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Abstract

The quantal response equilibrium (QRE) notion of McKelvey and Palfrey (1995) has recently

attracted considerable attention, due in part to its widely documented ability to rationalize

observed behavior in games played by experimental subjects. However, even with strong a

priori restrictions on unobservables, QRE imposes no falsifiable restrictions: it can rationalize

any distribution of behavior in any normal form game. After demonstrating this, we discuss

several approaches to testing QRE under additional maintained assumptions.
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1 Introduction

The quantal response equilibrium (QRE) notion of McKelvey and Palfrey (1995) can be viewed as

an extension of standard random utility models of discrete (“quantal”) choice to strategic settings,

or as a generalization of Nash equilibrium that allows noisy optimizing behavior while maintaining

the internal consistency of rational expectations. Formally, QRE is based on the introduction of

random perturbations to the payoffs associated with each action a player can take.1 The realizations

of these perturbations affect which action is the best response to the equilibrium distribution of

opponents’ behavior.

Both interpretations of QRE have strong intuitive appeal, and much recent work has shown that

QRE can rationalize behavior in a variety of experimental settings where Nash equilibrium fails

to do so. In particular, when parameters (of the distributions of payoff perturbations) are chosen

so that the predicted distributions of outcomes match the data as well as possible, the fit is often

very good. McKelvey and Palfrey’s original paper demonstrated the ability of QRE to explain

departures from Nash equilibrium behavior in several games. Since then, the success of QRE in

matching observed behavior has been demonstrated in a variety of experimental settings, including

all-pay auctions (Anderson, Goeree and Holt (1998)), first-price auctions (Goeree, Holt and Palfrey

(2002)), alternating-offer bargaining (Goeree and Holt (2000)), coordination games (Anderson,

Goeree and Holt (2001)), and the “traveler’s dilemma” (Capra, Goeree, Gomez and Holt (1999),

Goeree and Holt (2001)).2 The quotation below, from Camerer, Ho and Chong (2004), suggests

the impact this evidence has had:3

Quantal response equilibrium (QRE), a statistical generalization of Nash, almost always

explains the direction of deviations from Nash and should replace Nash as the static

benchmark to which other models are routinely compared.

Given this recent work and its influence, it is natural to ask how informative the ability of QRE

to fit the data really is. Our first result provides a strong negative answer to this question for the

type of data often considered in the literature: QRE is not falsifiable in any normal form game,

even with significant a priori restrictions on payoff perturbations. In particular, any behavior

can be rationalized by a QRE, even when each player’s payoff perturbations are restricted to be

1We give a more complete discussion in the following section. The literature has considered generalizations of
the QRE to extensive form games (McKelvey and Palfrey, 1998) and games with continuous strategy spaces (e.g,
Anderson, Goeree and Holt (2002)). We restrict attention to normal form games for simplicity.

2Dufwenberg, Gneezy, Goeree and Nagel (2002) suggest that they find an exception proving the rule, noting “Our
results are unusual in that we document a feature of the data that is impossible to reconcile with the [QRE].”

3See also, e.g., the provocatively titled paper of Goeree and Holt (1999).
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independent across actions or to have identical marginal distributions for all actions. Hence, an

evaluation of fit in a single game (no matter the number of replications) is uninformative without

strong a priori restrictions.

This first result implies no critique of the QRE notion, but merely points to the challenge of

developing valid approaches to testing the QRE hypothesis. Testing requires maintained hypotheses

beyond those of the QRE notion itself, and the most useful approach may depend on the application.

We discuss several promising approaches. Each maintains restrictions on how distributions of payoff

perturbations can vary across related normal-form games, leading to falsifiable comparative statics

predictions.

In the following section we define notation, review the definition of QRE, and discuss common

application of the QRE in the literature. We then present our non-falsifiability result in section

3. Section 4 provides a discussion of the result, leading to our exploration of testing approaches

in section 5. We conclude in section 6.

2 Quantal Response Equilibrium

2.1 Model and Definition

Here we review the definition of a QRE, loosely following McKelvey and Palfrey (1995). We refer

readers to their paper for additional detail, including discussion of the relation of QRE to other

solution concepts. Consider a finite n-person normal form game Γ. The set of pure strategies

(actions) available to player i is denoted by Si = {si1, . . . , siJi}, with S = ×iSi. Let ∆i denote the

set of all probability measures on Si. Let ∆ ≡ ×i∆i denote the set of probability measures on S,

with elements p = (p1, . . . , pn). For simplicity, let pij represent pi (sij).

Payoffs of Γ are given by functions ui(si, s−i) : Si ×j 6=i Sj → R. In the usual way, these

payoff functions can be extended to the probability domain by letting ui(p) =
P

s∈S p(s) ui(s).

Hence, e.g., the argument sij of the payoff function ui(sij , s−i) is reinterpreted as shorthand for a

probability measure in ∆i placing all mass on strategy sij . Finally, for every p−i ∈ ×j 6=i∆j and

p = (pi, p−i), define ūij (p) = ui(sij , p−i) and ūi(p) = (ūi1(p), . . . , ūiJi(p)) .

The QRE notion is based on the introduction of payoff perturbations associated with each

action of each player. For player i let

ûij(p) = ūij(p) + ij

where the vector of perturbations i ≡ ( i1, . . . , iJi) is drawn from a joint density fi. For all i and

j, ij is assumed to have the same mean, which may be normalized to zero. Each player i is then
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assumed to use action sij if and only if4

ûij(p) ≥ ûik(p) ∀k = 1, . . . , Ji. (1)

Given a vector u0i =
¡
u0i1, . . . , u

0
iJi

¢
∈ RJi , let

Rij(u
0
i) =

©
i ∈ RJi : u0ij + ij ≥ u0ik + ik ∀k = 1, . . . , Ji

ª
. (2)

Conditional on the distribution p−i characterizing the behavior of i’s opponents, Rij (ūi (p)) is the

set of realizations of the vector i that would lead i to choose action j. Let

σij(u
0
i) =

Z
Rij(u0i)

fi( i) d i

denote the probability of realizing a vector of shocks in Rij(u
0
i) and let σi=(σi1, . . . , σiJi).

McKelvey and Palfrey (1995) call σi player i’s statistical best response function or quantal

response function. Given the baseline payoffs of the game Γ, a distribution of play by i’s opponents,

and a joint distribution of i’s payoff perturbations, σi describes the probabilities with which each of

i’s strategies will be chosen by i. A quantal response equilibrium is attained when the distribution

of behavior of all players is consistent with their statistical best response functions. More precisely,

letting σ = (σ1, . . . , σn) and ū = (ū1, . . . , ūn), a QRE is a fixed point of the composite function

σ ◦ ū : ∆→ ∆, which maps joint distributions over all players’ pure strategies into statistical best
responses for all players.

