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Abstract
Some exact distribution theory is developed for structural equation models

with and without identities. The theory includes LIML, IV and OLS. We relate
the new results to earlier studies in the literature, including the pioneering work
of Bergstrom (1962). General IV exact distribution formulae for a structural
equation model without an identity are shown to apply also to models with an
identity by specializing along a certain asymptotic parameter sequence. Some of
the new exact results are obtained by means of a uniform asymptotic expansion.
An interesting consequence of the new theory is that the uniform asymptotic
approximation provides the exact distribution of the OLS estimator in the
model considered by Bergstrom (1962). This example appears to be the first
instance in the statistical literature of a uniform approximation delivering an
exact expression for a probability density.

Keywords: Exact distribution, Identity, IV estimation, LIML, Structural equa-
tion, Uniform asymptotic expansion.
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In memory of Rex Bergstrom whose pioneering paper in Econometrica
1962 opened up a new understanding of the comparative properties of
simultaneous equations estimators by deriving their exact finite sample
distributions.
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1 Introduction

Bergstrom (1962) and Basmann (1961) are recognized as the two pioneering arti-
cles on the exact distribution of simultaneous equations estimators. Both papers
dealt with special models, Bergstrom’s dealing with a just identified two equation
income determination model with one exogenous variable and Basmann’s with an
overidentified structural equation model with two endogenous variables and four ex-
ogenous variables. Bergstrom’s study, like that of Basmann, was motivated by the
desire to learn more about the finite sample distributional characteristics of (consis-
tent) simultaneous equations estimators like limited information maximum likelihood
(LIML) and instrumental variables (IV), especially in comparison to those of (incon-
sistent) least squares (OLS). Accordingly, he derived exact mathematical forms for
the density functions of the LIML and OLS estimators (under Gaussian innovations),
graphed the densities and computed probabilities of concentration about the true
value of the parameter for the two estimators. The results provided clear support for
the use of simultaneous equations estimators like LIML even in very small samples.
Later research has generally reinforced this conclusion about the superiority of

the LIML procedure in small samples, at least for correctly specified equations. The
conclusion is particularly interesting because it applies in spite of the fact that the
distribution of LIML is known to have heavy tails (Phillips, 1984, 1985) and can be
bimodal (Phillips and Hajivassiliou, 1987; Nelson and Startz, 1990; Woglom, 2001;
Phillips, 2006). While the bimodality does not show up in the sketch of the frequency
functions shown in Bergstrom (1962), it does become apparent under different para-
meter configurations, particularly those that reflect poor instrumentation, and when
a wider support is considered. The topic is of some ongoing interest and relates in
important ways to the recently studied and practically important phenomenon of
weak instrumentation in structural estimation - see Forchini (2006), Hillier (2006)
and Phillips (2006) for further discussion, analysis and references in the context of
the intervening literature.
The formulae derived by Bergstrom and Basmann are quite different in form and

seem difficult to relate. Moreover, Bergstrom’s results bear no obvious relation to
general formulae for exact distributions that were obtained in the subsequent litera-
ture — specifically, Phillips (1980) in the case of the IV estimator, and Phillips (1984,
1985) in the case of LIML. Bergstrom’s results have also been somewhat neglected in
the ensuing literature, even by Nelson and Startz (1990) who use precisely the same
exact distribution as Bergstrom’s density for LIML in their study of bimodality.
The stochastic income determination model studied by Bergstrom is a case of

strong endogeneity, where there is a structural behavioral equation and a structural
identity. The role of the identity is important in the distribution theory because it
provides a magnet for an alternative centering, pulling consistent estimators like IV
and LIML away from the relevant parameter in the behavioral relation and thereby
naturally inducing a bimodality, as discussed in Phillips (2006).
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Identities are common in structural systems and it is therefore of some interest
to relate Bergstrom’s particular results to a more general theory. The present paper
contributes by providing alternative derivations of Bergstrom’s main findings, both
for the LIML and OLS estimators. In particular, we provide an alternative reduction
of the (more complex) distributional result for OLS. Next, we relate the LIML and
OLS results for models with a structural identity to the general exact distribution
theory for models without identities, showing how the results for models with an
identity arise from a specialization along a certain asymptotic parameter sequence.
Part of the development involves the derivation of some new exact distribution theory
for the IV estimator which facilitates the required asymptotic expansion.
The asymptotics used here are of some independent interest and utilize the theory

of uniform asymptotic expansions. En route, we are able to generalize earlier results
given in Holly and Phillips (1979) for saddlepoint (SP) approximations, in which the
approximations had restricted domains - one for each tail of the distribution. The
uniform approximation does not have this restriction. Finally, it is shown that the
leading term in the uniform asymptotic expansion provides the exact distribution
for a structural model estimator when the model has a structural identity. To the
author’s knowledge, this is the first instance in the statistical or econometric literature
where a uniform approximation delivers an exact distribution.1

2 Bergstrom’s model and results

The model considered in Bergstrom (1962) is

yt = α+ βxt + ut (1)

xt = yt + γzt (2)

where the (spending propensity) parameter β is assumed to satisfy β < 1.The con-
dition β 6= 1 is needed for the existence of a reduced form and a non trivial data
generating mechanism. Equation (1) has two measured endogeneous variables yt, xt,
and a stochastic disturbance ut that is assumed to be iid N (0, σ2) for the development
of an exact finite sample theory. Equation (2) is a structural identity involving an
observed instrumental variable zt that is assumed to be strictly exogenous and fixed,
so that the workings are effectively conditioned on the sample {zt : t = 1, ..., n}.
The parameter γ did not specifically appear in Bergstrom (1962) and is there

set to unity, but it is useful to control the relevance of the instrument zt in the
1We might compare this result with the three special cases (normal, inverse normal, and chi-

squared), considered by Daniels (1980), where the SP approximation to the distribution of the
sample mean of an iid sequence is know to be exact, up to normalization. In the present case, of
course, we are dealing with statistics that are substantially more complex than sample means in
form, and where the exact distribution does not have a simple analytic form, but is instead given by
an infinite series. We also note that Marsh (1998) found that the SP approximation to the density
of a ratio of independent central chi-squared variates (an F ratio) is exact upon normalization.
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system (c.f. Phillips, 2006) and is convenient to use as a known scale coefficient here,
although it could readily be absorbed into zt and its effects measured in terms of the
signal from the instrument. When γ → 0, the instrument zt becomes irrelevant to
the determination of yt and xt, and we end up with the identity xt = yt in place of
(2). On the other hand, when γ → ∞, the system is dominated by the signal from
zt. In view of the identity (2) and the exogeneity of zt, the degree of endogeneity as
measured by the correlation coefficient of xt and ut is unity, so that there is strong
endogeneity in the system.
Bergstrom (1962) allowed for the presence of an intercept in (1). However, setting

