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Abstract

A¤ective decision-making is a strategic model of choice under risk and un-
certainty where we posit two cognitive processes � the �rational� and the
�emoitonal� process. Observed choice is the result of equilibirum in this in-
trapersonal game.
As an example, we present applications of a¤ective decision-making in in-

surance markets, where the risk perceptions of consumers are endogenous. We
derive the axiomatic foundation of a¤ective decision making, and show that af-
fective decision making is a model of ambiguity-seeking behavior consistent with
the Ellsberg paradox.
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1 Introduction

The theory of choice under risk and uncertainty is a consequence of the interplay
between formal models and experimental evidence. The Ellsberg paradox (1961)
introduced the notion of ambiguity aversion and inspired models such as maxmin ex-
pected utility (Gilboa and Schmeidler 1989), and variational preferences (Maccheroni
Marinacci and Rustichini [MMR] 2006). In this paper we present a model of choice
under risk and uncertainty that accommodates both optimism bias and ambiguity-
seeking behavior.

Optimism bias is the tendency to overstate the likelihood of desired future out-
comes and understate the likelihood of undesired future outcomes � even for events
that are purely random (Irwin 1953; Weinstein 1980; Slovic et al. 1982; Slovic 2000).
Hence, optimism bias is inconsistent with the independence of weights and payo¤s
found in most individual choice models, such as expected utility, subjective expected
utility and prospect theory. To accommodate optimism bias, we endogenize decision
weights � perceived risk.

In a¤ective decision making, we envision two distinct psychological processes that
mutually determine choice. This approach is inspired both by Kahneman (2003),
who proposes two systems of reasoning that di¤er in several important aspects, such
as emotion, and by the modular brain hypothesis in neuroscience (Damasio 1994;
LeDoux 2000; Camerer, Loewenstein and Prelec 2004). Psychology distinguishes be-
tween two systems, such as analytical and intuitive processing (Chaiken and Trope
1999), and neuroscience suggests di¤erent brain modules that specialize in di¤erent
activities. For instance, the amygdala is associated with emotions while the prefrontal
cortex is associated with higher level, deliberate thinking (e.g., Reisberg 2001). De-
cision making is hypothesized, in both psychology and neuroscience, to be the result
of an interaction between di¤erent modules of the brain (e.g., Sacks 1985; Damasio
1994; Epstein 1994; LeDoux 2000).

Decision making under risk and uncertainty derives naturally from the interplay
between two cognitive processes, similar to the dual systems proposed by Kahneman
and consistent with recent research in neuroscience. That is, decision making under
risk can be modeled as a deliberate process choosing an optimal action, and an
a¤ective process forming risk perception. The deliberate process chooses a lottery or
a sure amount, chooses insurance, or a spouse, while the a¤ective process considers
the probability of winning a lottery, being in a car accident, or getting married.

In our model, we call these systems of reasoning the rational process and the
emotional process. The rational process coincides with the expected utility model.
That is, for a given risk perception, i.e., perceived probability distribution, it maxi-
mizes expected utility. The emotional process is where risk perception is formed. In
particular, the agent selects an optimal risk perception to balance two contradictory
impulses: (1) a¤ective motivation and (2) a taste for accuracy. This is a de�nition
of motivated reasoning, a psychological mechanism where emotional goals motivate
agent�s beliefs, e.g., Kunda (1990), and is a source of psychological biases, such as
optimism bias. A¤ective motivation is the desire to hold a favorable personal risk
perception � optimism � and is captured by the expected utility term. The desire
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for accuracy is the mental cost incurred by the agent for holding beliefs other than
her base rate, given her desire for favorable risk beliefs. The base rate is the belief
that minimizes the mental cost function of the emotional process. This is the agent�s
correct risk belief, if her risks are objective such as mortality tables.

To reach a decision, the two processes interact to achieve consistency. This in-
teraction is modeled as a simultaneous-move intrapersonal game, and consistency
between the two processes, which represents the candidate for choice, is character-
ized by the pure strategy Nash equilibria of the game. The intrapersonal game
is consistent with recent advances in neuroscience which suggest that simultaneous
processes are complementary (Damasio 1994; LeDoux 2000) and show evidence for
their integration (Gray et al. 2002; Pessoa 2008). Gray et al. conclude that �at some
point of processing, functional specialization is lost, and emotion and cognition con-
jointly and equally contribute to the control of thought and behavior.�Pessoa (2008)
argues that �. . . emotions and cognition not only strongly interact in the brain, but
that they are often integrated so that they jointly contribute to behavior,� and he
also makes this argument in the context of expectation formation. Hence, the ADM
model may be viewed as a more descriptive model of choice, as it attempts to capture
specialization and integration of brain activity.