Definition 1 A quantal response equilibrium (QRE) is any π ∈ ∆ such that for all i ∈ 1, . . . , n
and all j ∈ 1, . . . , Ji, πij = σij (ūi (π)).

There are several possible interpretations of the QRE notion. One need not take the payoff

perturbations literally. The idea that players use strategies that are merely “usually close” to

optimal rather than “always fully” optimal has natural appeal, and the QRE offers a coherent

formalization of this idea–one that closes the model of error-prone decisions with the assumption of

rational expectations about opponents’ behavior. One may also view the perturbations as a device

for “smoothing out” best response functions in the hope of obtaining more robust and/or plausible

4This rule is consistent with rational choice by i given the payoff function ûij if the following assumptions are
added: (1) i and i0 are independent for i

0 6= i; (2) the “baseline” payoff functions ui (si, s−i) and densities fi are
common knowledge; and (3) for each player i the vector i is i’s private information. As McKelvey and Palfrey (1995)
show for a particular distribution of perturbations, under these assumptions a QRE is a Bayesian Nash equilibrium
of the resulting game of incomplete information. Note that in this case, given the correctly anticipated equilibrium
behavior of opponents, each player faces a standard polychotomous choice problem with additive random expected
utilities. This observation is useful in estimation, since the distribution of equilibrium play by opponents will typically
be directly observable to the researcher. It is also used in the proof of Theorem 1 below.
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predictions (cf. Rosenthal, 1989). However, as McKelvey and Palfrey (1995) suggest, the payoff

perturbations can have natural economic interpretations as well.5 Each ij could reflect the error

made by player i in calculating his expected utility from strategy j, due perhaps to unmodeled costs

of information processing. Alternatively, ij might reflect unmodeled determinants of i’s utility

from using strategy j. This interpretation is appealing in many applications since a fully specified

theoretical model can, of course, only approximate a real economic environment. Furthermore,

any true payoff function ũi(sij , p−i) can be represented as the sum of an arbitrary “baseline” payoff

ui(sij , p−i) and a correction ij(p−i) = ũi(sij , p−i)−ui(sij , p−i). If the game underlying the baseline
payoffs ui(sij , p−i) provides a good approximation to the truth, representing ij(p−i) by a random

variable that does not depend p−i (as in the QRE) might be useful for predicting behavior or as

an empirical model.6

2.2 Application and Evaluation

Following McKelvey and Palfrey (1995), application of the QRE to data from experiments has

typically proceeded by first specifying the joint densities fi (up to a finite-dimensional parameter)

for all players. In every application we are aware of, it has been assumed for simplicity that ij is

independently and identically distributed (i.i.d.) across all j. In most applications it is assumed

that every ij is an independent draw from an extreme value distribution, yielding the familiar

convenient logit choice probabilities

pij =
eλūij(p)PJi
k=1 e

λūik(p)
. (3)

With p observable, the unknown parameter λ is then easily estimated by maximum-likelihood.7

Typically the ability of the QRE to rationalize the data is then assessed based on the match

between the observed probabilities on each pure strategy and those predicted by the QRE at

the estimated parameter value(s).8 Although formal testing is uncommon, visual inspection often

suggests a very good fit. Since a QRE would simply be a Nash equilibrium if perturbations were

degenerate, the fit must improve when one adds the freedom to choose the best fitting member of
5See also Chen, Friedman and Thisse (1997). Interpretations mirror those for random utility models in the

discrete choice literature.
6Examples of empirical applications of QRE include Signorino (1999), Seim (2002), Goeree, Holt and Palfrey

(2002), Bajari and Hortaçsu (2003) Sweeting (2004), and Augereau et al. (forthcoming). See also Bajari (1998).
7 In the applications that have avoided the logit formulation, a power function specification has been used, but the

approach is the same. In the logit specification, 1/λ is proportional to the variance of the payoff perturbations, with
equilibrium behavior converging to a Nash equilibrium as λ→∞.

8See, e.g., Baye and Morgan (2004), Cason and Reynolds (2005), Goeree, Holt and Palfrey (2002), Guarnaschelli,
McKelvey and Palfrey (2000), McKelvey and Palfrey (1995, 1998), McKelvey, Palfrey and Weber (2000), Fey, McK-
elvey and Palfrey (1996).
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a parametric family. In fact, however, the fit is often greatly improved. The following excerpt

from Fey, McKelvey and Palfrey (1996, p. 286—287), which relies on this type of comparison in

centipede games, is typical of the conclusions drawn from this fit:

Among the models we evaluate, the Quantal Response Equilibrium model best explains

the data. It offers a better fit than the Learning model and, as it is an equilibrium

model, is internally consistent. It also accounts for the pattern of increasing take

probabilities within a match. These facts lend strong support to the Quantal Response

Equilibrium model.

3 How Informative is Fit?

One might expect the QRE notion to impose considerable structure on the types of behavior

consistent with equilibrium. As Goeree, Holt and Palfrey (2002) have suggested, the QRE requires

a “consistency condition that the probabilities which determine expected utility. . .match the choice

probabilities. . . that result from probabilistic choice.” Put differently, only probabilities that form

a fixed point of the composite mapping σ ◦ ū can form a QRE, and experience suggests that fixed

points are special.

However, the freedom to choose the joint densities fi to fit the data gives considerable flexibility

to QRE, particularly if one is unwilling to assume a priori that payoff perturbations are i.i.d.. To

see this, consider relaxing the assumption of i.i.d. perturbations across each player’s strategies in

one of two ways. Let

IJ = {joint pdfs for J independent, mean-zero random variables}

SJ = {joint pdfs for J mean-zero random variables with identical marginal distributions} .

Joint densities fi in the set IJ imply independence of ij across strategies j, without requiring that

they be identically distributed. Joint densities fi in SJ allow dependence of ij and ik, k 6= j, but

require ij to be identically distributed for all j.

The following result shows that even when payoff perturbations are restricted to come from

densities in one of these fairly restrictive classes, QRE imposes no restriction on behavior. For any

game and any distribution of observed behavior on the interior of the Ji-dimensional simplex for

each i, there exist densities from IJi ∀i, as well as densities from SJi ∀i, any of which will enable a
QRE to match the distribution of behavior of each player perfectly.9

9As the proof makes clear, the results apply to the “1-player” case of an additive random utility discrete choice
model. For that paradigm, Berry (1994) has shown that if utilities for each choice j are given by ūj + ij and an
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Theorem 1 Take any finite n-player normal form game Γ with j = 1, . . . , Ji pure strategies for

each player i. For any p on the interior of ∆,

(i) there exist joint probability density functions fi ∈ IJi ∀i such that p forms a QRE of Γ.
(ii) there exist joint probability density functions fi ∈ SJi ∀i such that p forms a QRE of Γ.
Proof. Given p−i, the probability that player i plays action j in a QRE is given by

σij (ūi (p)) = Pr { ij ≥ ik + ūik (p)− ūij (p) ∀k = 1, . . . , Ji} .

