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Abstract

Irving Fisher long advocated inflation indexed bonds. I prove in the context
of a multicommodity CAPM world that the best welfare improving bond pays
the minimum money needed to achieve the same utility, and not the minimum
needed to buy an ideal commodity bundle.

Irving Fisher also developed and advocated the impatience theory of inter-
est. But in OLG economies, the rate of interest is determined by population
growth, not impatience. I reconcile this contradiction by proving that in sta-
tionary OLG economies with land, the interest rate at the unique steady state
does depend on impatience. Indeed, the proposition that greater impatience
creates higher interest rates holds more generally in OLG with land than in
Fisher’s two-period model.

Keywords: Impatience, Theory of interest, Inflation indexed bond, Koniis in-
dex, Capital asset pricing, Efficiency, Overlapping generations, Land

JEL Classification: B22, B23, B31, D11, D52, D91, E31, E43, G12

Irving Fisher viewed the real rate of interest as the most important price in the
economy, since it gives the relative value of consumption today in terms of consump-
tion in the future. He proposed a theory of impatience to explain what the rate of
interest should be in a finite horizon economy. He lamented that many people did not
directly trade off consumption today for consumption tomorrow, but instead traded

*Presented on May 9, 1998 at the Conference in Celebration of Irving Fisher and the publication
of The Works of Irving Fisher, sponsored by The Cowles Foundation for Research in Economics,
Yale University.



money today for money tomorrow, thus enabling unexpected inflation to garble the
real rate of interest. In this paper I examine whether Fisher’s impatience theory of
interest holds in an infinite horizon world with overlapping generations, and I derive
the optimal indexed bond in a two-period economy with uncertainty and quadratic
utilities.

Irving Fisher was profoundly interested in the correct measurement of inflation,
and a leading proponent of inflation indexed bonds. He created an inflation index
and meticulously published its values. He insisted his secretary sign an inflation in-
dexed contract, linked to his index, and his company Rand Kardex issued an inflation
indexed bond on the same day it officially opened for business under its new name.!
He evidently regarded the proper inflation indexed bond as an important policy ques-
tion with significant welfare implications. But he did not explain precisely what the
welfare benefits are of choosing the right inflation indexed bond.

The problem is that as prices evolve over time, no household will maintain ex-
actly the same consumption or the same utility. Indeed, no household will even
maintain the same ratio of consumption goods; it will substitute goods that become
relatively cheaper for goods that become relatively more expensive. Neither a bond
that promises the money required to purchase the same commodity bundle, nor a
bond that promises the money required to achieve the same utility, will be sufficient
by itself to provide for the needs of the holder. On what theoretical basis is there to
choose one over the other?

Practically speaking, it is much simpler to measure inflation by the cost of buying
a fixed commodity bundle. As Fisher pointed out, then one does not have to worry
about inferring what utility is, or how to deal with agents with heterogeneous utilities.
And indeed, in actual practice in the United States and elsewhere, inflation indexed
bonds make payments that guarantee the purchase of the same commodity bundle.

But current practice should not necessarily be the last word on the subject. From
a theoretical point of view, however, it is not obvious what the right indexed bond is,
or even what the criterion should be. (Fisher proposed 40 tests that an inflation index
should satisfy.) Perhaps the best indexed bond should guarantee each agent the same
marginal utility? Perhaps it should be tied to the growth of the economy? Fisher
himself modified his view, and suggested as an “ideal” inflation index the geometric
average of the Laspeyre and Paasche index of inflation. Since the Laspeyre index
is greater than the Koniis index, and the Paasche index is smaller, their geometric
average is likely to be near the Koniis index. The Koniis (1939) index is meant to
measure the increase in cost necessary to achieve the same utility as prices change.
Thus Fisher in the end advocated a practical index that could be used to create a
bond that guarantees nearly the same utility. But that still leaves the theoretical
question: what difference does it make?

Fisher’s 40 criteria for the best index were mostly mechanical. For example, dou-
bling all current prices ought to double the indexed price level. By contrast, I argue

!See Dimand (1999).



that the question of the correct indexed bond ought to become a portfolio welfare
question: what additional asset will enable consumers operating in an economy with
incomplete markets to best hedge the uncertainty caused by changes in relative prices
and in future income? From this welfare point of view, I show that the ideal riskless
bond should pay the Koniis index, that is it should have a monetary payoff in each
state equal to the minimum cost of achieving a given utility for the representative
consumer. | show that the welfare consequences of adding this asset are dramatically
superior to those of adding the so-called inflation proof bonds we have in practice,
even if every consumer’s final equilibrium consumption necessarily gives a completely
different utility in each state.

Irving Fisher was the inventor of the modern impatience theory of interest. Shortly
after Fisher died, the great French economist Maurice Allais, followed by the great
American economist Paul Samuelson, introduced the overlapping generations model,
in which time goes on indefinitely into the infinite future. In that world there is
always a steady state equilibrium in which the real rate of interest is equal to the rate
of growth of the population, and has nothing to do with impatience. This apparent
contradiction has often troubled me, though it does not seem to have been much
discussed. The resolution I propose is simple: if an infinitely lived asset like land,
which yields a steady dividend forever, is added to the model, the old lessons of Fisher
are restored, and the equilibrium interest rate does depend on the rate of impatience.
Indeed, Fisher’s lessons can be shown to hold under weaker conditions in the setting
of OLG and land than they do in his original two-period setting.

In Section 1 I describe an intertemporal model of stocks and bonds without un-
certainty. I show, much like Fisher did in the appendix to his 1907 book on the rate
of interest, that it can be reduced to a timeless Walrasian model. In that model
it is easy to show that the real rate of interest increases with increased impatience,
increases as the distribution of wealth shifts toward impatient people, increases as
future endowments increase relative to current endowments, and increases as produc-
tivity improves, if aggregate demand for current consumption declines with the rate
of interest and increases with wealth.

In Section 2 I describe an intertemporal model with uncertainty. I begin by spe-
cializing to the famous Capital Asset Pricing Model pioneered by Markowitz and
Tobin, which has only one good per state. I show that in this model, as long as there
is an asset (1,...,1) that pays one unit of the good in every state, the equilibrium
allocation is Pareto efficient, even if many assets are missing, and even if final con-
sumption is very risky. (This result is due originally to Mossin (1977)). Without the
(1,...,1) asset, the final equilibrium would be dreadful. Then I review Tobin’s famous
mutual fund theorem (1958) that says that in this situation, everybody will hold the
(1,...,1) asset in his portfolio, together with only one other asset (the market). Thus
the (1, ...,1) asset makes a dramatic difference to the welfare of the economy, and it is
the unique asset that will do so. On this welfare basis, one could rigorously advocate
introducing (1, ...,1) as the ideal riskless asset. But since there is only one good, the



ideal riskless asset guarantees a constant commodity bundle and a constant utility.

To distinguish these two I add many goods to the CAPM model, as I did in my
paper with Martin Shubik (1990). Now I find that there is still one asset that will
bring the equilibrium to full efficiency. But it is not an asset that pays a fixed bundle
in every state. Instead, it is a contingent bundle, calibrated to achieving the same
utility at minimum cost, just as in the Koniis index. Once again it can be shown that
all the agents will hold this in their portfolios, together with only one other asset.

Finally, in Section 3 I consider the overlapping generations model of Allais and
Samuelson. In the conventional presentation of that model, all goods are perishable,
and there is always a steady state equilibrium with rate of interest equal to the rate of
population growth (and thus independent of impatience). I show that by adding land,
or some other durable good that produces a fixed dividend in perpetuity, one gets
only steady state equilibria in which the rate of interest does depend in the usual way
on impatience, on the distribution of wealth and endowments, and on productivity,
provided that agent utilities are additively separable.

1 A Model of Bonds and Stocks in the Spirit of
Fisher

The Yale economist Irving Fisher (1867-1947) was the first person to develop a rigor-
ous model of interest rates and the stock market. In order to do so he had to include
stock-markets, bond-markets, commodity-markets, money, production and time in his
conceptual model. He then reduced this model to a timeless model without assets, in
which the rate of interest becomes simply a relative price between two goods. Asset
prices can then be deduced from the present value of their dividends. In this simple
model it is easy to do comparative statics, showing how the equilibrium interest rate
is affected by changes in impatience, productivity, the growth of endowments, and the
distribution of wealth between patient and impatient households. We give a modern
version of Fisher’s model, providing sufficient conditions to sign unambiguously the
effects of these four factors on the real rate of interest.

1.1 The Intertemporal Economy
1.1.1 Time

In order to explain interest rates one needs a model with several time periods. For
ease of exposition we assume that there are two times s = 0, 1. In each period there
is a set L of goods traded; we denote the price of good ¢ traded at time s by pg > 0,
and the vector of all goods traded at time s by p; € RS. We assume that there
are H households h € H which live for both time periods. The households have



time-separable utility functions of the form
UM(x) = u"(z0) + dpu"(21)

where u" : ]Rfr — R is increasing and concave.

1.1.2 Impatience

Following Fisher we assume that households are impatient, i.e., that §, < 1 for all
h € 'H. Fisher tells long stories of why this is a realistic assumption and why the
level of impatience differs among households.

It is surprising how few people have challenged Fisher’s view that by introspection
we know that we are all impatient. One of the most interesting critiques of impatience
was given by Yale student George Loewenstein, who argued in his dissertation (1985)
that utility stemmed from anticipation, not from consumption. If that were true,
people would tend to postpone pleasant experiences, to increase the excitement of
anticipating them, and get bad things over with as soon as possible, both of which
are the opposite of what Fisher would predict.