As an application of a¤ective decision-making, we present an example of the
demand for insurance in a world with two states of nature: Bad and Good. The
relevant probability distribution in insurance markets is personal risk, hence the
demand for insurance may depend on optimism bias. A¤ective choice in insurance
markets is de�ned as the insurance level and risk perception which constitute a pure
strategy Nash Equilibrium of the ADM intrapersonal game.

The systematic departure of the ADM model from the expected utility model
allows for both optimism and pessimism in choosing the level of insurance, and shows,
consistent with consumer research (Keller and Block 1996), that campaigns intended
to educate consumers on the loss size in the bad state may have the unintended
consequence that consumers purchase less, rather than more, insurance. Hence, the
ADM model suggests that the failure of the expected utility model to explain some
data sets may be due to systematic a¤ective biases.

An obvious question is what is the class of preferences over risky or ambiguous acts
that are represented by the ADM model? The ADM intrapersonal game is a potential
game and the potential function allows a representation of a¤ective decision making as
maximization of the a¤ective agent�s preferences .We provide an axiomatic foundation
for a¤ective decision making and show that an a¤ective agent has ambiguity-seeking
preferences, consistent with the Ellsberg paradox.

As is well known, the subjective expected utility (SEU) models of Savage (1954)
and Anscombe and Aumann (1963) are refuted by the Ellsberg paradox (1961). In
the Ellsberg experiment, individuals are asked to bet on a draw from an urn with
100 balls, some red and the rest black, where the distribution is unknown or bet on a
draw from an urn with 50 black balls and 50 red balls. This experiment partitions the
subjects into three disjoint groups: A, B, and C. Individuals in Group A preferred
to bet on a black draw from the urn with the known distribution, rather than bet
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on a black draw from the urn with the unknown distribution and similarly for bets
on drawing a red ball. Individuals in Group B, were indi¤erent between betting on
draws from either urn. Individuals in Group C preferred to bet on the ambiguous
urn.

In his thought experiment, Ellsberg (1961, p. 651) suggests that the majority of
people are in group A, but a small minority are in group C and he ignores the people
in group B. As he points out, both Group A and C violate Savage�s axioms for the
SEU model. Subjects in Group A are said to be ambiguity-averse and subjects in
Group C are said to be ambiguity-seeking.

A number of alternative models of choice under risk and uncertainty have been
proposed as models that rationalize ambiguity-averse choices, such as the maxmin
expected utility model of Gilboa and Schmeidler (1989) or more recently the mul-
tiplier preferences of Hansen and Sargent (2000). Recently, Maccheroni, Marinacci
and Rustichini[MMR] (2006) proposed variational preferences as a general class of
preferences that rationalize ambiguity-averse choices. MMR (2006) show that varia-
tional preferences subsume both maxmin preferences and multiplier preferences and
are characterized by six axioms, where axiom 5, due to Schmeidler (1989), is the ax-
iom for ambiguity aversion. This axiom has the simple geometric interpretation that
the preference relation over acts is quasi-concave. Moreover, if axiom 5 is replaced
by axiom �5 where the preference relation over acts is quasi-linear, then axioms 1�4, �5
and 6 characterize the SEU model. Both of these results are proven in MMR (2006).

Another possibility is that the preference relation over acts is quasi-convex. If
so, then is the behavioral interpretation of this axiom ambiguity-seeking choice � a
possibility anticipated by Ellsberg�s thought experiment (1961), where the decision-
makers in Group C are ambiguity-seeking? Do these preferences share with varia-
tional preferences a penalized SEU representation? We show that the answer to both
questions is yes.

In the variational preferences models the decision maker is playing a sequential
game against a malevolent nature, where nature moves last. Hence the solution
concept is maxmin. In the a¤ective decision making (ADM) model proposed in this
paper the rational and the emotional process of the decision-maker are engaged in a
simultaneous move, potential game, where the solution concept is Nash equilibrium.
Both classes of models are penalized SEU models. In the variational preferences
models the penalty re�ects the decision maker�s uncertainty that her �subjective�
beliefs about the states of the world are the correct state probabilities. In the ADM
model, the penalty re�ects the mental cost of her �optimistic�beliefs about preferred
outcomes.