Noting that ūij (p) and ūik (p) depend only on p−i, let

Hjk
i (p−i) = ūik (p)− ūij (p) .

Part (i) [part (ii)] will then be proven if we can show that for each player i and any given

(pi1, . . . , piJi) ∈ (0, 1)Ji , a density fi ∈ IJi [fi ∈ SJi ] can be found that implies

Pr
n

ij ≥ ik +Hjk
i (p−i) ∀k = 1, . . . , Ji

o
= pij j = 1, . . . , Ji (4)

i.e., that the probabilities pij are in fact best responses given p−i.

For simplicity, for both part (i) and part (ii), we will consider here the case of a game in which

every player has two pure strategies. An Appendix shows how to generalize these results to the

case of an arbitrary number of strategies for each player.

(i) Take player 1 and let p1j be the (given) probability that player 1 chooses strategy s1j . Let

( 11, 12) be independent draws from two-point distributions such that

ε1j =

(
αj with prob. qj

− qj
1−qjαj with prob. 1− qj

for some αj > 0 and qj ∈ (0, 1) to be determined.10 By construction, each ε1j has mean zero.

Suppose H12
1 (p−1) > 0 (the complementary case is analogous). Figure 1 illustrates. Realizations

of ( 11, 12) in the shaded region lead to strategy s11 being chosen over s12. Set α1 > H12
1 (p−1)

and α2 = γ
£
α1 −H12

1 (p−1)
¤
for some γ ∈ [0, 1). Let q2 = 1/2. To match p11 exactly, set q1 = p11.

Repeating the argument for each player then proves the result.

aribitrary joint distribution of the perturbations { ij}Jj=1 is given, there exists a (unique) vector of mean utilities
(ū1, . . . , ūJ) that will rationalize arbitrary probabilities on choices {1, . . . , J}. This contrasts with our result where,
in the discrete choice case, arbitrary mean utilities are given and we choose a distribution of mean-zero disturbances
to match arbitrary data. Dagsvik (1994), McFadden and Train (2000), and Joe (2001) consider related problems of
choosing distributions from particular families to approximate choice probabilities (they also consider variation in
the set of choices and/or choice characteristics). See also McFadden (1978). As in Berry (1994), all of these allow
mean utilities to be chosen to fit the data. None of these results implies the others, although ours is more relevant to
experimental settings, where mean payoffs are given.
10The two-point support is used only to provide a simple construction. Our prior working paper, Haile et al (2003),

showed that the mixtures of univariate normal densities (replacing the mixtures of Dirac-delta functions here) can
be used to obtain the same result with continuously distributed perturbations.
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ε11

ε12

1
12

  1 1 − q

α1Η
−

α1q 1

α2

2α 

Figure 1: Illustration for part (i).

Part (ii). Suppose H12
i (p−i) > 0 (the case H12

i (p−i) ≤ 0 is analogous) and choose any δ1 >

ūi2 (p) − ūi1 (p). Let i2 = ξ be uniformly distributed on [−κ, κ] , where κ > δ1
2 will be chosen

below. Let

i1 =

(
ξ + δ1 ξ + δ1 ≤ κ

ξ + δ1 − 2κ ξ + δ1 > κ.

or, letting ⊕ represent addition on the circle [−κ, κ] (see Figure 2),

i1 = ξ ⊕ δ1.

The marginal distributions of i1 and i2 are then both uniform on [−κ, κ]. In Figure 2, the bold
arc of the circle shows the set of realizations of ξ that yield i2 > i1 (one such realization is

shown). The length of this arc (divided by 2κ) determines the probability of this event which,

since δ1 > ūi2 (p) − ūi1 (p), is also the probability that choice 1 is preferred to choice 2. Then

because i1 > i2 if and only if i2 ≤ κ− δ1, we have

pi1 = Pr ( i1 > ūi2 − ūi1 + i2)

= Pr ( i2 ≤ κ− δ1)

= 1− δ1
2κ

.

Because we are free to choose any κ > δ1
2 , any pi1 ∈ (0, 1) can be matched. Repeating the argument

for each player then proves the result. ¤
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= ξ ⊕ δ

κ−κ0

ε

ε = ξ

i1

i2

κ − δ 1

1

Figure 2: Illustration for part (ii).

4 Discussion

Theorem 1 shows that when the assumption of i.i.d. payoff perturbations is partially relaxed, any

distribution of behavior by each player is consistent with a QRE. Hence, any falsifiable implication

of QRE must be derived from additional maintained hypotheses on payoff perturbations. Even if

one views the perturbations only as a device for smoothing out best response functions, one must

be concerned about whether the way this is done is important. Theorem 1 shows that this choice

can completely determine equilibrium predictions. This raises at least three important questions.

One question is how relevant our result is, given the literature’s focus on i.i.d. perturbations from

particular parametric families (typically logit). Those assumptions do imply testable restrictions.

For example, McKelvey and Palfrey (1995, proof of Theorem 3) have shown that generally the set of

probabilities that can form a logit QRE is a one-dimensional manifold, i.e., a set of curves, each of

which implicitly defines all probabilities in terms of just one.11 This can be a very strong restriction,

although this is something worth checking in each application. For example, in a symmetric 2× 2
11For example, the behavior of a player with with 3 available actions is characterized by 2 probabilities. In a

logit QRE these probabilities must lie on a set of curves (often one curve) in [0, 1]2. If one requires a single logit
parameter to rationalize the behavior of both players (each with 3 pure strategies), equilibrium is characterized by a
set of curves in [0, 1]4.
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game it may have limited bite, at least under the usual assumptions of symmetric equilibrium

with identical distributions of perturbations for each player: in that case, the adding-up constraint

already forces the 2 choice probabilities to lie on a line. However, in games with more than 2

strategies per player, this can starkly limit the outcomes that a logit QRE can rationalize.12 With

only the i.i.d. assumption, the set of probabilities consistent with QRE can become considerably

larger, but still place useful limits on the behavior a QRE can explain.13

Because the strength of the i.i.d. (or i.i.d. logit) assumption varies with the game in question,

in practice it would be useful to simulate the range of QRE outcomes possible given the particular

game and distributional assumptions being considered. While informal, this could provide a sense

of how to interpret the success or failure of the particular specification to rationalize the data. As

an illustration, consider the following game studied by McKelvey and Palfrey (1995)

B1 B2 B3

A1 (15,−15) (0, 0) (−2, 2)
A2 (0, 0) (−15, 15) (−1, 1)
A3 (1,−1) (2,−2) (0, 0)

with unique Nash equilibrium at (A3, B3). A feature of this game is that action A2 becomes

unattractive for player 1 if there is a nontrivial chance that 2 plays B2. A symmetric argument

applies to 2’s action B1. When payoff perturbations are introduced to form a QRE, all actions are

played with positive probability. Except when the payoff perturbations swamp the mean payoffs

(so that a QRE puts nearly identical probabilities on all actions), this makes the actions A2 and

B1 undesirable. As computations by McKelvey and Palfrey (1995, Table III and Figure 3) show,

logit QRE probabilities for these actions are nearly zero for all values of the logit parameter above

a certain threshold (given the symmetry of the game, they assume the same logit parameter for

all players). Beyond this threshold, there is really only one probability to match in a symmetric

equilibrium (since the third probability must add to 1) with the choice of the one logit parameter.