1.1.3 Endowments

We suppose that each household h is endowed with goods when young and when old:
e" = (ef,el) € RE x RE.

The greater is the endowment of households in the latter part of their lives relative
to the early part of their lives, the greater we say the rate of growth of endowments.

Fisher believed there is a correlation between the size of the endowments and
the rate of impatience across people. In short, he felt that patient types of people
accumulated wealth, and passed both their wealth and their proclivity for patience
on to their children.

1.1.4 Money

We suppose that the set of goods is £ = {0, 1, ..., L}. Good 0 represents money; it
gives no utility to any agent, and is in zero supply: e, = 0 for all agents and time
periods. A full-fledged model of money would require it to be in positive supply, and
to play a special role in transactions and so on. Fisher never developed such a model,
and we shall not do so either, in this paper. Nevertheless, even in our simple model,
money takes on significance if assets promise payments in money.

1.1.5 Firms

We assume that there are F' firms f € F which are characterized by their production
sets Y/ € RE x RE. We write a production plan y/ € YT as yf = (y§,y{) and
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follow Debreu’s convention that inputs are negative. Assuming that Y/ C RE x RE
therefore implies that the firm has to invest in period 0 and produces in period 1,
i.e., production takes time. The greater the outputs relative to the inputs, the more
productive the economy is.

The firms are traded on a stock market and we denote by a? the amount of

shares household h buys of firm f in period 0. This entitles the household to J?y{
of the firm’s output in period 1, and no dividend or obligation at time 0. This is
in keeping with practice in American capital markets, where there is always an ex-
dividend date. It is impossible that the instant a stock is purchased, all the dividends
can be redirected to the new owner. Instead a reasonable amount of time must be
left to transfer all the accounts, during which time the original owner maintains the
responsibilities and benefits. Of course the price the stock sells for will reflect this
fact; if a new buyer realizes he has bought too late to receive the next dividend check,
he will pay less for the stock.

We denote the price of the share by 7y. Households have initial ownerships in
firms 6%, where ), 5% = 1. We assume that each firm is controlled by only one
household, who chooses the production plan y/, and we write F(h) for the set of all
firms controlled by household h. We assume that the initial owners of firm f buy the
inputs 3] before the shares of the firm are traded on the stock market.

1.1.6 Bonds

A bond is a promise made at time ¢t = 0 to deliver goods or money at time ¢t = 1. We
collect all bonds in a set J. We assume that bond 0 promises to pay one dollar in
the second period and denote its price by 7. All other bonds j € J are real bonds
and promise to pay a bundle of goods A7 € R%. We assume that the first bond pays
one unit of every good.

We denote the amount of bond j household h holds by 9?. If 9? > 0 the house-

hold purchases the bond, if 0? < 0 the household sells the bond. Since there is no
government in the model, the bonds must be in zero net supply and there can only

be trade in a bond j when some household sells it short, i.e., when 9? < 0 for some
household h.

1.1.7 The Real Rate of Interest

With these definitions, the (gross) nominal interest rate 1+ 7 is just 1 +n = 1/m.
Under the simplifying assumption that there is only one good, L = 1, we have that
the (gross) real interest rate 1+ r, which measures how many of the good one gets in
the second period by giving up one unit in the first period, is given by 1+ r = po/m.
Inflation is defined by 147 = p;/po. When there is more than one good, the definition
of inflation and the real rate of interest requires a theory of the proper index. We
come to this in Section 2.



1.1.8 The Economy

The economy can now be described as a vector
E= (((60761) Uh a" f(h))he%(Aj)jGJa (Yf)fef)’

Prices are given by (po, p1, () e, (77) rer) and each household h’s choices are given
by
(338: (eh)jéja (O—f)féfa 3317 (yO » Y1 )fe.'F(h))
1.1.9 The Budget Set
Agent h’s budget set is defined as

Bh(pv T, (yf)f¢}'(h))
= {(z0, 21, (0f) rers (05)jeqs (Wb, yl) rermy) s:t

Do - x0+Z7Tj9 +Z7Tf0f—p0 Z y{; }‘S Po - €0+Z7Tf0'f

jeg feF FEF(h) feF
P11 <pr-er+ Zeﬂh A+ Z]h -ylos}
jeJ fex

1.1.10 Equilibrium

A Fisher equilibrium is a collection of prices and choices (p, 7, (2", 0", ™) perw, (y7) feF)
such that

o Markets clear:

Good markets:

dore =) e+t mw

heH heH feF

h _ h f
D= i+ )y
heH heH feF

Bond markets:

Zehzo

heH
Stock markets:
I o
heH heH

e Agents maximize their utility functions subject to their budget sets.



1.1.11 Some Observations

Fisher made the following observations about the nature of intertemporal equilibrium.

1. Default: In the definition of equilibrium nobody is allowed to default. If a
household buys an asset, or the shares of the firm, he thinks for sure he will get the
promised payoffs. Similarly, if he sells an asset he never contemplates not paying
what is owed, at least according to the budget constraint we have written. This is
obviously unrealistic and the analysis should be extended. Fisher never constructed a
profound theory of default, but he did observe that the promised interest rate would
be higher for assets that had a higher chance of default.

2. Fisher’s equation: If there is only one real good, then in equilibrium it must
be true that
1+n=04+r)(1+1i) =r+i+ri. (1)

This follows from what is called the “absence of arbitrage.” If Equation (1) did not
hold we would have 1/m¢ # po/m1 - p1/po. However in this case households could buy
the nominal bond and sell the real bond (or the other way around) and would make
money today without having to pay anything on net tomorrow.

Note that in general one would expect r -4 to be very small. In this case Equation
(1) can be written as n = r + i, which is what is usually called the Fisher equation.

3. Stock-prices: By the same logic as above, the absence of arbitrage opportunities
also implies that m; = myp; - y{ = Flnpl . y{ . Therefore the price of a stock is nothing
else than the discounted value of its dividends.

This holds incidentally for any bond as well. According to Fisher, the price of
every asset is the discounted value of its dividends. Thus even if there are many
goods in the model, if we take the ratio of the value of any bond’s payoffs to its
price, we will always get the same number 1+ 7. The nominal rate of interest is thus
well-defined by the equilibrium. The real rate of interest is not well-defined by itself
with many goods, because it depends on the rate of inflation. If potato inflation is
much higher than apple inflation, then the potato cost today of one potato tomorrow
will be higher than the apple cost today of one apple tomorrow. But once adjusted
by the rate of inflation, applying Fisher’s equation gives the same real interest rate.

4. Endogenous share prices: Since the price of a share depends on the firm’s
future output, it will change if the controller of the firm decides to change the pro-
duction plan. This raises the question whether there is an easy way to characterize
the production plan the controller of the firm chooses.



5. Separation Principle Inspecting the budget constraint reveals that every
owner (who takes commodity prices as given) would like to see a production plan
chosen that maximizes poyo + mop1y1. As long as the controller is at least a partial
owner, 6 > 0, he will therefore optimize his utility by choosing y/ to maximize
total discounted profits, or profit for short, and it is in fact irrelevant for the produc-
tion choices who controls the firm. This is Fisher’s so-called principle of separation
(between production choices and consumption choices).

1.2 A Simple Reformulation of the Fisher Model as a Wal-
rasian Model

With the above insight that the owners of the firm will always choose production
plans to maximize profits, we can simplify the model. Let us now define a Walrasian
equilibrium for the economy

E= (((687 6}11), Uh: 6h)h€H7 (Yf)fo)'

We denote by ¢; the price at time ¢t = 0 of goods consumed at time ¢ = 1, but traded
at time ¢ = 0. We then have the following budget set for household h € H:

B'"q)={r:q0 20t q 21 <qo-ef+a-ef + ) (a0 v +ay)of}
feF

An equilibrium (g, (z")nen, (y7) rer) is then characterized by (1) goods-market-clearing,
by (2) households maximizing utilities subject to their budget sets, and by (3) firms
maximizing profits

IR S
heH heH feF
2" € argmax U"(x)
z€Bh(q)
yf € argmax q -y
yey’f

Notice that the Walrasian budget set has only one constraint. Furthermore, the
Walrasian model and its equilibrium make no explicit mention of time (treating goods
x1 exactly symmetrically with goods (), no mention of bonds, no mention of who
controls the firm, and no mention of trading shares of stock. These omissions make
the model much simpler. Notice finally that the Debreu notation, measuring inputs
as negative and outputs as positive, makes it very easy to express the idea of profit
as a simple dot product ¢ -y, which further simplifies the exposition of the Walrasian
model.

The following theorem proves that essentially nothing real is lost in this simplifica-
tion, by showing that there is no difference between the production and consumption
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choices in the Fisher model and in the Walrasian model, and furthermore, that there
is no difference in price ratios between contemporaneously traded objects in the two
models. In particular, we can recover the bond and stock prices (relative to the price
of some consumption good at time 0) from the Walrasian model, because stocks and
time 0 goods are traded at the same time in the Fisher model. We cannot however
recover the rate of inflation or the nominal rate of interest from the Walrasian model.

Theorem 1 Consider any Fisher economy

E=(((ef, e, U, 6", F(h))ner, (A jeq, (Y per)

and the corresponding Walrasian economy

E= (((687 efll)v Uha 5h)h€H7 (Yf)fef)'

Suppose the Fisher economy has at least one asset or stock with nonzero price. Then,
given a Fisher-equilibrium (p, 7, (z",0", 0™nhew, (y) ser) there is a Walrasian equilib-
rium (q, (x")nen, (y7) jer) which has the same equilibrium consumption and produc-
tion choices and where qy = po and q; = wop,. Conversely, given a Walrasian equilib-
rium (¢, (¥ ner, (y7) jer) there is a Fisher equilibrium (p, 7, (2", 0", 0™ ner, (y7) rer)
that has the same consumption and production choices and such that po = qo and such
that for all j € J, f € F

7Tj:(h'Aj

Wf:qyy{

Po_ Byt =1)
T a1

The proof is left as an (easy) exercise.