We suggest that the outcomes of Ellsberg�s thought experiment are not para-
doxical, but allow for three mutually exclusive formulations of Schmeidler�s axiom.
That is, preferences over acts can be quasi-concave, quasi-linear or quasi-convex. If
in addition preferences satisfy axioms 1�4 and axiom 6 in MMR (2006), then the
corresponding classes of preferences over acts are: variational preferences, SEU pref-
erences and ADM preferences. We show that if axiom 5: f s g ) �f +(1��)g < f ,
the axiom that the preference relation over acts is quasi-concave, is replaced with
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axiom �5: f s g ) �f + (1 � �)g 4 f , the axiom that the preference relation over
acts is quasi-convex, then the preference relation has an ADM representation if and
only if it satis�es axiom �5 and axioms 1�4 and 6 for variational preferences.

Both preference over beliefs and dual processes have previously been considered
in the economic literature, but have been modeled separately. Models with prefer-
ence over beliefs, such as Akerlof and Dickens (1982), Yariv (2002), Koszëgi (2006),
Bénabou and Tirole (2002), Bodner and Prelec (2001), Caplin and Leahy (2004), and
others, all assume that an agent chooses beliefs in a strategic manner to resolve a
trade-o¤ between a standard instrumental payo¤ and some notion of psychologically
based belief utility.1 In contrast, this model formulates the trade-o¤ by introducing
an intrapersonal game between two processes. In this game, the emotional process
chooses optimal beliefs (for a given action) to maximize mental pro�t from those
beliefs. The rational process chooses optimal action (for a given belief) to maximize
expected utility. Choice is an equilibrium outcome determined by the two processes.

Dual processes models such as Thaler and Shefrin�s (1981), Bernheim and Rangel�s
(2004), and Benhabib and Bisin�s (2005), Fudenberg and Levine�s (2006), and Bro-
cas and Carrillo�s (2008), conceive the two systems, or decision modes, as mutually
exclusive. However, the two processes in ADM are simultaneously active, and mutu-
ally determine choice. Thus, ADM o¤ers a model of a single decision-making mode
composed of two inner processes. This di¤erence results from the di¤erent questions
that previous and the current research address. In the models of addiction and self-
control, both processes determine action, whereas herein, one process chooses action
while the other forms perceptions, and both are necessary for decision making.

In Brunnermeier and Parker (2005) the agent chooses both beliefs and actions.
They propose a dynamic model where the agent chooses beliefs for all future periods
at period one, and in each period thereafter the agent chooses an action. In contrast,
our model is a static model, where beliefs and actions mutually determine choice, and
is a potential game. Finally, we show that a¤ective decision making is characterized
by six axioms. This characterization allows an interpretation of the ADM model
as a model of ambiguity-seeking choice behavior. An interpretation not shared by
Brunnermeier and Parker (2005) or the other dual process models.

The remainder of the paper is organized as follows. The application of the ADM
intrapersonal game to insurance markets is presented in Section 2. In Section 3, we
present the axiomatic foundation of ADM. In the �nal section we review rational-
izations of the Ellsberg paradox and present the ADM model of ambiguity-seeking
behavior. All proofs are in the Appendix.

2 The ADM Intrapersonal Game

A¤ective decision-making (ADM) is a theory of choice, which generalizes expected
utility theory by positing the existence of two cognitive processes � the rational and
the emotional process. Observed choice is the result of their simultaneous interaction.
This theory accommodates endogenity of beliefs, probability perceptions and tastes.

1The axiomatic foundation for this is provided by Caplin and Leahy (2001) and Yariv (2001) :

5



In this paper, we present a model of a¤ective choice in insurance markets, where
probability perceptions are endogenous.

Consider an agent facing two possible future states of the world, Bad and Good
with associated wealth levels !B and !G, where !B < !G. The agent has a strictly in-
creasing, strictly concave, smooth utility function of wealth, u(W ), with
limw!�1Du(W ) = 1; limw!1Du(W ) = 0.2 Risk perception is de�ned as the
perceived probability � 2 [0; 1] of the Bad state occurring. To avoid (perceived) risk,
the agent can purchase or sell insurance I 2 (�1;1) to smooth her wealth across
the two states of the world. The insurance premium rate,  2 (0; 1) is �xed for all
levels of insurance.

The rational process chooses an optimal insurance (I�) to maximize expected
utility given a perceived risk �. Speci�cally, the rational process maximizes the
following objective function:

max
I
f�u(!B + (1� )I) + (1� �)u(!G � I)g :

The emotional process chooses an optimal risk perception (��) given an insur-
ance level I, to balance a¤ective motivation and taste for accuracy. Speci�cally, the
emotional process maximizes the following objective function:

max
�
f�u(!B + (1� )I) + (1� �)u(!G � I)� c(�;�0)g :

A¤ective motivation is captured with the expected utility term � the agent would
like to assign the highest possible weight to her preferred state of the world. Taste
for accuracy is modeled by introducing a mental cost function c (�;�0) that is a
nonnegative, and smooth function of �. It is strictly convex in �, and reaches a
minimum at � = �0, where �0 is the objective probability. See Figure 1.