Indeed, McKelvey and Palfrey show that there is a continuum of quantal response equilibria of the

following form (with symmetric properties for player 2): probability of nearly zero on A2 and essen-

tially any division of the remaining probability between A1 and A3 satisfying Pr (A3) ≥ Pr (A1)–a
condition implied by a much weaker assumption of exchangeable perturbations (discussed below).

12The same is true for asymmetric 2× 2 games if one requires the same logit parameter to rationalize the behavior
of each player. See, e.g., McKelvey, Palfrey and Weber (2000). They find that with this restriction the logit QRE
fails to fit the data and thus propose allowing different logit parameters for each player.
13For example, the Monotonicity property described the following section must hold. See also Goeree, Holt and

Palfrey (2003), who describe an additional restriction of the (implicit) assumption of i.i.d. perturbations in an
asymmetric matching pennies game. They reject the assumption of QRE with i.i.d. perturbations but are able to
fit the data by introducing a risk aversion parameter.
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Hence, if actual play puts probability close to zero on A2 and B1 (something we might expect in a

QRE or under other notions of how games are played), there is no significant restriction of the i.i.d.

logit assumption beyond what is implied by much weaker restrictions. This game is somewhat

special but, especially since it is a game that has been used to demonstrate the capabilities of

the logit QRE, it points to the importance of careful attention to what types of outcomes would

lead one to reject the QRE hypothesis given the game and maintained assumptions one wishes to

consider.

Of course, some restrictions implied by i.i.d (or i.i.d. logit) perturbations are undesirable. In

the discrete choice literature, concerns about these assumptions have long been voiced based on a

priori considerations and on their implications for comparative statics and counterfactuals. Both

the independence and identical distributions components of the i.i.d. assumption have been chal-

lenged. For example, one might expect larger payoffs to have perturbations with larger variances,

or strategies that are similar to have similar perturbations. As is well known, the independence

assumption has unnatural implications, including the IIA property of Luce (1958) in the case of

the logit (cf. Debreu, 1960). Considerable effort has been directed at developing tractable models

of random utility discrete choice that relax the i.i.d. assumption (e.g., Hausman and Wise, 1978;

McFadden, 1978; Berry, Levinsohn, and Pakes, 1995; McFadden and Train, 2000, Ackerberg and

Rysman, 2005). In the strategic context of QRE, motivations for relaxing the i.i.d. assumption are

the same: these distributions will often be too restrictive to fit a rich data set or to lead to reason-

able out-of-sample predictions. Testable restrictions that do not rely on these or other arbitrary

distributional assumptions may enable more meaningful evaluation of the QRE hypothesis itself.

A second question is the relationship of our result on the falsifiability of the QRE to identifiability

of empirical models based on the QRE. Falsifiability and identifiability are related but distinct.14

One implication of Theorem 1 is immediate, however. If knowing the payoffs of the underlying

game places no restriction on outcomes, observed outcomes cannot place any restriction on (much

less identify) payoffs when they are unknown. Hence, Theorem 1 implies that observing the

distribution of behavior in a single game could reveal nothing about latent expected payoffs, even

when the perturbations are restricted to be draws from distributions in the set IJi or SJi . This is

a more negative result than the failure of (point) identification: the data contain no information

whatsoever about underlying payoffs.15 However, this implication is of little relevance in the

14 In general neither identifiability nor falsifiability implies the other.
15This result, like Theorem 1, extends immediately to the “one player” discrete choice environment. It should

be pointed out, however, that the empirical literature on discrete choice has rarely considered estimation using data
only on the characteristics and choice probabilities for a single choice set. The econometrics and empirical literatures
on discrete choice generally rely on variation in covariates and/or the choice set itself, maintaining assumptions
about how the distribution of perturbations varies with these changes. We explore similar ideas to develop testable
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experimental literature on QRE, since expected payoffs are easily calculated from the payoffs in

the underlying game and the observed behavior of opponents.16

A third important question raised by Theorem 1 is whether there are other ways to evaluate the

QRE hypothesis.17 We devote the following section to discussion of a few promising approaches.

5 Testing the QRE Hypothesis

The most promising testing approaches, in our view, come from observation of behavior in different

games. This alone is not sufficient to deliver testable restrictions, since Theorem 1 implies that any

behavior can be matched by appropriately selecting distributions of perturbations separately for

each game. However, combining variation in the game with limits on how distribution functions

can vary can enable several testing approaches, some of which build on well-known results from the

discrete choice literature. The discussion here cannot be exhaustive; rather, our aim is to focus on

a few approaches that may be particularly promising in practice. Two definitions will be useful for

what follows:

Definition 2 (Exchangeability) The random variables ( i1, . . . , iJi) are exchangeable if

fi ( i1, . . . , iJi) = fi
¡

iρ(1), . . . , iρ(Ji)

¢
for every permutation operator ρ on the set {1, . . . , Ji} .

Definition 3 (Invariance) The joint distribution of ( i1, . . . , iJi) is invariant if

Fi ( i1, . . . , iJi |ui (·)) = Fi ( i1, . . . , iJi) for all ( i1, . . . , iJi) and all payoff functions ui (·).

Exchangeability (a.k.a. “interchangeability”) is a strong form of symmetry, requiring not only

identical marginal distributions for each ij , but also identical covariances, conditional moments,

etc. In the more familiar and closely related discrete choice literature, exchangeability holds

for the conditional logit model and also for the multinomial probit model under the restrictions

E
h
2
ij

i
= σ2 ∀i, j and E

£
ij ij0

¤
= ρ ∀j, j0 6= j. Nested logit and mixed logit (or probit) models, on

the other hand, violate exchangeability by design.18 Invariance is a property requiring a similar

restrictions of QRE below.
16An open question is whether there are useful conditions under which each fi could be identified using data from

experiments. In principle, ideas from the discrete choice literature (e.g., Manski, 1988; Matzkin, 1992) might be
extended. However, see the discussion in footnote 19 below. Interest in identification of fi may be more limited
in experimental settings than in applications to field data. However, if fi were known and believed to be invariant
across a set of related games, this would provide a means of making point predictions that could be tested. We
discuss tests based on this “invariance” assumption below without requiring identification of fi.
17 If one takes the incomplete information interpretation of QRE, which requires an assumption of independence of

payoff perturbations across players (see footnote 4), this additional assumption could be tested by testing indepen-
dence of players’ actions. This requires looking at players separately, contrary to the frequent practice of examining
symmetric games and pooling observations over players to maximize the number of observations.
18 It is also easy to see that the Monotonicity axiom, defined below, does not hold in general for these models.
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lack of sensitivity to variations in payoffs, but allows the possibility of asymmetry–for example,

the possibility that perturbations are larger for some actions than others. While strong, this

assumption has often been used in the econometrics literature on discrete choice models. Invariance

is typically maintained in applications of the conditional logit, nested logit, and multinomial probit,

for example, but partially relaxed in mixed logit/probit (random coefficients) models.