Suppose there is no production. Then in this certainty model it makes no differ-
ence what the assets are, as long as there is at least one. We always get a reduction
to the Walrasian model.

1.3 Four Determinants of the Interest Rate

We now show how impatience, the distribution of wealth between patient and impa-
tient agents, the distribution of endowments between the present and future, and the
productivity of the firms affect the real rate of interest in a one good economy. We
start with an example, and then generalize it to the case where excess demand for
current consumption is normal, and decreases as the rate of interest increases.
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Production Example Suppose we have two time periods, 0 and 1, one good per
period, and two agents A and B with utilities

WA (g, 1) = log zo + 6 log 3
WB

)
(z0, 1) = log g + 6" log 3

0<dP <<
and with endowments

et = (eOA,ef) = (3/4,1/4)
B = (B eP) = (3/8,1/8)

™

Suppose there is a firm, owned entirely by agent A with production function
y = Cl=w)"
C>0
0<ax<l

Let the prices be given by (¢1, ¢2) = (1, ¢). Irving Fisher was the first one to recognize
clearly that one could think of ¢ as the discount rate,

where r is the real rate of interest.
For simplicity of notation, let us replace —yo with k. In equilibrium we must have
that the firm maximizes profit

m(q, k) = qf (k) —k

where f(k) = Ck®, giving us the condition that marginal revenue product equals
price
qCk* 1 =1

This in turn gives

Kt = 1/qaC
K = qaC
k(q) = ¢v=(aC)T=
giving for maximum profit
[(g) = ¢C |¢7=(aC)T% | — ¢ (aC)T=
= aTSegTa 08 — gT=a (aC) ==
_ (o™ — o)
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The excess demand for the time 0 good is given by

1 3 1 1 3 1 3 3
20(q) = 1548 {Z+1Q+H(Q)} N {§+§Q] + k(q) — <Z+§) :
When C' = 0 and there is no production, one can easily see that zo(¢) is monotoni-
cally increasing in ¢.? In general the excess demand with two agents could be arbitrary
(and thus nonmonotonic in ¢), as Debreu’s decomposition theorem assures us.
When we add production, taking C' > 0, we can confirm from our formulae that
20(q) is still increasing in q. Even without the formulae, it is evident that II(q)
increases as ¢ increases, giving the firm’s owner more wealth. The firm’s owner A
spends more on good 0 when his wealth increases. And clearly the firm’s demand for
good 0, k(q), is increasing in ¢, since the marginal revenue product increases in ¢.*

1.3.1 Some Comparative Statics

Suppose we have an economy with one good today and tomorrow, for which aggregate
excess demand for current consumption, zy(g), is strictly increasing in ¢ = ¢1/qo,
that is, strictly decreasing in the real interest rate. Suppose also that all individual
demands for current consumption are normal, so that increased wealth increases the
demand if prices are held constant. These hypotheses will hold if all the consumers
have Cobb—Douglas utilities, and if production is strictly concave, as we saw in our
example. In this situation we can derive unambiguous comparative statics.

2Thus in equilibrium we would have an interest rate that lies between what would have prevailed
with just agent A and the interest rate which would have prevailed had the economy consisted only
of agent B, but closer to the former because A is richer.

3 Although it is not important for us, it is also true that demand for good 1 is decreasing in gq.
The excess demand for the second good is given by

A | 8 13 1 o, a1 (11
a0 = 7 |1+ )] fo+ 7 (5 g fa-elmmeo] - (G45)

Note that the extra term coming from production satisfies

54 o*
T A @)/a = F(@) = szl (ka) — k(@))/a — F(k(q))
_ A
) — k)
-1 N 1
= T oAl M)~ e ed) ™ /g

which is clearly decreasing in ¢. Thus excess demand in our example satisfies gross substitutes.
But for some other production functions, z1(g) would not have been decreasing in ¢, and gross
substitutes would fail. However, with Cobb—Douglas utilities, no matter what concave, smooth
production function we chose, we would find that z¢(¢) increases in g.

12



e When any agent, such as A in the example, becomes more impatient, the real
rate of interest rises.

At the old prices the excess demand for good 0 will become positive. Therefore
to clear the market, ¢ must fall. Therefore the real interest rate 1/¢ — 1 must
increase. Intuitively, we can describe this comparative statics result by saying
that if people care less about the future, they will demand a higher interest
in the bank in order to save. A shift in population attitudes toward more
impatience (the Now Generation supposedly ushered in by Reagan) ought to
raise interest rates.

e If the distribution of wealth shifts from an impatient agent to a patient agent,
such as from B to A in the example, i.e., if ef decreases but e increases by
the same amount, then the real rate of interest goes down.

The argument is as above, but in reverse. At the old equilibrium prices, there
must now be less demand for good 0 because agent A will spend 3/4 of his new
money on the good, but agent B will reduce his expenditure on the good by
4/5 of the money he lost. The only way to clear the market is to increase g.
This lowers the real rate of interest. In words, we can say that if wealth in the
economy shifts from people who are impatient to people who are patient, the
interest rate the banks must give will go down. Fisher believed that the wealthy
tended to be more patient, so during a period when the rich get richer, as has
happened since 1980 in the US, the real interest rate should go down, according
to Fisher.

e If future endowments increase, all else equal, the rate of interest will rise.

At the old equilibrium prices, excess demand for good 0 must go up (since
wealth has gone up and current consumption is a normal good). But to restore
equilibrium, ¢ must go down. Hence the interest rate goes up.

e If productivity and marginal productivity increase, the real rate of interest will
rise.

If the firm becomes more profitable at the old prices, income to its owners will
rise and so demand for period 0 goods by its owners goes up (by agent A in
the example). If marginal productivity goes up, then at the old prices the firm
itself will also demand more input at the same prices. Together this creates
excess demand for good 0 at the old prices. Hence ¢ must go down.

It is worth mentioning that even if all utilities are of the form U"(z) = u"(x¢) +
dpul(z1), excess demands may not be monotonic in ¢, because price substitution
effects and income effects may go in opposite directions. Thus Fisher’s comparative
statics conclusions depend on additional restrictions on utilities.
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2 Time and Uncertainty: The Ideal Inflation Proof
Bond

2.1 The GEI Model

Now we add uncertainty to the model. To keep things simple, we stick with pure
exchange. The analogue of the Walrasian model from last section is the Arrow-Debreu
model, in which agents face only one budget constraint. The analogue of the Fisher
temporal model is the GEI (general equilibrium with incomplete markets) model.
The canonical GEI model ((U", €")pcp, A) has two time periods, period 0 and period
1, and S different states of the world (s =1, ...,.S) in period 1.

Agent utilities and endowments (U", "),y are as in the Arrow—Debreu model.
In case agents have von Neumann—Morgenstern preferences, we can write the utilities
as

S
U"(x) = ug(x0) + ) veu(z,)

where 7% is the subjective probability agent h attributes to the state s. A matrix of
asset payoffs A € Ri‘] L is also given. The payoff Ay, represents the quantity of good
¢ promised for delivery in state s by asset j. As in the Fisher model, it will often
be convenient to assume that agents are impatient, and to embody that with the
hypothesis that u"(-) = 6"ul(-), with the discount factor satisfying 0 < 6" < 1.

The model preserves the same methodological premises of the Fisher intertemporal
model and the Arrow—Debreu world: agent optimization, market clearing, rational
expectations (in the sense that everybody anticipates what price will arise in the
different states of the world) and perfect competition (in the sense that nobody can
affect the prices by whatever he does). But it adds uncertainty, something Fisher
never formally did in a state space setting.

The GEI economy is analogous to the Fisher economy (without production), but
with many states of nature. It cannot be reduced to an Arrow-Debreu economy
however, because in the Arrow—Debreu model, agents can exchange commodities at
time zero for any one of the state contingent commodities in the future, whereas
in the GEI model, agents are restricted to exchange commodities at time zero for
assets, and the assets are limited to payoffs specified by the matrix A. Of course
by buying and selling assets an agent can influence wealth in different states. But if
there are only a very few assets, the agent can arrange very limited wealth transfers.
For example, if there is only one asset, which pays 1 apple in all states at time one,
then by buying this asset an agent can effectively loan money (giving money today in
exchange for a repayment tomorrow), while by selling the asset he can borrow money,
getting money today but paying in the future. However that single asset does not
provide insurance, because it does not help to transfer wealth from, say, state 1 to
state 5.
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To keep our notation consistent with the standard GEI literature, we shall drop
money from the set of explicitly named commodities, leaving us with £ = {1, ..., L}.
The budget set for agent h is given by

B"(p,7) = = B(p,m, e A) = {(z",6") e REET x R7 + pg - (wg— eg) + - 0" =0
and Vs =1,...,5, ps- (zs — es) = ps - ZA?SQ?}

J
Individuals choose among nonnegative consumption plans x, specifying the con-
sumption of each commodity ¢ € L in each state s € S* = {0, 1, ..., S} at time zero
and in the future. A consumption plan can be chosen only if it can be financed by
a portfolio of asset holdings, #, which can be positive or negative. An agent who
wants to consume beyond his endowment in state 0 can sell assets; this will require
him to make deliveries in the future. We are still assuming that everybody keeps his
promises so that default is not allowed. There are S 4+ 1 budget constraints in the
GEI model instead of just one budget constraint as in the Arrow—Debreu model.
Equilibrium is defined by:

(p, 7, (2", 0" hep) is a GEI iff
H
> @ —eh) =0 (2.1)
h=

1

ieh =0 (2.2)

(z",0") € B"(p,7), h=1,....H (2.3)

(z,0) € B"(p,m) = U"(x) <U™a"), h=1,.... H. (2.4)

As it is clear from (2.1)—(2.4), equilibrium is a price vector for commodities (at all

date-event pairs), a price vector for the assets, and then plans for individuals that are
optimal in their budget sets, such that supply equals demand for goods and assets.