Figure 1

The farther away � is from �0, the greater are the psychological cost. This is
because to justify favorable beliefs agents need to use strategies such as the availability
heuristic, which can be unconsciously manipulated to arrive at the desired beliefs.

2All qualitative results remain the same for the case of limW!0Du(W ) =1; limW!1Du(W ) = 0.
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Such mental strategies, or justi�cation processes, are likely to be costly and are
captured by the cost function. We assume that biased recall becomes increasingly
more costly as the distance between desired beliefs � and the objective odds �0
increases. We will assume that c(�;�0) is a smooth function of �0: It is well known
that agents attribute a special quality to situations corresponding to the extreme
beliefs � 2 f0; 1g (Kahneman and Tversky 1979). Hence we assume that there exist
limits �; � 2 (0; 1) such that for � 2 (�; �); c(�;�0) is �nite, and lim�!�c(�;�0) =
lim �!�c(�;�0) = +1:

The interaction of the two processes in decision-making is modeled using an in-
trapersonal simultaneous-move game. Modeling the interaction of the two processes
as a simultaneous move game re�ects a recent view in cognitive neuroscience; namely,
both processes mutually determine the performance of the task at hand (Damasio
1994).

De�nition 1 An intrapersonal game is a simultaneous move game of two players,
namely, the rational and the emotional processes. The strategy of the rational process
is an insurance level, I 2 (�1;1), and the strategy of the emotional process is a
risk perception, � 2 (�; �): The payo¤ function for the rational process g : (�; �) �
(�1;1)! R is g(�; I) � �u(!B+(1�)I)+(1��)u(!G�I). The payo¤ function
for the emotional process  : (�; �) � (�1;1) ! R is  (�; I) � g(�; I) � c(�;�0);
where c(�) is the mental cost function of holding belief �; which reaches a minimum
at �0.

The pure strategy Nash equilibria of this game, if they exist, are the natural
candidates for the agent�s choice, as they represent mutually determined choice and
re�ect consistency between the rational and emotional processes. The intrapersonal
game de�ned above is a potential game, where the potential function allows a repre-
sentation of the a¤ective agent�s preferences and suggests su¢ cient conditions for a
unique pure strategy Nash equilibrium.

Proposition 2 The intrapersonal game is a potential game, in which the emotional
process�s objective function is the potential function for the game. Because the poten-
tial function is strictly concave in each variable (risk perception and insurance), its
critical points are the pure strategy Nash equilibria of the game.

Excluding the case of tangency between the best responses of the two processes,
we have the following existence theorem. See Figure 2.
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Figure 2

Proposition 3 The ADM intrapersonal game has an odd number of pure strategy
Nash equilibria. The set of Nash equilibria is a chain in R2, under the standard
partial order on points in the plane.3

To derive the predictive properties of the ADM model, we require the intraper-
sonal game to have a unique pure strategy Nash equilibrium. A su¢ cient condition
for uniqueness follows:.

Proposition 4 A su¢ cient condition for a unique pure strategy Nash equilibrium of
the intrapersonal game is:

@2c(�;�0)

@�2
> � [Du(!B + (1� )I)(1� ) +Du(!G � I)]2

[�D2u(!B + (1� )I)(1� )2 + (1� �)D2u(!G � I)2]
;

8 (I; �) 2 [I�(�0); I�(�0)]� [�0; �0];

where �0 � ��(I�(�)) and, similarly, �
0 � ��(I�(��)):

Hence, for large mental costs, the equilibrium is unique (think of � > 0; ĉ(�) =
�c(�)). Moreover, for very large mental costs, the ADM model reduces to the expected
utility model.4

However, considering the general case, where the mental costs are not very large,
risk perceptions are endogenous and the ADM model systematically departs from the
expected utility model. How exactly does a¤ective choice in insurance markets di¤er
from the demand for insurance in the expected utility model? Proposition 5 below
shows that the expected utility outcome in the case of an actuarially fair insurance
market (full insurance) falls within the choice set of the ADM agent. However, if the
insurance market is not actuarially fair, then this is no longer the case.

3The existence of a pure strategy Nash equilibrium also can be derived for the case of a logarithmic
utility function, in which the agent�s income in each state is not negative.