α = 0 is inconsequential and only affects the degrees of freedom and noncentrality
measure, so we proceed without an intercept in what follows, making adjustments as
needed to relate results to those of Bergstrom. When α = 0, the reduced form is

yt = πyzt + vt, πy =
βγ

1− β
, vt =

1

1− β
ut (3)

xt = πxzt + vt, πx =
γ

1− β
, (4)

and β is just identified by the relation

β = πy/πx = 1− γ/πx. (5)

Correspondingly, the LIML estimator of β is β̂ = π̂y/π̂x = 1 − γ/π̂x, where π̂y and
π̂x are the reduced form least squares estimates, obtained from (3) - (4) with no
intercept. The estimate β̂ is the same as the IV estimator with zt as instrument.
Since π̂y and π̂x are Gaussian, Bergstrom’s expression for the exact density of β̂ is
immediate from simple variate transformation and has the form

pdf (b) =
λ1/2n√
2π

1− β

σ

1

(1− b)2
exp

(
− λn
2σ2

µ
b− β

1− b

¶2)
, (6)

where λn = γ2
Pn

t=1 z
2
t is the noncentrality parameter (Bergstrom normalized this

parameter to the sample size so that λn = n). The density (6) is the same as
that studied in Nelson and Startz (1990) because the model studied in that paper is
observationally equivalent to a structural equation with a parameterized identity (for
details, see Phillips, 2006).
Bergstrom found the following form of the exact density of the OLS estimator,

which holds for even values of n ≥ 4

pdf (b) = (−1)
n−4
2
4
√
n (1− β) e−

λn
2σ2

2
n−1
2
√
πσ2 (1− b)2

eq

z2

n−4
2X

j=0

Γ (n− 2− j)

j!Γ
¡
n−2−2j

2

¢ µ2
z

¶n−4−2j

µ
4
√
n

σz
+ 2

¶j

(−1)n−4−j
(
e−q −

n−3−jX
k=0

(−q)k

k!

)
, (7)
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for

1 6= b 6= 1 + β

2
, (8)

and where

z =

√
n (2b− β − 1)
σ (1− β)

, q =
n (1 + β − 2b) (1− β)

2σ2 (1− b)2
.

Notably, (7) is a finite series and involves no special transcendental functions. Bergstrom
found (7) by a sequence of variate transformations and integrations that reduce di-
mension, the final steps involving the reduction of an integral involving a complicated
factor in the integrand which Bergstrom expanded in a finite series using the binomial
expansion, which was valid for even values of n ≥ 4 and for values of the argument
satisfying (8).
In particular, from equations (16) and (21) of Bergstrom (1962) and after nota-

tional translation (T 7−→ n and λ2n 7−→ n) we have

pdf (b) =
√
n(1− β)

σ (1− b)2
g

µ√
n (2b− β − 1)
σ (1− b)

¶
, b 6= 1, (9)

where

g (z) = k

Z − z2

2
+
√
nz
σ

0

4q

z2

½
−4q

2

z2
−
µ
4
√
n

σz
+ 2

¶
q

¾n−4
2

eqdq, for z 6= 0, (10)

and k =
n
2(n−1)/2

√
πΓ
¡
n−2
2

¢
e

n
2σ2

o−1
.

Using this formulation we can obtain a simpler and more general expression for
the density by expressing the integral (10) in terms of a confluent hypergeometric

function whose series form (e.g. Lebedev, 1972) is 1F1 (a, b;x) =
P∞

j=0

(a)j
j!(b)j

xj, where

(a)j is the forward factorial (a)j = a (a+ 1) ...(a + j − 1). The result is stated as
follows and proved in the Appendix.

Proposition 1 The exact density of the OLS estimator of β in the Gaussian model
(1)-(2) with γ = 1 and λn = n has the form

pdf (b) =
n
n−1
2 Γ

¡
n
2

¢
e
− n
2σ2

(b−β)2

(1−b)2 (1− β)n−1

2(n−1)/2σn−1
√
πΓ (n− 1) |1− b|n 1F1

µ
n

2
− 1, n− 1;−n (1− β) (1 + β − 2b)

2σ2 (1− b)2

¶
.

(11)

This expression for the density holds for all n ≥ 2 and for all b. As will be shown
below, the density (11) is, in fact, continuous as the argument b passes through unity.
The density is also positive at b = 1, unlike the density of the LIML estimator (6),
which is easily seen to have a zero at b = 1 (c.f., Phillips and Wickens, 1978; Nelson
and Startz, 1990).

