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From Nash to Walras via Shapley—Shubik

Pradeep Dubey and John Geanakoplos

Abstract

We derive the existence of a Walras equilibrium directly from Nash’s theorem
on noncooperative games. No price player is involved, nor are generalized games.
Instead we use a variant of the Shapley—Shubik trading-post game.

1 Introduction

The paper of Nash [12] on the existence of equilibrium points in noncooperative games
was historically critical for Walrasian analysis. In order to prove existence of Walras
equilibrium, Arrow and Debreu [2], [5], [6] extended Nash’s model to “generalized
games” and added a fictitious price player (whose payoff was “the value of excess
demand”) to the economy. Walras Equilibria (WE) were than obtained as Nash
Equilibria (NE) of a generalized game that included the price player.

We show that WE exist without stepping outside the original framework of Nash.
In fact, WE are the limits of NE of a sequence of games I'(M). No price player
is involved nor are generalized games. The games I'(M) adhere completely to the
standard format laid out by Nash: each player has a compact, convex strategy-
set; and a continuous payoff function which is concave in his own strategy. We
do replace each original agent in the economy by a type consisting of a continuum
of identical agents.! But since we restrict to type-symmetric (TS) strategies, all
measure-theoretic technicalities are avoided. By an analysis identical to that of Nash,
we verify the existence of TSNE, and hence of a WE.

Our game is a variant of the Shapley—Shubik trading-post game ([17], [18], [19]).
It is defined by a continuous map from agents’ “bids” (strategies) to prices and
feasible reallocations (outcomes). To our mind, the most salient feature of the game-
theoretic approach is that there is such a map: no matter what strategies agents
choose, a feasible outcome is always engendered. In Walrasian analysis we are left in
the dark as to what happens out of equilibrium.

The search for game-theoretic foundations of Walras equilibrium has a long and
rich history. In his famous paper of 1838, Cournot [4] introduced a basic model in

1 One might even argue that the notion of an NE becomes more viable with a continuum, for then
unilateral deviations of any agent are drowned in market aggregates and are not detectable. Each
agent naturally assumes that others will hold their strategies fixed if he deviates. (The continuum
also eases the transition from NE to WE, at the technical level. But, for completeness’ sake, we add
a last Section 6 which shows that our analysis remains intact when a finite set of agents is replicated
and the number of replicas goes to infinity.)



which firms compete at a single market by strategically choosing how much output
to produce and sell. The Cournot game is the archetypal example of a Nash game
with continuous, concave payoffs. Equilibrium always exists, and Cournot himself
observed that as the number of agents increases, price-taking behavior is induced
and WE is achieved in the limit. Bertrand [3] defined another game in which prices
are the strategic variables, and showed that NE coincide with WE, provided there
are at least two competing firms. The Bertrand game, however, has discontinuous
payoffs and so is not in the Nash format.

The single market analyses of Cournot and Bertrand were extended by many
authors to come to grips with multiple markets in general equilibrium. Following the
Bertrand tradition naturally led to discontinuous games. In [8], [10], [16], coincidence
of NE and WE was established, but the authors relied on the existence of WE to
show the existence of their NE, rather than the other way around.

The extension of the Cournot tradition to general equilibrium was pioneered by
Lloyd Shapley and Martin Shubik [17], [18], [19]. The difficulty to overcome is that
an agent might want to sell in one market and buy in another. How can the Walras
budget set be incorporated in the game? One possibility is to introduce a market for
every pair of commodities, as in [1]. But this does not necessarily yield consistent
prices, and so there may be NE which are very far from WE; thus the existence of
NE does not imply that of WE. A different approach, taken by Shapley and Shubik,
was eloquently described by Shapley [17].

The decisive step was to meet the problem of money head on — to ac-
cept the proposition that, in the world of buying and selling, money is
“real.” Granting this, the rest falls into place with remarkably few other
generality-restricting assumptions.

