthcoming), we focussed on such intrinsic pref-
erences for and against information. That is, we explicitly relaxed the reduction axiom. In that
paper, we restricted attention to the special case where the agent had only a single action avail-
able. Clearly, a necessary condition for an agent to be an information lover in general is that
she (weakly) prefers more information to less in that special case. The earlier paper shows this
is equivalent to the following property of preferences over two-stage lotteries. That is, if we drop

reduction but we want information loving, we are going to need this property.

Definition 6 An agent’s preference relation over two-stage lotteries, o, satisfies single-action
information loving if and only if, for any pair of two-stage lotteries X and Y in Lo(L(X)) such

that Y is an elementary linear bifurcation of X, Y =2X.

In this paper, we are looking for conditions that give information loving in the more general
many-action case. It is natural to ask whether the above necessary property is also sufficient in
the general case. It turns out that the answer depends on the agent’s ability to randomize and
her preferences concerning randomization.

The second major maintained hypothesis for Blackwell was that preferences satisfied the in-
dependence axiom, and hence the agent would never strictly prefer to randomize. To see why
randomization may be an issue consider the following variant on the famous indivisible good allo-
cation problem of Diamond (1967) and Machina (1989). Suppose that a mother has three children
and one indivisible good. For reasons of procedural fairness, she may strictly prefer to randomize
over which child should get the good. If the mother can randomize for herself then there is no
problem. But suppose that the only ‘randomization device’ available to her is a signal about
whether or not it will rain tomorrow. Suppose that the signal has three possible realizations,
each of which occurs with probability 1/3, inducing the posteriors 1/4, 1/2 and 3/4, respectively.
Then, the mother can use the signal to achieve her desired fair randomization. Now suppose

that the signal is replaced with a second signal which has only two possible realizations, each of



which occurs with probability 1/2, inducing the posteriors 1/4 and 3/4, respectively. It is easy
to check that the second signal is more informative by the standard Blackwell definition. Now,
however, the mother cannot use the signal to achieve her desired fair randomization between the
three children. Under our assumption that she cannot randomize for herself, it is possible for the
mother to prefer the less informative signal.

The problem here is that a signal can be less informative but still have more signal realizations.
Conditioning on signal realizations generates two-stage lotteries similar to those generated by
early-resolution randomization. Thus, there is no advantage to having extra realizations if the
agent can perform early resolution randomization for herself. Alternatively there is no advantage
if the agent never strictly prefers such randomization. The following property rules out such

preference, without imposing independence.

Definition 7 An agent’s preference relation over two-stage lotteries, =o, satisfies conditional
quasi-convexity if for all pairs of two-stage lotteries of the form X =[(F;, ¢;)"_1] and Y =[(F1, q1;
s, -1 F 455 F 1, @iy By qn)] in Lo(L£(X)), with g >0: if X =Y then, for all o in
0,1), X =a[(F1,q1;- - 5 Fj1,q5- 138, aqj; Ff, (1 — @)qj5Fj 41, Giv1se - - 5Fn, gn)]-

The following proposition provides necessary and sufficient conditions for sophisticated dynam-
ically consistent agents always to prefer more information. We already know that single-action
information loving is a necessary condition. If the agent can perform early-resolution randomiza-
tions then it is also sufficient. If the agent cannot perform early-resolution randomizations other
than by conditioning on signal realizations, then conditional quasi-convexity is also necessary.

Formally,
Proposition 1 Suppose that an agent is sophisticated and dynamically consistent and that her
preferences over two-stage lotteries are continuous.

(i) If she can perform early-resolution randomizations then: she is an information lover if and

only if her preferences over two-stage lotteries satisfy single-action information loving.

(i) If she cannot perform early-resolution randomizations other than by conditioning on signal
realizations then: she is an information lover if and only if her preferences over two-stage

lotteries satisfy both single-action information loving and conditional quasi-convexity.

Proof. See appendix.

