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Abstract

This paper studies the extent to which qualitative features of Walrasian
equilibria are refutable given a finite data set. In particular, we consider the
hypothesis that the observed data are Walrasian equilibria in which each price
vector is locally stable under tdtonnement. Our main result shows that a finite
set of observations of prices, individual incomes and aggregate consumption
vectors is rationalizable in an economy with smooth characteristics if and only
if it is rationalizable in an economy in which each observed price vector is locally
unique and stable under tdtonnement. Moreover, the equilibrium correspon-
dence is locally monotone in a neighborhood of each observed equilibrium in
these economies. Thus the hypotheses that equilibria are locally stable under
tadtonnement, equilibrium prices are locally unique and equilibrium comparative
statics are locally monotone are not refutable with a finite data set.
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was begun while Shannon was on leave at Yale University; the warm hospitality of the economics
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1 Introduction

The major theoretical questions concerning competitive equilibria in the classical
Arrow—Debreu model — existence, uniqueness, comparative statics, and stability of
price adjustment processes — have been largely resolved over the last forty years.
With the exception of existence, however, this resolution has been fundamentally
negative. The conditions under which equilibria can be shown to be unique, com-
parative statics globally determinate or tAtonnement price adjustment globally stable
are quite restrictive. Moreover, the Sonnenschein—Debreu—Mantel theorem shows in
striking fashion that no behavior implied by individual utility maximization beyond
homogeneity and Walras’ Law is necessarily preserved by aggregation in market ex-
cess demand. This arbitrariness of excess demand implies that monotone equilibrium
comparative statics and global stability of equilibria under tatonnement will only re-
sult from the imposition of a limited set of conditions on preferences and endowments.
Based on these results, many economists conclude that the general equilibrium model
has no refutable implications or empirical content.

Of course no statement concerning refutable implications is meaningful without
first specifying what information is observable and what is unobservable. If only mar-
ket prices are observable, and all other information about the economy such as indi-
vidual incomes, individual demands, individual endowments, individual preferences
and aggregate endowment or aggregate consumption is unobservable, then indeed the
general equilibrium model has no testable restrictions. This is essentially the content
of Mas-Colell’s version of the Sonnenschein-Debreu-Mantel theorem. Mas-Colell [6]
shows that given an arbitrary nonempty compact subset C' of strictly positive prices
in the simplex, there exists an economy £ composed of consumers with continuous,
monotone, strictly convex preferences such that the equilibrium price vectors for the
economy & are given exactly by the set C'.

In many instances, however, it is unreasonable to think that only market prices are
observable; other information such as individual incomes and aggregate consumption
may be observable in addition to market prices. Brown and Matzkin [2] show that if
such additional information is available, then the Walrasian model does have refutable
implications. They demonstrate by example that with a finite number of observations
— in fact two — on market prices, individual incomes and aggregate consumptions,
the hypothesis that these data correspond to competitive equilibrium observations
can be rejected. They also give conditions under which this hypothesis is accepted
and there exists an economy rationalizing the observed data.

This paper considers the extent to which qualitative features of Walrasian equi-
libria are refutable given a finite data set. In particular, we consider the hypothesis
that the observed data are Walrasian equilibria in which each price vector is locally
stable under tatonnement. Based on the Sonnenschein—-Debreu—Mantel results and
the well-known examples of global instability of tatonnement such as Scarf’s [8], it
may seem at first glance that this hypothesis will be easily refuted in a Walrasian



setting. Surprisingly, however, we show that it is not. Our main result shows that
a finite set of observations of prices, individual incomes and aggregate consumption
vectors is rationalizable in an economy with smooth characteristics if and only if it is
rationalizable in a distribution economy in which each observed price is locally stable
under tatonnement. Moreover, the equilibrium correspondence is locally monotone in
a neighborhood of each observed equilibrium in these economies, and the equilibrium
price vector is locally unique.

The conclusion that if the data is rationalizable then it is rationalizable in a dis-
tribution economy, i.e., an economy in which individual endowments are collinear, is
not subtle. If we do not observe the individual endowments and only observe prices
and income levels, then one set of individual endowments consistent with this data is
collinear, with shares given by the observed income distribution. Since distribution
economies by definition have a price-independent income distribution, this obser-
vation may suggest that our results about stability and comparative statics derive
simply from this fact. Kirman and Koch [4] show that this intuition is false, however.
They show that the additional assumption of a fixed income distribution places no
restrictions on excess demand: given any compact set K C R, and any smooth
function ¢ : RY, — R which is homogeneous of degree 0 and satisfies Walras’ Law,
and given any fixed income distribution o € R” |, Y°" | ; = 1, there exists an econ-
omy &£ with smooth, monotone, strictly convex preferences and initial endowments
wy = ayw such that excess demand for £ coincides with g on K. Hence any dynamic
on the price simplex can be replicated by some distribution economy.