Shapley and Shubik explicitly introduced money as the stipulated medium of
exchange. Their model was carried forward by several others, who took up the theme
of showing that Cournot—Nash equilibria converge to Walras equilibria. Curiously,
however, the most direct route from Nash to Walras seems to have been missed. In
(7], [17], [18], and [19], the money is one of the intrinsically valuable commodities, and
convergence only obtains under special conditions on the endowments and preferences
of the economy. In general, there may not be enough of the commodity money to
sustain all the WE trades. This suggests the introduction of fiat money, and in
particular of “inside” fiat money, which can be borrowed by all agents and must
be repaid after trade. But, with borrowing, the possibility of default must also be
reckoned with. In [11], [13], and [14], there is inside fiat money and NE converge
to WE, but the games do not conform to the Nash format: harsh, discontinuous
penalties are imposed on those who default (e.g., confiscation of all consumption),
converting the game — at bottom — into a generalized game. In [7] and [20] genuine
Nash games are presented, which also entail the coincidence of NE and WE. But once
again the existence of NE is inferred from that of WE. It seems worthwhile to us (at
the very least from a pedagogical point-of-view) to describe a simple variant of the
Shapley—Shubik model which adheres to the Nash format, and whose NE can easily



be shown to converge to WE, under the standard assumptions on the underlying
economy.

In our game I'(M), inside fiat money is the sole medium of exchange, and a
“trading-post” is set up for each commodity ¢ € L in the economy. Every agent ¢
puts up his entire? endowment e, for sale at post £. Agents initially have no money,
but can borrow up to M at zero interest from a bank. They then choose how much
money to bid at each post for purchases. An external agent also bids one dollar at
each post to trigger trade there. The bank and the external agent and the trading-
posts are all strategic dummies. They have no choices to make and so, unlike the
price player in Debreu, they do not optimize. Prices p; form at each post ¢ as the
ratio of total money bid to total commodity received at post ¢.

An agent ¢ who bids 3, units of money at post ¢ receives !, = (,/py units of
commodity ¢ in return. He also obtains pee} units of money as sales revenue. This
describes how prices mediate trade. Notice that the trading-posts always clear and
generate a feasible reallocation of the endowments, no matter what the agents bid.
(Thus in our scenario markets always clear. If, in addition, agents optimize, we obtain
an NE. By contrast, in Walrasian analysis, agents always optimize, and markets clear
only at WE.)

Every agent ¢ in our game obtains the payoff

u'(2') — max {O, Zﬁg — ZWGZ} .

Lel leL

The max term reflects the fact that A gets no utility from consuming fiat money, but
is penalized for defaulting on his loan.

The game I'(M) depends on the borrowing limit M which compactifies agents’
strategy spaces. By Nash’s theorem, I'(M) has a TSNE. As M — oo, limits of the
TSNE yield WE. This is so even though the strategy sets and the default penalties are
defined completely independently of the characteristics of the agents in the economy.
We prove that if some agents default, other agents must be bidding less than their
sales revenue. The defaulters in effect rob from those who end up with surplus. This
drives the latter to borrow and spend up to the limit M, pushing prices p(M) higher
as M — oo. Eventually the default penalty does bite and chokes off real default.

To the best of our knowledge, the only genuine games whose NE were shown
to exist and to converge to WE in general were given by Dubey—Geanakoplos [9],
Sahi—Yao [15], and (inspired by Sahi-Yao) by Sorin [21]. In [9] the model introduces
outside money, along with inside money, and an endogenous positive interest rate. By
eschewing these, the model we present now is simpler and reveals a more direct route
from Nash to Walras. The models in [15] and [21] are an order of magnitude more
complex than ours, and also impose somewhat stronger conditions on the underlying
economy.

?This simplifies the analysis. We could have made the more realistic assumption that agents sell
what they want. The game would then get more complicated but without affecting the result.