(1)—(2) translate aggregate feasibility, (3) says that each agent chooses plans in

his budget set, and (4) adds that there is nothing in the budget set that is better

than the selected plan.

2.1.1 Some Notation
Let us introduce a few pieces of notation. Given a vector z € R*'L, we take & to be

the (uncertain) period 1 components of x

p = (pOupl: "'7pS) = (pOup)
———
pERSL
Yy = (y07y17 "'7y5) = (y07y)
e—
JERSL
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The box notation plJj means the money value of the bundle y in every state (therefore,
it is an S-dimensional vector).

PEG= (p1-v1,...Ds - ys) € RS,
For the whole matrix A € (R%)7 we can take
pOA= (A, .., pEAT) e R,

where A7 is the jth column of A.

Each column j of p[J A corresponds to the money pay-off in each state for asset
j; each column j of p [ A collapses the SL dimensions of column j of A into S
dimensions.

Let us introduce a piece of notation to designate an inner product which will be
used in the sequel. If u € R® and z € R and « is a probability measure on S, then
we write

S
By 2= YollsZa.
s=1

It goes without saying that all the usual projection theorems hold for this inner
product. Given an arbitrary S x J matrix V, and an arbitrary vector b € R”, and
an arbitrary strictly positive probability measure 7 on S, there is a unique vector
p* € span[V] = {V : § € R’} such that p* -, VI = b; for each column j of V. In
particular, given an arbitrary vector u € R, the projection of y onto span[V] is the
unique vector p* € span[V] such that pu* -, V7 = p -, V7 for each column j of V.

2.1.2 Linear Pricing Lemma for GEI

The following lemma is fundamental in the theory of incomplete markets.

Unique Linear Pricing Lemma Suppose (p, 7, (", 60™)ner) is a GEI equilibrium
for the GEI economy ((U", e")nep, A) such that for some agent h € H, the utility
UM is differentiable, and such that ps-x" > 0 for all s € S*. Let ~y be a strictly positive
probability measure on S. Then there is a unique vector u* € span[p [ A] such that
;= p* - [p L AY] for all assets j.

Proof We know that for each state s € S*, there is some commodity ¢, € L such
that x4 > 0. Define
po 11 9U(@")

s =
Vs Pst, axsfs
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(where we take v, = 1). From the first order conditions of agent h’s optimization, we

must have

1 .
T = Eﬂh  [PE A7) for all j € J
0

Define p* as the projection of M—lhﬂh into span[p [ A]. Then p* has the right inner
product with each asset payoft, and it is the unique vector to do so, since any other
vector in span[p [J A] would necessarily make a different inner product with at least
one vector. Since the prices of the assets do not depend on the agent h, the projection
u* also does not depend on the agent h. |

2.1.3 Riskless Rate of Interest with Uncertainty

When there is uncertainty, and more than one state of nature in the second period,
how should we define the riskless rate of interest? The answer of course depends on
how we define a riskless asset. The traditional answer, given by Fisher and others be-
fore him, is to look for an asset that always gives the same purchasing power. If there
is only one good, and agents have common priors and von Neumann—Morgenstern
utilities, the answer seems straightforward. The riskless asset should simply pay off
enough money in each state to enable the holder to buy one unit of the commodity
in every state. Such an asset would always give the same purchasing power, by con-
struction. It also gives the same utility in each state to an agent for whom it is the
sole source of income.

Why is it important that it give the same utility in each state to any owner who
holds no other asset, since no consumer will hold only that single asset? Typically no
consumer will end up with exactly the same utility in each state. Why shouldn’t the
ideal asset pay enough money to guarantee the same marginal utility in each state?
Or why shouldn’t the ideal asset pay a constant fraction of aggregate income (i.e., of
GNP)?

Thus even for the simple case of one consumption good it is essential to make
clear why it is important to have a riskless asset. This can be done in the capital
asset pricing model, which we now review.

2.2 CAPM with One Commodity

We are going to show that when there is only one consumption good, the asset which
pays off 1 unit of the good in every state does play a special role, at least under the
conditions of the capital asset pricing model (CAPM). Let 1 = (1,...,1) € RY. We
shall show that:

1) As long as every agent can sell off his future income today, the presence of the
(1,...,1) asset guarantees that interior equilibria are fully Pareto optimal.
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2) Everybody does indeed hold the (1, ...,1) asset in his portfolio, and in fact just
one other asset, even though final consumption may be very risky.

We shall then show that even when there are multiple goods per state, there is
still an asset that satisfies properties (1) and (2).

Capital Asset Pricing Model

Assumptions

L=1 (1)

S S
UM(x) = ug(xo) + ) vou" () = ug(wo) + Y 4 (ws — sana?) (2)

s=1 s=1
Ve =7 Vh,s (3)
1 — apes >0 Vh,s where e, = Z el (4)

heH

é" € span[A] Vh € H (5)
1 € span[A] (6)

(1) says that there is only one good (we are also dropping money). In fact it is only
important that there is one good for each s € S in period one. There could be many
goods in period zero. (2) says that people have von Neumann—Morgenstern quadratic
utilities, and (3) says that agents have objective probabilities 7. Quadratic utilities
guarantee that agents only care about the mean and variance of their consumption.
That could also be achieved by assuming normality of endowments and asset payoffs.
But in that context the Pareto efficiency theorem below is not true.

Assumption (4) guarantees monotonicity. Since quadratic utility eventually declines
with more consumption, we must suppose that the utilities are chosen such that agents
still want to eat more even if they consume the whole endowment.

The fifth, crucial assumption, is that agents’ initial endowments are in the span of
the assets (they are tradeable); this is a non-generic assumption that is necessary to
ensure Pareto optimality. This is perhaps not realistic, in view of real-life asymmetries
of information and moral hazard issues that normally prevent people from selling their
future income. We assume away all these problems.

Finally, (6) says that the (1, ..., 1) asset is tradeable in our economy. In this one-
good model, the natural definition of a riskless asset is that of an asset which pays
one unit of the good in every state of nature, and we shall see that the presence of 1
in the economy is very important.

Let us state the following Pareto efficiency theorem. This was first proved by
Mossin (1977), but we give the proof provided in Geanakoplos—Shubik (1990).

18



CAPM Efficiency Theorem Let 2" > 0 at a CAPM GEI satisfying assumption
(1)-(6), including that (1,...,1) € span[A]. Then (z"),cpy is Pareto optimal.

This theorem says that even if the number of assets is much smaller than the
number of the states (so that it is impossible to insure most risks), equilibrium allo-
cations are fully Pareto optimal, if the (1, ..., 1) asset is tradeable, and if every agent
can sell his future income. Without the (1, ..., 1) asset, equilibrium allocations may
be terrible. By adding the (1,...,1) asset, equilibrium jumps to the Pareto frontier,
even though there are many other missing asset market that have not been added.

Proof Let the marginal utilities of consumption (unweighted by probabilities) be
denoted, as in Lemma 1, by

h
(aua(xs)) — i =1 — oz
Ls seS

Then from the first order conditions of agent h, we know that

1

T = ﬁﬂh o [PE A7) for all j € J
0

But

1 € span[A]
i = &" + Ap" € span[A]

1
= —[i" € span|[A]
Ho

1 ~ *
= — "=t VYhe H.
Ho
The last implication follows from the unique linear pricing lemma proved in the
last section. But now we know all individuals’ marginal utilities of income across all

states are equal, up to a proportionality coefficient. Hence the equilibrium is fully
Pareto efficient. [ |

The next theorem shows that the (1, ...,1) asset will not only be held by every
consumer, but that in fact it is virtually the only thing that every consumer holds.
This mutual fund theorem was first proved by Tobin (1958). The proof presented
here follows Geanakoplos—Shubik (1990).

CAPM Mutual Fund Theorem Let " > 0 at a CAPM equilibrium arising
from a GEI economy satisfying (1)—(6). Then

i" € span[l,é] Vh € H
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where

e

H
e =
h=

1

This theorem says that at least in the CAPM model, even though all individual
consumptions " might turn out to be risky, every agent will hold a combination of
the market portfolio and the (1, ..., 1) asset. The (1, ..., 1) asset is thus indispensable
to agent optimization.

Proof From the last theorem, we know there is a scalar A" = 1/u% > 0 such that

M1 —a"3") = p* Vh
L1 1

= =l T ot

So, everybody’s final consumption is a combination of just two pay-off vectors.
Summing over all the agents we get:

H H Hory 1
- ~h _ ~h _ 7 s| _ 7 pr /
e:;e _;x —;{Jl—mu}—al—ﬁu,a>0,ﬁ>0
= p* = (1/6")(e1 — €) € spani, ]
= " € span[l, €. m

Before moving to the next section, we note in passing that we can give a more
gripping interpretation of the GEI linear pricing theorem in the special case of CAPM.
The following theorem is originally due to Sharpe and Lintner.