This paper shows that rationalizable data is always rationalizable in an economy
in which market excess demand has a very particular structure. Using recent results
of Quah [7], we show that if the data is rationalizable then it is rationalizable in
an economy in which each individual demand function is locally monotone at each
observation. The strong properties of local monotonicity, in particular the fact that
local monotonicity of individual demand is preserved by aggregation in market excess
demand and the fact that local monotonicity implies local stability in distribution
economies, allow us to conclude that if the data is rationalizable in a Walrasian set-
ting, then it is rationalizable in an economy in which each observation is locally stable
under tatonnement. Thus global instability, while clearly a theoretical possibility in
Walrasian markets, cannot be detected in a finite data set consisting of observations
on prices, incomes, and aggregate consumption.

The paper proceeds as follows. In Section 2 we discuss conditions for rationalizing
individual demand in economies with smooth characteristics. By developing a set of
“dual” Afriat inequalities, we show that if the observed data can be rationalized by
an individual consumer with smooth characteristics then it can be rationalized by
a smooth utility function which generates a locally monotone demand function. In
Section 3 we discuss the implications of locally monotone demand and use these results
together with the results from Section 2 to show that local uniqueness, local stability,
and local monotone comparative statics are not refutable in Walrasian markets.



2 Rationalizing Individual Demand

Given a finite number of observations (p",z"),r = 1,..., N, on prices and quantities,
when is this data consistent with utility maximization by some consumer with a non-
satiated utility function? We say that a utility function U : RY — R rationalizes
the data (p",2"),r=1,...,N, if Vr

proa” >px=U(a") > U(z), Vo € R,

Using this terminology, we can restate the question above: given a finite data set,
when does there exist a non-satiated utility function which rationalizes these obser-
vations? The classic answer to this question was given by Afriat [1].

Theorem (Afriat). The following are equivalent:

(a) there exists a non-satiated utility function which rationalizes the data
(b) the data satisfies Cyclical Consistency

(c) there ewist numbers U, \' > 0, i = 1,..., N which satisfy the “Afriat inequali-
ties”" . . . . . .
U -U < Np- (2 =27),4,7=1,...,N

(d) there exists a concave, monotone, continuous, non-satiated utility function which
rationalizes the data.

In particular, the equivalence of (a) and (d) shows that the hypothesis that pref-
erences are represented by a concave utility function can never be refuted based on
a finite data set, since if the data is rationalizable by any non-satiated utility func-
tion then it is rationalizable by a concave, monotone, and continuous one. Moreover,
Afriat showed explicitly how to construct such a utility function which rationalizes a
given data set. For each z € R, define

Ulx) = mrin{Ur +X'p - (x—2")}

This utility function is indeed continuous, monotone and concave, and rationalizes
the data by construction.

As Chiappori and Rochet [3] note, however, this utility function is piecewise linear
and thus neither differentiable nor strictly concave. Such a utility function does not
generate a smooth demand function, and for a number of prices does not even generate
single-valued demand. This utility function is thus incompatible with many standard
demand-based approaches to the question of rationalizability or estimation, as well
as with our questions about comparative statics and asymptotic stability.



Whether or not a given set of observations can be rationalized by a smooth utility
function which generates a smooth demand function will obviously depend on the na-
ture of the observed data. Two situations in which such a rationalization is impossible
are depicted in Figures 1 and 2. The observations in Figure 1 cannot be rationalized
by any smooth utility function, and those in Figure 2 cannot be rationalized by any
demand function. If the data satisfies SARP, then situations like that in Figure 2
are eliminated; Chiappori and Rochet [3] show that if in addition situations like that
in Figure 1 are ruled out then the data can be rationalized by a smooth, strongly
concave utility function.