2 Walras Equilibrium

Let H = {1, ..., H} be the set of households and L = {1, ..., L} the set of commodities.
For h € H, e" ¢ ]Rﬁ is the endowment and u” : Rf; — R the utility of consumption
of household h. We assume, for all h € H,

(i) e" >0

(ii) w® is continuous, concave and weakly monotonic (i.e., z > y implies u”(z) >
h
u(y))

(For relaxations of (i) and (ii) see Section 5.)
Recall that (p, (z™)hen) € RE xRY is a Walras equilibrium (WE) of the economy

h ,h :
(", u)pep if
E z" < E eh;
heH heH

and
a" € argmax{u"(y) : y € B"(p)}

for all h € H, where B"(p) ={y e Rl :p-y <p-e"}.

3 Nash Equilibrium

Consider a continuum of agents (0, H] made up of types (h — 1,h], h € H. Each
t € (h—1,h] has endowment e! = e and utility u’ = u”. The underlying population
measure is Lebesgue.

For every commodity ¢ € L, there is a “trading-post” to which agents send com-
modity ¢ for sale and (fiat) money for purchase. For simplicity we suppose that
they put up their entire endowment for sale so that the post receives? [OH e?dt =
Y oheH eZ = &y units of commodity ¢. We further suppose then an external agent
puts up 1 dollar of fiat money at each post in order to trigger trade there. Any
agent t € (0, H] can borrow money b}, ¢ € L, at zero interest to bid at the posts.
But he is not allowed to borrow more than M in total. Thus the strategy-set of
each t € T is S(M) = {b* € Ry : >, b, < M}. Suppose the choice of strategies
b = {b'}4c7 constitutes a measurable function. Then prices p = p(b) € Rﬁ . form at
the trading-posts according to the rule:

for ¢ € L. Each post ¢ clears at its price pg(b), so that ¢ € (0, H] obtains the
consumption bundle ! = z(p(b), ") € RE with components

bt
oo
£ pe(b)

3We write .[:71 ftdt = f* and ‘['OH ftdt = f. Of course, &" = e" in our setup.
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and also obtains py(b)el, units of money as revenue from the sale of his endowment
eb, leaving him with the “net deficit”

d' = d'(p(b),0) =) b= pelb)e].

lel Lel

The payoff to ¢ from the outcome (2!, d") is

b \* -
I (b) = ul(2?) — d', = ! <<pé (‘fb)> ) - [Z(bé - pe(b)eé)]
J’_

=1 =1

where d', = max{0,d"}. The max term reflects the fact agents gain no utility from
consuming fiat money, but incur disutility from defaulting on their loans.

Observe that the trading posts simply redistribute everything they receive. Since
the external agent sends L dollars and no commodities to the posts, and receives
commodities but no money in return, we must have

L+Y be=) pe=7 > pulb)ef

Lel Lel heH (el
Z I <e Wel
heH

for any b : (0, H] — S(M). Thus the trading post mechanism guarantees the fea-
sibility of the final allocation to agents, no matter what they bid, and regardless of
whether or not they are optimizing.

A measurable choice b, : (0, H] — S(M) is said to be a Nash equilibrium (NE) of
(M) if, for a.a.t € (0, H|

bt € arg max IT°(b|3)
BES(M)

where b|;3 is the same as b except that b! is replaced by £.

A choice b : (0,H] — S(M) is called type-symmetric if b' = b" whenever t €
(h—1,h], and h € H. In this case we write b = (b',...,b"). A type-symmetric NE
will be denoted TSNE.