5



3 The LIML Density as a Specialization

We now proceed to show how the exact LIML density (6), and later the exact OLS
density (11), can be derived as a special case of exact results for a model without
an identity. This specialization is accomplished by taking an appropriate limit of the
densities in the general case to correspond with the singular covariance matrix struc-
ture that characterizes the model with an identity. The process and the results are of
some independent interest, not least because past exact results for the general case
have been derived explicitly under a nonsingular (Wishart) distribution assumption
and normalizing transformations that set the covariance structure of the endogenous
variables to an identity matrix. The process described below is given for the two
endogenous variable case to keep the length and notation of the present contribution
manageable and so that the Bergstrom results are appropriately highlighted as the
specialization of primary interest. Results for the general case of m+ 1 endogenous
variables raise some additional complications and will be reported elsewhere.
We write the general two endogenous variable model (ignoring included exogenous

variables) as

yt = βxt + ut (12)

xt = γxzt + uxt. (13)

When uxt =
ut
1−β and γx =

γ
1−β , (13) is the reduced form equation (4), viz.,

xt =
γ

1− β
zt +

ut
1− β

, (14)

and then

yt = βxt + ut =
βγ

1− β
zt +

βut
1− β

+ ut =
βγ

1− β
zt +

ut
1− β

,

corresponding to the reduced form equation (3). Moreover, equation (13) is

xt =
γ

1− β
zt + yt −

βγ

1− β
zt = γzt + yt,

giving the identity (2). Hence, model (12) - (14) is equivalent to the structural model
with identity (1) - (2) when uxt =

ut
1−β and γx =

γ
1−β .

We proceed with a finite sample analysis of model (12) - (13). First assume that
the covariance structure Σ > 0 of (ut, uxt) is nondegenerate. The covariance matrix
of the reduced form is

Ω = B−1ΣB0−1 =

∙
1 β
0 1

¸
Σ

∙
1 0
β 1

¸
=

∙
ω11 ω12
ω21 Ω22

¸
, say,
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where B =
∙
1 −β
0 1

¸
, and which we can write in alternate form as

Ω =

"
ω11 ρω

1/2
11 Ω

1/2
22

ρω
1/2
11 Ω

1/2
22 Ω22

#
, with ρ = Ω

−1/2
22 ω21/ω

1/2
11 .

We transform the model to standardized form as shown in Phillips (1982, 1983),
leading to the new system

yt = β∗xt + u∗t (15)

xt = γ∗xzt + u∗xt, (16)

where

β∗ =
Ω
1/2
22

ω
1/2
11 (1− ρ2)1/2

¡
β − Ω−122 ω21

¢
, γ∗x = Ω

−1/2
22 γx,

(see thereom 3.3.1 and equation (3.54) of Phillips, 1982) Then, using the notation
δ = ω

1/2
11 Ω

−1/2
22 , we have

β∗ =
Ω
1/2
22

ω
1/2
11 (1− ρ2)1/2

¡
β − Ω−122 ω21

¢
=

1

δ (1− ρ2)1/2
(β − ρδ) , (17)

and the corresponding transformation for the estimator is

r∗ =
1

δ (1− ρ2)1/2
(r − ρδ) , (18)

where r∗ and r denote realizations of the corresponding estimates of β∗ and β. We
observe that for the Bergstrom model, ω11 = Ω22 =

σ2

1−β , so that δ = 1, and the
correlation coefficient is ρ = 1. We may therefore expect a correspondence between
exact results for this model and the Bergstrom model upon passing ρ2 → 1. Note
that passing ρ2 → 1 corresponds to β∗ → ±∞ in the standardized model.
For this structural model without an identity, the exact distribution of the LIML/IV

estimator has the known following form in the just identified case

pdf (r∗) =
e−

μ2

2 (1+β
∗2)

π (1 + r∗2)
1F1

Ã
1,
1

2
;
μ2

2

(1 + β∗r∗)2

1 + r∗2

!
,

where the noncentrality parameter is

μ2 = n
γ2x
Ω22

= n
γ2/ (1− β)2

σ2/ (1− β)2
=

nγ2

σ2
=

λn
σ2

(19)
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(see Phillips, 1980, 1983). Hence, for the untransformed system we have the exact
density

pdf (r) =
1

δ (1− ρ2)1/2
e−

μ2

2 (1+β
∗2)

π (1 + r∗2)
1F1

Ã
1,
1

2
;
μ2

2

(1 + β∗r∗)2

1 + r∗2

!
, (20)

upon substituting for β∗ and r∗ using (17) and (18).
We now examine expression (20) and seek to take limits as ρ2 → 1, leading to the

degenerate case. The result is stated formally as follows.

Proposition 2 The limiting form of the exact density of the LIML estimator in the
just identified case has the form

lim
ρ2→1

pdf (r) =
(μ2)

1/2

√
2π

|β − δ|
(r − δ)2

exp

(
−μ

2

2

(r − β)2

(r − δ)2

)
, (21)

in the case of a model with a structural identity.

When δ = 1 and noting that μ2 = λn/σ
2 from (19), the limiting density (21) is

pdf (r) =
λ1/2n√
2πσ

|β − 1|
(r − 1)2

exp

(
− λn
2σ2

(r − β)2

(r − 1)2

)
, (22)

corresponding to the Bergstrom result (6) for LIML in this just identified case. Thus,
Bergstrom’s LIML density is just a specialization of the density that holds for a
structural model without an identity.
A similar specialization holds for the OLS estimator, as would now be antici-

pated. However, the limiting argument to prove this correspondence involves greater
technical complexity because the exact density of the OLS estimator presently in
the literature is not sufficiently general to permit a uniform limiting approximation
along the required path. In fact, use of existing formulae for the exact density pro-
duces limiting approximations that are only valid on a restricted domain as shown in
the following section, corresponding to earlier work by Holly and Phillips (1979) on
saddlepoint approximations and Phillips (1980) on Laplace approximations.
The first step in a more general approach is therefore to provide a suitable reformu-

lation of that density. We accomplish this reformulation by finding a new expression
for the exact density of the general IV estimator in a structural model without an
identity. This new expression turns out to be of independent interest and have other
uses which are not pursued here.
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4 The OLS Density as a Specialization

4.1 Restricted approximants

We start with the exact OLS density, which may be obtained from the results in
Phillips (1980). For the standardized model and in the two endogenous variable case
that is relevant here, the exact OLS density has the following form

pdf (r∗) =
e−

μ2

2 (1+β
∗2)Γ

¡
n+1
2

¢
π1/2Γ

¡
n
2

¢
(1 + r∗2)(n+1)/2

∞X
j=0

¡
n−1
2

¢
j

j!
¡
n
2

¢
j

µ
μ2

2
β∗2
¶j

× 1F1

Ã
n+ 1

2
,
n

2
+ j;