***Insert Figures 1 and 2 here***

More formally, the data satisfies the strong strong axiom of revealed pref-
erence (SSARP) if it satisfies SARP and if for all i,5 = 1,..., N,

p#EY =t #al

Chiappori and Rochet [3] show that given a finite set of data satisfying SSARP,
there exists a strictly increasing, C'*°, strongly concave utility function defined on a
compact subset of R} which rationalizes this data. Although SSARP is a condition on
the observable data alone, it can be equivalently characterized by the “strict Afriat
inequalities”. That is, the data satisfy SSARP if and only if there exist numbers
Ui\ >0,i=1,..., N such that

U —U < Np - (" —29),4,7=1,...,N, i #].

Our work makes use of a modification of the results of Chiappori and Rochet [3].
Since our data consists of prices and income levels, we find it more natural to first
recast the question of rationalizability in terms of indirect utility, and develop a set of
dual Afriat inequalities characterizing data which can be rationalized by a consumer
with smooth characteristics. An important benefit of this dual characterization is that
it allows us to conclude not only that the data can be rationalized by a smooth demand
function but by a demand function which is locally monotone in a neighborhood of
each observation (p", I").

Definition. Let w € RY | be given. An individual demand function f(p, I) is locally

monotone at (p, ) if there exists a neighborhood W of (p, I) such that

(p—q) - (f(p, 1) = f(g,1)) <0
for all (p,I),(¢q,I) € W such that p # q.

Our first result can then be stated as follows.



Theorem 1. Let (p",z"),r = 1,...,N be given. There exists a smooth, strictly
quasiconcave, monotone utility function rationalizing this data such that the implied
demand function is locally monotone at (p",I") for each r = 1,..., N where I" =
p" - " if and only if there exist numbers V¢, X', and vectors ¢¢ € R¢, i =1,...,N
such that:

(a) for i # j,
VieVisg. (p—p)+ NI - F),i,5=1,...,N

M) N>0,¢<0,j=1,....N
(c) ¢ =—=Nad, j=1,...,N.

Conditions (a) and (b) constitute our “dual strict Afriat inequalities”. Condition
(c) here is just an expression of Roy’s identity in this context. To see this, note that
the vector (¢, \’) corresponds to the gradient of the rationalizing indirect utility
function V evaluated at (p’, I7); this is essentially the content of (a). If ¢/ = —\ a7,
then 27 is indeed demand at the price-income pair (p’, I7) by Roy’s identity.

The proof of Theorem 1 relies on two intermediate results. The first is a ver-
sion of Lemma 2 in Chiappori and Rochet [3] modified to apply to our dual Afriat
inequalities.

Lemma 1. If there exist numbers V', A\ and vectors ¢*, i = 1,..., N satisfying the
dual strict Afriat inequalities, then there exists a conver C* function W : ]Rfl —R
which is strictly increasing in I and strictly decreasing in p such that W (p*, I') = V*,

DW (p', I') = (¢*, \"), and B;V}/(p",fi) =0 foreveryi=1,...,N.

Proof: For each (p,I) € REY! define
Y(p, 1) = max{V*'+ (¢", \') - [(p, I) — (p", 1)]}-

Then Y is convex, continuous, strictly increasing in I and strictly decreasing in p.
Moreover, Y (p",I") = V" for each r. To see this, note that by definition Vr 3 s such
that

Y(pra IT) =V + (qs’ AS) : [(pr’ IT) - (ps’ Is)]

By the dual strict Afriat inequalities, if r # s
VT _ VS > qS . (pr _ps) + )\S(IT’ _ IS) — (q87)\8) . I:(p’r" IT‘) _ (pS’ IS)]

So Vs #r
VTSV (@) 0 ) — (5, )]
Thus Y (p",I") = V" foreach r =1,..., N.
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This argument shows that for every s # r,
Y(p',I") > Vo4 (¢ X) - [(p7, I7) — (p°, I°)].
Since Y is continuous, Vr there exists 7, > 0 such that
Y(p, 1) =V"+ (¢ A") - [(p. 1) — (p", 1")]
for all (p,I) € B((p",1"),n,), i.e., Y is piecewise linear.