5.1 Approach 1: “Regular” QRE

Responding to an earlier draft of this paper, Goeree, Holt and Palfrey (2005) have proposed a

refinement of QRE, “regular” QRE. Rather than proposing assumptions on the underlying model,

however, they define the refinement with axioms on behavior. Suppose p ∈ ∆ characterizes behavior
in a QRE. As before, let σij (ūi(p)) represent the element of p corresponding to Pr (i plays j).

Consider the following axioms:

1. Interiority. σij (ūi(p)) > 0 for all i, j = 1, ..., Ji

2. Continuity: σij(ūi (p)) is a continuous and differentiable function of ūi (p) for all ūi (p) ∈ RJi

3. Responsiveness: ∂σij(ūi(p))
∂ūij(p)

> 0 for all j = 1, ..., Ji

4. Monotonicity: ūij(p) > ūij(p)⇒ σij(ūi(p)) > σik(ūi(p)) for all j = 1, ..., Ji

Goeree et al. argue that these axioms are economically and intuitively compelling. Interiority

and Continuity are natural technical properties. Responsiveness and Monotonicity are stronger

properties with significant economic content. Responsiveness restricts the ways that a player’s

behavior can change in response to a ceteris paribus change in the expected payoff from one action.

Monotonicity restricts probabilistic behavior within a game, requiring that actions with higher

expected payoffs to be played more often.

Clearly these axioms imply testable restrictions. Monotonicity can be checked directly in any

game. Responsiveness concerns changes in behavior across games and is more subtle. Raising i’s

payoffs ui(sij , s−i) from action j in the baseline game will make j more attractive, ceteris paribus,

but may ultimately lead to a change in the play of i’s opponents. This will typically change ūik(p)

for each k, and could even cause ūij (p) to be lower than in the original equilibrium.19 However,

19This feature of quantal choice in a strategic setting also suggests challenges for obtaining identification results
that build on those for additive random utility models of discrete choice (e.g., Manski (1988), Matzkin (1992)) since
these rely the ability to “trace out” the distribution of perturbations through sufficient variation in mean payoffs
(utilities) while the distribution of perturbations is held fixed. In some games it may be difficult to generate sufficient
variation in expected payoffs through manipulation of the payoffs of the underlying normal form game. Hence, even
in an experimental setting, where expected payoffs can be treated as known, identification of fi may be a challenge.
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Proposition 4 of Goeree et al. demonstrates that Responsiveness is nonetheless sufficient in some

games to obtain testable restrictions based on changes in the payoffs ui(si, s−i) of the baseline

game. Although they discuss only one example, testable comparative statics predictions can be

derived in other environments in which a change in payoffs that, ceteris paribus, makes action j

more attractive to player i induces play by i’s opponents that also make action j (weakly) more

attractive. We discuss classes of such games below.

A natural question is what assumptions on the underlying model imply the axioms, in particular

the substantive Monotonicity and Responsiveness conditions. Goeree et al. show that a sufficient

condition for Monotonicity is Exchangeability. They point out that Exchangeability and the implied

Monotonicity restriction fail under several additive error structures that seem reasonable a priori.

They suggest that in practice, however, violations of Monotonicity are rarely observed. A sufficient

condition for Responsiveness is Invariance.20

Of course, an attractive feature of the “reduced form” approach used to characterize the regular

QRE is precisely the possibility of imposing restrictions on behavior without translating them into

equivalent assumptions on the underlying structure.21 For example, it is clear that Invariance and

Exchangeability are not necessary conditions for, respectively, Responsiveness and Monotonicity,

and it is not obvious what weaker assumptions on perturbations would generate these restrictions.

5.2 Approach 2: Rank-Cumulative Probabilities

Start with any game Γ with payoffs given by the functions ui ∀i. Now modify the game by changing
the payoffs, leaving the strategy space for each player fixed. For each player i let u0i : ∆→ R give
the new payoffs. We will say that these are two games that differ only in payoffs. Having observed

repeated play of these two games, let p and p0 characterize the observed behavior in each. Define

the mean expected payoffs µi =
1
Ji

PJi
j=1 ui (sij , p−i) and µ0i =

1
Ji

PJi
j=1 u

0
i

¡
sij , p

0
−i
¢
. Then for all

i and j let ũij = ui (sij , p−i) − µi and ũ0ij = u0i
¡
sij , p

0
−i
¢
− µ0i, normalizing each player’s expected

20We show this below. Goeree, Holt and Palfrey (2005, Propositions 5) argue that, under the usual “admissability”
conditions for the QRE, Exchangeability is sufficient for all their axioms. Their analysis maintains an implicit
assumption of Invariance, and their claim is correct under this assumption.
21 It is worth clarifying that the terms “structural” and “reduced form” here, as in Goeree et al (2005), refer to the

way equilibrium is defined or restricted (not to an econometric approach), with the reduced form approach starting
directly from statistical best response functions rather than generating these from payoff perturbations. Goeree et
al. (2005) suggest that the structural QRE implies restrictions on behavior across games (Proposition 2), and that
there are outcomes consistent with the (reduced form) regular QRE that cannot be rationalized by a structural QRE
(Proposition 6). However, an assumption of Invariance is implicit in their analysis of the structural QRE, while
not imposed on the regular QRE. It is immediate from Theorem 1 that without some restriction on how the joint
densities fi change when a game changes, none of the restrictions described in their Proposition 2 hold, negating the
conclusion of their Proposition 6 as well.
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payoff from each action by his mean. Let

u̇ij = ũ0ij − ũij

di(jk) = ũij − ũik

d0i(jk) = ũ0ij − ũ0ik.

Without loss of generality, re-index i’s actions so that u̇i1 ≥ u̇i2 ≥ u̇i3 ≥ . . . , where some inequality

must be strict except in the trivial case with u̇ij = 0 ∀j, i.e., when the games do differ, except
possibly in the scaling of all payoffs. By our choice of indexing, d0i(jk) ≥ di(jk) ∀j,k > j, with

at least one inequality strict except in the trivial case. Define the rank-cumulative probabilities,

ρik =
Pk

l=1 pil and ρ0ik =
Pk

l=1 p
0
il. For example, in the original game, ρik gives the probability

that i uses a strategy in the set {si1, . . . , sik} (under the indexing defined above).