μ2

2

(1 + β∗r∗)2

1 + r∗2

!
. (23)

which is found by settingN = n−1 in equation (13) of Phillips (1980)2. In this expres-
sion, as earlier, the notations β∗ and r∗ refer to the standardized model and are given
in (17) and (18). In unstandardized form, we have pdf (r) = δ−1 (1− ρ2)

−1/2
pdf (r∗)

with the corresponding substitutions

β∗2 =
1

δ2 (1− ρ2)
(β − ρδ)2 , 1 + r∗2 =

δ2 + r2 − 2rρδ
δ2 (1− ρ2)

, (24)

and

(1 + β∗r∗)2

1 + r∗2
=

£
δ2 + βr − ρδ (r + β)

¤2
δ2 (1− ρ2)

©
δ2 + r2 − 2rρδ

ª . (25)

Each expression in (24) and (25) diverges as ρ2 → 1, enabling an asymptotic expan-
sion. In particular, both factors of the following expression, which appears in the
density formula (23),

µ
μ2

2
β∗2
¶j

1F1

Ã
n+ 1

2
,
n

2
+ j;

μ2

2

(1 + β∗r∗)2

1 + r∗2

!
(26)

diverge as ρ2 → 1. When these expansions, which are given in the Appendix, are
employed in (23), we obtain the following approximation to the OLS density in a
model with a structural identity.

2The setting N = n− 1 does not take into account an intercept term in the structural equation,
which leads to a further loss of one degree of freedom, so that N = n− 2 in that event, a fact that
will be used later.
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Proposition 3 Limiting approximations to the exact density of the OLS estimator
in a structural model with an identity are given by

lim
ρ→1

pdf (r) =

µ
μ2

2π

¶1/2 expn−μ2

2
(r−β)2
(r−δ)2

o
(r − δ)2

|β − δ|(n+1)/2

|2r − β − δ|(n−1)/2
, (27)

lim
ρ→−1

pdf (r) =

µ
μ2

2π

¶1/2 expn−μ2

2
(r−β)2
(r+δ)2

o
(r + δ)2

|β + δ|(n+1)/2

|2r − β + δ|(n−1)/2
, (28)

as ρ→ ±1.

When δ = 1, μ2 = λn/σ
2, and n is replaced by n− 1 to account for the presence

of an intercept, as in the Bergstrom case, formulae (27) and (28) become

lim
ρ→1

pdf (r) =
λ1/2n |β − 1|n/2 exp

n
− λn
2σ2

(r−β)2
(r−1)2

o
√
2πσ (r − 1)2 |2r − β − 1|(n−2)/2

, (29)

lim
ρ→−1

pdf (r) =
λ1/2n exp

n
− λn
2σ2

(r−β)2
(r+1)2

o
|β + 1|n/2

√
2πσ (r + 1)2 |2r − β + 1|(n−2)/2

, (30)

with (29) corresponding to the Bergstrom case where ρ = 1.
Both formulae (27) and (28) represent limiting approximations, rather than the

exact OLS density. The reason is that upon using the expansion of (26) in (23),
the resulting infinite series is summable as a binomial series only over a restricted
range for the density and this restricted domain is violated when ρ = ±1. The details
are given in the Appendix. Interestingly, this violation does not prevent the limits
(29) and (30) from existing and, as discussed later in the paper, these limits can be
validated as large concentration parameter (λn) approximants. A similar limitation
on the domain of application applies to the saddlepoint approximation of Holly and
Phillips (1979) and the Laplace approximation given in Phillips (1980).
Interestingly, the approximations (29) and (30) have zeros in their support: (29)

at r = 1, and (30) at r = −1. Thus, the approximation (29) corresponding to the
Bergstrom case where ρ = 1 has a zero at r = 1, like the LIML density (22), but also
has a singularity at r = (1 + β)/2, which is not present in the exact density.
We now proceed to develop an alternative form of the exact density which is

useful in deriving a valid limit as ρ2 → 1. It will be convenient to perform the
development for the case of the exact density of a IV estimator, as in Phillips (1980),
so that the final result has wider applicability. We continue to confine attention to
the two endogenous variable case and let L be a parameter representing the degree of
overidentification, using the same notation as Phillips (1980). The Bergstrom OLS
case is covered in this notation when L = n − 2, because Bergstrom (1962) has an
intercept in the structural equation and the constant counts as an additional variable
and further adjusts the degrees of freedom.
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4.2 A new form for the IV exact density

We start by considering the following two representations of the IV exact density.
The first is analogous to (23) above and is given in Phillips (1980), the second is
derived by a simple rearrangement of the multiple series

pdf (r∗) =
e−

μ2

2 (1+β
∗2)Γ

¡
L+2
2

¢
π1/2Γ

¡
L+1
2

¢
(1 + r∗2)(L+2)/2

∞X
j=0

¡
L
2

¢
j

j!
¡
L+1
2

¢
j

µ
μ2

2
β∗2
¶j

1F1

Ã
L+ 2

2
,
L+ 1

2
+ j;

μ2

2

(1 + β∗r∗)2

1 + r∗2

!
(31)

=
e−

μ2

2 (1+β
∗2)

B
¡
1
2
, L+1

2

¢
(1 + r∗2)(L+2)/2

∞X
j=0

¡
L+2
2

¢
j

j!
¡
L+1
2

¢
j

Ã
μ2

2

(1 + β∗r∗)2

1 + r∗2

!j

1F1

µ
L

2
,
L+ 1

2
+ j;

μ2

2
β∗2
¶
. (32)

We observe that in both these representations the series involve terms with confluent
hypergeometric functions, viz.,

1F1

Ã
L+ 2

2
,
L+ 1

2
+ j;

μ2

2

(1 + β∗r∗)2

1 + r∗2

!
and 1F1

µ
L

2
,
L+ 1

2
+ j;