4 From Nash to Walras

4.1 Existence of Nash Equilibrium

For any type-symmetric choice of strategies b = (b!,...,b) € (S(M)) consider the
set ©'(b) of best replies of any agent t € (h — 1, h] to b:

(0 =g 009 —ansmos 4 () ) - [Z - Zm(b)eg] +

BeS(M) BeS(M) ¢cL felL

By symmetry, ¢! (b) is the same for all ¢ € (h — 1, k] and we denote it ¢"(b). From
the fact that 3 does not affect p(b), i.e., p(b) = p(b|¢3), it follows that z!(p(b), 3) and



d'(p(b), 8) are linear in 3 (for fixed b), and hence II(b|¢3) is concave in 3. Since S(M)
is convex, we conclude that so is " (b).

We view II as a function from (S(M))# x S(M) to R. Clearly II is continuous in
(b1, ...,b" | 3). Hence by the maximum principle, the correspondence " : (S(M))H =
S(M) is compact valued and upper semi-continuous. Therefore, so is the correspon-
dence ¢ : (S(M))H = (S(M))H defined by ¢ = (¢, ..., o). By Kakutani’s theorem
it has a fixed point which is easily seen to be a TSNE.

4.2 Walras Equilibria as Limits of Nash Equilibria

For each integer M > 1, let b(M) = (b"(M))nrer be a TSNE in I'(M), with prices
p(M) and outcomes (z*(M),d"(M))pey. Since commodities are conserved by the
trading posts, Y, (M) < & (with the external agent receiving e— 3, .,y 2 (M)).
In particular, each (M) is uniformly bounded. Furthermore, since any agent of
type h always has the option of spending and consuming nothing, u”(€) — d’ (M) >
(2 (M) — d? (M) > uP(0).

Hence d' (M) is also uniformly bounded above by u(e) — u/(0). Let §(M) =
{h € H : d"(M) > 0} be the set of agents who are running a deficit, and let
o(M) = {h € H : d"(M) < 0} be the set of agents who are running a surplus.
Then of course Y, d"(M) = > _hes(M) d"(M) + > heo(M) d"(M). Since money is
conserved by the trading posts

L— Y (=d"))+ Y di(M)y=L+Y d"(M)=

hea (M) he&(M) heH

80 Yoneoar) — (M) = L+ c50ap) A% (M) is uniformly bounded above, and so each
—d"(M) is also uniformly bounded above. Hence d*(M) is uniformly bounded.

Thus we may pass to a convergent subsequence with (M) — 2, d"(M) — d”,
for all h € H, and p(M)/||p(M)|| — p (where ||y|| = 32X, |yi|). We shall show that
(p, (") neq) is a Walras equilibrium.

Observe first that o(M) # ¢ because L > 0. Every agent of type h € o(M) must
be spending up to his limit M, for otherwise he could spend a little more at each
post, consuming strictly more of every commodity, without incurring any default,
contradicting that he is optimizing at the TSNE. Since he is running a surplus,
p(M) - " > M, which shows |[p(M)|| — oo as fast as M.

Since surpluses and deficits are uniformly bounded in M, it follows immediately
that d"(M)/[[p(M)]| = p(M)/|[p(M)]| - (e*(M) — e?) — 0, and thus p- (2" — eb) = 0
for all h € H. Since we already have ), zh < Y heH el it only remains to verify
that if y € B"(p) = {y e RY : p-y < p- €} then u"(y) < u(2").

Take 0 < A < 1. Then p- Ay < Ap-e? = Ap- 2" < p- 2" and so for large M,
(M) |Ip(M) [ - Xy < [p(M)/l[p(AD) ] - (M), and so p(M) - Ay < p(M) - 2(M) <
M. Hence letting B3(M) = ps(M)\y, for ¢ € L, we have g"(M) € S(M), and
152 BE(M) — p(M) -], < [p(M) - (M) — p(M) -] = di(M). Since B"(M) gives
a payoff at least as high as 3"(M), yet incurs at least as much penalty, u®(z"(M)) >
uM(\y). Passing to the limit, u*(z") > u(\y). But A < 1 was arbitrary. Hence
uM(z") = ut(y). u



5 From Nash to Walras in Greater Generality

5.1 Without Concavity

Extending the game I'(M) to nonconcave u” would seem to be folly. For example,

if uP : Ry — R is defined by u”(x) = 22, then all agents of type h will wish to go
infinitely bankrupt. But things are not so bad after all. They cannot borrow or bid
more than M. We shall see that an NE always exists in T'(M), though agents of the
same type may choose different (but indifferent!) strategies. Passing to the limit as
M — oo, we again obtain a WE.