4As c!1; �� ! �0 for all values of I. As a result, the ADM model converges to the expected
utility model.
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Proposition 5 If  = �0; there exists at least one Nash equilibrium (��; I�) with
�� = �0 = , and I� = full insurance:

If  > �0; there exists at least one Nash equilibrium (��; I�) with �� < �0 and
I� < I�(�0)

If  < �0; there exists at least one Nash equilibrium (��; I�) with �0 < �� and
I� > I�(�0):

To understand the intuition behind these results, consider a standard myopic ad-
justment process where the processes alternate moves. If  > �0; at �0 the rational
process, similar to the expected utility model, prescribes buying less than full insur-
ance. The emotional process, in turn, leads the decision maker to believe �this is not
going to happen to me�and determines that she is at a lower risk. This e¤ect causes
a further reduction in the insurance purchase, with a result of less than full insurance,
even less than what the expected utility model would predict. Note that Proposition
5 also implies that, from the viewpoint of an outside observer, both optimism and
pessimism (relative to �0) are possible. This is due to the characteristics of insur-
ance: if an agent purchases more than full insurance, then the �bad�state becomes
the �good� state, and vice versa. Consequently, if there is no e¤ective action, i.e.,
one cannot change the bad state to a good state, we would observe optimism and
less-than-optimal insurance.

Here is another example of the di¤erence between a¤ective choice and the demand
for insurance in the expected utility model. In the expected utility model, if people
realize that they face a higher potential loss, due to educational campaigns that
make them aware of the possible catastrophe, then they purchase more insurance. In
the ADM model, if an agent realizes she faces higher possible loss, then she might
purchase less insurance. Because the increased loss size a¤ects both the emotional
and the rational processes in di¤erent directions; the rational process prescribes more
insurance, the emotional process prescribes lower risk belief to every insurance level
(due to greater incentives to live in denial). If the emotional e¤ect is stronger the
agent will buy less insurance than previously. That is, if the loss is great, agents might
prefer to remain in denial and ignore the possible catastrophes altogether, which will
lead them to take fewer precautions such as buying insurance. This is consistent
with consumer research showing that high fear arousal in educating people on the
health hazards of smoking leads to a discounting of the threat (Keller and Block
1996). Proposition 6 and Figure 3 below summarizes the conditions for educational
campaigns to produce the counter-intuitive a¤ective result.

Proposition 6 An educational campaign result in less insurance if

r(!B � I)
Du(!B � I)

>
r(!G + (1� )I)
Du(!G + (1� )I)

;

where r(�) is the absolute risk aversion property of the utility function u(�)

9



Figure 3

In Proposition 6, if the utility function u(�) exhibits constant or increasing absolute
risk aversion, educational campaigns will lead to higher insurance purchase if and only
if initially the agent buys more than full insurance. Insurees who initially buy less
than full insurance will buy even less after the educational campaign. Hence, for
such utility functions, educational campaigns divide the insurance market into a set
of agents who purchase more insurance � the intended consequence � and a set of
agents who purchase less insurance � the unintended consequence.

3 Axiomatic Foundation of ADM

This section addresses the question: What preferences over risky or uncertain acts
are represented by the ADM model? The axioms over acts that give rise to an ADM
representation are suggested by a duality property of the ADM potential function.
This duality is analogous to the dual relationship between the cost and pro�t functions
of a price taking, pro�t maximizing �rm producing a single good. That is, the
pro�t function, �(p) = supy�0fpy � c(y)g where p is the price of output, y is the
output, and c(y) is the continuous, convex cost function. As is well known c(y) =
supp�0fpy� �(p)g: In convex analysis �(p) is called the Legendre�Fenchel conjugate
of c(y) and c(y) is the biconjugate of �(p); where we have invoked the theorem of
the biconjugate. Returning to the ADM model, we note that the potential function
�(f; p) =

R
u(f)dp � c(p) where c(p) is the smooth, convex cost function of the

emotional process. The Legendre�Fenchel conjugate of the ADM potential function
and the theorem of the biconjugate suggest axioms on preferences over acts that
admit an ADM representation. Moreover, these axioms allow an interpretation of
a¤ective decision-making as ambiguity-seeking choice behavior.

The axiomatic foundation of the ADM model follows the setup in MMR, where:
S is the set of states of the world; � is an algebra of subsets of S, the set of events;
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and X, the set of consequences, is a convex subset of some vector space. F is the
set of (simple) acts, i.e., �nite-valued �-measureable functions f : S ! X. B(�) is
the set of all bounded �-measureable functions, and endowed with the sup-norm it
is an AM-space with unit, the constant function 1. B0(�) the set of �-measureable
simple functions is norm dense in B(�). The norm dual of B(�) is ba(�), �nitely
additive signed measures of bounded variation on � (see Aliprantis and Border 1999
for further discussion).