CAPM Security Market Line Let 3" > 0 Vh at a CAPM GEIL Then 3r > —1
and 6 > 0 such that Vj € J,

E, A o
T = 11—7" — BCov, (€, A%).
More generally, if z € span|A]
E.z ~
m(z) = . l . BCov;(é, z).
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Proof Letting 8 =1/4" > 0, and recalling that o > 0,
o= e, A
= Bal-, AV —pé-, Al

= BaE,A; — BCov, (¢, A7)
= fla— Ee)E,A; — (Cov,(e, A)

Similarly,
7(z) = Bl — E€)E,z — BCov,(€, z). Since 7(€) > 0, o — E,€ > 0,
hence letting 1/(1 +r) = f(a — E,€),

EWZT — BCov, (¢, 2).

m(z) =

2.3 Multicommodity CAPM

The main lesson for us of CAPM is that if we just add the asset (1,...1), everybody
is as well off as possible. The form this asset takes gives us a blueprint for what we
should mean by a riskless asset. Not surprisingly, when there is only one good, the
ideal riskless asset pays the same quantity of the real good in each state of nature.
(This does rule out paying the same marginal utility in each state.) The surprise is
that even when everybody ends up with risky consumption, everybody trades almost
exclusively in the riskless asset, and social welfare is so dramatically improved.

Once we go over to a multicommodity world, the form of the ideal riskless asset
becomes much less obvious. Should it allow for the purchase of the same “ideal"
consumption bundle in every state? Or should it allow each agent to achieve the same
utility in every state? If every agent regarded consumption as twice as pleasurable
in state 1 as in state 2, should the ideal riskless asset pay off the same bundle in
both states, or twice as much in state 1, or half as much in state 17 We shall answer
these questions by investigating whether in the multicommodity world, under some
circumstances, there is again a special asset whose introduction guarantees the Pareto
optimality of equilibrium. If there is, we shall take its form to define what we mean
by the ideal riskless asset.

The practical world has already spoken on this issue. Inflation proof bonds almost
invariably take the form of guaranteeing the same consumption bundle in every state.
Thus in the US the so called TIPs (Treasury inflation protected bonds) are designed to
enable holders to purchase the same CPI commodity bundle. But I shall demonstrate
that an asset that guarantees the same utility is much more helpful. To see why,
consider the following multicommodity CAPM model.
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Multiple Commodity CAPM We now move to a world with many goods in each
state, L > 1. If we allow for completely general utilities, it is hard to say anything
concrete. So we specialize to a simple generalization of CAPM, keeping as many
of the assumptions (2)—(5) as possible. A crucial assumption will be made about
utilities:

Assumption 2’ Let U"(z) = ufl(xo) + 320 70(vs(s) — Lan[vs(,)]?) where v, :
R — R is smooth, concave, homogeneous of degree 1 Vs € S, Vh € H (v, is the
same across agents).

This utility is the composition of an (idiosyncratic) quadratic function with a
(common) homogenous of degree one function. We will be relying very heavily on
the hypothesis that there is a common v,. This allows us to define one asset whose
payoffs give each agent an equal utility across every state.

Because of the quadratic aspect, this utility also declines eventually with more
and more consumption. So we need the natural counterpart of old assumption (4) in
this new set-up:

Assumption 41— a"v,(ey) > 0.
Having made the previous assumption we can formally prove the following theo-

rem. This theorem was first stated in Geanakoplos—Shubik (1990). The proof here is
new.

Multiple Commodity CAPM Efficiency Theorem Consider a GEI satisfying
(2)), (3), (4') and (5). Let (p,m, (z",0")her) be a GEI for which 2" > 0 Vh € H.
Suppose there is an asset r € span[A] of the form

r= (01(161)61’ . US(1€S)€S> .

Then (x")nen is Pareto Optimal.

Notice that by homogeneity of degree 1,

" ( 1 €s> _ vs(€s) _
vs(es) vs(es)
so that the “ideal” asset r yields the same utility of consumption (1 — a) in every
state to any agent h who consumes exclusively its payoff. But what is more important,
it gives the cheapest possible bundle in each state of achieving that utility, given the
prices prevailing in that state. A fixed commodity bundle also gives the same utility

in every state (assuming vy does not depend on s), but it is not the cheapest bundle
to achieve that utility, given changing prices. Thus the appropriate riskless asset does
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reflect what is available, i.e., it is not a fixed bundle. In general, no fixed commodity
bundle would do as well.

Proof Let us begin by examining the given multi-commodity CAPM equilibrium
(p, 7, (2", 0" per). In equilibrium we know that in each state prices will be propor-
tional to each agent’s marginal utilities:

oU"(x) s (zh) Ovs ()
__\h — h S\ s/) S\Vs
Pt = >\8 axsﬂ )\8 s aajsﬁ ahv(xS) axsﬂ
n OUs (37?)
3 83356

where p" = My [1 — apu,(z,)] > 0.

Since v is homogeneous of degree 1 and common to all h, it follows from a
standard theorem in aggregation that in equilibrium every x” is proportional to e,
(see Deaton—Mullbauer (1980)). Since the derivatives of vy must be homogeneous
of degree 0, Qv,(z")/0x4 = Ov,(es)/Ox5 does not depend on h. Furthermore, since
scaling ps up or down by itself does not affect equilibrium, we might as well assume
ps = Dus(es).

Finally, by homogeneity, we conclude that p, - es = wvg(es) and for any scalar
multiple of e, such as any 2, p, -2 = v,(2"). For any y, with p,-y, = ps-2", we know
from the fact that 2 is equilibrium consumption that vs(ys) < vs(z?) = ps-2? = ps-ys.
By homogeneity, v,(ys) < ps - ys Vs € S, Yy, € RL.

We shall now prove the theorem by reducing the economy to a one-commodity
CAPM in which CAPM assumptions (1)—(6) hold.

Now we define a related one-good CAPM economy ((U",é")pen, A) where we
maintain the same number of states and agents as in the multi-commodity CAPM.
Let

A~

S
UM(xo, 21, ..., 75) = up(z0) + Z%[ajs —lapa?] Vhe H
s=1

where the ul! and «; parameters are the same as in the multi-commodity CAPM
utility. Define
éh = (egapl : 6?7 -y PS - 62) € ]Riis Vh e H

where the p, are taken from the multi-commodity equilibrium. Define
Ay =ps- Ay, ¥se S, jel

~

Observe that since r € span[A], (1,...,1) = p [ r € span[A]. More generally, for any
(51 define the vector §j € RXTS by go = yo and §s = ps - ys, Vs € S.

Conversely, for any vector § = (Jo, 91, .., s) € RE™, define the vector i € Ri(p“s)
by

L
vector y € R

~

Ys

Ds - €s

1

Yo = Yo; Ys = es forall s € S.
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Note that vg(s) = Jsvs(es/pses) = Us, and ps - ¥s = Us.

Define the price vector ¢ in the CAPM economy by ¢y = pg, and ¢s = 1 for
all s € S. First let us see that (¢, m, (2", 0")rex) is an equilibrium for the econ-
omy ((U",é")nerr, A)nerr, where the 7 and 6" are as in the original multi-commodity
equilibrium. Since 2" is proportional to e, for all h, 2" = p, - 2" = v,(2"). Thus
UM(zh) = UM(2") for all h € H.

Clearly, for all vectors (y", ©"), (", ") € B'(p, m, e, A) < (", ¢") € B'(q,w,é" A) <
(", ¢") . . €
B"(p,m, e" A)). Thus (2",0") € B"(q,n,é", A). Moreover, if some (,0) € B"(q, T, ¢é, A),
then (7, é) € B"(p,m, et A). By virtue of the fact that (z" 6") are equilibrium de-
mands, U"(&") = UM(z") > UM(Z) = U"(&), so (2", 6") are equilibrium demands in
the one-good CAPM.

Our CAPM economy satisfies all assumptions (1)—(6). Hence by our one-good
Pareto efficiency theorem, ("), is fully Pareto efficient in the one-good CAPM.

If (y")hen Pareto dominates (2"),cy in the multicommodity CAPM, and if
S onen Ut =D nep €, then (§")pey must Pareto dominate (2")4e and still be feasible
in the one good CAPM, a contradiction. [ |

Multicommodity CAPM Mutual Fund Theorem Under the assumptions of
the last theorem, let " > 0 at a multicommodity CAPM GEIL. Then

i" € span(r,é] Vhe H

where r is the appropriate ideal asset defined above.

The proof is given by combining the one-commodity CAPM proof with the proof
given above for the multi-commodity CAPM efficiency theorem. Once again we
are able to prove that there is a crucial asset which is necessary and sufficient for
the economy to achieve full efficiency (assuming every agent can sell off his future
endowment).

2.4 The Ideal Inflation Proof Bond

In the context of the multicommodity CAPM we can positively describe the ideal
inflation proof bond. It does not pay the same amount of money in each state. It
does not guarantee the same consumption in each state. It does not guarantee the
same marginal utility in each state. On the contrary, it guarantees the same utility
in each state. If agents feel twice as good about consumption in state 1 as in state 2,
the ideal riskless asset will pay half as many goods in state 1.