μ2

2
β∗2
¶
,

in which both the parameter j and the argument (the third parameter of the function)
may be large. This means that the validity of the conventional (large third parameter)
asymptotic expansion of the 1F1 function (see (35) below) is essentially restricted to
cases where j is finite. Use of this type of asymptotic approximation, as we have seen
above, leads to series in j that are summable only over a restricted domain of values
of the argument r∗. In consequence, the resulting approximants lack uniformity and
therefore limits that are taken as ρ2 → 1 do not produce an exact density for a model
with a structural identity.
In order to achieve an approximation that is valid over the entire domain of r∗

we need to develop a uniform asymptotic expansion. This can be accomplished by
the following technique. First, we find an alternate representation of the density
which involves a 1F1 function that does not have a large or variable parameter. To
do so, we will make use of the following integral representation, Kummer relation
and conventional (large parameter) asymptotic expansion of the 1F1 function (e.g.,
Lebedev, 1972):

1F1 (a, b;x) =
Γ (b)

Γ (a)Γ (b− a)

Z 1

0

estta−1 (1− t)b−a−1 dt, (33)

1F1 (a, b;x) = ex 1F1 (b− a, b;−x) , (34)

1F1 (a, b;x) =
Γ (b)

Γ (a)
exxa−b

©
1 +O

¡
x−1
¢ª

. (35)
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Using (34) and (33) in (32) we have

pdf (r∗) =
e−

μ2

2

B
¡
1
2
, L+1

2

¢
(1 + r∗2)(L+2)/2

∞X
j=0

¡
L+2
2

¢
j

j!
¡
L+1
2

¢
j

Ã
μ2

2

(1 + β∗r∗)2

1 + r∗2

!j

× 1F1

µ
j +

1

2
,
L+ 1

2
+ j;−μ

2

2
β∗2
¶

=
e−

μ2

2

B
¡
1
2
, L+1

2

¢
(1 + r∗2)(L+2)/2

∞X
j=0

¡
L+2
2

¢
j

j!
¡
L+1
2

¢
j

Ã
μ2

2

(1 + β∗r∗)2

1 + r∗2

!j

×
Γ
¡
L+1
2
+ j
¢

Γ
¡
j + 1

2

¢
Γ
¡
L
2

¢ Z 1

0

e−
μ2

2
β∗2ttj−

1
2 (1− t)

L
2
−1 dt

=
e−

μ2

2

B
¡
1
2
, L+1

2

¢
(1 + r∗2)(L+2)/2

×
Z 1

0

e−
μ2

2
β∗2t

⎧⎨⎩
∞X
j=0

¡
L+2
2

¢
j

j!
¡
L+1
2

¢
j

Ã
t
μ2

2

(1 + β∗r∗)2

1 + r∗2

!j
Γ
¡
L+1
2
+ j
¢

Γ
¡
j + 1

2

¢
Γ
¡
L
2

¢
⎫⎬⎭ t−

1
2 (1− t)

L
2
−1 dt

=
e−

μ2

2 Γ
¡
L+1
2

¢
B
¡
1
2
, L+1

2

¢
Γ
¡
L
2

¢
Γ
¡
1
2

¢
(1 + r∗2)(L+2)/2

×
Z 1

0

e−
μ2

2
β∗2t

⎧⎨⎩
∞X
j=0

¡
L+2
2

¢
j

j!
¡
1
2

¢
j

Ã
t
μ2

2

(1 + β∗r∗)2

1 + r∗2

!j
⎫⎬⎭ t−

1
2 (1− t)

L
2
−1 dt

=
e−

μ2

2 Γ
¡
L+2
2

¢
Γ
¡
L
2

¢
π (1 + r∗2)(L+2)/2

×
Z 1

0

e−
μ2

2
β∗2t

1F1

Ã
L+ 2

2
,
1

2
;

Ã
μ2t

2

(1 + β∗r∗)2

1 + r∗2

!!
t−

1
2 (1− t)

L
2
−1 dt, (36)

which is a new form for the exact density of the IV estimator. The hypergeometric
function in (36) has the two parameters

¡
L+2
2
, 1
2

¢
which are fixed for any given L,

which facilitates a uniform asymptotic development as ρ2 → 1.
Note that when 1 + β∗r∗ = 0 (or r∗ = −1/β∗), expression (36) for the exact
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density reduces immediately to

pdf (r∗) =
e−

μ2

2 Γ
¡
L+2
2

¢
Γ
¡
L
2

¢
π (1 + r∗2)(L+2)/2

Z 1

0

e−
μ2

2
β∗2tt−

1
2 (1− t)

L
2
−1 dt

=
e−

μ2

2 Γ
¡
L+2
2

¢
Γ
¡
L
2

¢
π (1 + r∗2)(L+2)/2

√
πΓ
¡
L
2

¢
Γ
¡
L+1
2

¢ 1F1

µ
1

2
,
L+ 1

2
;−μ

2

2
β∗2
¶

=
e−

μ2

2 (1+β
∗2)

1F1
³
L
2
, L+1

2
; μ

2

2
β∗2
´

B
¡
1
2
, L+1

2

¢
(1 + r∗2)(L+2)/2

, r∗ = − 1
β∗

, (37)

upon application of (34). Observe that (37) corresponds to formula (31) for the exact
density in this case.

4.3 A uniform asymptotic expansion of the IV density

Transforming to original coordinates, we find that for μ2 > 0 and 1 + β∗r∗ 6= 0

μ2t

2

(1 + β∗r∗)2

1 + r∗2
=

μ2t

2

£
δ2 + βr − ρδ (r + β)

¤2
δ2 (1− ρ2)

©
δ2 + r2 − 2rρδ

ª = O

µ
1

1− ρ2

¶
for all t 6= 0,

(38)

as ρ2 → 1. Hence, we may employ the usual asymptotic expansion (35) of the 1F1
function in (36), giving

1F1

Ã
L+ 2

2
,
1

2
;

Ã
μ2t

2

(1 + β∗r∗)2

1 + r∗2

!!