The potential function for the ADM intrapersonal game is �(f; p) =
R
u(f)dp �

c(p): To make our notation consistent with the notation in convex analysis, we de�ne
J�(p) = c(p); and write the potential function as �(f; p) = fhu(f); pi � J�(p)g.
If W (f) = maxp2�fhu(f); pi � J�(p)g, and the decision-maker maximizes W (f)
over her choice set K, then maxf2KW (f) = maxf2K maxp2�fhu(f); pi � J�(p)g =
maxf2K;p2��(f; p): It follows from the Envelope theorem that argmax f2K;p2��(f; p)
is a subset of the pure strategy Nash equilibria of the ADM intrapersonal game, de-
�ned by �(f; p):

If W (f) = maxp2��(f; p) = maxp2�fhu(f); pi � J�(p)g, then J(u(f)) = W (f)
for some convex function J , by de�nition of the Legendre�Fenchel conjugate. Be-
low,we present axioms on preferences over risky and uncertain acts that character-
ize J(u(f)), where it follows from the theorem of the biconjugate that J(u(f)) =
maxp2�fhu(f); pi � J�(p)g:

AXIOMS:

A.1 (Weak Order): If f; g; h 2 F; (a) either g % f or f % g, and (b) f % g and
g % h) f % h.

A.2 (Weak Certainty Independence): If f; g 2 F; x; y 2 X and � 2 (0; 1), then
�f + (1� �)x % �g + (1� �)x =) �f + (1� �)y % �g + (1� �)y.

A.3 (Continuity): If f; g; h 2 F , the setsf� 2 [0; 1] : �f + (1� �)g % hg and
f� 2 [0; 1] : h % �f + (1� �)gg are closed.

A.4 (Monoticity): If f; g 2 F and f(s) % g(s) for all s 2 S, the set of states, then
f % g.

A.�5 (Quasi-Convexity): If f; g 2 F and � 2 (0; 1); then f s g ) �f +(1��)g - f:

A.6 (Nondegeneracy): f � g for some f; g 2 F:

These axioms where A.�5 is replaced by A.5 (quasi-concavity) are due to MMR
(2006).

Proposition 7 Let % be a binary order on F . The following conditions are equiva-
lent:

1. The relation % satis�es axioms A.1�A.6.
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2. There exists a nonconstant a¢ ne function u : X ! R and a continuous, convex
function J� : � ! [0;1] where for all f; g 2 F , f % g , W (f) � W (g) and
W (h) = maxp2� fhu(h); pi � J�(p)g for all h 2 F:

4 Rationalizations of the Ellsberg Paradox

The Ellsberg paradox poses a challenge to expected and subjective expected utility
theories. Both theories have additive probabilities, that is V (x1; :::; xk) =

Pk
i=1 u(xi)pi,

where
Pk
i=1 pi = 1 is either objective or subjective probability measure. Models that

are consistent with the Ellsberg paradox can be divided into two broad categories:
models that introduce non-additive probabilities measures, known as capacities, c(�);
and models with multiple priors.

Examples of the �rst approach are Choquet expected utility (CEU) and the spe-
cial case of rank-dependent expected utility (RDEU). Choquet expected utility of
an act x over n states w1; :::; wn such that u(x(w1)) � u(x(w2)) � � � � � u(x(wn))
is CEU(x; c) =

Pn
i=1[u(x(wi)) � u(x(wi+1))]c(w1; :::; wn) + u(x(wn)); where c(�) is

a capacity. A capacity c(�) is convex, or super-additive, if for all events A, B,
c(A) + c(B) � c(A \ B) + c(A [ B). A capacity c(�) is concave, or sub-additive,
if for all events A,B c(A) + c(B) � c(A \ B) + c(A [ B): A CEU de�ned with a
convex capacity is ambiguity-averse, an a¢ ne capacity is ambiguity-neutral, and a
concave capacity is ambiguity-seeking. Similarly, RDEU is de�ned as CEU(x; c) =Pn
i=1[u(x(wi))�u(x(wi+1))]�(p(w1; :::; wn))+u(x(wn)); where �(�) is a capacity with

�(0) = 0; �(1) = 1, and p(�) is an additive probability measure. If �(�) is convex,
a¢ ne, or concave capacity, RDEU represent ambiguity-averse, ambiguity-neutral, or
ambiguity-seeking, respectively. Hence, if capacities are convex or concave,the choice
behavior of a CEU or a RDEU agent exhibits ambiguity-aversion, or ambiguity-
seeking respectively, and is consistent with the Ellsberg paradox.