4 Discussion.

Recursivity and Conditional Quasi-Convexity. It is often assumed that preferences over

two-stage lotteries are recursive. Formally, a preference relation over two-stage lotteries, >,
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satisfies recursivity if for all pairs of two-stage lotteries of the form X =[(F;,¢;)N,] and Y =
[F1,q15- - F 1,45 13F), 455 Fj41, ¢iv1se -5 Fn s gn] in Lo(L£(X)), with gj > 0: X =3 Y if and only
if [Fj,1] =2 [F], 1].Y For example, a property like this is assumed by Kreps & Porteus (1978),
Johnsen & Donaldson (1985), LaValle & Wapman (1985), Chew & Epstein (1989), Segal (1990),
Epstein (1992), and Sarin & Wakker (1994, 1996). On the other hand, Machina (1989) argues
against assuming this degree of consequentialism. Following Machina, our definition of dynamic
consistency does not require preferences to be recursive. Moreover, neither part of Proposition 1
requires recursivity. More specifically, conditional quasi-convexity is strictly weaker than recur-
sivity. Thus, given single-action information loving, recursivity is sufficient but not necessary for
an agent to be an information lover (even if the agent cannot perform randomizations).

Even if we assumed recursivity, the conditions for information loving shown in Proposition 1
do not imply expected utility. This contrasts with the conclusions of Wakker (1988) and Safra &
Sulganik (1995). The reason is that, unlike these authors, we do not assume the reduction axiom.
Reduction would imply single-action information neutrality, whereas we only require (weak) single-
action information loving.

Although weaker than recursivity, conditional quasi-convexity is still restrictive in that it rules
out strict preference for randomization. A referee points out, however, that there is anyway a
tension between strict single-action preference for information and strict preference for random-
ization. The agent who likes information because she is anxious, or simply dislikes living with
risk, might be expected strictly to prefer not to randomize. It does not follow, however, that an
agent who exhibits strict single-action information loving will never strictly prefer to randomize.
By definition, single-action information loving describes preference between trees within which
there is no possibility of randomization. Thus, we can think of single-action information loving as
isolating intrinsic attitudes towards information from other considerations such a procedural fair-
ness. In the absence of the opportunity to randomize, the mother in the Diamond example might
prefer more information to less. Perhaps, she is an anxious person. But, once randomizations are
available, her concerns for procedural fairness outweigh her concern for anxiety. Thus, while there
is a tension between anxiety and randomization in the sense that there is a trade off, there is no
contradiction.

Even if we relax conditional quasi-convexity, given single-action information loving, a sophisti-
cated dynamically consistent agent will still ‘almost always’ prefer more informative signals, even
if she cannot perform randomizations other than by conditioning on signal realizations. Loosely
speaking, whenever a more informative signal offers fewer opportunities to randomize, we can

always slightly perturb the signal to increase the number of possible realizations.

9 Once again, the (Fi)iil, and F]' are not necessarily distinct.
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Preference for information and Dynamic Inconsistency. So far, we have shown con-
ditions under which a sophisticated dynamically consistent agent is an information lover. These
conditions included at least weak preference for information in the absence of any choices within
the tree: that is, single-action information loving. Suppose, however, that this preference were
strict, perhaps because the agent suffers from anxiety. Is it still reasonable to assume that the
agent will be dynamically consistent? Consider the following example.

Consider the dilemma of a prisoner, let’s call her Jo, who is anxiously awaiting the outcome of
her trial for murder. If she is found guilty she will spend the next ten years in jail. The verdict has
been delivered, but Judge Oti has sealed it in an envelope overnight. Jo would much rather that
the envelope be opened immediately; she has intrinsic preference for information. Meanwhile, the
DA is considering offering Jo a plea bargain involving only four years in jail. Suppose that if the
DA were to offer Jo a choice between opening the envelope now or taking the plea, Jo would be
more or less indifferent. Perhaps, by a small margin, she would choose to rip open the envelope.
Suppose instead that the DA offered either the plea or simply waiting for the envelope to be
opened in the morning. By transitivity, Jo would want to take the plea. But, now suppose that
the plea must be declared in front of Judge Oti in the morning, and Jo cannot commit ahead of
time. Come the morning, the choice between the plea or the envelope will look much the same
as the choice looked the night before between the plea and immediately opening the envelope,
not waiting overnight. Therefore, Jo may refuse the plea come morning. But, anticipating the
inconsistency of her future self, Jo is destined for an uneasy night.

