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Abstract

The local Whittle (or Gaussian semiparametric) estimator of long range depen-
dence, proposed by Kiinsch (1987) and analyzed by Robinson (1995a), has a relatively
slow rate of convergence and a finite sample bias that can be large. In this paper,
we generalize the local Whittle estimator to circumvent these problems. Instead of
approximating the short-run component of the spectrum, ¢(X), by a constant in a
shrinking neighborhood of frequency zero, we approximate its logarithm by a poly-
nomial. This leads to a “local polynomial Whittle” (LPW) estimator.

Following the work of Robinson (1995a), we establish the asymptotic bias, vari-
ance, mean-squared error (MSE), and normality of the LPW estimator. We determine
the asymptotically MSE-optimal bandwidth, and specify a plug-in selection method
for its practical implementation. When ¢(\) is smooth enough near the origin, we
find that the bias of the LPW estimator goes to zero at a faster rate than that of the
local Whittle estimator, and its variance is only inflated by a multiplicative constant.
In consequence, the rate of convergence of the LPW estimator is faster than that of
the local Whittle estimator, given an appropriate choice of the bandwidth m.

We show that the LPW estimator attains the optimal rate of convergence for
a class of spectra containing those for which ¢(\) is smooth of order s > 1 near
zero. When ¢()\) is infinitely smooth near zero, the rate of convergence of the LPW
estimator based on a polynomial of high degree is arbitrarily close to n—1/2.

Keywords: Asymptotic bias, asymptotic normality, bias reduction, long memory,
minimax rate, optimal bandwidth, Whittle likelihood.
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1 Introduction

We consider a stationary long memory process {x:} with spectral density f(\)
satisfying:

Assumption 1. f()\) = |\|72%p()\), where () is continuous at 0, 0 < ¢(0) < oo,
and dy € (d1,d2) with —1/2 < dy < dy < 1/2.

The parameter dy determines the long-memory properties of {z;} and (X)) deter-
mines its short-run dynamics.

Our objective is to estimate the long memory parameter dp. In order to maintain
generality of the short-run dynamics of {x;}, we do not impose a specific functional
form on ¢(A). Instead, we allow ¢(\) to belong to a family that is characterized
by regularity conditions near frequency zero. This is a narrow-band approach to
estimating the long memory parameter.

Examples in the literature of the narrow-band approach include the widely used
GPH estimator introduced by Geweke and Port-Hudak (1983) and the local Whit-
tle estimator (also known as the Gaussian semiparametric estimator) suggested by
Kiinsch (1987) and analyzed by Robinson (1995a). These methods approximate the
logarithm of ¢(A) by a constant in a shrinking neighborhood of the origin. In con-
sequence, the typical rate of convergence is just n~ 2/, no matter how regular ¢(\)
is. In addition, these estimators can be quite biased due to contamination from high
frequencies (e.g., see Agiakloglou, Newbold, and Wohar (1993)).

To alleviate these problems, we approximate the logarithm of ¢(\) near zero
by a constant plus an even polynomial of degree 2r, viz., logG — > ;_; 01 \*F. The
choice of an even polynomial reflects the symmetry of the spectrum about zero.
This approximation is used to specify a local polynomial Whittle (LPW) likelihood
function. We consider estimators of dy that are determined by the LPW likelihood.

Let (d*(r),G*(r),0%(r)) denote an estimator that minimizes the (negative) LPW
likelihood with respect to (d, G, ) over the parameter space [dy,ds] X R X ©, where
0 = (601, ...,0,) and O is a compact and convex subset of R". We show that an LPW-
MIN estimator, d*(r), is consistent for dy by extending the argument of Robinson
(1995a). To establish asymptotic normality of d*(r), a typical argument would first
establish consistency of (G*(r),8*(r)). But, showing that (G*(r),0*(r)) is consistent
is problematic, because the LPW likelihood becomes flat as a function of 8 as n — oo
and the rate at which it flattens differs for each element of 6.

To circumvent this problem, we analyze an LPW estimator that is defined to be a
solution to the first-order conditions (FOCs) rather than to the minimization problem.
In particular, we consider the FOCs for the concentrated LPW likelihood in which
the scalar G has been concentrated out. The FOC approach is effective because one
can use different normalizations of the FOCs for the different parameters d, 61, ..., 0,..
By doing so, one can ensure that the FOCs for all parameters and the corresponding
Hessian matrix are asymptotically non-degenerate. L

The LPW-FOC estimator (d(r),0(r)) of (d,0) is defined as follows. (d(r),0(r))
is a solution in [d1, d2] x © to the FOCs of the concentrated LPW likelihood. If there



are multiple solutions, (cf(r),g(r)) is the solution for which c?(r) is closest to some
LPW-MIN estimator d*(r). If there is no solution, (d(r),8(r)) is (d*(r),0%(r)).

We establish consistency and asymptotic normality of the LPW-FOC estimator
simultaneously using the following steps. First, we show: (i) there exists a solu-
tion (d(r),6(r)) to the FOCs with probability that goes to one as n — oo and this
solution is consistent and asymptotically normal with the estimator of dy equaling
dy +Op(m*1/ %), where m is the number of frequencies near zero that are employed in
the LPW likelihood. This implies that (cf(r),g(r)) satisfies the FOCs with probability
that goes to one as n — oo. But, it does not imply that all solutions to the FOCs
are consistent and asymptotically normal.

We show next: (ii) all solutions (d(r),8(r)) to the FOCs for which d(r) is log® m—
consistent for dy (meaning d(r) = dy+0,(log™® m)) are consistent and asymptotically
normal with the same asymptotic distribution. This is an unusual result in that it
does not assume that 6(r) is close to 6. The result holds because the (normalized)
Hessian matrix of the LPW likelihood does not depend on @, at least up to a term
that is op(1) uniformly over 6 € ©.

We then show: (iii) d*(r) is log® m—consistent for dy. This result, combined with
the proof of the existence of a solution that is log® m—consistent in (), implies that
d( ) is log® m-—consistent for dy. In consequence, result (i) implies that (d( ),9(7‘))
is consistent and asymptotically normal. These results hold when ¢()) is smooth of
order s at zero (defined precisely below), where s > 2r and s > 1.

For example, suppose m is chosen to diverge to infinity at what is found to be
the asymptotically MSE-optimal rate, viz., lim,_,., m?*%/2/n? = A € (0, 00), where
¢ = min{s,2 + 2r}. Also, suppose that s > 2 + 2r. Then, the asymptotic normal
result is N

m'2(d(r) — do) —q N(AbyiorTr, ¢/4) as n — oo, (1.1)

where 7, and ¢, are known constants (specified below) for which ¢, increases in r
and ¢y = 1 and baya, is the (2 + 2r)-th derivative of log () at A = 0. This yields
the con31stency, asymptotic normality, “asymptotic bias,” and “asymptotic mean-
squared error” of d( ). In this case, n¢/(2¢+1)(d( ) —do) = Op(1). If m is chosen to
diverge at a slower rate, then the mean in the asymptotic normal distribution is zero.

Our results show that the effect of including the polynomial ) _; 0, A% in the
local Whittle likelihood is to increase the asymptotic variance of c?(r) by the mul-
tiplicative constant ¢, but to reduce its asymptotic bias by an order of magnitude
provided () is smooth of order s > 2. The asymptotic bias goes from O(m?/n?)
when 7 = 0 to O(m?/n?) with ¢ > 2 when r > 0 and s > 2. In consequence, the rate
of convergence of d(r) is faster when r > 0 than when r = 0 provided s > 2 (and m is
chosen appropriately). For example, for r > 0, s > 2 + 2r, and m chosen as in (1.1),
the rate of convergence of d( ) is n—(2+2r)/ (5+4T) whereas the rate of convergence for
d(0) is n~2/5. Note that, for 7 arbitrarily large, the rate of convergence is arbitrarily
close to n~1/2, the rate that is obtained in a parametric model.

We calculate the asymptotic MSE optimal choice of bandwidth m and provide a
plug-in version. The plug-in version is based on the (r + 1)-th element of 6(r + 1).
The latter times —(2 + 2r)! is a consistent estimator of the (2 + 2r)-th derivative of



log (M) at A = 0, which appears in the formula for the asymptotic MSE optimal
choice of bandwidth.