Following Chiappori and Rochet [3], we will smooth Y by convolution. Let n =
min7,, and y = (p, I). Define

mw:&mPTmﬁUWQﬁﬁﬁM4iiﬂwgl

0, otherwise

py(y) = %p (%) :

Then p, is nonnegative, symmetric, and C*°, and p, (y) = 0 if y & B(0,7).
Now define

and

vwwzyx%wwa/yw—a%@ma

Then W is C'"™° and convex, as
vay+a—vwﬁ=1/wa+a—vwﬂ—a%@ms
S/EY@—£%+O—7WM/—®MAO%

:v/Yw—o%@%+u—w Yy — €)p,(€)de

= W(y) + (1 =NW(y')
for 4 € [0, 1]. Moreover, W is strictly decreasing in p and strictly increasing in I. To
see this, suppose p < p’. Then

Wmn—wmmnz/ﬁ«nn—o—ymﬂn—m%@@>o

Similarly, W(p,I') — W(p,I) > 0 for I’ > I.
Furthermore, for each r=1,..., N,

anv:/YMﬂm—a%@@
:L%)W"—MCYWQ%@Mé

::Xfr——<qT,Ar>-j/ £, (€)de
B(0,1)
—



since p, (§) = p, (=) for all .

Similarly,
DW (. I7) = / DY (5. I") — €)p, (€)dé
B(0,n)
- / (¢ N ), (€)de
B(0,n)
— (q’r‘7 )\7‘)
and

DAW (I = / DAY ((p, I7) — €)p, (£)de

B(0,n)

[ opa=o0
B(0,n)

In particular, 882["2[/ (p",I") =0 for each r. O

The intuition behind this result is straightforward. The dual Afriat function
Y (p,I) gives a convex indirect utility function rationalizing the data which has kinks
whenever two or more of the dual Afriat equations are equal. Since the data satisfy
the strict dual Afriat inequalities, none of these kinks occurs at an observation, so
smoothing the function Y in a sufficiently small neighborhood of each kink gives a
smooth function which is equal to the original dual Afriat function in a neighborhood
of each observation, and thus in particular is locally linear in each such neighborhood.

The second important result we use, due to Quah [7], gives conditions on indi-
rect utility analogous to the Mijutschin-Polterovich conditions on direct utility under
which individual demand is locally monotone.

Theorem (Quah). Let h : ]Rfl — R be a smooth, convex, strictly quasiconvex
indirect utility function satisfying the property!

_ 7 jh[[(p7 I)
)= —=~ < 2.
€(p’ ) hl(ﬁa I) =

Then h generates a demand function which is locally monotone in a neighborhood of

(P, 1)

In particular, if the indirect utility function A is linear in income in a neighborhood

of (p,I), then £(p,I) = 0 and Quah’s theorem shows that h generates a demand

function which is locally monotone in a neighborhood of (p, I).

' Here subscripts denote partial derivatives.



The proof of Theorem 1 then combines these two ideas and exploits the duality
between direct and indirect utility.

Proof of Theorem 1: Let M = max |lp* — p*||*>. By assumption there exist two
87

distinct observations, so M > 0. Since there exists a solution to the strict dual Afriat
inequalities, there exists € > 0 sufficiently small so that V ¢ # j,

VieVisg. . (p—p)+ NI = F)+eM. (%)
Define ' ' '
¢ =q¢ —¢ep,j=1,....,N
and
VI=VI— e/’ =1,...,N.
Then V i # j, we claim that
VieVisg.(p—p)+ N(I' - D). (%)
To verify (xx), let i # j. Then
VT~ ) = (- )

SR () ) ) N
= (

VIV =g - (p" =) = N(I' =) = Lellp’|? + 3l |I* +ep’ - (0 — P7)
= (V' =V) = - (p =) = NI =)+ 5e(IP°* = IP'II>) — 3e20” - (7 — ')
=V =V =g - () =) = NI =)+ 5/ = p')- (¢ +p' = 2)
=(VI=V)—¢- () =) = NI = P) = (¢ = p")- (¢ = 1)
= (V' =V =g - (' —p) = NI =) — sellp’ = p'|?
>0

by ().

Now by Lemma 1, there exists a convex, C*° function W : lel — R which is
strictly increasing in I, strictly decreasing in p and satisfies:

W, 1) =Vii=1,...,N

DW(p', I') = (¢, X\),i=1,...,N

oPW

oI?
Define V (p,I) = W (p,I) + 3¢||p||*>. Then V is C*, convex in (p, I), strictly convex in
p, strictly increasing in I and strictly decreasing in p for € sufficiently small. Moreover,

Vi, IY=V',i=1,...,N

DV(p',I')= (¢, \),i=1,...,N

o*V

a1

(', I')=0,i=1,...,N.