In this story, Jo’s intrinsic strict preference for information led her to be dynamically incon-
sistent. Jo is sophisticated in that she realizes her behavior the next morning will differ from the
behavior she would choose if she could commit herself tonight. Thus, she would prefer to commit.
This suggests that there is a tension between dynamic consistency and intrinsic preference for
information. In Kreps & Porteus’s (1978) study of intrinsic preference for information, however,
agents are dynamically consistent (indeed, they have recursive preferences). The reason is that,
in Kreps & Porteus, intrinsic preference for information can be thought of as concern about the
time that separates the resolution of uncertainty from the impact of the event itself. For Jo, this
is the period between the verdict being announced and either the sentence being carried out or
her going free. If the agent is concerned with this time period then dynamic consistency seems
a natural assumption. But introspection and our story suggest that intrinsic preference for infor-
mation should instead be thought of as concern about the time that separates the resolution of
uncertainty from the decision maker herself; i.e., from the present. That is, if agents’ desire to
know is a desire to alleviate anxiety then they are likely to be concerned about the time period
over which anxiety will otherwise be endured. In the story, Jo wants to know now because she

foresees that the night between now and the verdict tomorrow will otherwise be unpleasant.
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If the period between now and resolution is what matters, then dynamic consistency seems
less natural. Over time, the period between the present and resolution gets shorter while the
period focussed on by Kreps & Porteus, between resolution and punishment/consumption stays
the same. As resolution gets closer and the period of anxiety gets shorter, so the future burden of
anxiety figures less prominently in the agent’s calculation. Past anxiety is a sunk cost. Therefore,
the agent will be less willing to make costly choices to relieve anxiety, such as buying insurance,
paying for information, or taking precautions. Dynamic consistency excludes such behavior.

This discussion suggests that to offer a better description of how intrinsic concern for infor-
mation affects behavior, we should drop dynamic consistency. For example, whereas the Kreps-
Porteus model allows an agent’s degree of risk aversion to depend on the time interval that
separates resolution and consumption, we could allow it to depend on the time between resolution
and the present.!’ Like models of ‘hyperbolic’ discounting, this will lead to violations of dynamic
consistency.!! The nature of and the reasons for these violations, however, are quite distinct. We

believe this would be a fruitful avenue for further research.

Appendix

We first recall the relationship between more informative signals and the distribution of posteriors
that they induce. The following Lemma is well-known. The first equivalence is from Blackwell &
Girshick (1954) theorem 12.2.2. The last equivalence shows that any increase in the informational
content of a signal can be achieved by a sequence of elementary linear bifurcations. For a proof,

see Grant, Kajii & Polak (forthcoming).

Lemma A Suppose that [(P;,q;)Y.,] and [(PJ’,qé);V:/I] are the distributions of posteriors on )
induced by the signals (S, \) and (S’, )\/) respectively. Suppose that both distributions of posteriors
have the same prior, that is, Y . ¢; P; :Zj q; P} =m in Lo(X). Then the following three statements

are equivalent:

(i) The signal (S, \) is more informative than the signal (S’, )\/) with respect to the prior belief
T
(i) There exist weights 3,; > 0, i =1,...,N, j = 1,...,N’, such that 3>, 3,; = 1 for all j,
> B4 = i for alli, and 37, B;; P =P; for all w in Q such that w(w) >0 and all j.
(iii) There exists a sequence of distributions of posteriors ([(PF, qf)f\gl])szl, with [(P}, qil)i]\;ll] =

[(PLg)N] and [(PF,¢F)NT] = (P ai) 4], such that [(PFH, g NS is a linear bifur-

cation of [(P¥,¢")NY] fork=1,... K — 1.