2.4.1 What would Fisher’s Ideal Index Give?

The Koniis (1939) index measures inflation as the ratio of the cost of achieving the
same utility between this period and a previous base period. Our “ideal” bond corre-
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sponds to a Koniis inflation indexed bond. In Fisher’s proposal of 1925 for an indexed
bond, he suggested using a fixed commodity bundle chosen in some previous base pe-
riod. This corresponds to the Laspeyre index of inflation. As Fisher recognized
clearly, using a fixed bundle to measure inflation tends to overestimate it (assuming
the bundle chosen in the base year was utility maximizing) because, when the price of
some commodities go up, agents substitute into other cheaper commodities. His rec-
ommendation for the ideal inflation index was more sophisticated than the Laspeyre
index. He suggested taking the geometric average of the Laspeyre index and the
Paasche index as an “ideal” index. The Paasche index is formed by taking the ratio
of the cost of buying today’s consumption bundle at today’s prices to the cost of buy-
ing today’s consumption bundle at yesterday’s prices. Assuming that today’s bundle
was utility maximizing at today’s prices, the Paasche index always underestimates
the Koniis inflation. Averaging the two can give an index that is close to the Koniis
index. It can be shown that if the functions v, are all equal to Cobb-Douglas utilities
with exponents 1/L for every commodity, then the Fisher index reduces precisely
to the Koniis index (see Diewert (1976)). The Fisher index would then provide for
Pareto efficient trade under the multicommodity CAPM assumptions of this section.

2.4.2 An Open Question

This result leaves open the question about what the ideal riskless bond should be in
case there is more agent heterogeneity. For example, if v, also depends on h, there
may be no single asset which provides every agent with a state independent utility.
Further analysis is required to see whether in this case it is helpful to have more
than one inflation proof bond, or whether there is indeed any particular advantage
to introducing a bond linked to some consumer price index.

3 Overlapping Generations Economies

(OLG)

Irving Fisher argued that the rate of interest depends on impatience, on productivity,
on the distribution of endowments between today and tomorrow, and on the distri-
bution of wealth between patient and impatient agents. In 1947, Maurice Allais of
France introduced a model of overlapping generations in which he showed that nei-
ther impatience nor any of the other aforementioned factors has anything to do with
the rate of interest, at least for some equilibria. He found that the rate of interest is
equal to the rate of growth of population. In 1958 Paul Samuelson of MIT rediscov-
ered the OLG model and added a new twist. He showed that there could be assets
whose prices exceed the present discounted value of all their future dividends, thus
contradicting another central tenet of Fisher. Samuelson concentrated on just one
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such asset, namely green pieces of paper called fiat money, which provided no utility
whatsoever and yet sold for a positive price. The situation in which an asset sells for
more than its “fundamental value” is called a bubble.

OLG models have an infinite number of agents and an infinite number of goods.
Fach agent lives for two periods, when he is ‘young’ and ‘old’. In the simplest version
of the model, which we shall concentrate on here, there is one good in each time
period.

In Samuelson’s original paper, he gave an endowment of 1 to the young and
nothing to the old in each generation. He also assumed one agent per generation. We
can present the structure as:

— O

time (past) 01 2 3 time (future)

Notice that at a given date, ¢, the old have nothing to offer the young, so according
to Samuelson there could be no trading. Samuelson ascribed the inefficiencies we will
see in this model to a lack of a “double coincidence of wants.” He suggested that one
way to deal with this was to introduce money.

We will begin to analyze the OLG model as if it could be thought of as a Wal-
rasian or Arrow—Debreu model with one budget constraint per agent, and infinity in
a few places. (That immediately rules out the lack of double coincidence of wants
explanation for any of the OLG properties, since in Arrow—Debreu all goods and
agents are directly linked.) This is exactly analogous to the transformation of the
temporal Fisher economy into the timeless Walrasian economy that we saw in Sec-
tion 1. We shall find that without durable goods, there are typically two steady state
equilibria. One we call F after Fisher, since the rate of interest there depends on the
impatience of the consumers, though the equilibrium real rate of interest is negative,
and the equilibrium is inefficient. In the other steady state equilibrium S, as Allais
and Samuelson claimed, the rate of interest is equal to the growth rate of the pop-
ulation (namely zero in our example), completely independent of the impatience of
the consumers.

After examining the Allais—-Samuelson case, we add land and find that now there is
only one steady state equilibrium, which is efficient, and in which the rate of interest
depends exactly as before on impatience and the other factors mentioned earlier in
Fisher’s two period model.
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3.1 Description of the Basic OLG Model

The set of commodities and agents are now both infinite: £ =7 = {...,—1,0,1,...};
H = {th: (t,h) € Zx H}, where we think of one commodity per period and H agents
per generation. Each period is regarded as the time of a generation (say 30 years).
Each agent lives for two generations, and has an endowment e = (..., el e, ...},
where e’ is the endowment of an agent born at ¢ in period s. Thus e!” is the
endowment of agent th when young and e, is the endowment of agent th when
old. In the basic model without land, we assume there is no endowment other than
these two. Payoffs depend only on consumption while alive U (..., x4, 7441, ...) =
U (x4, 24,1). We shall assume that U is strictly concave and strictly increasing in
goods corresponding to periods in which the agent is alive, and similarly that the
endowment when young are positive, e > 0.

A Walrasian OLG equilibrium is a price vector ¢ = (...,q_1,qo,q1,...) and an
allocation {z'" = (..., 2l z", ...) : th € H} such that

: . th __ s—1,h sh __ th
1) market clearing: >, 2t =", cpas b 430, padth =37, 060 Vs

)
2) value of individual endowments are finite: > "% g,et* < oo, Vth € H
3) ath € BMq) = {z: > 2 g <Y T2 gelh}, Vth e H

)

4) zh € B™h(q) = Uh(x) < U™ (2™), Vth e H

In case there is no land, Y, . e =", e+ 37, et and 37T geth =
qel + qiiiel,, so condition (2) is trivial. Actually, condition (2) follows from con-
ditions (1), (3) and (4) for economies in which agents are only interested in a finite
number of goods, for if an agent had infinite wealth, he would still have money left
over to spend after buying the whole of the aggregate endowment of the goods that
he liked, and then he would want to buy still more, contradicting market clearing.

As in the two-period Walrasian equilibrium described earlier, the prices ¢; repre-
sent the price that would be paid at time 0 to obtain one unit of consumption at time
t.

In all our four examples we shall assume there is only one agent per generation,
and drop the superscript h. In our theorems, however, we shall allow for multiple
agents per generation.

Example 1 Let U'(..., x4_1, T4, T4, ...) = log 2y +log 2411, and let ef = 3, e}, =1,
and e’ = 0 otherwise, for all t € H.

It can easily be seen that there are two stationary equilibria, where ¢;11/¢; is the
same for all ¢. In one ¢, = 3*, —0o < t < 00, 80 ¢1+1/¢ = 3. Each agent optimizes
by consuming her endowment. Thus, zj = 3, 2, = 1, for all t € H, and clearly the
markets clear. We call this equilibrium F, after Fisher.

27



In the other stationary equilibrium, ¢ = 1, —o0 < t < oo. This clears all the
markets because demand becomes (zf, z{, ) = (2,2) for all ¢ € H. We call this the S
equilibrium, after Samuelson.

Since the consumers’ utility function is concave, consumers are better off smooth-
ing consumption

U'(2,2) > U'(3,1)

Thus Equilibrium F is not Pareto efficient.
In the F equilibrium 1+, = ¢/qi+1 = 1/3 = 1, = —2/3.While in the S equilib-
rium,
re =0

equal to the rate of population growth.

Example 2 Consider again the welfare functions in Example 1, U'(x;, x,11) =
log z¢+log x;11, but now let the endowments for each generation t be (e}, e}, ;) = (6, 1).
It is easy to find two steady-state equilibria as before. In Equilibrium 2F, we let
q=(.,1,6,36,...) and (z}, z;,,) = (6,1) = (e}, €,1). The interest rate is 1+r = 1/6,
r = —5/6, so an increase in endowments when young decreases the rate of interest,
just as Irving Fisher predicted. On the other hand, there is also an Equilibrium 2S
in which ¢ = (...,1,1,1,...) and (2f,2%,,) = (34,3%) for all ¢. In this “Samuelson
equilibrium,” the interest rate is still 0 despite the change in endowments. The
Samuelson equilibrium confirms the view of Allais that the distribution of endowments
across the life-cycle will not change the interest rate.

Example 3 Suppose now that U'(z¢, #441) = log 2,40.5log 2.1, and that (e}, e}, ;) =
(3,1). Compared to Example 1, the agents have gotten more impatient. Again we

can calculate that there are two stationary equilibria. In the Fisher equilibrium,

qg=(.,1,3,2 ) and (¢}, 2! ;) = (3,1) for all . The interest rate has risen to

1+7 =2 r, = —% But in the other Samuelson equilibrium, ¢ = (...,1,1,1,...)

and (2}, 2},) = (3, %) Again the interest rate remains at 0 despite the increase in
impatience of every agent.

wlbho ~

In all three examples, the real interest rate in the Samuelson equilibrium was
equal to the population growth rate, namely zero.* Samuelson actually considered a
variation of the economy we have been working with, in which time has a beginning
at t = 1. He added a positive endowment of fiat money to the endowment of old
agents at time ¢ = 1. Then he showed that what we called the S-equilibrium could be
realized as an equilibrium in his truncated model by giving money a positive value.

4 Another important point is that in all these economies the Fisher equilibrium was not Pareto
efficient. Welfare is improved if every young person gives the contemporaneous old A > 0 goods,
much as happens in the US pay-as-you-go social security system. Samuelson once regarded this as

a powerful argument in favor of the US social security system.
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Money is a durable good that yields no dividends and provides no utility, yet in the
Samuelson model it has a positive value, contradicting another one of Fisher’s central
tenets.