Theorem 2 Consider two games that differ only in payoffs. Under the Invariance assumption,

behavior consistent with QRE must produce increasing rank-cumulative probabilities, i.e., ρ0ik ≥ ρik

∀k = 1, . . . , J − 1.

Proof. Under the Invariance assumption, one may treat the normalized expected payoffs ũij and

ũ0ij as the true expected payoffs without loss of generality. Further, we can write probabilities over

realizations of i without conditioning on which game is being played. We then have

ρik = Pr

µ
max

l∈{1,...,k}
{ũil + il} ≥ ũij + ij ∀j > k

¶
= Pr

µ
max

l∈{1,...,k}

©
di(lj) + il

ª
≥ ij ∀j > k

¶
.

Similarly,

ρ0ik = Pr

µ
max

l∈{1,...,k}

n
d0i(lj) + il

o
≥ ij ∀j > k

¶
.

Since d0i(lj) ≥ di(lj) for all j > l, the result follows. ¤

A special case of increasing rank-cumulative probabilities arises when u0i
¡
sij , p

0
−i
¢
> ui (sij , p−i)

for exactly one j ∈ Ji, with u0i
¡
sik, p

0
−i
¢
= ui (sik, p−i) for all k 6= j. Theorem 2 then requires the

probability of play of this action to increase, giving Goeree, Holt and Palfrey’s (2005) Responsive-

ness property. While Invariance is sufficient for Responsiveness, Theorem 2 shows that Invariance

also implies a richer set of testable restrictions. These restrictions may also be more useful in

practice, since they are not limited to cases in which only one of player 1’s actions experiences a

change in expected payoff.

The Invariance assumption may be strong, especially if one believes that the significance (e.g.,

variance) of the disturbance term is dependent on the “stakes” faced by the agent. It is not obvious
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whether this should be the case, and indeed one interpretation of the QRE is that it provides a way

for “mistakes” to be made more often when they are not very costly (when mean payoff differences

are small)–a property that could be undone with perturbations scaled by the associated payoff

differences. Here one can obtain a testable restriction with the somewhat weaker assumption that

each fi is invariant to variations in the baseline payoffs u−i of other players. For example, consider

a two-player game, where one examines behavior under variations in player 2’s payoff matrix under

the assumption that f1 does not change in response. After recalculating ū1 based on player 2’s

new behavior, it is immediate that p1j must be monotonic in (ū1j − ū11) across j.

5.3 Approach 3: Block-Marschak Polynomials

The final approach we discuss is based on an extension of results obtained by Block and Marschak

(1960) and Falmagne (1978) for random utility models of discrete choice.22 We first review this

result and then describe an extension to strategic contexts.

Begin with a decision problem in which a utility-maximizing agent must choose one alternative

from a finite choice set A. The utility from alternative j ∈ A is given by the sum of a mean utility

uj and a zero-mean random component εj . The mean utilities may or may not be known to the

researcher, and no restriction is made on the joint distribution of the perturbations j , j ∈ A. Let

p (A) =
©
p1 (A) , . . . , p|A| (A)

ª
denote the resulting choice probabilities. Now consider a series of

related choice experiments in which the agent chooses from restricted choice sets B ⊂ A. In these

experiments, the mean utilities ūj , j ∈ B, are identical to those in the original choice problem. We

refer to this as a sequence of choice experiments based on a master choice set A. For each choice

set B, the joint distribution of the latent utility perturbations (i.e., j , j ∈ B) is also assumed

to be identical to the marginal (with respect to the relevant set of choices) distribution of these

perturbations in the original problem. We will refer to this as an assumption of a fixed stochastic

structure. Under this assumption, the underlying random utility structure is held fixed across the

sequence of experiments, but the choice sets are restricted to subsets of the master set A.

Let p(B) =
©
p1 (B) , . . . , p|A| (B)

ª
denote the corresponding choice probabilities for each choice

set B, where of course pj (B) = 0 whenever j /∈ B. Let z(B,m) denote the set of all subsets of B
containing exactly m elements. Then for all B ⊂ A with B 6= A and any j ∈ A− B,23 define the

Block-Marschak polynomial

Kj,B =

|B|X
k=0

(−1)k
X

C∈z(B,|B|−k)
pj(A− C).

22See also Barbera and Pattanaik (1986) and McFadden (2005). We thank a referee for making us aware of
Falmagne (1978).
23The notation A−B denotes the difference between sets A and B.
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Figure 3: Each set EB represents the region of realizations of perturbations making
alternative j the utility-maximizing choice when B is the choice set, so that pj (B) =
Pr (EB). Note that both EA−{k} ⊂ EA−{k, } and EA−{ } ⊂ EA−{k, } must hold.
Kj,{k, } gives the probability of the unshaded area.

Lemma 1 (Falmagne (1978)) Consider a sequence of choice experiments based on a master

choice set A. Under the assumption of a fixed stochastic structure, choice probabilities p(B),

B ⊂ A, are consistent with utility maximization in a random utility model if and only if all Block-

Marschak polynomials are nonnegative.

While the compact notation for the Block-Marschak polynomials is opaque, the underlying idea

is simple: the probability of choosing a given alternative j is higher when the set of other available

choices is smaller. For B = ∅, Kj,B = pj (A), which obviously cannot be negative. If |B| = 1,

Kj,B = pj (A−B)− pj (A)

and the requirement is that dropping B from the choice set weakly raises the choice probability on

each remaining alternative. When B contains 2 elements, k and ,

Kj,B = pj (A− {k, })− [pj (A− {k}) + pj (A− { })] + pj (A)

which again must be positive (see Figure 3). For larger |B|, the polynomials have a higher order
but a similar interpretation: the probability of a given choice goes up whenever other alternatives

are removed from the choice set.
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To extend Falmagne’s result to strategic settings, we will consider variation in the set of pure

strategies available to a player in a game that is otherwise held fixed. This extension would be

immediate were it not for the fact that changing player i’s strategy space may lead to changes

in other players’ equilibrium behavior. Since ūij (p) depends on p−i, this will typically lead to a

violation of the condition that the expected payoff from each given action (i.e., that prior to the

realization of i) be the same across all games in which that action is available.

This can be overcome in some types of games, and the laboratory provides an ideal environment

for considering them. A trivial approach is to examine the behavior of a player whose payoffs from

each action are independent of the actions of his opponents. In a QRE, such a player acts as if he

faces a random utility discrete choice problem, and the extension of Lemma 1 is immediate. This

is not very satisfying as a test of QRE, since the essence of QRE is strategic behavior. However,

games of this sort can provide more meaningful restrictions if we consider an opponent of players

who face non-strategic decisions.