10 See Cook (1989) for a related idea in the pychology literature.

11 See, for example, Loewenstein & Prelec (1992), Laibson (1997), and O’Donoghue & Rabin.(1996).
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Proof of Proposition 1: Sufficiency. Fix a prior belief 7 on 2, and two signals ((s1,...,sn),
A) and ((sh,...,8),\") with the former signal more informative than the latter with respect to
7. Let [(P;, ¢:){Y,] and [(P}, q;)jvzll] denote the distributions of posteriors induced by the signals.

By Lemma A(iii) there exists a sequence of distributions of posteriors ([(PF,¢F)Y, K ey, with
[(PL N = [(Phgf)N'] and [(PX,qK)N5] = [(Pryqo) ], such that [(PE, g+ is an
elementary linear bifurcation of [(P¥,¢")N"] for k = 1,..., K — 1. That is, in each step from
k to k41 of the sequence, a probability mass ¢¥ on one of the posteriors P is ‘split’ into two
parts, ,quf and (1— ﬂk)qf, and placed on two posteriors Pj and P]27 for which ¥ is in [0,1]
and 6kij1 + (16" )P, = PF. For each k, let 7% = ((s¥ ,PE A g")N" ¢) be the Blackwell tree
associated with the distributions of posteriors ([(PF, ¢¥)Y Al])le, the consequence function ¢, and
the action set A.

At the first step in the sequence, there are three cases to consider. For ease of notation but
without loss of generality, assume that the probability mass on a posterior that is split in the first
step is [P] ¢;] and write 3 for 8", so that BP{, + (1 — B)P{, = P{. If (a) P{; # P} and Pj, # Pj
for all j =2,...,N’, then N*> = N’ + 1. If (b), without loss of generality, P{; = P3 but Py # P;
for all j = 2,..., N/, then N? = N’. If (c), without loss of generality, P{; = P} and P|, = P},
then N2 =N"—1

)N

Proof of (i). Let m denote a early-resolution randomization over the actions A.12 Let (m/)Y,

denote the agent’s early-resolution random behavior in the Blackwell tree 7/ =((s}, P!, A, ¢/)N,,
¢) induced by the signal ((s},...,s%),\). For any « in [0,1], and any pair of early—resolutlon
randomizations m and m/, the mixture [am + (1 — a)m/] is a well-defined randomization; that
is, it can form part of an early-resolution random behavior. For each of the above cases, we will
construct an early-resolution random behavior as follows.

In case (a), [(P?, q?)ij\fl] can be written as [P{y,8q1; Pla, (1 — 8)¢4; P, qb; .. . Py s @fv]. Since
N2 = N’ + 1, any signal that induces [(P2,¢2?),] must have at least N'+ 1 realizations. Thus,

the early-resolution random behavior with N’'4 1 components, (m},m}, ms,...,m},) is feasible
in the tree 72 = ((s2, P2, A, q?)ij\fl, c).
In case (b), [(P2,¢2)N,] can be written as [Py, qh + Bq,; Pla, (1 — B)dy; Py, ab; - . .5 Pl dy].

Since N2 = N’, any signal that induces [(P2,¢2)""] must have at least N’ realizations. Thus,

the early-resolution random behavior with N’ components, ([-—2—m}, + —2%—m! ], m/, m}, . ..

a+Be1 2 T g +Bq)
. . . 2
mly,) is feasible in the tree 72 = ((s?, P2, A, ¢?)},, ¢).

2 .
In case (c), [(P?,¢?)N,] can be written as [P}, ¢4 + B8q1; P5, ¢5 + (1 — 8)q; Phy s - -3 Py @]

Since N2 = N’ — 1, any signal that induces [(P2,¢2)Y’,] must have at least N’ — 1 realizations.