=
Γ
¡
1
2

¢
Γ
¡
L
2
+ 1
¢eμ2t2 (1+β∗r∗)2

1+r∗2

Ã
μ2t

2

(1 + β∗r∗)2

1 + r∗2

!L+1
2 ©

1 +O
¡
1− ρ2

¢ª
, (39)

in this case.
Using (39) in (36) and the representation (33), we have

pdf (r∗) =
e−

μ2

2

³
μ2

2
(1+β∗r∗)2

1+r∗2

´L+1
2

Γ
¡
L
2

¢
π1/2 (1 + r∗2)(L+2)/2

×
Z 1

0

e−
μ2

2
β∗2te

μ2t
2

(1+β∗r∗)2

1+r∗2 t
L
2 (1− t)

L
2
−1 dt

©
1 +O

¡
1− ρ2

¢ª
=

e−
μ2

2

³
μ2

2
(1+β∗r∗)2

1+r∗2

´L+1
2

Γ
¡
L
2

¢
π1/2 (1 + r∗2)(L+2)/2

Γ
¡
L+2
2

¢
Γ
¡
L
2

¢
Γ (L+ 1)

× 1F1

Ã
L+ 2

2
, L+ 1;

μ2

2

(
(1 + β∗r∗)2

1 + r∗2
− β∗2

)!©
1 +O

¡
1− ρ2

¢ª
13



=
Γ
¡
L+2
2

¢ ³
μ2

2

´L+1
2
e−

μ2

2 |1 + β∗r∗|L+1

Γ (L+ 1)π1/2 (1 + r∗2)L+3/2

1F1

µ
L

2
+ 1, L+ 1;

μ2

2

1− β∗2 + 2β∗r∗

1 + r∗2

¶©
1 +O

¡
1− ρ2

¢ª
, (40)

which is valid irrespective of the sign of 1− β∗2 + 2β∗r∗ as 1F1 is an entire function.
We state the result formally as follows.

Proposition 4 A uniform asymptotic approximation to the exact IV density is given
by

pdf (r∗) ∼
Γ
¡
L+2
2

¢ ³
μ2

2

´L+1
2
e−

μ2

2 |1 + β∗r∗|L+1

Γ (L+ 1)π1/2 (1 + r∗2)L+3/2
1F1

µ
L

2
+ 1, L+ 1;

μ2

2

1− β∗2 + 2β∗r∗

1 + r∗2

¶
.

(41)

This uniform approximation is valid as ρ2 → 1 provided μ2 > 0. The asymptotic
approximation also holds as μ2 →∞ provided 1 + β∗r∗ 6= 0, in which case the exact
density has the form (37).

Note that the approximation (41) is valid as μ2 → ∞ provided 1 + β∗r∗ 6= 0,
so that (41) delivers an alternative approximant for conventional large sample size,
large concentration parameter asymptotics. This approximant is more general than
the approximation given in Phillips (1980) and it holds over the support of the density
except when r∗ = −1/β∗, unlike the approximants obtained in Phillips (1980) and
Holly and Phillips (1979), which hold only in the tails. When r∗ = −1/β∗, the exact
density has the simple form given by (37).
Note also that the approximate density (41) has finite moments to integer order

L, reproducing precisely the moment existence property of the exact density (31).

4.4 The IV and OLS Densities as Exact Approximations

We start by transforming the density (40) to original coordinates. Using (52), (53),
and (51) in the Appendix, we have

1 + 2β∗r∗ − β∗2 =
δ2 + 2βr − 2rρδ − β2

δ2 (1− ρ2)
,

1 + r∗2 =
δ2 + r2 − 2rρδ
δ2 (1− ρ2)

,

1 + β∗r∗ =
δ2 + βr − ρδ (r + β)

δ2 (1− ρ2)
,
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so that as ρ→ ±1
1 + 2β∗r∗ − β∗2

1 + r∗2
=

δ2 + 2βr − 2rρδ − β2

δ2 + r2 − 2rρδ

→
(

(β−δ)(2r−β−δ)
(r−δ)2 ρ→ 1

(β+δ)(2r−β+δ)
(r+δ)2

ρ→ −1
.

Then, from (17) and (40), we have

pdf (r) =
1

δ (1− ρ2)1/2
pdf (r∗)

=
1

δ (1− ρ2)1/2

Γ
¡
L+2
2

¢ ³
μ2

2

´L+1
2
e−

μ2

2

¯̄̄
δ2+βr−ρδ(r+β)

δ2(1−ρ2)

¯̄̄L+1
Γ (L+ 1)π1/2

n
δ2+r2−2rρδ
δ2(1−ρ2)

oL+3/2
× 1F1

µ
L

2
+ 1, L+ 1;

μ2

2

δ2 + 2βr − 2rρδ − β2

δ2 + r2 − 2rρδ

¶©
1 +O

¡
1− ρ2

¢ª

=
Γ
¡
L+2
2

¢ ³
μ2

2

´L+1
2
e−

μ2

2

¯̄
δ2 + βr − ρδ (r + β)

¯̄L+1
Γ (L+ 1)π1/2

©
δ2 + r2 − 2rρδ

ªL+3/2
× 1F1

µ
L

2
+ 1, L+ 1;

μ2

2

δ2 + 2βr − 2rρδ − β2

δ2 + r2 − 2rρδ

¶©
1 +O

¡
1− ρ2

¢ª
Hence, as ρ→ 1 we have

lim
ρ→1

pdf (r) =
Γ
¡
L+2
2

¢ ³
μ2

2

´L+1
2
e−

μ2

2

¯̄
δ2 + βr − δ (r + β)

¯̄L+1
Γ (L+ 1)π1/2 (r − δ)2L+3

× 1F1

µ
L

2
+ 1, L+ 1;

μ2

2

(β − δ) (2r − β − δ)

(r − δ)2

¶

=
Γ
¡
L+2
2

¢ ³
μ2

2

´L+1
2
e−

μ2

2 |(β − δ) (r − δ)|L+1

Γ (L+ 1)π1/2 (r − δ)2L+3

× 1F1

µ
L

2
+ 1, L+ 1;

μ2

2

(β − δ) (2r − β − δ)

(r − δ)2

¶

=
Γ
¡
L+2
2

¢ ³
μ2

2

´L+1
2
e−

μ2

2 |β − δ|L+1

Γ (L+ 1)π1/2 |r − δ|L+2 1F1

µ
L

2
+ 1, L+ 1;

μ2

2

(β − δ) (2r − β − δ)

(r − δ)2

¶
.