The results of the paper provide some new results for the local Whittle estimator
d*(0) considered by Robinson (1995a). The results show that this estimator has an
asymptotic bias (defined as m /2 times the mean of its asymptotic normal distrib-
ution) that is the same as that of the GPH estimator. Robinson’s (1995a, b) results
show that the asymptotic variance of the local Whittle estimator is smaller than
that of the GPH estimator. Combining these results establishes that the asymptotic
mean-squared error of the local Whittle estimator is smaller than that of the GPH
estimator (provided m is chosen appropriately).

A limited number of Monte Carlo simulation results show that the asymptotic
results of the paper mimic the finite sample properties of LPW estimators quite
well. We simulate finite sample biases, standard deviations, root mean squared errors
(RMSEs), confidence interval coverage probabilities, and confidence interval average
lengths for LPW estimators with » = 0,1,2. The true process considered is a first-
order autoregressive fractionally integrated (ARFIMA(1, 1, 0)) process with sample
size n = 512. The introduction of polynomial terms is found to significantly reduce
the finite sample bias of the local Whittle estimator when the AR parameter is non-
zero (i.e., the function ¢(\) is not flat). At the same time, polynomial terms inflate
the local Whittle estimator’s standard deviation. Andrews and Sun (2001) provide
a more extensive set of simulation results for LPW estimators than is given in this
paper.

The results of this paper are similar to those of Andrews and Guggenberger (1999),
who consider adding the regressors )\?, - A?T to a log-periodogram regression that is
used to estimate dy. The resulting estimator has the same asymptotic bias as the
LPW-FOC estimator d(r), but larger variance. For any r, its variance is larger by the
factor (w2/24) <+ (1/4) = 1.645. The properties of the bias-reduced log-periodogram
estimator of Andrews and Guggenberger (1999) are determined under the assumption
of Gaussianity of {z;}, whereas the properties of the LPW-FOC estimator considered
here are determined without requiring {z;} to be Gaussian.

An alternative to the narrow-band approach considered here is a broad-band ap-
proach. In this approach, one imposes regularity conditions on ¢(A) for A in the
whole interval [0, 7] and one utilizes a nonparametric estimator of p(\) for A € [0, 7].
For example, Moulines and Soulier (1999, 2000), Hurvich and Brodsky (2000), and
Hurvich (2000) approximate log () by a truncated Fourier series, while Bhansali
and Kokoszka (1997) approximate () by the spectrum of an autoregressive model.
These papers establish that the broad-band estimators exhibit a faster rate of conver-
gence than the GPH and local Whittle estimators under the given regularity condi-
tions. These estimators exhibit an asymptotic mean-squared error of order log(n)/n
if the number of parameters in the model goes to infinity at a suitable rate.

Some limited simulation results are reported that compare LPW estimators (for
r = 0,1,2) with the bias-reduced GPH estimators of Andrews and Guggenberger
(1999) (for r =0, 1,2) and with the broad-band fractional exponential (FEXP) esti-
mator considered by Moulines and Soulier (1999, 2000), Hurvich and Brodsky (2000),



and Hurvich (2000). The estimators are compared based on the minimum RMSE over
different values of m for the LPW and GPH estimators and on the minimum RMSE
over different numbers of terms in the expansion for the fractional exponential es-
timator. The true process is taken to be an ARFIMA(1, 1, 0) process with AR
parameter ¢ = 0,.3,.6,.9, —.3, —.6, or —.9 and sample size n = 512. The results are
not sensitive to the value of dy (within the stationary region). For all values of ¢, the
estimator with the smallest minimum RMSE is an LPW or local Whittle estimator.
When ¢ is non-zero, the best estimator is an LPW estimator with r =1 or 2. When
¢ is zero, the best estimator is the local Whittle estimator (i.e., » = 0). Although
the number of simulation results reported is small, the results indicate that LPW
estimators are competitive with existing semiparametric estimators. Andrews and
Sun (2001) provide additional simulation results that corroborate this finding.

We note that the LPW estimator can be viewed as a semiparametric local (to
frequency zero) version of an approximate maximum likelihood estimator of a par-
ticular parametric FEXP model considered by Diggle (1990) and Beran (1993) that
utilizes polynomials, rather than trigonometric polynomials.

Other papers in the literature that are related to this paper include Henry and
Robinson (1996) and Hurvich and Deo (1999). These papers approximate ¢(\) by
a more flexible function than a constant in order to obtain a data-driven choice of
m. In contrast, the present paper uses a more flexible approximation of ¢(A) than a
constant for the purposes of bias reduction and increased rate of convergence in the
estimation of dj.

The idea of using a local polynomial approximation can be applied to other es-
timators of do, such as the average-periodogram estimator of Robinson (1994). In
addition, the results of this paper could be extended, presumably, to nonstationary
fractional time series along the line of Shimotsu and Phillips (1999).

The remainder of the paper is organized as follows. Section 2 defines the LPW
likelihood function. Section 3 states the assumptions used. Section 4 shows that there
exists a sequence of solutions to the FOCs that is consistent and asymptotically nor-
mal. Section 5 shows that the LPW-FOC estimator is consistent and asymptotically
normal with bias that may be non-negligible. Section 6 establishes that the LPW-
FOC estimator attains the optimal rate of convergence for estimation of dy. Section
7 provides the Monte Carlo simulation results. Section 8 contains proofs.

Throughout the paper, wp— 1 abbreviates “with probability that goes to one as
n — 00" and || - || signifies the Euclidean norm.

2 Definition of LPW Likelihood

The j-th fundamental frequency JA;, the discrete Fourier transform w; of {x;},
and the periodogram I; of {x;} are defined by

n

1 .
Nor= th exp(it);), and I; = |w;|*, (2.1)
t=1

\j =2mj/n, w; =



The local polynomial Whittle log-likelihood is —m/2 times

I.
d,G,0) =m™! log |GA; > exp(—pr(X;,0))| + J ,
Qr( Z{ og{ exp(—pr( J ) GA;QdeXp(—pr(Aj,Q))
where .
pr(X;,0) =) 0kA3F and 6 = (64, ...,6,)". (2.2)
k=1

The log-likelihood is local to frequency zero, because m is taken such that 1/m +
m/n — 0 as n — oo. The log-likelihood is based on approximating log¢(\) by
log G — pr(A, 0) for A near zero. The local Whittle likelihood considered in Robinson
(1995a) is obtained by setting 6 = 0.

Concentrating Q,(d,G,0) with respect to G € (—o0,00) yields the concentrated
LPW log-likelihood R, (d,0) :

Ro(d,0) = log G(d,0) —m > " pr(A;,0) — 2dm™ Y log A; + 1, where
j=1 j=1

G(d,0) = m™" Y Ijexp(pr(X;, 0)) A2 (2.3)
j=1
An LPW-MIN estimator (d*(r), G*(r),0"(r)) of (d, G, 8) solves the following min-

imization problem:

(d*(r),0*(r)) = argmin R,(d,0) and
de(dq,d2],0€0
G*(r) = G(d"(r), 07 (r)), (2.4)

where © is a compact and convex set in R".
The LPW-FOC estimator (d(r),6(r)) is a solution in [d;,ds] X © to the FOCs:

S gy (@0 =0 (2.5)

If there are multiple solutions, (A( ), 0 A( )) is the solution for which (f(r) is closest to
some LPW-MIN estimator d*&) If there is no solution, (d(r),0(r)) is (d*(r),0*(r)).
By definition, G( ) = G(d ( ),0(r)).

3 Assumptions

We now introduce the assumptions that are employed (in conjunction with
Assumption 1) to establish the consistency and asymptotic normality of (d(r),0(r)).
These assumptions utilize the following definition. Let [s] denote the integer part of
s. We say that a real function h defined on a neighborhood of zero is smooth of order
s > 0 at zero if h is [s] times continuously differentiable in some neighborhood of



zero and its derivative of order [s], denoted h([s]), satisfies a Holder condition of order
s — [s] at zero, i.e., B (A) — b (0)] < C|A|18) for some constant €' < 0o and all
A in a neighborhood of zero.

Assumption 2. ¢()) is smooth of order s at A = 0, where s > 2r and s > 1.