4 B4}
5 +f6q’ my + 5 +qu’ mil,

Thus, the early-resolution random behavior with N'— 1 components, (]

12 The proof is essentially the same if we also allow for late-resolution randomizations. In this case, we would
interpret m as an carly-resolution randomization over late-resolution randomizations on A.
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! 1-08)q . . . 2
[mmg + ﬁm’l], ml,...,mly,) is feasible in the tree 72 = ((s%, P?, A, ¢?),, c).

In each case, the prescribed behavior induces a two-stage lottery that is a elementary linear bi-
furcation of the two-stage lottery resulting from the behavior (m})Y, for the tree 7. Single-action
information loving implies that this bifurcation is preferred. Sophisticated dynamic consistency
then implies that 72 =7 7/. And, by a similar argument, 75*! =77% for all k = 1,... ,K — 1. So
by transitivity of =7 we have 7 =7% =7 7/, where 7 is the Blackwell tree induced by the more

informative signal ((s1,...,5n),A). O

Proof of (ii). Let (a})Y’, in AN denote the agent’s non-random behavior b,/ in the Blackwell
tree 7/ and suppose that this behavior induces the two-stage lottery [(M (P}, al, c),¢})N]. Again,

we will go case by case.

In case (a), [(P2,¢2)N;] can be written as [P{y, 8¢1; P2, (1= 8)qi; P3, b - -3 Phr»qly]. Thus,
2

the N’ + 1 component non-random behavior (a},a},ab,...,ay,) is feasible in the tree 72 = ((s?,
P2 A ¢?) ij\fl, ¢). This behavior induces a two-stage lottery that is a simple linear bifurcation of
the two-stage lottery resulting from the behavior (a})&, for the tree 7/. Single-action information
loving implies that this bifurcation is preferred. Sophisticated dynamic consistency then implies
that 72 =7 7.

In case (b), [(P2,q3)"] can be written as [Py, g + 8¢,:Plo, (1 — 8)d,: P4, db; . .. :Pl ds].
Thus, both the N’ component non-random behavior (af,d},a5,...,a)y,) and the N’ compo-
nent non-random behavior (ah,a},a,...,ay,) are feasible in the tree 72 =((s?, PZ»Z,A,qZZ)f\fl,@.
Let X be the two-stage lottery [M(Pj,al,c),8¢) + qo;M(P}y,a},c), (1 — B)qy; M (P4, as, ), g4;
o s M(P),alyi,¢), @] induced by the former behavior and let X’ be the two-stage lottery
(M(PY, ), B+ s M(Ply, 5, ), (1~ B)ali M(Phyahyc), b s M(Plys s, 6), ] incluaced by
the latter behavior. Let Y be the two-stage lottery [M(P5,a},c),Bqy; M (Ply,a},¢), (1 — B8)¢};
M(Py,ah,¢),qh;...; M(Phiyahi, ), ¢ ]. Since Y is an early-resolution mixture of X and X', by
conditional quasi-convexity, at least one of X or X’ is (weakly) preferred to Y. Moreover, Y is a
elementary linear bifurcation of the two-stage lottery resulting from the behavior (a})Y; for the
tree 7. Thus, transitivity, single-action information loving and sophisticated dynamic consistency
imply that 72 =7 7/.

In case (c), [(P2,¢2)X] can be written as [P}, g+ Bqi; P§,qb+ (1 — B)ai: Ph. s .3 P dlyi).

Thus, all four N’ — 1 component pure strategies a'