(42)
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Using (34), this limit may be written in the alternate form

Γ
¡
L+2
2

¢ ³
μ2

2

´L+1
2 |β − δ|L+1 e−

μ2

2
(r−β)2

(r−δ)2

Γ (L+ 1)π1/2 |r − δ|L+2 1F1

µ
L

2
, L+ 1;−μ

2

2

(β − δ) (2r − β − δ)

(r − δ)2

¶
.

Similarly, when ρ→ −1 we find

lim
ρ→1

pdf (r) =
Γ
¡
L+2
2

¢ ³
μ2

2

´L+1
2
e−

μ2

2 |(β + δ)|L+1

Γ (L+ 1)π1/2 |r + δ|L+2

× 1F1

µ
L

2
+ 1, L+ 1;

μ2

2

(β + δ) (2r − β + δ)

(r + δ)2

¶

=
Γ
¡
L+2
2

¢ ³
μ2

2

´L+1
2 |β + δ|L+1 e−

μ2

2
(r−β)2

(r+δ)2

Γ (L+ 1)π1/2 |r + δ|L+2

× 1F1

µ
L

2
, L+ 1;−μ

2

2

(β + δ) (2r − β + δ)

(r + δ)2

¶
. (43)

These results for the two cases ρ→ ±1 may be formalized as follows.

Proposition 5 The exact density of the IV estimator with L degrees of overidentifi-
cation in a model with two endogenous variables and a structural identity is

pdf (r) =
Γ
¡
L+2
2

¢ ³
μ2

2

´L+1
2 |β ∓ δ|L+1 e−

μ2

2
(r−β)2

(r−δ)2

Γ (L+ 1)π1/2 |r ∓ δ|L+2 1F1

µ
L

2
, L+ 1;−μ

2

2

(β ∓ δ) (2r − β ∓ δ)

(r ∓ δ)2

¶
,

(44)

according as the correlation between the endogenous variables ρ = ±1.

Setting μ2 = n/σ2, δ = 1, ρ = 1, and L = n − 2, expression (44) reduces to
Bergstrom’s exact OLS density as given in the form (11) of Proposition 2. Moreover,
setting μ2 = n/σ2 = λn/σ

2, δ = 1, ρ = 1, and L = 0 in (44), and noting that the 1F1
function is unity because the series terminates at the first term in this case, we have

pdf (r) =
λ1/2n |β − 1| e−

λn
2σ2

(r−β)2

(r−1)2

(2π)1/2 σ (r − 1)2
,

which is Bergstrom’s exact LIML density (6) for the just identified case. Thus, (44)
is a general formula that includes exact results for OLS, IV and LIML for the case of
a structural identity in the system.
As remarked in the Introduction, this set of results seems to be the first of its kind

where a uniform asymptotic approximation produces exact finite sample densities.
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4.5 Some Properties of the IV and OLS Exact Densities

(a) It is apparent from the form of the IV density (44) that integer moments of the
distribution are finite up to the degree of overidentification L, just as in the
case of models without a structural identity.

(b) When L = 0, the 1F1 function in (44) is unity, so the exact density has a zero
at r = δ, just as in the case of Bergstrom’s LIML estimator. But when L > 0,
the density does not have a zero at r = δ, as shown below.

(c) Taking a large μ2 asymptotic approximation to (44) using (35), we obtain, noting
the equivalence of (44) to

pdf (r) =
Γ
¡
L+2
2

¢ ³
μ2

2

´L+1
2
e−

μ2

2 |β ∓ δ|L+1

Γ (L+ 1)π1/2 |r ∓ δ|L+2

× 1F1

µ
L

2
+ 1, L+ 1;

μ2

2

(β ∓ δ) (2r − β ∓ δ)

(r ∓ δ)2

¶
(45)

=
Γ
¡
L+2
2

¢ ³
μ2

2

´L+1
2
e−

μ2

2 |β ∓ δ|L+1

Γ (L+ 1)π1/2 |r ∓ δ|L+2

× Γ (L+ 1)

Γ
¡
L
2
+ 1
¢ ½μ2

2

(β ∓ δ) (2r − β ∓ δ)

(r ∓ δ)2

¾−L
2

e
μ2

2
(β∓δ)(2r−β∓δ)

(r∓δ)2
©
1 +O

¡
μ−2

¢ª

=

³
μ2

2

´L+1
2 |β ∓ δ|L+1

π1/2 |r ∓ δ|L+2
½
μ2

2

(β ∓ δ) (2r − β ∓ δ)

(r ∓ δ)2

¾−L
2

e
−μ2

2
1− (β∓δ)(2r−β∓δ)

(r∓δ)2
©
1 +O

¡
μ−2

¢ª

=

³
μ2

2π

´ 1
2 |β ∓ δ|

L
2
+1 e

−μ2

2
(r−β)2

(r∓δ)2

(r ∓ δ)2 |2r − β ∓ δ|
L
2

©
1 +O

¡
μ−2

¢ª
,

which corresponds to (27) and (28) when L = n−2, thereby validating the latter
formulae as large μ2 or concentration parameter approximants to the exact OLS
distribution.