(p', 1)) =0,i=1,...,N.



By Quah’s theorem, the demand function

z(p,l) = —————=D,V(p, I
generated by this indirect utility function is locally monotone at (p',I') for each
i=1,...,N.

To convert this indirect utility function into a direct utility function, for each
T € Rﬂ define

U = i Vip, I
(z) ot (p, )
s.t. p-x<I.

Then U is smooth, strictly quasiconcave, monotone, and rationalizes the data. More-
over, x(p, I) is the demand function generated by U. To establish this claim, we must
show that for each (p,I) € A x R,

Vip,I) = max Ulz) (f)

st. p-x <.

Let Z solve (f). Then Z solves the first order conditions

DU(z) = Mp
b T = -[7
where A > 0. By definition,
T) = : / I/
U(z) o R VT (1)
s.t. -z <T.

so by the envelope theorem, DU(Z) = yp(Z), where v > 0 is the Lagrange multiplier
for (1) and (p(z),I(z)) is the solution to (}). Thus yp(Z) = Ap, which implies that
p(Z) = psince p,p(z) € A. Then I(z) = p(z)-z =p-x=1,50U(z) =V (p(x),[(T)) =
V(p,I). Finally, by Roy’s identity z(p,I) is the demand function generated by U,
which also implies that U rationalizes the data. O

The conditions which are necessary and sufficient for the existence of a smooth,
monotone utility function rationalizing a given finite data set — the dual strict Afriat
inequalities — are exactly the same conditions which are necessary and sufficient for
the existence of smooth preferences rationalizing the data for which demand is locally
monotone at each observation. Thus it follows immediately from Theorem 1 that any
finite data set that can be rationalized by smooth preferences can be rationalized by
smooth preferences giving rise to locally monotone demand.

9



Corollary. Let (p",z"),r = 1,..., N be given. There exists a smooth, strictly

quasiconcave, monotone utility function rationalizing this data if and only if there
exists a smooth, strictly quasiconcave, monotone utility function rationalizing this
data such that the implied demand function is locally monotone at (p",1") for each
r=1,...,N, where I" =p" - z".

This result will provide the foundation for the study of rationalizing equilibria
which is contained in the next section.

3 Rationalizing Walrasian Equilibria

In this section, we turn to the question of rationalizing observations as equilibria.
Here we consider a finite number of observations (p”,w”,{I; };), r = 1,..., N of
prices, income levels for each of T' consumers, and aggregate consumption. Our main
result shows that such a finite data set can never be used to refute the hypotheses that
equilibria are locally unique or locally stable under tdtonnement, or that equilibrium
comparative statics are locally monotone.

Theorem 2. Let (p",w", {IJ} ), r =1,...,N, be given. This data can be ratio-
nalized by an economy in which each consumer has a smooth, strictly quasiconcave,
monotone utility function if and only if it can be rationalized by an economy in which
each consumer has a strictly quasiconcave, monotone utility function and in which
each observed equilibrium p" is locally unique and locally stable under tdatonnement
and in which the equilibrium correspondence is locally monotone at (p",w") for each
T

To establish this result, consider a given finite data set (p",w”,{I7}L,), r =
1,..., N. When can these observations be rationalized as Walrasian equilibria? Since
we do not observe individual consumption bundles or utilities, these observations are
rationalizable as Walrasian equilibria if for each observation r =1,..., N there
exist consumption bundles zj for each consumer ¢ = 1,...,7T such that the individual

observations (p”,x}), r = 1,..., N, are rationalizable for each consumer, p" - 2} = I}
T
for each r and ¢, and such that markets clear in each observation, that is, > a2} = w”

t=1
for each r. Putting this definition together with the dual strict Afriat inequalities
characterizing individual rationalizability yields the following result.

Lemma 2. Let (p",w", {I;}]_,), r=1,...,N be a finite set of observations. There
exist smooth, strictly quasiconcave, monotone utility functions rationalizing this data
and initial endowments {w7}L | such that p" is an equilibrium price vector for the
economy E" if and only if there exist numbers V', \] and vectors q] fort =1,...,T

10



and r=1,..., N such that:

(a) the dual strict Afriat inequalities hold for each consumer t =1,...,T
(b) p-qf = =N1If fort=1,....,T and r=1,...,N

(¢) “markets clear”:

ro__ 1 r
where T = —57q; for each r and t.