=(ay, as,...,aly.), a®3 :=(ah,a},...,ay),
all :=(a},a},...,d)y,) and a2 :=(d},d},...,d}.) are feasible in the tree 72 =((s2, P2, A, ¢?)°,,
c). Let X7* be the two-stage lottery []V[(Pg,a;,c),ﬁqi + qo; M(P3,a,,¢),(1 — B)g) + ¢5;.. .3
M(PY,,aly,c),q)] induced by the behavior a’*, for j = 1,2 and k = 1,3. Let Y'2¥ be the
two-stage lottery [M (Py, ay, c), Bqy; M(Py, ab, ), gy; M(P5, al,, c), 1—B)qi+dh; - . .; M(Ph., )y, c),
dy], for k =1,3. But Y'2* is an early-resolution mixture of X'¥ and X2*. Thus by condi-

tional quasi-convexity, at least one of X* or X?* is (weakly) preferred to Y'2*. Let Z be
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the two-stage lottery [M (Pj, a!, c), Bqy; M(P5,ab, ¢), ¢ M(P4,ay,c), (1-0)q}; M(P4, a5, ¢),q5; .- - ;
M (P} a5, ¢),d)y:]. But Z is an early-resolution mixture of Y21 and Y123, Thus, by conditional
quasi-convexity, at least one of Y21 or Y12 is (weakly) preferred to Z. Hence by transitivity at
least one of the two-stage lotteries X 13, X3, X!'or X2! is weakly preferred to Z. Moreover, Z
is a simple linear bifurcation of the two-stage lottery resulting from the behavior (a})Y, for the
tree 7/. Thus, transitivity, single-action information loving and sophisticated dynamic consistency
imply that 72 =7 7/.

By analogous reasoning, 7+! =7 7% for all k =1,..., K — 1, and so by sophisticated dynamic

consistency and transitivity, we have 7 =7 7’. O

Necessity. Given Lemma A, the fact that weak single action information loving is necessary fol-
lows immediately from considering Blackwell problems in which the action set is a singleton. To see
that conditional quasi-convexity is necessary when early-resolution randomization is not possible,
suppose that preferences are not conditionally quasi-convex. Then there exists a pair of two-stage
lotteries X =[(Fj, q;)7 ] and Y =[F1, q1;5. . . ;Fj—1,05-1;F}, 453 Fjv1, @jg1se - -5 Foy @] where X =0 Y
and a (3 such that the two-stage lottery Z := [F1,qu;. .. ;Fj_1,qj—1;Fj, aqy; Fj, (1= )q5;Fj1, @

.;Fn,qn)] =2 X. For ease of notation, we consider the case where X = [Fy,q1; Fo, (1—q1)], Y =
[Fl,q1; Fo,(1—q)], and Z = [Fy, Bqu; Fl, (1= B)q1; Fa, (1 — q1)]. The proof for the general case is
analogous. By continuity, if there exists one such Z then there exist a continuum of such early-
resolution mixtures preferred to both X and Y. That is, there exist positive weights oy, ae, as,
and oy (where . a; = 1) such that Zyo3 = [Fi, (0 + a2 + a3)qi; F{, cuqu; Fo, (1 — q1)] =2 Z12 =
[F1, (a1 +a2)qi; FY, (as+aa)qr; Fo, (1—qq)] =2 Z1 = [F1, a1q0; F, (e +az+ag)qr; Fo, (1—q1)] =2
X =Y.

We next construct Blackwell decision trees in which behavior will induce the two-stage lotteries
above. Let posteriors Py, Pj and Py, actions a; and as, and consequence function ¢ be defined such
that: M(P,ay,c) = F; and M(P,ag,c) = Fj for any P = yP; + (1 —~) P} with v € [0, 1]; and such
that M(Py,a1,¢) = M(Py,az,¢) = Fy. Let P be given by (ag + a3)P = as Py + azP}. Consider a
four-realization signal that induces the distribution of posteriors on Q: [Py, a1q; P, (a1 + a2)qs;
P|,a4q1; P2, (1 — ¢q1)]. By construction (and Lemma A), this signal is more informative than the
three-realization signal that induces the distribution of posteriors: [Py, (a1 +a2)q1; Py, (as+ay)q;
Py, (1 —q1)]. Suppose that the available action set is {a;,az} and the consequence function is c.
Then, without randomization the best available two-stage lottery in the Blackwell tree induced
from the first signal is Z193; while that from the second signal is Z15. But since Zy93 = Z19, this

contradicts preference for the more informative signal. |
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