Assumption 2 imposes the regularity on the function ¢(\) that characterizes the
semiparametric nature of the model. Under Assumption 2, log¢(\) has a Taylor
expansion of the form:

[s/2]

b
log (X)) = log p(0) + Z (2213')\% + O(N\®) as A — 0+, where
k=1 ’
dlc

b, = —1 A 3.1
e = o rloge( ),\:0 (3.1)

The true values for G and 0 are Gy = ¢(0) and 6y = (0y 1, ...,00) , where
ban for k=1,..,r. (3.2)

O = —
Ok T 2k
Assumption 3. (a) The time series {z; : t = 1,...,n} satisfies
o0
xy — Fxg = Zajst_j,
=0
where

o
Za? < 00, E(et]Fi_1) =0 as., E(e}|F_1) =1 as.,
j=0
E(}|F,_1) = 03 as., E(e}|Fy_1) =04 as. for t =...,—1,0,1, ...,

and F;_; is the o-field generated by {e5 : s < t}.

(b) There exists a random variable e with Ec? < oo such that for all v > 0 and some
K >0, P(let] >v) < KP(le| > v).

(c) In some neighborhood of the origin, (d/d\)a(X) = O(Ja(N)|/A) as A — 04, where
a(\) =327, aje A,

Assumption 3 states that the time series {x;} is a linear process with martingale
difference innovations. Unlike most results for log-periodogram regression estima-
tors, Assumption 3 allows for non-Gaussian processes. Assumption 3(a) and (b) is
the same as Assumption A3’ of Robinson (1995a). Assumption 3(c) is the same as
Assumption A2’ of Robinson (1995a). It should be possible to weaken the assumption
that E(e}|F;—1) = 04 a.s. along the lines of Robinson and Henry (1999).

Assumption 4. m¥*t1/2/n? — oo and m?*t1/2/n? = O(1) as n — oo, where
¢ = min{s, 2 + 2r}.



The two conditions in Assumption 4 are always compatible because s > 2r by
Assumption 2. The first condition of Assumption 4 is used to ensure that the ma-
trix By, that is used to normalize the gradient and Hessian of mR.(d,) satisfies
Amin(Br) — 00, which is required for consistency of (d(r),é(r)). The second condi-
tion of Assumption 4 is used to guarantee that the normalized gradient of mR, (do, 0o)
is Op(1), which is required for asymptotic normality of (d( ), (9(7“)).

If » = 0 and Assumption 2 holds with s = 2, then Assumption A1’ of Robinson
(1995a) holds with # = 2. In this case, his Assumption A4’ on m is weakest and
it requires that 1/m + m®(log® m)/n* — 0. In contrast, in this case, Assumption
4 requires 1/m — 0 and m°/n* = O(1), which is slightly weaker than Robinson’s
Assumption A4’. (It seems that the log?m term in Robinson’s Assumption A4’ is
superfluous. It is used on p. 1644 of Robinson’s proof of Theorem 2 to bound (4.11),
but does not appear to be necessary because v; — vji1 = O(j 1) and v, = O(1),
where v; :=logj —m~1 > logk.)

Assumption 5. © is compact and convex and 6y lies in the interior of ©.

4 Existence of Solutions to the First-order Conditions

We start this section by stating a general Lemma that provides sufficient condi-
tions for the existence of a consistent sequence of solutions to the FOCs of a sequence
of stochastic optimization problems. The Lemma also provides an asymptotic rep-
resentation of the (normalized) solutions. Next, we apply the Lemma to the LPW
likelihood. The Lemma has numerous antecedents in the literature, e.g., see Weiss
(1971, 1973), Crowder (1976), Heijmans and Magnus (1986), and Wooldridge (1994).
The Lemma given here is closest to that of Wooldridge (1994, Theorem 8.1).

Let {L,(y) : n > 1} be a sequence of minimands for estimation of the parameter
7o € T' € RF, where T is the parameter space. Denote the gradient and Hessian of
Ln(7y) by VLn(v) and V2L, (7) respectively.

Lemma 1 Suppose v, is in the interior of I, Ly(vy) is twice continuously differ-
entiable on a neighborhood of 7y, and there exists a sequence of k X k non-random
nonsingular matrices By, such that

() [|B, || = 0 as n — oo,

(ii) (By")'VLa(70) = Op(1) asn — oo,

(iii) for some n >0, Amin ((B;l)’VQLn(’yO)Bgl) >nwp—1, and
(

iv) sup By (V2Ln(v) = VLu(70)) By || = 0p(1) as n — oo
YET:||Ba(v=70)[|I<Kn

for some sequence of scalar constants {K, : n > 1} for which K, — oo as
n — oo. Then, there exists a sequence of estimators {7, : n > 1} that satisfy the
first-order conditions V Ly (7,) =0 wp— 1 and

BT~ 0) = ~Ya + 0p(1) = Oy(1), where
Y, = ((Bgl)/szn(’Yo)qul)_l(BEI)IVLTL('YO)-



The proof of Lemma 1 is given in Section 8.

We apply Lemma 1 with v = (d,0"), L,(y) = mR.(d,0), and B, equal to the
(r+1) x (r+1) diagonal matrix with j-th diagonal element [B,];; defined by

2mm \ ¥ 2
[Bpn]11 = mY? and [B,);; = (T) mY? for j=2,...,r+1. (4.1)
The first condition of Assumption 4 guarantees that ||B;!|| — 0, as required by
condition (i) of Lemma 1.

To verify conditions (ii)—(iv) of Lemma 1, we need to establish some properties
of the normalized score (i.e., gradient) and Hessian of mR,(d,#). The score vector
and Hessian matrix of mR,(d,0) are denoted S, (d,0) = mVR,.(d,0) and H,(d,0)
= mV2R,(d,0) respectively. Some algebra gives

Sn(d,0) = G 1(d,0) i (yj(d, ) —m! iyk(d, 9)) X; and

j=1 k=1
Hy(d,0) = G 2(d,0) | G(d,0) " y;(d,0)X;X]
j=1
m m !
—m (mT Ty(d, )X, | [ mT y(d,0)X; (4.2)
j=1 j=1

where
y;i(d,0) = I; exp(pT()\j,O)))\?d and
X; = (2logj, A3, ..., AF")". (4.3)

We show below that the normalized Hessian, B 'H,,(do,00)B;;!, converges in
probability to the (r + 1) X (r 4+ 1) matrix €2, defined by

_ (4 2
“‘(me>’ (4.4)

where f,. is a column r-vector with k-th element p,.;, I'v is an 7 X 7 matrix with
(i, k)-th element [I'y]; x,
_ 2k
M'r,k - (2k+1)2

IR —— dik
2+ 2k +1)(2i - 1)(2k + 1)

For r = 0, define 2, = 4.
We show below that the asymptotic bias of the normalized score, B;,1S,,(dg, 0o),
is —vy(r, s), where

Un(r,s) = mT1/2p=¢ (1(s > 24 2r)boyorkr, +1(2r <5 <2+ 2r)O(1))
-1 (S >924+ 27,) m5/2+27‘n7(2+27‘)b2+2741€74€;r

+1 (27" <s <2+ QT)O(mSH/Qn*S) , (4.6)

for k=1,...,r, and

fori,k=1,...r. (4.5)

8



and

L (2
fT‘_<§T>7

51‘ = (57‘,17"‘757‘,7‘)/7
B 2k(3 +2r)
brk = (2r + 2k + 3)(2k + 1)
(27)2+2 (2 4 2r)

T T B 23+ 2r) (47)

The following Lemma establishes the asymptotic properties of the normalized
score and Hessian, which are needed to verify conditions (ii)—(iv) of Lemma 1. The
following quantities arise in the Lemma:

fork=1,...,r, and

Dy (n) = {d € [dy,ds] : (log® m)|d — do| < n} for n > 0 and

Jn = (Xj — mlixk> (Xj —m ! ixk> : (4.8)
k=1 k=1

j=1
Lemma 2 Under Assumptions 1-5, as n — oo, we have

(a) sup || B,  (Hy,(d, 0) — Hy(do,0)) By || = 0p(1) for all sequences of
d€Dm(n,,),0€0

constants {n,, : n > 1} for which n,, = o(1),
(b) sup 1B (Hu(do, ) — Hu(do,00)) By || = 0p(1),
€

() 1B, (Hu(do, 80) — Ju) By, || = 0p(1),
(d) B, 'J,B;' — Q,, and
(e) B;lsn(do, 490) + I/n(’/’, S) —d N(O, QT)

Remarks 1. The result of part (b) of the Lemma is unusual. It states that the
normalized Hessian matrix Hy,(dp,#) does not depend on 6 up to op(1) uniformly over
f € ©. In most nonlinear estimation problems, this would not hold. This property
of the Hessian is essential for the proof of consistency and asymptotic normality of
(d(r),6(r)) that is used here to work.