For example, consider a game Γ0 that is non-strategic for player 1, i.e., letting Si0 denote i’s

strategy space

u1(s1j , s−i) = u1(s1j) for all s1j ∈ S10, s−i ∈ S−i0.

Suppose for simplicity that Γ0 is a 2-player game. We focus on player 2, whose payoffs do depend

on the actions of player 1. Consider a sequence of games Γ1, . . . ,ΓG which differ from Γ0 only in that

player 2’s strategy spaces S21, ..., S2G are subsets of the original S20. For each player i, the payoff

function ui (si, s−i) is the same in each game.24 No restriction is placed on the joint distribution

of perturbations in the master game. However, analogous to the discrete choice case, we assume

a fixed stochastic structure, i.e., in each game Γg the payoff perturbations ij , j ∈ Sig have joint

distribution equal to the marginal distribution of these same perturbations in Γ0. Because all of

these games remain nonstrategic for player 1, player 1’s QRE behavior is the same in every game.

Thus, player 2’s mean payoff ū2j from any available pure strategy j is the same in each game.

In a QRE player 2 anticipates the equilibrium distribution of behavior by his opponent, and his

behavior is then as if he were maximizing his utility in a sequence of choice experiments based on a

fixed stochastic structure, with the expected payoffs ū2j (p) replacing the mean utilities ūj . Lemma

1 then can be applied, giving the following result.

Theorem 3 Consider a game Γ0 that is nonstrategic for all players except i and sequence of games

Γ1, . . . ,ΓG that differ from Γ0 only in that player i’s strategy spaces Si1, ..., SiG are subsets of the

original Si0. Let pij(Sig) denote the probability that i plays pure strategy j in game g. Under the

24The domain of u2 does change across games, but its value at any given profile of feasible actions does not.
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assumption of a fixed stochastic structure, behavior is consistent with QRE if and only if, for all

B ⊂ Si0 with B 6= Si0 and all j ∈ Si0 −B, Kj,B =
P|B|

k=0(−1)k
P

C∈z(B,|B|−k) pij(Si0 −C) ≥ 0.

As an example, consider an n-player game Γ0 that is nonstrategic for all players except player 1,

who has pure strategies S10 = {1, 2, 3}. Suppose we observe probabilities {p11(Γ0), p12(Γ0), p13(Γ0)}
in the game Γ0, and {p11(Γ1), p12(Γ1)} in game Γ1 where player 1’s strategy set is reduced to
S11 = {2, 3}. Then Theorem 3 gives the testable restrictions

p1j(Γ1)− p1j(Γ0) ≥ 0 j ∈ {2, 3} (5)

i.e., player 1 must be more likely to choose a given action when the set of alternative strategies

available is smaller. Suppose that, in addition, we observe play probabilities {p11(Γ2), p13(Γ2)} from
Γ2, where player 2’s strategy set is reduced to {1, 3}. Along with the two inequalities analogous to
(5), this gives us the additional testable restriction

1 + p13(Γ0) ≥ p13(Γ1) + p13(Γ2)

Note that observing player 1’s behavior in three games gives 5 testable restrictions. Observing

behavior in the game Γ3 with S13 = {1, 2}} would give 4 more

p1j(Γ3)− p1j(Γ0) ≥ 0 j ∈ {1, 2}

1 + p11(Γ0) ≥ p11(Γ2) + p11(Γ3)

1 + p12(Γ0) ≥ p12(Γ1) + p12(Γ3)

yielding 9 restrictions from 4 treatments. Considering games with larger numbers of strategies,

and running experiments with larger numbers of subsets of the original strategy set allow us to use

higher-order Block-Marschak polynomials, leading to a large number of testable restrictions.

The limitation to games that are strategic for only one player can be overcome if one considers

some simple sequential games.25 For example, consider the class of finite “Stackelberg games,” i.e.,

2-period 2-player sequential move games. Let Γ0,Γ1, . . . be a sequence of Stackelberg games with

the first mover labeled player 1. Let the strategy space for player 2 be identical in all games, while

the strategy space for player 1 in each game is a subset of that in the master game Γ0. Let the

payoff functions ui(si, s−i) be the same across all games. As above, we refer to this as a sequence of

25McKelvey and Palfrey (1998) discuss the extension of QRE to general extensive form games, using the agent-
normal form representation of the game. For the Stackelberg games we consider here, the distinction between the
agent-normal form and standard normal form specification is not important, since each player “moves” only once.
Hence for these games the agent-QRE notion developed by McKelvey and Palfrey is an obvious extension of the QRE
for normal form games discussed above.
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Stackelberg games based on a master game Γ0. Under the assumption of a fixed stochastic structure,

in each game Γg the payoff perturbations ij , j ∈ Sig have joint distribution equal to the marginal

distribution of these same perturbations in the original game Γ0.

It is easy to see that the sequential nature of these games leaves the play of the Stackelberg

follower constant across all of these games conditional on the action taken by player 1. This implies

that player 1’s expected payoff from taking an action sij is the same in any game g for which the

action sij is available. Lemma 1 is then again immediately applicable, giving the following result.

Theorem 4 Consider a sequence of Stackelberg games based on a master game Γ0. Let S10 denote

player 1’s strategy space in the original game Γ0 and let p1j(S1g) denote the probability that 1 plays

pure strategy j in the game Γg in which S1g ⊂ S10 is his strategy space. Under the assumption of

a fixed stochastic structure, behavior is consistent with QRE if and only if, for all B ⊂ S10 with

B 6= S10 and all j ∈ S10 −B, Kj,B =
P|B|

k=0(−1)k
P

C∈z(B,|B|−k) p1j(S10 − C) ≥ 0.

The maintained hypothesis for these results (the “fixed stochastic structure” assumption) is that

the joint distribution of perturbations { ij , j ∈ B} is the same in any game in which i’s strategy

space includes B. This assumption is implied by Invariance, but is clearly weaker. Indeed, it places

no restriction on perturbations across a pair of games with different payoffs from the same profile

of actions. Neither Responsiveness nor the “scale invariance” property discussed by Goeree et al.