3.2 Adding Land to the OLG Model

Land is meant to be an asset which yields a steady dividend forever. The owner of the
land effectively owns all its dividends, and hence has an endowment stream that goes
on forever, even though he will die after at most two periods. We start, as Samuelson
suggested, at time 1, with the old agents from time 0 and the young agents born at
time 1, but with no money, and with all the land in the possession of agents born at
time 0. The definition of Walrasian OLG equilibrium given above also applies with
land, except that now we restrict to ¢ > 0 and s > 1. The only other difference is that
in the basic OLG economy, each agent owns goods in at most two periods, while with
land, some agents 0h might own endowments of goods in every period. In fact we
shall always assume that in OLG with land, at least one agent’s endowment includes
a nonnegligible fraction of the aggregate endowment of every good.

Example 4 We assume individual endowments of fruit are (3,1) when young and
old, as in examples 1 and 3.

w
wW
—_

1 2 3 4 time

Now we add an infinitely durable good to the OLG model that yields real dividends
forever. In addition to the other endowments, we assume that the person born in
time 0 owns a durable good called land or trees that yields one unit of the perishable
consumption good per period, forever. We can write the effective endowments of the
perishable goods as

21 11
3 1
3 1
1
1 2 3 4 time
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To solve the for the Walrasian OLG equilibrium, we write the budget sets:

Bq) ={aY:q <qi+a+ > a4 }
t=2

value of
the land

B'(q) = {(xf, 33§+1) L qury + Qt+1$§+1 <3¢+ ¢} forallt > 1

Market clearing now requires that i '+ 2! = el 4 el +1=1+3+1=5,t=1,2, ...
We defer computing the stationary equilibrium until the next section.

Note that consumer 0 solves: maxloga? s.t. 2 € B%(p), so 29 = (1 +Y ooy @)/ @1
We know that z < 5 (to satisfy market clearing), so

ZQt§4Q1<OO-
t=1

Thus in any equilibrium in example 4, the value of the aggregate endowment 5 >~ ¢
must be finite. In examples 1-3, it was infinite in every equilibrium.

3.2.1 Temporal OLG Equilibrium with Land

We have described the OLG model with land by adding the dividends of the land to
the endowments of the time 0 generation, in accordance with how much land each
of them owns to start. In the Walrasian (or Arrow—Debreu) equilibrium described in
Section 3.1, consumption goods in every period are traded simultaneously at some
mythical place and time where the souls of the unborn and dead all meet. With
durable goods like land, we can define a more realistic temporal OLG equilibrium by
allowing trade to occur only between living agents. At any given time, two generations
are living, and they can exchange fruit (consumption goods) and land, just as in the
two period temporal equilibrium described in Section 1. And again we shall see that
the temporal equilibrium is identical to the Walrasian equilibrium.

Define:

K" = acres of land owned initially by consumers 0h.

K™ = acres of land purchased in year s > 1 by consumer th. We allow K" < 0,
but require K51 > 0.

2" = number of fruit consumed in year s by consumer th. We require x2* > 0.

py = price of a time ¢ fruit paid at time t.
II; = price of a time ¢ acre of land paid at time t.

f = output of fruit per acre of land in each period.
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f=fY ey K" = total output of fruit from all land, in each period.

In the Walrasian setting, ¢; was the price paid at time 0 for fruit at time ¢. That
was the present value price, whereas p; here is the current value price. Allowing
K:" < 0 is analogous to allowing short sales of assets in the two-period model.
Insisting on K*~1" > 0 is necessary, since we do not allow for default, and the agent
cannot pay back after he is dead.

Recalling that the owner of land at time ¢ has the right to consume the fruit it

bears at time (¢ 4+ 1), we define the temporal budget constraints for each agent 0h
and th, h € H,t > 1:

B%(p,1I) = { (2", K{") : praP* + IHKY" < pe® +  pK"f  + ILKQ® }
\ / A ~~ J/ A ~~ J

endowed fruit from endowed
fruit endowed land land
B™(p, 1) = {(«}", K", w1, K{) - prat” + T K" < peey and
Py + Mot K prelty 4+ pea K f 4 e K (2)

A consumer born in year t > 1 has two budget constraints. The first limits his
purchase of fruit and land in year t. The second limits his purchase of fruit and land
in year (¢ + 1). Increasing K" has no direct effect on the consumer’s utility, but
allows him to increase zi",. Increasing K", does not benefit the consumer in any
way, so in equilibrium, K/, = 0.

A temporal OLG equilibrium with land ((ps, II;)i>1, (2, K)hep) satisfies

1) market clearing in commodities: Y, 428 = 3, ot + 3, 0t =
e €0+ [, Vs > 1

2) market clearing in land: >, , K" =%, , K", Vs > 1

3) (zth K™) € B"(p,II),Vth € H

4) (z,K) € B"(p, 1) = Uh(x) < UM (2™),Vth € H

In our next theorem we shall prove that temporal OLG is identical to Walrasian
OLG. The idea is that the return on land in the temporal equilibrium implicitly
defines the trade-off between consumption at times ¢ and ¢ 4+ 1, and thus the rate of

interest at time ¢:
_ Prirf + e /E
Dt .

The denominator describes how much land can be acquired with one unit of fruit at
time ¢, and the numerator describes how much fruit can be acquired at time ¢ 4 1
from the dividends and sale of the land.

1 + Tt
Pi+1
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Walrasian-Temporal Equilibrium Equivalence Theorem for OLG with Land
Let E = (U™ e™)ner, (KO nen, f) be an OLG economy with productive land, f =

Y her KO > 0. Then there is a temporal OLG equilibrium ((py, IL)i>1, (2, K™)ipen))
for E if and only if there is a Walrasian OLG equilibrium (q;, (™) nen) for E, where
forallt > 1

@ _ Per1f + e /E

qt+1 Pt+1 Dt
I, 1
— = — Z QTf-
2 (gt

Proof We prove first that the two equations above are equivalent. Suppose first
that II;/p; < oo is defined for all t > 1 by the bottom equation. Then

1 o8] %]
Per1f + I & B [+ Gt D2 U @ QGf+ ZT:t+2 4 f Q@

Pi+1 yg; B i Z:o:t-i-l ¢ f B qi+1 Z:O:tJrl ¢ f - qt+1

Conversely, suppose the top equation holds for all t = s > 1. Rewriting it and iterating
it back to t < s, we get

HS S HS

Ds qs Ps+1
I qs qs II, 1 II,
- = <f+ - (f+ “)) = <q3f+qs+1f+qs+1 “)
Ps—1 ds—1 qs Ps+1 ds—1 DPs+1
m 1| e 1 I,
oLl g +—{q5+1 ﬂ.
Dt L 4t DPs+1

Letting s — oo shows that »_°, ¢; < co. Hence qsy1(sq1/pss1) = D ot f — 0,
giving the bottom equation.

Next we show that given these two equations, the temporal and Walrasian budget
sets contain exactly the same feasible consumption vectors for any individual. Observe
that doubling both II; and p; for any ¢ does not affect any agent’s budget set. Hence
we can scale up II; and p; so that II; = p; 1 f + II;11. Then from the top equation,
4t/ @1 = Pt/Pry1- Adding consumer th’s budget constraints

ptxih + HtKZh < pteih
h h h h h
Pty + e K7 < praelt) + pea KV + T K

gives
th th th th
DTy + Pl S ey + Pry1€y -
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This shows that if (z, K) € B (p,II), then x € B%(q) for every agent with ¢t > 1.
Conversely, if z € B (q), then _2—(ef* — 2¢) = (2}, — €/},). Define

II
K; = (el — x?t)/—t
D

Using the first equation, the additional consumption this allows in period ¢ + 1 is

IT II II
peirf + t+1K _ pef + t+1( tt_x?t)/_t _ i(e?t xht) ( ht ht ).
Dt qi+1

— X — €
t t+1 t+1
Pt+1 Pt

Hence (z,K) € B™(p,II). For agents Oh, simply apply the bottom equation for
IL /p1. u

Corollary Let ((pi, 1)1, (2", K™)her)) be a temporal equilibrium for an OLG
economy (U™, e™)ners, (KSnen, f) with productive land, f = >, , K" > 0.
Then (x'"),e is Pareto efficient, and land is always priced as the dz’scounted value
of its future dividends.

Proof From the previous theorem, the temporal equilibrium is equivalent to a Wal-
rasian equilibrium. From condition (2) of Walrasian OLG equilibrium, when there is
land the requirement that the income of every individual agent be finite also guar-
antees that the total value of the aggregate endowment will be finite, since the latter
is no more than a finite multiple of the former for some agent born at time 0. Hence
the usual proof of the Pareto efficiency of competitive equilibrium goes through, as
was pointed out by Wilson (1981).° By introducing a durable good whose payoff is
a nonnegligible fraction of aggregate endowment, we have assured that there are no
Pareto inefficient competitive equilibria.® Furthermore, the proof of the last theorem
also showed that the price of land must be equal to the present discounted value of
its dividends. |

In fact it can easily be shown that if we add other durable goods, like paper
money, to the OLG economy with land, then all of these will be priced at the present

>This proof works by arguing that if all agents could be made better off by an alternative
allocation, this alternative allocation would cost more to each agent than his endowment, otherwise
he would have bought it. Adding over all agents, the cost of the aggregate consumption of the
new allocation must be more than the aggegate value of endowments, if both numbers are finite,
contradicting the feasibility of the new allocation. When aggregate endowments have infinite value,
this proof fails. (In the equilibria of examples 1-3, the value of the aggregate endowment was
infinite).