2. The proof of Lemma 2 relies heavily on the proof of Theorem 2 of Robinson
(1995a). It also uses Theorem 2 of Robinson (1995b) and Theorem 5.2.4 of Brillinger
(1975).

We now use the results of Lemma 2 to verify the conditions (ii)—(iv) of Lemma
1. Condition (ii) holds by Lemma 2(e) and the second condition of Assumption 4.
Condition (iii) holds by Lemma 2(c) and (d) and the positive definiteness of €.
Condition (iv) holds with K,, = m!/?n,,log ®m for some sequence 7,, that goes to
zero sufficiently slowly that K, — oo, e.g., n,, = log~! m, by Lemma 2(a) and (b).

In consequence, the application of Lemma 1 with L, (y) = mR,(d,0) combined
with the convergence results of Lemma 2 gives the following Theorem:



Theorem 1 Under Assumptions 1-5, there exist solutions (d(r),0(r)) to the first-
order conditions (0/9(d,0'))R,(d,0) = 0 wp— 1 and

C?(T) — do -1 -1
By | — Qg (r, N(0,9.7).

An immediate consequence of Theorem 1 and the definition of (c?(r),@(r)) is the
following:

Corollary 1 Under Assumptions 1-5, the LPW-FOC estimator ((f(r),g(r)) solves
the FOCs (2.5) wp— 1.

5 Asymptotic Normality of the LPW—-FOC Estimator

In this section, we show: (i) any sequence of solutions to the FOCs for which the
estimator of dy is log® m-consistent (i.e., equals do + o,(log™ m)) is consistent and
asymptotically normal. We also show: (ii) the LPW-MIN, d*(r), estimator of dj is
log® m-consistent. The latter is used to show: (iii) the LPW-FOC, c?(r), estimator
of dy is log® m-consistent. Results (i) and (iii) and Corollary 1 then imply that the

~

LPW-FOC estimator (d(r),g(r)) is consistent and asymptotically normal.

Suppose a sequence of estimators (d(r), 8(r)) satisfies the FOCs (2.5) wp— 1 and
d(r) — dy = op(log™®m). Then, there exists a sequence of constants 7, > 0 that
converges to zero sufficiently slowly that d(r) € D,,(n,,) wp— 1. Element by element
mean value expansions of B;, 'mV R,.(d(r),0(r)) (= B,,1S,(d(r),8(r))) about (do, 6o)

gives

0 = B,;'S,(d(r),0(r))

= By, 'Sn(do,00) + (By, ' Hy(d1,601)B;, ") By, < gg:; :Zg )
— B, 1S, (do, B0) + (1 + 0,(1))Bn ( gg:; o ) , (5.1)

where (dy,01) (which may differ across the rows of H,,(dy, 01)) lies between (d(r),0(r))
and (do,00) and, hence, d; € D,,(n,,) wp— 1 and 6; € © using the convexity of ©
(by Assumption 5). The third equality holds by Lemma 2(a)—(d). Rearrangement of
(5.1) yields

E(T)_do . = -1 o) —1 — O Y% (r.s
By, < a0r) — 6o > — O w(r,s) = =071+ 0p(1)) B, ' Sn(do, 60) — O (1, 5)

as n — 0o. The convergence in distribution holds by Lemma 2(e).
Hence, we have established the following result:
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Theorem 2 Suppose Assumptions 1-5 hold. Let (d(r),?(r)l be any sequence of es-
timators that satisfies the FOCs (2.5) wp— 1 and for which d(r) —do = op(log™®m).
Then, B
dir)—do \ -1 -1
By, < () — 8, ) Q. vp(r,s) =4 N(0,9Q,) as n — oo.

Next we show that the LPW-MIN estimator, d*(r), of dg is log® m-consistent.
This, in turn, implies that the LPW-FOC estimator, c?(r), also is log® m-consistent.
The reason is that there exists a solution to the first-order conditions, d(r), that
is log® m-consistent by Theorem 1. Hence, d*(r) and d(r) differ by o,(log™ m). By
Corollary 1 and the definition of (&\(r),g(r)), wp— 1, (c?(r),@(r)) is the solution to the
FOCs whose estimator of dy is closest to d*(r). Thus, c?(r) cannot differ from d*(r) by

~

more than d(r) does. That is, d(r) —d*(r) = o,(log > m) and d(r) —dy = 0, (log > m).

Lemma 3 Suppose Assumptions 1-5 hold. Then,

(a) d*(r) — dy = op(log™> m) and

(b) d(r) — do = op(log > m).

Remark. The proof of Lemma 3 shows that an estimator that minimizes R,(d,6)
over [dy,ds] for any value of @ yields a log® m—consistent estimator of dy. This is
not too surprising, because the choice = 0, upon which the log® m—consistent local

Whittle estimator d*(0) is based, is not necessarily a better choice of 8 than any other

0 € 0o.

Corollary 1 and Lemma 3(b) imply that ((f(r),g(r)) satisfy the conditions of
Theorem 2. Hence, Theorem 2 implies the following consistency and asymptotic
normality result, which is the main result of the paper.

Corollary 2 Under Assumptions 1-5, the LPW-FOC estimator (c?(r),g(r)) satisfies

m1/2(d(r) — do) ~ — O (r,s) —q N(0,Q71)
m!/2Diag ((2mm/n)?, .., (2wm/n)*) (8(r) ) )~ T T

as n — oQ.

Remarks 1. By the formula for a partitioned inverse,

1 T — ST,
Q.= _ A _ , Where
" < _EQLFT llur Fr ! + CTPT 1/’LT/"(‘;‘PT ! )
¢ = (1—p T p,) tforr>0andcy=1. (5.3)

Hence, the asymptotic variance of m!/? (cf(r) —dp)) is ¢ /4, which is free of nuisance
parameters. The use of the polynomial p,(A;,6) in the specification of the local

Whittle likelihood increases the asymptotic variance of d(r) by the multiplicative
constant ¢,. For example, ¢; = 9/4, ca = 3.52, ¢3 = 4.79, ¢4 = 6.06, and ¢5 = 7.33.
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2. The “asymptotic bias” of c?(r) equals the first element of m~1/ ZQI YWn(r, s).
Using (5.3) and the definition of v, (r, s) in (4.6), the asymptotic bias of d(r) equals

1(s > 24 2)Tpboypoym?T2 =327 L 1(2r < 5 < 24 2r)O(m® /n®), where

KpCr _
Ty = 2 (1 - :u;"FT 157‘)' (54)
For example, 79 = —2.19, 71 = 2.23, 79 = —.793, 73 = .146, 74 = —.0164, and
75 = .00125.

3. By (5.4), the asymptotic bias of c?(r) is of order m®/n?, where ¢ = min{s,

~

2+ 2r}. In contrast, the asymptotic bias of d(0) is of order m? /n%. The asymptotic
bias of d(r) is smaller than that of d(0) by an order of magnitude provided ¢(-) is
smooth of order s > 2, because in this case ¢ > 2.

4. Tf s > 2+ 2r and lim, o m>/#+27 /n?+2" = A € (0, 00), then

m/2(d(r) — do) e o
( mY2Diag ((2mrm/n)?, ..., (2wm/n)?") </9\(7") - 90) ) —a N (Abyorkr§, 767, 07)
(5.5)
The only unknown quantity in the asymptotic distribution is ba9,. The asymptotic
bias and variance of m'/2(d(r) — dy) are At,by o, and ¢, /4 respectively.

5. Assumption 4 allows one to take m much larger for d(r) than for d(0). In
consequence, by appropriate choice of m, one has asymptotic normality of d(r) with
a faster rate of convergence than is possible with d(0).