An example of the second approach is maxmin expected utility of Gilboa and
Schmeidler (1989), a model of ambiguity-aversion. MMR (2006) show that maxmin
expected utility can be represented by variational preferences where the decision
maker maximizes V (f) = infp2� fhu(f); pi � J�(p)g = J(u(f)), and J(�) is concave.
Föllmer and Schied (2004) show that this representation of preferences over acts
exhibits ambiguity-aversion � see example 2.75 on page 88.

In contrast to maxmin, we show that the ADM model is an example of a mul-
tiple prior model consistent with ambiguity-seeking choice behavior. It follows from
the axiomatic foundation of the ADM model that preferences over acts in the ADM
model can be represented by W (h) = maxp2� fhu(h); pi � J�(p)g, and J�(�) is con-
vex. Hence the general representation of preference over acts for the ADM model
is J(u(h)) = W (h) = maxp2� fhu(h); pi � J�(p)g, where J(�) is convex. Hence
�J(u(h)) is concave and represents an ambiguity-averse decision maker and therefore
for convex J(�), J(u(h)) represents an ambiguity-seeking decision maker.
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5 Appendix

Proof of Proposition 2. Denote the rational process�s payo¤ function as (R) and
the emotional process�s payo¤ function as (E). A necessary and su¢ cient condition
for the intrapersonal game to have a potential function (Monderer and Shapley 1996)
is @2R

@�@I =
@2E
@�@I . This condition clearly is satis�ed in the ADM model. The potential

function P (�; I) is a function such that (Monderer and Shapley 1996): @P
@� =

@E
@� ;

@P
@I =

@R
@I : Because

@E
@I =

@R
@I , (E) can serve as a potential function. The critical

points of the potential function are @P
@� = @E

@� = 0; @P@I =
@R
@I = 0: The potential

function is strictly concave in each variable, so at each critical point, each process is
maximizing its objective function, given the strategy of the other process. Therefore,
the critical points of the potential function are the pure strategy Nash equilibria of
the intrapersonal game, and all pure strategy Nash equilibria are critical points of
the potential function.

Proof of Proposition 3. By the boundaries on risk perception, 0 < � <

� < 1; �� 2 (�; �), and insurance I� 2 [I�(�); I�(�)]. Hence, all Nash equilibria will
have perceived probabilities in the interval [��(I�((�)); ��

�
I�(�)

�
] where 0 < � <

��(I�((�)) < ��
�
I�(�)

�
< � < 1. De�ne ��(I�((�)) � �0, ��

�
I�(�)

�
� �

0
; because

all the Nash equilibria of the intrapersonal game for � 2 (�; �) are 2 [�0; ��0] the focus
can remain on the latter probability space.

The existence and chain results can be shown by de�ning a restricted intrapersonal
game in which the insurance pure strategy space is restricted to [I�(�); I�(�)] and the

perceived probabilities are restricted to � 2 [�0; �0], such that the equilibria points
of the intrapersonal game are not altered. The restricted game is a supermodular
game, and thus, these results follow from the properties of this class of games (see
Topkis 1998). To Show that the game admits odd number of equilibria, think of
the geometry of the game. As � ! �, the best response of the emotional process is
above the best response of the rational process, while this relationship is reversed for
� ! �. Since the best responses are monotonically increasing, it follows that there
exists odd number of Nash equilibria.

Proof of Proposition 4. The emotional process�s objective function
�u(!B + (1 � )I) + (1 � �)u(!G � I) � c(�;�0) is the potential function of the
game. The maximization of (P ) with respect to a pair (I; �) gives rise to a pure
strategy Nash equilibria of the game. � 2 [�0; �0] and I 2 [I�(�0); I�(�0)] (see proof of
Proposition 3), hence only the restricted intrapersonal game in which both players�
strategy spaces are compact need be considered. Neyman (1997), proved that a po-
tential game with a strictly concave, smooth potential function, in which all players
have compact, convex strategy sets, has a unique pure strategy Nash equilibrium.
That is, the Hessian of the potential function is negative de�nite, as follows from the
condition given above.

Proof of Proposition 5. Consider the case in which  = �0. At full insurance,
there is no mental gain for holding beliefs � 6= �0 but there exists mental cost.

13



Therefore, at full insurance, the mental process�s best response is � = �0. Given that
 = �0 = �, the rational process�s best response is full insurance. Consequently, full
insurance and � = �0 is a Nash equilibrium of this case. Next, consider the case
 > �0; because the insurance premium is higher than �0, I

�(� = �0) < z. Also,
�� = �0 only at full insurance, where I = z: Therefore, at � = �0 the mental process�s
best response falls above the rational process�s best response. This relationship is
reversed at the limit � ! �, and both the mental and the rational best responses
increase; therefore, there exists a Nash equilibrium with � < �0 and less insurance
than predicted by the expected utility model. A similar argument can be used to
prove the result when  < �0.