We retain all the other hypotheses except for the concavity of u”.

To see that an NE of I'(M) exists, replace the correspondence b — Xpe o™ (b)
by b +— XpergCo(¢"(b)) where Co("(b)) denotes the convex hull of ¢®(b). The
conditions of Kakutani’s theorem are still met, so there exists 51, ,l~)H such that
b € Co(p"(b)). By Caratheodory’s theorem, there exist L + 1 points b1, ... pP(L+D)
in ©"(b) and L + 1 weights A", ., A»E+D in Ry such that ZZL:JT M =1 and b =
S AL ARGhE - Partition (b — 1,h], from left to right into L + 1 consecutive intervals
hi of lengths A\, ... MUAD | et the agents in the hith interval choose the strategy
b, This gives us an NE in which each type indulges in at most L + 1 different bids.

For each integer M > 1 take a NE (p(M),((b"(M),z"(M),d" (M),
MM eg. Passing to a subsequence, we may assume that A"(M) — M\
for all hand 1.

Let N = {hi : \"(M) — 0} and let G = {hi : \"(M) - 0}. Then 34 piecy M =
1 for all h € H. Furthermore, by feasibility in T'(M), 2™ (M) is uniformly bounded
across M for hi € G. Hence we can take convergent subsequences o™ (M) — x for
all hi € G. Also (by the old argument) d"(M) is uniformly bounded for all hi € G.

Our previous proof that p(M) — oo as fast as M remains intact. Observe next
that for any agent ¢ € (0, H], his deficit d*(M) is bounded above and below indepen-
dent of ¢ (though no longer of M), i.e.,

—p(M) -& < d"(M) < M, for all hi

It follows that , '
N (MY dhe (M)

[lp(M]

Since L+, v AP (M) (M) = 0 and | [p(M)]| — o0, we get Yy N (M)[d" ()| [p(M)]]] —
0. But d}}:(M' ) is uniformly bounded above for all hi € G, so we conclude that
d"(M)/||p(M)|| — 0 for all hi € G.

Treating the types hi € G exactly as our H types earlier, the proof proceeds as
before. We obtain a Walras equilibrium in the limit.

— 0 for all hi € N.

5.2 With Quasi-Concavity

Assume that the utilities are quasi-concave. Let z : (0, H] — Rf; be a WE allocation

. . . . _ " : .
with prices p, as in Section 5.1 above. Define " = [}* | a'dt. Since z' maximizes



u' = u" on B"(p), for t € (h— 1, ), it follows from the quasi-concavity of u” that so
does z". Thus (p, (Z")ner) is a WE.

5.3 Without Positivity of Endowments

Let us return to the case of concave utilities, but now replace e® > 0 with e® > 0
and Y, e’ > 0. Were we to assume irreducibility, we could easily modify our
argument to obtain WE in the limit. Without such an assumption, what do we get?

It is easy to see that TSNE still exist in I'(M), since we never used e > 0 in that
part of the argument. Indeed the convergence of TSNE as M — oo proceeded all the
way to a limit (p, (z")pen) with Y,y a <3,y et and p-a =p-e forallh € H
without invoking e” > 0. We only needed e > 0 to show that u”(z") > u"(y)
for all y € B"(p). Without the hypothesis e” > 0, we can show that this is so for
y € B"(p), where B?(p) is the set of stratified budget-feasible consumption bundles.