6. Inflation of the asymptotic variance by the factor ¢, due to the addition of
parameters, see Remark 1, also is found in Andrews and Guggenberger (1999) for a
bias-reduced log-periodogram regression estimator of do. In consequence, the LPW-
FOC estimator d(r) maintains exactly the same advantage over the bias-reduced log-
periodogram regression estimator, in terms of having a smaller asymptotic variance,
as the local Whittle estimator has over the GPH log-periodogram regression estima-
tor. For any r > 0, the ratio of their asymptotic variances is (c,/4)+(n2c,./24) = .608.

7. The expression for the asymptotic bias in (5.4) is the same as that found in
Andrews and Guggenberger (1999) for the bias-reduced log-periodogram estimator
of dy. Hence, the LPW-FOC estimator has the same asymptotic bias, but smaller
asymptotic variance, than the bias-reduced log-periodogram estimator of dj.

§uppose s > 2+42r. Using Remarks 1 and 2, the “asymptotic mean-squared error”
of d(r) is
o

= (5.6)

AMSE(d(r)) = 7203 1o, (<) +

~

Minimization of AMSE(d(r)) with respect to m gives the AMSE-optimal choice of
m:

Cr 1/(B+ar) (4+4r)/(5+4r)
(16( ) n ) (5.7)

Mopt =
o> 1 + T)T%b%—i—Zr

where [a] denotes the integer part of a. When » = 0 and s = 2, this gives the same
formula for mep; as in Henry and Robinson (1996).
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The formula for m,p; contains only one unknown, ba;2,. A consistent estimator
of baio, can be obtained from 5(7‘ + 1), the LPW-FOC estimator of # that uses a
polynomial of degree 2r 4 2. Let T denote the number of frequencies used in the
calculation of 6(r + 1). Let 6(r + 1),41 denote the (r + 1)-th element of 6(r + 1).
Suppose s > 2 + 2r. By Corollary 2 and the definition of g in (3.2),

byyor = —(24+27)10(r + 1)1 —p bayor (5.8)

provided Q;jlyn(r +1,s) — 0 and Assumption 4 holds with (m,r, ¢) replaced by
(m,r+1,¢), where ¢ = min{s, 442r}. These conditions hold if m'/?(m/n)?*T?" — oo
and mY/?(m/n)® — 0. For example, they hold if m = Cn? for some ~y
€((2+2r)/(5/2+2r),¢/(1/2+ ¢)) and 0 < C < oo. (The interval for + is nonde-
generate because ¢ > 2 + 2r when s > 2 4 2r.) R

A data-dependent choice of m for computation of d(r) is obtained by plugging
b2+2T into (57)

Mopt =

1/(5+4r)
_ n(4+41‘)/(5+4r) ) (59)
16(1 + r)7203 5,

This specification for Mgy differs from those proposed in Henry and Robinson (1996).

Theorem 2 and Lemma 3(a) can be used to obtain new results for the local Whittle
estimator d*(0) that is analyzed in Robinson (1995a). By Lemma 3(a), d*(0) is in
the interior of [dy,ds] wp— 1. Since there are no parameters 6 to consider in this
case, d*(0) satisfies the FOCs (2.5) wp— 1. Hence, the conditions of Theorem 2 are
satisfied and d*(0) is asymptotically normal.

Corollary 3 Under Assumptions 1-5, m'/2(d*(0) — do) — v(0,5)/4 —4 N(0,1/4)

as n — oo.
Remarks 1. The “asymptotic bias” of d*(0) is
m=20,(0,5)/4 = —1(s > 2)(212/9)(m?/n?)by + 1(1 < 5 < 2)O(m*/n?).

2. Corollary 3 shows that the local Whittle estimator of dy has the same asymp-
totic bias as that of the GPH estimator when s > 2, but smaller asymptotic variance.
The latter is well-known, but the former is a new result. This result implies that the
local Whittle estimator dominates the GPH estimator in terms of asymptotic mean-
squared error (where the latter is defined to be the second moment of the asymptotic
distribution of the estimator) provided m is chosen appropriately.

3. Robinson (1995a) does not provide an expression for the asymptotic bias of
the local Whittle estimator. His Assumption A4’ restricts the growth rate of m such
that v,(0,s) = op(1).

13



6 Optimal Rate of Convergence

In this section, we show that the LPW-FOC estimator attains the optimal rate
of convergence for estimation of dy established in Andrews and Guggenberger (1999)
for Gaussian processes. In fact, the LPW-FOC estimator attains this rate whether
or not the process is Gaussian. This is an advantage of the LPW-FOC estimator
over the bias-reduced estimator considered in Andrews and Guggenberger (1999),
which is shown to attain the optimal rate for Gaussian processes. The optimal rate
established in Andrews and Guggenberger (1999) is related to, and relies on, results
of Giraitis, Robinson, and Samarov (1997).

We consider a minimax risk criterion with 0-1 loss. The class of spectral density
functions that are considered includes functions that are smooth of order s > 1. The
optimal rate is n=%/(25+1) which is arbitrarily close to the parametric rate n~2if s
is arbitrarily large. We show that the LPW-FOC estimator, d(r), attains this rate
when r is the largest integer less than s/2 and m is chosen appropriately.

Let s and the elements of a = (ag,ano, a1, -.-,as/9)’; 6 = (01,02,03)", and K
= (K1, K9, K3)' be positive finite constants with ag < agp and §; < 1/2. We consider
the following class of spectral densities:

Fls,0,6,K) = {f : N = N0\, [dsl <1/2— 61, [ F(NA < K, and

¢ is an even function on [—m, 7| that satisfies (i) ag < ¢(0) < aqo,
[s/2]
(i) e(A) = ¢(0) + Z ©A2F £ A(N) for some constants ¢, with |¢,| < ay, for
k=1
k=1,..,][s/2] and some function A(X) with |[A(N)| < KA® for all 0 < A < 49,
(iii) ‘90()\1) - SO()\Q)‘ < Kg’)\l - )\2‘ forall 0 < A\ < Ao < (53} (61)

If ¢ is an even function on [—m, 7| that is smooth of order s > 1 at zero and
F(N) = |A| 724 p(N) for some |df| < 1/2, then f is in F(s,a,d, K) for some a, §, and
K. Condition (ii) of F(s,a,d,K) holds in this case by taking a Taylor expansion of
©(\) about A = 0. The constants ¢, equal ¢(2#)(0)/(2k)! for k =1, ...,[s/2] and A(\)
is the remainder in the Taylor expansion. Condition (iii) of F(s,a,d,K) holds in
this case by a mean value expansion because ¢ has a bounded first derivative in a
neighborhood of zero.

The optimal rate results are given in the following Theorem. Part (a) is from
Theorem 3 of Andrews and Guggenberger (1999).

Theorem 3 Let s and the elements of a = (ag,ago, a1, ---,a[5/2))', 6 = (81, 62,63)",
and K = (K1, K2, K3)' be any positive real numbers with s > 1, ag < ago, 61 < 1/2,
and K1 > 2maq.
(a) Suppose {x:} is a sequence of Gaussian random variables with spectral density
function f € F(s,a,0,K). Then, there is a constant C' > 0 such that

lim inf inf sup Pf(ns/(28+1)]3n —dys| > C) >0,

0 4, fEF(s,a,6,K)
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where the inf is taken over all estimators c?n of dy and Py denotes probability when
the true spectral density is f.

(b) Suppose {x:} is a sequence of random variables that has spectral density function
f € F(s,a,6,K) and satisfies Assumptions 3 and 5 with 0y in Assumption 5 defined
by Oor = —p for k = 1,...,7 and 6y = (0p.1,...,00,). Let m = Don?*/(25+1) for
some constant Dy € (0,00) and let v > 0 be the largest integer (strictly) less than
s/2. Then,

lim limsup  sup Pf(ns/@sﬂ)ﬁ(r) —ds| >C) =0.
—0 n—oo feF(s,a,6,K)

Remark Part (b) of the Theorem is proved by showing that ¥,, := m?!/ 2(51\(7’) —dy)—
Qv (7, 8)]1 is asymptotically normal uniformly over f € F(s,a,6, K), where [v];
denotes the first element of the vector v. For a fixed spectral density f, asymptotic
normality of W, is established by showing that the normalized score, B;;1S,,(do,6o),
can be written as Zizl Tun, where T ,, = 0p(1), Tor, = 0(1), T3, —q N(0,€2,), and
Ty +vn(r,s) — 0, see the proof of Lemma 2(e). Hence, asymptotic normality of ¥,
is driven by the term T3 ,. The key to the proof of part (b) is that the distribution
of T3, does not depend on f. One obtains asymptotic normality of ¥, uniformly
over f € F(s,a,d,K) provided the other terms behave appropriately uniformly over
feF(s,a,6,K).