Proof of Proposition 6. De�ne ~I(�;�0) as the inverse function �
��1. De�ne

�(�;�0) = I�(�)� ~I(�;�0), � : [�0; �
0
]! R

Educational campaigns on impending catastrophes increase the loss size, z. Be-
cause �(�;�0) = 0 is a NE, @�@z < 0 represent the unintended consequence of such
campaigns.

@�

@z
< 0,

@ ~I
@z
@I�
@z

> 1

:

@I�

@z
= [u00(w2�z+(1�)I�)][u0(w2�I�)]2

[u0(w2�I�)][u00(w2�z+(1�)I�)u0(w2�I�)(1�)+u0(w2�z+(1�)I�)u00(w2�I�)] ;

@ ~I

@z
=

h
u0(w2 � z + (1� )~I)

i
h
u0(w2 � z + (1� )~I)(1� ) + u0(w2 �  ~I)

i ) @�

@z
< 0

, r(w2 � I)
u0(w2 � I)

>
r(w1 + (1� )I)
u0(w1 + (1� )I)

;where r(x) = �u
00(x)

u0(x)
:

Proof of Proposition 7. Axioms 1�4 are used in MMR to derive a nonconstant
a¢ ne utility function, u; over the space of consequences, X: u is extended to the space
of simple acts, F , using certainty equivalents. That is, U(f) = u(xf ) 2 B0(�) for
each f 2 F , where xf is the certainty equivalent of f . This is Lemma 28 in MMR,
where I(f) = U(f) is a niveloid on � = f' : ' = u(f) for some f 2 Fg. Niveloids
are functionals on function spaces that are monotone: ' � � ) I(') � I(�) and
vertically invariant: I('+ r) = I(')+ r for all ' and r 2 R � see Dolecki and Greco
(1995) for additional discussion. � is a convex subset of B(M) and by Schmeidler�s
axiom 5, I is quasi-concave on �. We also assume axioms1�4, so Lemma 28 in
MMR holds for the niveloid J in the ADM representation theorem. By axiom �5, J
is quasi-convex on �:

MMR show in Lemma 25 that I is concave if and only if I is quasi-concave. Hence
J is convex if and only if J is quasi-convex, since J is convex (quasi-convex) if and only
if �J is concave(quasi-concave). MMR extend I to a concave niveloid bI on all of B(�)
� see Lemma 25 in MMR. Epstein, Marinacci and Seo [EMS] (2007) show in Lemma
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A.5 that niveloids are Lipschitz continuous on any convex cone of an AM-space with
unit and concave (convex) if and only if they are quasi-concave (convex). Hence, since
B(�) is a convex cone in an AM-space with unit, bI is Lipschitz continuous. It follows
from the theorem of the biconjugate for continuous, concave functionals that I(') =
infp2ba(�)f

R
'dp � bI�(p)g, where bI�(p) = inf'2B0(�)f

R
'dp � bI(')g is the concave,

conjugate of bI(') � see Rockafellar (1970, p. 308) for �nite state spaces. MMR (2006,
p. 1476) that we can restrict attention to �, the family of positive, �nitely additive
measures of bounded variation in ba(�). Hence I(') = minp2�f

R
'dp � bI�(p)g =

minp2�f
R
u(f)dp + c(p)g, where ' = u(f) and c(p) = �bI�(p). c(p) is convex sincebI�(p) is concave.

Extending �J to � bJ on B(�), using lemma 25 in MMR, it follows from the
theorem of the biconjugate for continuous, convex functionals that
J(') = maxp2ba(�)f

R
'dp � bJ�(p)g where bJ�(p) = max'2B0(�)f

R
'dp � bJ(')g is

the convex, conjugate of bJ(') � see Rockafellar (1970, p. 104) for �nite state spaces
and Z¼alinescu (2002, p. 77) for in�nite state spaces.

Again it follows from MMR that J(') = maxp2�f
R
'dp � bJ�(p)g =

maxp2�f
R
u(f)dp� c(p)g =W (f), where ' = u(f) and c(p) = bJ�(p). c(p) is convex

since bJ �(p) is convex.
f % g , J(u(f)) � J(u(g)) , W (f) � W (g): Hence argmaxf2F J(u(f)) � set

of pure strategy Nash equilibria of the ADM intrapersonal game, where u(�) is the
Bernoulli utility function of the rational process and bJ�(�) is the cost function of the
emotional process.
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