(d) We take limits of the density as r→ ±δ when L > 0. Using (35), note that

1F1

µ
L

2
, L+ 1;−μ

2

2

(β ∓ δ) (2r − β ∓ δ)

(r ∓ δ)2

¶
=

Γ (L)

Γ
¡
L
2

¢e−μ2

2
(β∓δ)(2r−β∓δ)

(r∓δ)2

½
−μ

2

2

(β ∓ δ) (2r − β ∓ δ)

(r ∓ δ)2

¾−L
2
−1 ©

1 +O
¡
(r ∓ δ)2

¢ª
=

Γ (L)

Γ
¡
L
2

¢eμ22 (β−r)2−(r∓δ)2

(r∓δ)2

(
(r ∓ δ)2

μ2

2
(δ ∓ β) (2r − β ∓ δ)

)L
2
+1 ©

1 +O
¡
(r ∓ δ)2

¢ª
,
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so that as r → ±δ, we have
lim
r→±δ

pdf (r)

= lim
r→±δ

⎧⎪⎨⎪⎩
Γ
¡
L+2
2

¢ ³
μ2

2

´L+1
2 |β ∓ δ|L+1 e−

μ2

2
(r−β)2

(r−δ)2

Γ (L+ 1)π1/2 |r ∓ δ|L+2

× 1F1

µ
L

2
, L+ 1;−μ

2

2

(β ∓ δ) (2r − β ∓ δ)

(r ∓ δ)2

¶¾

= lim
r→±δ

⎧⎪⎨⎪⎩
Γ
¡
L+2
2

¢ ³
μ2

2

´L+1
2 |β ∓ δ|L+1

Γ (L+ 1)π1/2 |r ∓ δ|L+2
Γ (L)

Γ
¡
L
2

¢e−μ2

2

(
(r ∓ δ)2

−μ2

2
(β ∓ δ) (2r − β ∓ δ)

)⎫⎪⎬⎪⎭
L
2
+1

=
|β ∓ δ|L+1 e−μ2

2

μ (2π)1/2 {− (β ∓ δ) (±δ − β)}
L
2
+1

=
|β ∓ δ|L+1 e−μ2

2

μ (2π)1/2
©
(β ∓ δ)2

ªL
2
+1
=

|β ∓ δ|L+1 e−μ2

2

μ (2π)1/2 |β ∓ δ|L+2
=

e−
μ2

2

μ (2π)1/2 |β ∓ δ|
,

so that the limit is well defined in both cases.

5 Conclusion

The results given here integrate Bergstrom’s (1962) findings with later research over
the succeeding decades on exact distribution theory in structural models. The re-
sults apply to a structural equation with two endogenous variables. This model is
important in practice and corrresponds with the simple income determination model
studied by Bergstrom. We expect similar findings to hold in the general case with a
structural equation containing m+ 1 endogenous variables for m ≥ 2. Those results
will be reported elsewhere.
The exact distributional results have been derived under Gaussian distributional

assumptions. But the same results apply as limit distributions in the context of
structural models with weak instruments, as may be shown by central limit arguments
under general martingale difference sequence errors as in Phillips (1989) and Staiger
and Stock (1997).
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7 Appendix

Proof of Proposition 1

First observe that for z =
√
n(2b−β−1)
σ(1−b) the upper limit of the integral in (10) is

A = −
µ
z2

2
+

√
nz

σ

¶
= −n (2b− β − 1)2

2σ2 (1− b)2
− n (2b− β − 1)

σ2 (1− b)

= −n (2b− β − 1) {(2b− β − 1) + 2 (1− b)}
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using an integral representation of the confluent hypergeometric function 1F1 (e.g.
Gradshteyn and Ryhzik, 2000, formula 3.383.1; but we note the misprint in their
formula 3.383.1 in which their uu+ν−1 should read uμ+ν−1) for (46) and the Kummer
relation 1F1

¡
n
2
, n− 1;A

¢
= eA 1F1

¡
n
2
, n− 1;−A

¢
for (47). Proceeding, we note that
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Hence,
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Next, using (49) in (9) we obtain the following alternate form for the OLS density
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giving the stated result.

Proof of Proposition 2 First, we establish some simple algebraic correspondences.
Calculations reveal that
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It follows that
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which diverges as ρ2 → 1. Hence, to find the limiting density for the degenerate case
where there is an identity in the model, we may employ the first term in the (large
argument) asymptotic expansion of the confluent hypergeometric function in (20)
above, viz.
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(e.g., see Lebedev, 1972). We now have
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so that (56) becomes
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Then, as ρ→ 1 we have
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Noting that μ2 = nγ2/σ2 = λn/σ
2 from (19), we have
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giving the stated correspondence with Bergstrom’s expression.

Proof of Proposition 3 Expanding the 1F1 function as ρ2 → 1 and μ2
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we find that as ρ2 → 1µ
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Substituting the expansion (58) in (23) we obtain
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1− β∗2 (1 + r∗2)

(1 + β∗r∗)2
=
1 + 2β∗r∗ − β∗2
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and where the binomial expansion is used in (59). The validity of the representation
(59) therefore depends on the condition
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< 1, or 1 + 2β∗r∗ − β∗2 > 0, (61)

The leading term in the expansion (60) corresponds to the asymptotic (large sam-
ple size) approximation given in Phillips (1980, equation (15)) and the saddlepoint
approximation in Holly and Phillips (1979, equation (25)) under the same condition
(61).
Translating (60) to unstandardized coordinates, we have
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We next consider limits of this expression as ρ2 → 1. When ρ → 1, the component
factors behave as follows
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which, for δ = 1 and μ2 = λn/σ
2, becomes
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Similarly, when ρ→ −1 we obtain
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which for δ = 1 and μ2 = λn/σ
2, becomes
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Both formulae (64) and (65) represent limiting approximations, rather than the exact
OLS density. The reason is that upon using the expansion (58) in (23), the resulting
infinite series is summable as a binomial series as in (59) only over a restricted range
for the density, represented by condition (61). As remarked above, this same limita-
tion applies to the saddlepoint approximation of Holly and Phillips (1979) and the
Laplace approximation given in Phillips (1980). In effect, the asymptotic expansion
(58) does not take account of the fact that the parameter j may be large in the second
argument of the 1F1 function (57).
Next consider what happens when we translate the condition (61) into unstan-

dardized coordinates when ρ = 1. Observe that in original coordinates, using (24)
and (25), we have
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Hence, the validity condition for the summation of (59) is violated when ρ2 = 1.
However, the approximate density (62) exists and is valid for all ρ2 < 1 and, rather
interestingly, this approximate density has well defined limits as ρ → ±1 given by
(64) and (65). As discussed in the paper, these limits can themselves be validated in
terms of large concentration parameter approximants to the exact density.
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