7 Monte Carlo Simulations

In this section, we present some simulation results that illustrate that the asymp-
totic results derived in the previous sections are indicative of finite sample perfor-
mance, at least in the limited number of cases considered. Andrews and Sun (2001)
provide simulation results for a much wider variety of cases. The simulation results
also show that the LPW estimators perform well in terms of MSE in comparison to
other semiparametric estimators of dy, including the bias-reduced GPH estimators of
Andrews and Guggenberger (1999) and the broad-band FEXP estimator considered
by Moulines and Soulier (1999, 2000), Hurvich and Brodsky (2000), and Hurvich
(2000).

We consider Gaussian first-order autoregressive fractionally integrated (ARFIMA
(1, 1, 0)) processes with autoregressive parameter ¢, long memory parameter dy,
and sample size n = 512. We consider three values of dy, viz., —.4, 0, and .4. None
of the results are sensitive to the value of dg, so we just report results for dg = 0.
We consider seven values of ¢, viz., 0, .3, .6, .9, —.3, —.6, and —.9. Ten thousand
simulation repetitions are employed.

We consider LPW estimators with » = 0, 1, and 2. We calculate the biases, stan-
dard deviations, and root mean squared errors (RMSEs) of these three estimators as
functions of m. We also calculate the coverage probabilities and average lengths of
nominal 90% confidence intervals constructed using these three estimators as func-
tions of m. The confidence intervals (CIs) are based on the asymptotic normality
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result of Corollary 2. The Cls are given by
{C/Z\(T) — 2.95 [(BrzljnBrzl) ]11 /m1/2 C/Z\(T’) + 295 [(BgljnBrzl)il] 11 /ml/ﬂ (71)

for r = 0,1,2, where zg5 is the .95 quantile of the standard normal distribution and
[A];; denotes the (1,1) element of the matrix A.2

Figure 1 reports results for the case of an ARFIMA(1, 1, 0) process with dp =0
and AR parameter ¢ = .6. Figure 1(a) shows that the bias of d(0) is large and
increases rapidly with m. The biases of d(1) and d(2) are substantially smaller than
that of d(0) and they increase less rapidly with m. On the other hand, Figure 1(b)
shows that the standard deviation of d(O) is smaller than that of d( ) and d( ). As
expected, the standard deviations of all three estimators decrease with m. Figure 1(c)
shows that the minimum RMSE across different values of m is lowest for d(2) and
highest for d(0). The RMSE functions are noticeably flatter for d(1) and d(2) than
for d(0), which means that a reasonable choice of m is easier to obtain for the former
estimators than the latter.

Figure 1(d) shows that the CI coverage probabilities are fairly close to the nominal
value of .9 provided m is not taken too large. The range of values of m that are not
“too large” is much wider for the Cls based on d( ) and d(2) than for the CI based on
d(0). Figure 1(e) shows that the superior performance of the coverage probabilities
of d(1) and d(2) comes at the expense of having longer Cls on average than those
based on d(0).

For brevity, we do not provide figures analogous to Figure 1 for other values of
the AR parameter ¢, but we comment on these figures briefly. The bias curves are
steeper for ¢ = .9 and less steep for other values of ¢. For all values of ¢ except
¢ =0, d( 1) and d( ) have noticeably smaller biases than d(0). For ¢ = —.9,..., .3,
d(1) and d(2) essentially eliminate the bias of d(0) over a very wide range of Values
of m. The standard deviation and average length of Cls figures are essentially the
same for all values of ¢. The RMSE figures differ with ¢. For ¢ = —.9,...,.3 and
the estimators d(1) and d(2), the coverage probability figures show that the true and
nominal coverage probabilities are fairly close to each other over a wide range of
values of m (noticeably wider than in Figure 1(d) for ¢ = .6). Except when ¢ = 0,
the range of values of m that yield good coverage probabilities for d(0) is much more
restrictive. When ¢ = .9, ranges of values of m that yield good coverage probabilities
for d(r) for r = 0,1, 2 are more restrictive than in Figure 1(d) for ¢ = .6.

Next, we compare the RMSE performance of the three LPW estimators d(0), d(1),
and d(2) with three bias-reduced GPH estimators indexed by r = 0, 1, and 2 (where
r = 0 yields the standard GPH estimator) and the broad-band FEXP estimator, as
defined in Hurvich and Brodsky (2000). Table 1 reports the minimum RMSE for
each estimator over m values in the range [8,256] for the LPW and GPH estimators
and over 0 to 16 terms in the expansion for the FEXP estimator. Table 1 shows that
the smallest RMSE is attained by an LPW or local Whittle estimator for every value
of ¢. When ¢ is non-zero, the LPW estimators d(1) and/or d(2) are best and d(1)
provides the best overall performance. When ¢ is zero, the local Whittle estimator
d(0) is best. For each value of r, the LPW estimator d(r) has smaller minimum
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RMSE than the bias-reduced GPH estimator with the same value of r for all values

~

of ¢. The FEXP estimator has higher minimum RMSE than d(0) for all values of ¢
and higher minimum RMSE than cf(l) for all values of ¢ except ¢ = 0.

The results of Table 1 show that LPW estimators are competitive with existing
semiparametric estimators of dy in terms of finite sample performance. For simple
ARFIMAC(1, 1, 0) processes, they have smaller minimum RMSE than bias-reduced

GPH estimators and the FEXP estimator.

8 Proofs

Proof of Lemma 1. Let I'yo = {y € T : ||Bn(y — 79)l| < Kn, |7 — 70l| < 6} for
some § > 0 such that L, () is twice differentiable on {y € R* : ||y — 7,|| < 6} and
{y € RE: ||y —9l| < 6} C T. Using condition (iv), a Taylor expansion about 7, and
some algebra, we obtain: for v € [';,q,

Ln(7) = La(70) = VLa(v0) (v =0) + %(7 ~70)" V2L (70) (v = 70) + ()
= %(Bn(v —70) + o) (B )Y V2 L (70) By 1(Ba(y — 7o) + Ya)
5BV La(r0) + (1), (31)
where for all y € Ty,

(NI < sup (v = 70) (V2Lu(T) = V2La(70)) (v = 70)]

WGFnO
< ||Bu(y - 70)||2_s$p (B, 1) (V2Ln() — V2Lu(70)) By, ||
84 n0
= [|Bu(y = 70)[[Pop(1). (8.2)

Let v}, = 79 — B;;'Y,,. Conditions (ii) and (iii) imply that Y;, = O,(1). This and
condition (i) imply that v} € I';,0 wp— 1. In consequence, by (8.1) and (8.2),

La(32) = Ln(i0) = ~5¥a(B Y VLn(r0) + pu(33) and
pu2) = 0(1) (83

For any ¢ > 0 and n > 1, let T'p(e) = {y € T : ||[Bu(y — 7o) + Yal| < e}
Note that 7 is in the interior of I';,(¢) wp— 1. We have I';,(¢) C T'yo wp— 1, and
80, SUPser, (o) [Pn(7)] = 0p(1) by (8.2). Let Ol'y(e) denote the boundary of I'y(e).
Combining (8.1)—(8.3), for v € 9Ty, (¢),

* 1 — -
Ln(Y) = Lu(V3) = G4 (By ) V2 L (30) Byt + 0p(1) (8.4)
for some k-vector p,, with ||u,|| =€ > 0. The right-hand side is bounded away from

zero wp— 1 uniformly over all k-vectors p,, with ||x,|| = € by condition (iii). Hence,
the minimum of L, () over v € 9I',,(¢) is greater than its value at the interior point
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vz . In consequence, the minimum of Ly, (y) over v € I'y(¢) is attained at a point, say
Vn(€), (not necessarily unique) in the interior of I'y(e) wp— 1. This point satisfies
the first-order conditions VL, (7,(¢)) = 0 wp— 1.