(2005) is implied by the fixed stochastic structure assumption. Further, in moving from one game

to another with an enlarged set of pure strategies, the perturbations associated with the smaller

set of strategies can have unrestricted covariance with those for the added strategies.26 Because

the Block-Marschak polynomials provide a rich set of restrictions with quite weak maintained

hypotheses, we view this as a particularly promising approach for testing.27

6 Conclusion

The QRE provides an appealing equilibrium notion with several compelling interpretations. While

much attention has been given to the ability of the QRE to rationalize behavior observed in ex-

periments, we have pointed out that such evidence is uninformative without significant a priori

restrictions on the distributions of payoff perturbations. This should not be mistaken for a cri-

tique of the QRE notion itself.28 Rather, our aim has been to clarify the limitations of data from

26Thus, for example, the (Luce, 1959) IIA property need not hold.
27For the discrete choice setting, Joe (2000) has described additional intuitive implications that can be tested if

one assumes that perturbations are mutually independent.
28See Ledyard (1986) for discussion in a similar spirit of the empirical restrictions imposed by Bayesian Nash

equilibrium.
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single games and move forward to develop approaches for more informative evaluation of QRE. In

general this will require maintaining assumptions beyond those in the definition of a QRE itself,

and the most appropriate set of maintained hypotheses may depend on the application. We have

pointed readers to an axiomatic approach proposed recently by Goeree, Holt and Palfrey (2005)

and suggested two new approaches. Each approach examines comparative statics predictions,

relying explicitly or implicitly on maintained assumptions about how the distributions of payoff

perturbations are related across different games. Each approach can produce a large number of

testable restrictions from a relatively small number of different experimental treatments.29 Cur-

rently, evidence regarding such comparative statics predictions of QRE is limited,30 and we hope

that attention to this topic here and in Goeree, Holt and Palfrey (2005) leads researchers to explore

richer sets of testable restrictions in order to better understand the applicability of the QRE notion.

29We have focused on the theoretical question of falsifiability, leaving open interesting questions of formal testing
procedures. Obviously the multinomial inequality form of the implied hypotheses will make some naiive tests
inappropriate.
30Although many papers have examined the fit of QRE in different treatments (e.g., varying payoffs), a new value

of the distributional parameter(s) is usually estimated freely for each treatment. Capra, Goeree, Gomez and Holt
(1999) demonstrate the ability of QRE with a single distribution of perturbations to rationalize observed comparative
statics in the “traveller’s dilemma” game. Goeree, Holt and Palfrey (2002) formally test the assumption of a fixed
distribution and reject. Camerer, Ho and Chong (2004) report that a fixed distribution does poorly in predicting
outcomes across the different games they analyze. Like Cason and Reynolds (2005), they suggest that the distribution
of perturbations required to rationalize the data varies with the scale of the payoffs. Other studies that re-estimate
the distribution for each treatment (e.g., McKelvey and Palfrey (1995), Fey, McKelvey and Palfrey (1996)) report
that the distribution that best explains behavior varies as players gain experience.
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Appendix

Proof of Theorem 1 with Ji > 2 pure strategies:

(Part i) Suppose again that all ij are independent draws from two-point distributions such that

εij =

(
αj withprob. qj

− qj
1−qjαj withprob. 1− qj

for some αj > 0 and qj ∈ (0, 1) to be determined below. By construction, each ij has expectation

zero. Let Ajk = Pr
n

ij ≥ ik +Hjk
i (p−i)

o
. Now begin by fixing αJi > 0 and qJi ∈ (0, 1) at

arbitrary values. Then for any qJi−1 ∈ (0, 1) and all sufficiently large αJi−1

A(Ji−1)Ji = qJi−1qJi + qJi−1(1− qJi) = qJi−1.

Given qJi−1, fix αJi−1 at one such value, α
∗
Ji−1. We then also have AJi(Ji−1) = 1 − qJi−1. Now

consider selection of αJi−2. As before, for any qJi−2 ∈ (0, 1), there exists sufficiently large αJi−2
such that

A(Ji−2)(Ji−1) = qJi−2

A(Ji−2)Ji = qJi−2

AJi(Ji−2) = 1− qJi−2

A(Ji−1)(Ji−2) = 1− qJi−2.

Proceeding in this fashion, given any qj ∀j, we can choose each αj so that

Ajk =

(
qj if j < k

1− qk if j > k.
(6)

This construction introduces a particular second-order stochastic dominance ordering of the random

variables εij . With this ordering, the eventn
ij ≥ ik +Hjk

i (p−i) ∀k = 1, . . . , Ji
o

is equivalent to the event {εij > 0, εik < 0 ∀k < j} when j < Ji, and to the event {εik < 0 ∀k < j}
when j = Ji (realizations of ik for k > j do not matter). Because all ij are independent, these

events have probability qj
Q

k<j(1− qk) for j < Ji and probability
Q

k<Ji
(1− qk) for j = Ji. So to

satisfy (4), for each j < Ji we set

qj =
pij

1−
P

k<j pik

(recall that the values of each qj above were arbitrary). Note that qj ∈ (0, 1) ∀j because pij ∈ (0, 1)
∀j and

PJi
j=1 pij = 1. Repeating this argument for each player i then shows that we can construct
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distributions for each ij that yield any desired probabilities as a QRE if we ignore the fact that

the definition of a QRE assumed continuously distributed perturbations.31 However, the mixtures

of Dirac-delta functions used as densities here can be replaced with mixtures of univariate normal

densities (with small variances) to obtain the same result. We show this in Appendix B.32

(Part ii) Let ξ be uniformly distributed on [−κ, κ], for some κ > 0, to be chosen below. For

j = 1, . . . , Ji define

ij =

(
ξ + δj ξ + δj < κ

ξ + δj − 2κ ξ + δj > κ
(7)

where each δj will be a distinct value in the interval [0, 2κ] to be determined below. Each ij

is then uniformly distributed on [−κ, κ]. Fix δJi at zero and, without loss of generality, impose

δ1 > δ2 > ... > δJi . Suppose for the moment that H
jk
i = 0 for all j and k. One can then confirm

that for each j

Pr{ ij > ik, k = 1, ..., Ji} =
δj−1 − δj
2κ

where we define δ0 = 2κ. Setting these probabilities equal to the given values pi1, . . . , piJi , we

obtain the solution

δj =

Ã
1−

jX
=1

pi

!
2κ j = 1, . . . , Ji − 1. (8)

We now drop the assumption that each Hjk
i = 0. We do this by ensuring the equivalence

{ ij > ik +Hjk
i } ⇐⇒ { ij > ik} (9)

which holds if ij and ik are always sufficiently different when j 6= k. When (8) holds we know

| ij − ik| ≥ 2κ (minj=1,...,Ji pij) for all j 6= k.33 So for any κ >
maxk,j H

jk
i

2minj=1,...,Ji pij
,(9) holds and we have

Pr{ ij > ik +Hjk
i : k = 1, ..., J} = pij ∀j 6= k.

Repeating this construction for every player completes the proof. ¤

31There are infinitely many other constructions since there are infinitely many ways to choose the parameters αj
(e.g., varying the starting value αJi in the proof, selecting different values of each α

∗
j , or introducing the second-order

stochastic dominance for any other ordering of the pure strategies).
32 It is intuitive that mixtures of normals could approximate the two-point distributions above arbitrarily well.

Appendix B shows, however, that we can match the probabilities pij exactly.
33When ξ + δj and ξ + δk both exceed κ or are both smaller than κ, this is immediate from (8). When ξ + δj

> κ > ξ + δk, | j − k| = |δk − δj + 2κ|, and the claim then follows from (8).
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