Here commodities are partitioned into sets (strata) L = L; U---U L and it is
understood that commodities in L. are infinitely more valuable than those in L.
(i.e., Ly41 is a higher “strata” than L,); or, to put it another way, the money involved
in the trade of L,1 has an exchange rate of infinity, relative to the money of L,.
Let (k) = max,{e} > 0 for some ¢ € L,}. Then B?(p) = {x € R} : 2y = 0 for
CeUSo iy Dy and 3 pe gy Pe(ae — €f) <0}

Assume we have a convergent subsequence of TSNE, with p,(M)/p;(M) con-
verging possibly to zero or infinity. Define ¢ to be in the same strata as j if 0 <
limps—oo pe(M)/pj(M) < 0o; and to be in a higher strata than j if limas_,oo pe(M) /p;(M) =
oo. Then we obtain a stratification of the commodities. For each strata v and ¢ € L,
define py = lim[pg(M')/ZEeM pi(M)]. Tt is easy to see that, with these prices, we
have a stratified WE.

6 Finitely Many Agents

We assumed a continuum of agents to ease the transition from NE to WE. But our
argument works equally well when there is a finite set of agents converging to a
continuum. First, NE exist in the finite case, once again by Nash’s proof. (The only
thing to check is concavity of payoffs. But = = (0} /[1 + Y,y b"])é, is concave in
b, and then so is u(z"(...b"...)) in b", using the fact that u” is both concave and
monotonic.) We move towards the continuum by considering k “replicas” for each
h € H={1,..,H}, all of whom have the same endowments and preferences as h.
This yields the game I'y(M) with kH agents. By the standard symmetrization of
Nash’s argument, a TSNE exists in I'y(M). We take k = M and consider a sequence
of TSNE of T'yy (M), M — oco. As before, some type must run a surplus, and all M
agents of that type bid M (since outcome is strictly monotonic in bids). So total
expenditures are of the order of M - M = M?, and since total expenditures equal
L+p(M)-M Y, et it follows that |[p(M)|| — oo as fast as M. Moreover the defaults
d"(M) stay bounded as before, which implies that there exists a subsequence of TSNE
whose consumptions and normalized prices ((2"(M)per, p(M)/||p(M)]]) converge to



(z")hem,p), with p- 2" =p- e for all h € H.

It only remains to check that if p-y < p- e/, then u(y) < u?(2"). This,
in turn, will follow if we can show that ay is feasible for any agent of type h in
Iy (M) without incurring default, for any 0 < o < 1 and large enough M. Let
Ly ={¢eL:py>0}and Ly ={¢ € L:p,=0}. Forall /€ L, the total bid on
¢ is growing like M2. So an agent of type h has negligible (percentage) influence on
pe(M) by unilaterally varying his bid between 0 and M on any commodity ¢ € L
(for large enough M). Fix 1 > o’ > o/ > «, and let the agent bid o/ygp,(M) for
every ¢ € Ly in I'p(M). For large M, he will acquire at least ayy via this bid.
Moreover he will be left with at least (1 —a’)p(M) -e" more money to bid on ¢ € Ly,
without defaulting. (This is so since he was bidding p(M) - (M) with default
d"(M)/||p(M)|| — 0, and since p(M) - z"(M)/p(M) - e* — 1). For each ¢ € Lo,
pe(M)/M — 0. Hence the total bid by(M) on ¢ satisfies by(M)/(Me,)M — 0. By
bidding B,(M) = (1/#Lo)(1 — &/ )p(M) - e (which is of the order of M), the agent
acquires at least zp(M) = B,(M)/[Bo(M) + by(M)]Méy. Since B,(M)M is of order
M2, B,(M)M/by(M) — co. Thus z,(M) — oo as M — oo, which is certainly greater
than ay,. This shows that the agent of type h can acquire consumption at least as
big as ay (for large enough M), without incurring default, proving that ((z")ncm, )
is a WE.

*Le., feasible via unilateral deviation at the TSNE of T'as(M).
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