In consequence, for all J > 1, P(VL,(7,(1/7)) =0Vj=1,...,J)) — 1 as n — oo.
Thus, there is a sequence {.J,, : n > 1} such that J,, T oo and P(VL,(7,(1/7)) =
Vi =1,...,J,)) — 1 as n — oo. For example, take J; = 2, J, = J, 1 + 1 if
P(VL,(V,(1/7)) =0Vj < Jp_1+1)) >1—1/J,_1, and J,, = J,_1 otherwise, for
n=2,3,.... Define v,, = 4,,(1/J,,) for n > 1. Then, P(VL,(7,,) =0) > 1-1/Jp_1 —
1 as n — oo. In addition, v, € I'y(1/J,) for all n > 1. Hence, By(7,, — 7y) =
=Y, +0,(1) = Op(1). O

We prove Lemma 2(a)-2(d) in reverse order.
Proof of Lemma 2(d). Part (d) holds by approximating sums by integrals. See
Andrews and Guggenberger (1999, Lemma 2(a), (h), and (i)) for details (noting that
X; = —2log A\; in Andrews and Guggenberger (1999)). O

Proof of Lemma 2(c). The normalized Hessian can be written as

B'H,(d,0)B;' = G%(d,0) | G(d,0)m 12% (d, )X, X}

Jj=1
m m !
m Y yi(d )Xy | [ m Y yi(d,0)X; | |, where
j=1 Jj=1
X; = (2logj, (j/m)?, .., (j/m)*") . (8.5)
Let .
Gap(d,0) =m 1> Ijexp(p,(A;, 0)) 2% (21og j)*(j /m)* (8.6)

j=1
fora=0,1,2andb=0,...,r. The (1,1), (1, k), and (k, £) elements of B, ' H,(d,0)B;,*
for k,l =2,....,7r+1 are
Go5(GooGao — Giy),
@&3(60,061,/#1 - a1,060,&71); and
éig(éo,oéo,kM—z - éo,k—1@o,e_1), (8.7)

respectively, where/\the dependence on (d, ) has been suppressed for simplicity.
Define Jup as Ggp(d,0) is defined, but with exp(pr()\j,H)))\gd replaced by Gy.
That is,

Jap = Gom™? Z 21og §)*(j/m)* (8.8)
j=1
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fora =0,1,2 and b =0, ...,r. The elements of B;1J,B;! are given by the formulae
in (8.7) with G (do, 6o) replaced by Jgp. Note that J,, = Op(log®m) and Joo =
Go > 0. Hence, to prove Lemma 2(c), it suffices to show that

Aap = |Gap(do,00)/Go — Jup/Go| = 0p(log ™2 m) (8.9)

fora=0,1,2and b=0,...,7
Let
gj = )\j_QdOGO exp(—pr(Aj,60)).- (8.10)

By summation by parts, we have

Bap = I G~ 1)(2log ) (L))

=1 97

m—1 k I{Z—l—l k ]
< |m™! 21og k)% (— 2log(k + 1)) )21y (2L -1
_mZ[(og)(m) — (2log(k +1) Z] )

k=1 j=1

(2logm)® _12

Jj=1 gj

= <17m+<2,m' (811)

Using the triangle inequality and then mean-value expansions, we obtain

G < 12('2logk (Ey— (210g ) “ Ly

)

LRSI
1 )j21<gj D

+ '(210g B () — (2 log(h+ 1))

< 2%m ! <(lo k)“?b(k;; )2b1m1+a(log(k+1))“1k1(%)2b>
k=1
k
L
X ;(g_] )
< 2%(logm)*(2b+ a)m 121: 1 Z —j— 1. (8.12)

gj

By altering the statement and proof of (4.8) of Robinson (1995a) and using (4.9)
of Robinson (1995a) without change, we obtain:

ﬁ —271;) = Op (K2 10g?® k + k*1n=¢ + kY/2n~1/4) and

J=1 gj

M?r
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k
Z 2l — Op(kzl/Q), where
j=1

Lj = |w.(\)|* and w(\) = (2mn) 7123 " gpe™, (8.13)

as n — oo uniformly over £k = 1,...,m. The requisite alteration to (4.8) is that
k?+t1n=? replaces Robinson’s k°*1n=" in the remainder of result (i). This occurs
because our Assumption 2 assumes that () is smooth of order s at zero, which
differs from Robinson’s Assumption A2’. In consequence, the second equation on
p. 1648 of Robinson’s proof of (4.8) needs to be changed. We need to show that
Z?Zl 11— g;/fil = O(k?"n=?) uniformly over k = 1,...,m. This holds by a Taylor
expansion of log () to order 2r with remainder O()\j’) and some calculations.

Combining (8.11)-(8.13), ¢y ,,, and (y ,, are Op((log* m)m =12 + (log® m)m®n—?)
= 0,(log™?m), where the equality uses Assumption 4. (]

Proof of Lemma 2(b). By (8.9) and J,; = Op(log® m), we obtain éayb(do,Qo) =
Op(log®m) for a = 0,1,2 and b = 0, ...,r and G o(do,00) = Go + 0, (log™? m), where
Go > 0. These results and (8.7) imply that it suffices to show that

sup |Gab(do,0) — Gap(do,00)| = 0p(log=2m) (8.14)
S

for all a =0,1,2 and b = 0, ..., r. The left-hand side of (8.14) equals

zuglm ZI exp(pr(Xj,0)) — exp(pr(Az,00))] 5% (21og 5)° (/m)*|
[S j=1

< o lexp {pr(Ax, 0) = pr(Ag, 00)} — 1/m 1> " I exp(pr (X, 00)) A5% (21og )
S =1,....m j=1

= O(X7,)Ga0(do, b0),

= ((m/n) (log®m))

= o,(log?m), (8.15)

where the first equality holds by a mean-value expansion using the compactness of
©, the second equality holds by (8.9) and J,, = Op(log® m), and the third equality
holds by Assumption 4. [J

Proof of Lemma 2(a). We have (i) @ayb(do,O) = Jup + 0p(log™2m) by (8.9) and
(8.14), (ii) Jap = O(log®m), (iii) JooJ20 — J7y = O(1) by elementary calculations
replacing sums by integrals and noting that the part of JyoJ20 that is Op(log2 m)
cancels with an identical term in J12,0a (iv) JooJ1k-1 — J10dok—1 = O(1) by the
same sort of argument as for (iii), and (v) Joo = Go > 0. Given (i)-(v) and (8.7), to
establish Lemma 2(a) it suffices to show that

sup  |Gap(d,0) — Gap(do, 0)] = 0p(log=2 m). (8.16)
deDm(n,,),0€0
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Define anb(d, 0) as @a,b(da 0) is defined, but with /\?d replaced by j2¢. The formu-
lae in (8.7) for the elements of B, ' H,,(d,0)B,! also hold with éa,b(d; 0) replaced by
Eqp(d,0). Hence, it suffices to show that

Zap(m) = sup  |Eap(d,0) — Eqp(do,0)| = 0p(n*®log ?m)  (8.17)
deDm(n,,),0€©
for alla =0,1,2, and b=0, ..., r.

We note that in Robinson’s (1995a) proof of the asymptotic normality of the
local Whittle estimator H (using his notation) he shows that the Hessian is well
behaved for H € M = {H : (log®m)|H — Hy| < ¢} on p. 1642 and he shows that
(log® m)(H — Hy) = op(1). There is a slight error in his proof (which can be fixed
without difficulty) that leads us to define Dy, (n,,) with log® m rather than log®m in
the statement of Lemma 2(a) and to show that d(r) — dy = 0,(log™® m) rather than
op(logf3 m) in Lemma 3. In particular, the second equality in his equation following
(4.9) on p. 1643 is not correct. The left-hand side of this equality is unchanged if E
is replaced by F and o,(n*#°~1) is replaced by 0,(1) throughout. The problem in his
proof is that Fy(Hg) = O,(log? m), not Op(1), so that ﬁQ(Ho)Op(l) = 0,(log? m), not
op(1), as is necessary for the stated equality to hold. To obtain the desired result, one
needs to show that Ey(H) — Ey(Ho) = op(n?Ho=Llog™F m) for k = 0, 1,2, rather than
0p(n*0~1) "in (4.4) on p. 1642. This can be achieved by (i) redefining M on p. 1642
to be M = {H : (log® m)|H—Ho| < ¢} and (ii) showing that (log® m)|H —Hy| = 0,(1).
The latter holds by the same argument as given by Robinson (1995a, pp. 1642-3)
except that the left-hand side of (4.6) needs to be o,(log™'Ym), which holds by the
argument given on p. 1643.