Proof: Follows immediately from Theorem 1 and the definition of rationalizability. O

Moreover, note that given a finite set of observations (p", w™, {I'}L_|),r =1,..., N,
without observations of initial endowments we can without loss of generality assume
that each observation of the income distribution {I7}{_, is derived from collinear
individual endowments. More precisely, for each r and ¢ define

IT’
a: = T : T
p-w
and o = (af,...,a%). Given utility functions {U;}L,, the distribution economy

Eor is the economy in which consumer ¢ has preferences represented by the utility
function U; and endowment ajw”. Using this observation we can now restate Lemma
2 as follows.

Lemma 2'. Let (p",w", {IF};), 7 =1,..., N, be a finite set of observations. There
exist smooth, strictly quasiconcave, monotone utility functions rationalizing this data
such that p" is an equilibrium price vector for the distribution economy Eur if and

only if there exist numbers V", \; and vectors q; fort =1,....,T and r =1,...,N
such that:
(a) the dual strict Afriat inequalities hold for each consumer t =1,...,T

(b) p"-qf = =N1If fort=1,....,T and r=1,...,N

(¢) “markets clear”:

ro__ 1 r
where T; = —57q; for each r and t.

11



The dual strict Afriat inequalities in (a) are exactly the conditions characterizing
observations which can be rationalized by consumers with smooth characteristics, and
we showed in Theorem 1 that such observations can always be rationalized by util-
ity functions generating locally monotone demand. The results we derive regarding
the refutability of local stability and local comparative statics then follow from the
striking properties of locally monotone individual demand functions.

First, unlike almost every other property of individual demand such as the weak
axiom or the Slutsky equation, local monotonicity aggregates. If f; is an individual
demand function which is locally monotone at (p,I;) for each t = 1,...,T, then
market excess demand

F(p) = th(p,frt) W

is locally monotone at p.
Furthermore, local monotonicity at equilibrium implies local stability of taton-
nement, at least in distribution economies, as the following result shows.

Theorem (Malinvaud). Let p be an equilibrium price vector for a distribution econ-
omy &, with income distribution {a;}_ . If each consumer’s demand function is
locally monotone at (p, I;), where I, = a;(p - w), then the tatonnement price adjust-
ment process is locally stable at p.

In addition, local monotonicity at equilibrium implies both local uniqueness? and
monotone local comparative statics in distribution economies.

Theorem (Malinvaud). Let p be an equilibrium price vector for a distribution econ-
omy E, with income distribution {cy}L ;. If each consumer’s demand function is
locally monotone at (p, I;), where I, = ay(p- w), then the equilibrium correspondence
C for the distribution economy &, is locally monotone in a neighborhood P x U of
(p,w), i.e., if (p',w') € (P xU)NC then

(p'—p) (W —-w)<0.

This conclusion of locally monotone comparative statics implies in particular that
if the aggregate supply of a good increases, all else held constant, then its equilibrium
price will fall, at least locally.

The main conclusion of the paper is now an immediate consequence of the results
of section 2 and the properties of locally monotone demand functions in distribution

2To see this, note that if F(p) = 0 and F is locally monotone at p, then (p —p) - F(p) < 0 for p
sufficiently close to p. In particular, F(p) # 0 for such p.

3Here the income distribution is assumed to be constant as aggregate endowment changes, so the
equilibrium correspondence C for a distribution economy &, is the set of pairs (p,w) such that p is
an equilibrium price for the economy in which consumer ¢ has utility U; and endowment ayw.

12



economies: local uniqueness, local stability, and local monotone comparative stat-
ics are not refutable given a finite set of observations of prices, income levels, and
aggregate consumption.?

Proof of Theorem 2: Let (p",w", {I'}L ), r =1,..., N, be a finite set of observa-
tions which can be rationalized in an economy in which each consumer has a smooth,
strictly quasiconcave, monotone utility function. Then conditions (a), (b), and (c)
of Lemma 2 must hold. By Theorem 1, there exist smooth, strictly quasiconcave,
monotone utility functions rationalizing the data such that p” is an equilibrium price
vector for the distribution economy &, and such that the market excess demand
function for &, is locally monotone at p” for each » = 1,..., N. Thus p" is a locally
unique equilibrium in the economy &,-. By Malinvaud’s results, p” is locally stable
under tatonnement, and the equilibrium correspondence in the distribution economy
Eur 18 locally monotone at (p",w") for each r =1,... N. O
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