Consequently the rationale for social security must come from elsewhere.
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discounted value of their dividends.” This gives us a first indication that the OLG
model with land will behave much more like the Fisher two-period model.

3.2.2 Stationary OLG Equilibrium with Land

If U2y, 241) = UM(21, 2) and (e, e )) = (e}, e}) do not depend on t, for t > 1,
and if f > 0, then we have a stationary OLG economy with (productive) land. A
stationary OLG equilibrium is an OLG equilibrium where the one-period rate of
interest remains constant over time, ¢y = 1,¢o = ¢, g3 = ¢*+-- . Wecall ¢ =1/(1 +7r)
the market discount rate and r the one-period rate of interest.

For each agent th € H, let (2"(q), 21(q)) € arg max{U™(x1, z5) : 71 +qrs < e+
el |, x1, x2 > 0}. Given our hypotheses on utilities, we must have that (zt"(q), 2" (q))
is a uniquely defined, continuous function, and x%{"(q) + z'(¢) — oo as ¢ — 0, for all
t > 1.8 Let (2!(q), zéh(q)) = ((zth(q) — eih), (x?}rl(q) et+1)) be the excess demand
of agent th, and let (24(q), 25(q)) = (O pem(24(q), 28 (¢))) be the aggregate excess
demand of generation ¢ > 1. For stationary economies we can drop the ¢ and write

(21(q), 23 (q)) and (21(q), 22(q))-

Stationary OLG Equilibrium Existence Theorem Fuvery stationary equilib-
rium for any OLG economy with productive land f > 0 has a strictly positive interest
rate, 0 < ¢ < 1. Moreover, every stationary OLG economy with productive land f > 0
such that UM is strictly concave and strictly monotonic, and such that e > 0, for all
h € H, has a stationary equilibrium.

Proof From the last theorem we know that the value of land is finite, so 0 <
iZquTf < 00. Hence 0 < ¢ < 1.
In stationary equilibrium we must have that

21(q) + 22(0) = f

where 21(q) is the excess demand of one generation’s young and z3(g) is the excess
demand of the previous generation’s old. For any ¢, each agent will spend all his
money, and hence the budget set inequality will be an equality and 2;(¢) 4+ ¢z2(¢) = 0.
Hence when ¢ = 1, z1(q) + 22(¢) = 0 < f. But as ¢ — 0, 21(q) + 22(¢) — oo. By
continuity there is some 0 < ¢ < 1 with 21(q) + 22(q) = f.

This clears all markets for time ¢ > 2. What about ¢t = 1?7 Luckily, we do not
need to check anything more. Since the value of the aggregate endowment is finite,

"Otherwise the owners of the asset would spend more on consumption goods than the value of
their endowments of consumption goods. Adding over all agents, we would get that total expenditure
on consumption goods is greater than the total value of consumption goods, since the latter is finite,
contradicting market clearing.

8The latter is true because as the price of the second good goes to zero, holding fixed the price of
the first good at 1, income is still bounded away from zero. Hence the monotonic agent will demand
arbitrarily more of the second good, while the demand for the first good must remain nonnegative.
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and since every agent spends all his money, total expenditures must equal the total
value of endowments. But from the foregoing, for each good t > 2 total expenditures
equal total value. Hence also for the one remaining good t = 1 we must have total
expenditures equal total value. But since ¢; = ¢'~! = 1, that means demand equals
supply for time 1 goods as well. |

Computing Stationary Equilibrium for Example 4 At each date t > 2, the
young and the old must have demands that sum to all the goods in the economy,
namely their joint endowments plus the output of apples from the land. Consider
the case t = 2. Then the present value (i.e., as of time 1) of income of the old (born
at time 1) is 3 + ¢, while for the young born at time 2 the present value of income
(as of time 1 again) is 3¢ + ¢*. Recalling the formula for Cobb-Douglas demand, and
recalling that the total supply of goods in every time period is 3+ 1+ 1 = 5, we can
solve

it 42l =5
3B3+d | 3B¢+¢)

q q

Solving the quadratic equation gives two solutions, only one of which has 0 <
q < 1: {qg =0.55, (2}, 2),,) = (1.78,3.22), for all ¢ > 1}. It must therefore be the
stationary equilibrium.

By stationarity the same solution clears the markets for all time ¢ > 2. It also
clears the market for t = 1, as can easily be verified by noting that ¢/(1 — ¢) = 1.22.
We must add the demand of the agent who is born at time 1 and the demand of the
agent who is old at time 1:

= =5

11 =3B+9) =5+4¢

1414 [q+q2+q3+"']:2+1%q (assuming ¢ < 1)
value (;fr land
q = 0.55
0 q

Ty =1(3+¢q) =178
Hy = (3 +0) =322
r=1/g—1=(1/.55)—1=282%
Taking advantage of the Fisher capital value equation that the land price must
be equal to the present value of its dividends, we can immediately translate this

Walrasian equilibrium into a temporal OLG equilibrium: (p, I1;) = (1,1.22) for all
t> 1.
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3.2.3 Land Restores Many Two-Period Lessons

Adding land solves several problems. First, Pareto optimality is restored. Second,
the value of every durable good is equal to the present value of its dividends. Third,
we can imagine that trades take place between living agents, i.e., we do not need
a mythical market where all of the generations of consumers trade all of the goods
simultaneously. Fourth, the interest rate is positive. And last, but not least, the rate
of interest is determined by impatience, and by the other factors mentioned earlier.
(This last observation seems to be new).

3.3 What Determines the Rate of Interest

If in example 4 we make each generation more impatient, the real rate of interest will
go up. Taking U'(zy, x4,1) = log x; + 0.5 log 24,1 we get r = 139%. If we increase the
productivity of the tree, the rate of interest will go up. For example, if we take f = 2,
then r = 154%. If we increase the endowment when young, the rate of interest will
go down. For example, if we take el = 6, we get r = 38%.

Thus the determinants of the rate of interest that we saw already in the two period
model affect the rate of interest in same way in OLG with land. We can prove this
in a more general situation.

Before stating the next theorem, let us observe that in any stationary OLG equi-
librium with productive land, the old agents at time 1 will consume their endowments
of goods, plus all the dividends of land (since they own all the land), plus the goods
obtained by selling off their land. From stationarity, it follows that in every period
the old collectively will eat more than the sum of their old endowments.

3.3.1 Impatience Theorem in OLG with Land or Trees

Theorem Consider any stationary OLG economy with productive land f > 0 such
that UM (x4, 2441) = u™(xy) + 6pu(2441), where u is strictly concave, increasing, and
twice differentiable, for all th € H. Suppose that in a stationary equilibrium every
old agent consumes more than his old endowment, and every young agent consumes
something positive. Then more impatience (decreasing any 0y) implies a higher in-
terest rate, as does higher productivity of land (greater f), as does increasing any old
endowment el or lowering any young endowment e’?.

Proof In stationary equilibrium, we must have that

21(q) + 22(q) — f =0,

where the functions (21(q), 22(¢)) also implicitly depend on the (05, €}, €4) ey Under
the hypotheses of the theorem, we shall show that around the equilibrium, the left
hand side is differentiable in (g, (0p, e e?)scy) and decreasing in ¢. The implicit
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function theorem then tells us that any perturbation to the above equation will move
equilibrium ¢ in the same direction, and move equilibrium r = 1/¢g—1 in the opposite
direction.

From elementary consumer demand theory, we know that the individual excess
demands (27(q), 24(q)) are differentiable in all the parameters at the equilibrium ¢
(since they are positive there and since the utilities are twice differentiable). From
Slutsky’s equation, we know that we can decompose the derivative of any individual

excess demand into a Hicksian term and an income effect term

0z1(q) _ 921(a)  021(q)

0z4(q) _ 024"(q) 023((1)2h(q)
dq dq or *

where the first term on the right hand sides 9z/(q)/0q is the Hicksian or compen-
sated demand of agent h, and 92!'(q)/0I is the income effect term. We know that
Hicksian own effects are negative, so 9251 (q)/0q < 0. We also know that Hicksian
demand keeps utility constant, so

=0

92" (q) N qazSH(q)
dq dq

Since in stationary equilibrium ¢ < 1, it follows that

92" (q) N 925" (q)

dq dq < 0.

From the fact that utility is additively separable, we know that demands are normal,
0z1(q) /01 > 0, for i = 1,2. By hypothesis, we have that the old consume more than
their endowments, so 2%(¢) > 0. Therefore

. 925(q) 1

0z1(q)  0zh(q)  0zM(q) | 0z5"(q) 021(q) ,
¢ | o¢  o0q | 0g or 20—~ #2(0) <0

when evaluated at equilibrium ¢. Adding over all the agents in H, it follows that

021(q) N 022(q)

94 94 < 0.

It follows from the implicit function theorem that increasing f necessarily de-
creases ¢ = 1/(1 + r) and thus increases the interest rate.

Increasing the impatience of some consumers makes them want to eat more today.
But at the same prices, that means their total consumption over time must decrease,
since the value of future consumption is less (¢ < 1). Hence to restore equilibrium, ¢
must fall and interest rates must rise.

37



Finally, switching young endowment to old endowment reduces income at the old
prices (since ¢ < 1), thus reducing demand when young and old, but not affecting
total supply (which is the sum of endowment when young and old). Hence to restore
market clearing, ¢ must again fall and interest rates rise. A similar argument can be
given if endowments when young or old are changed separately. [

The proof that more impatience raises the interest rate can be proved under weaker
hypotheses in the case of OLG with land than it was in the two period case. Far from
contradicting Fisher’s impatience theory of interest, OLG economies confirm it more
emphatically.
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