The proof of (8.17) is similar to a proof of Robinson (1995a, p. 1642). We have

Zap(,) = sup [mTh Y Texp(pr(Xy,0))(2log )" (7 /m)® 2% (77470 — 1))
d€Dp(n,,),0€0 j=1
<C sup mmPY I(log )20 ) — 1

m
<20 sy LS 1 log )~ do
dEDm (nn)

j=1
m
< n,(log 2 m)2Ce*n log™*m, ~1 Z Ij)\?do (27 /) 2o (8.18)
j=1
for some constant C' < oo, where the first inequality uses the fact that supg<y<ar gco
exp(pr(A,0)) < oo since © is compact, the second inequality uses |j2(4—%) — 1]
/ld — do| < 2mPd=dllogj < 2mPhm log™mge i =  2e2ImlogT mige i for
d € Dy,(,,) by a mean-value expansion and using m'°~" ™ = e, and the third inequal-
ity uses d € Dy,(n,,). We have m™1 PRy Ij/\?do = éo,o(do, 0) = Go + op(log"2m) by
(8.9) and (8.14). In consequence, the left-hand side of (8.18) is 0,(n?¥ log~2m), as
desired. [J
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Proof of Lemma 2(e). Using (4.2) and (8.10), the normalized score is

B, 'Sy (do,00) = G (do,00)m 1/22 (yg (do, 60) — 1Zyk(d07‘90)> X;

7j=1

= (14 0,(1))m™1/2 i(ﬁ —-1) <)?j —m! iik> , (8.19)

=1 9 k=1

where the second equality uses G(do, 6) = égyo(dO,HO) = G + o0p(1) by (8.9). The
right-hand side, with (1 + o0,(1)) deleted, can be written as

T+ Ty, + T35 + Thyn, where

m T I - mo_
Ty, = m Y2 (—]—27TI€-—E—]—27TIE-) X:—-m N X
1, Z: g; J (gj ]) J Z k
EI; fi [ = LAY
Ty = m /2 ( )-ﬂ Xi—m 1y X, |,
o= Y g -miy

k=1
Tsn = m_l/zz 2nl; —1) ()?j —m™! Zf(k> :
j=1 k=1
T4,n = m71/22 (ﬁ — 1) Xj — mfl ijk . (820)
=1 \Ji k=1

and f; = f()\;), using the fact that E27l.; = 1. We show that T1, = o,(1), T3,
=0(1), T3, —a N(0,9,), and Ty, = —vp(r,s) +o(1).
To show T, = 0,(1), we use the following result, which is proved below:

k
>y (ﬁ —2nl; — E(I—? — 27r15j)> = Op (kY3 1og?® | + kP12~ 4 1271/

j=1 gj 9j
(8.21)
as n — oo uniformly over k = 1,...,m. By summation by parts,
m—1 I I, » _
T =m 23 Y <— —onl,; — B(Z - 27r15j)> (Xk - Xk+1>
k=1 j=1 \9i 9j
e (L I; > INe g
+m VY (ol - B(Z - 2mly) ) (X —m Y Xy
j=1 \Yi 9i k=1
m—1
=m V2N Op(kP1og?? k + KT 2n~0 4 k2O (k)
k=1
+m~V20,(mY3 10g?3 m + m® 2= L1/ 2p7 N 0(1)
= 0,(m Y%10g?2 m + (m/n)? + n~1/*4)
= 0,(1), (8.22)
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where the second equality uses X — Xk-i—l = O(k™!) uniformly over k = 1,....,m
(because logk — log(k + 1) = O(k™!) by a mean-value expansion and
|(k/m)% — ((k+1)/m)%| = (k/m)?|1 — (1 + k~H%| = O(k~!) for i = 1,...,7) and
X —m 13 X = O(1) because logm —m 1 S0 logk = logm —m (mlogm
—m + O(logm)) = 1 + O((logm)/m) by approximating sums by integrals (e.g.,
see (6.11) of Andrews and Guggenberger (1999)) and (m/m)? — m™1 PRy (j/m)?
=0(1) fori=1,..,r
To show T5,, = o(1), we use the result that

EIi/fj =14 0(j""logj) (8.23)

uniformly over j = 1,...,m. Because Assumptions 1 and 2 imply Assumptions 1-3

of Robinson (1995b), this holds by Theorem 2 of Robinson (1995b) using the nor-

malization of I; by f; rather than GO/\j_ZdO. The remainder term in (8.23) is different

from that in Theorem 2 of Robinson (1995b) because the proof of (8.23) only requires

(4.1), and not (4.2), of Robinson (1995b) to hold, given the normalization by f;.
By (8.23),

m

Ty = _1/220 ~logj)O(1 )()Z'] —m_IZX'k)
k=1
= O(m~"?logm Zj_l log 7)
j=1
= O(m %1log® m) = o(1). (8.24)

We show that 3'T5,, —4 N (0, 5'Q,3) for all 3 # 0 using the same proof as Robin-
son’s (1995a, pp. 1644-47) proof that m~ /2y (2n1.; — 1)2v; —¢ N(0,4), except
with Robinson s 21/] = 2logj — m 'YL 2logk replaced by ¢
=4 ( —m 1y X;). Robinson’s proof goes through with the asymptotic vari-
ance 4 replace by 3'€-3 because (i) m™! Z;n:l C? — 3'Q,3 as n — oo by Lemma

2(d) and (i) |¢; — Cjpa| < |8]] - 1X; — Xj41]] < Cj~t for some constant C' < oo
independent of j, which is needed in (4.21) of Robinson’s proof.
Next, we show that Ty, = —v,(r,s) + 0p(1). By (3.1),

log(fj/g9;) = logp(A;) —log Go + pr(A;, 6o)
=1(s>2+ QT)M/\Z-HT +O(Xj) and

(242r)!" 7
botor
filgi=1+1(s>2+ QT)ﬁ)\?HT + O(X]), where
q = min{s,4 + 2r}, (8.25)

uniformly over j = 1,...,m, using e® = 1 + x + z%e® /2 for x, between 0 and z. (If
s = 2+ 2r, the remainder O(X) is actually o(\]) = 0()\?+2T).) Hence, if s > 2 + 2r,

by oy > LA
Typ = mfl/QZ < 5 _2:; )\2.+2T —1—0()\;1-)) (Xj —-m 1ZX’“>
k=1
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m o 2+2rb . ; - B moo_
— B 242, —(2+2r) 1 Z ()—M(i)%% (Xj —m! ZX,C> (8.26)

ot 242r) ‘m —
m—1 N _ i m N m
+m 2N (X = X)) Y O +m Y2 T 0(M) (Xm —m1 Zxk> .
j=1 i=1 j=1 k=1

where the second equality uses summation by parts. The second and third summands
on the right-hand side of (8.26) are O(m3+/2n=9) because X; — X;41 = O(j~")
uniformly over j = 1,....,m and Xm — m~! Dy Xp=1+ o(1) by the calculations
following (8.22).

The following results are proved by approximating sums by integrals, see Andrews
and Guggenberger (1999, Pf. of Lemma 1) for details. Suppose m — oo, then for
k=1,..,r,

1 o, j j 1o, i 1 1
m ;(#MT ((%)% m Z(E)2k> T2 +2k+3  (3+2n(2k+1) o)

i=1
2+2
— —((3 :2:))2 Erp T o(1) and
1 o= j 1 & 2(2r +2
y Z(%)HZT (2 log j — p” Z2logi> = (Z’S—:—;—T)Q) +o(1). (8.27)
j=1 i=1

For the case where s > 2 4 2r, the combination of (8.26) and (8.27) gives Ty,
= —vy(r,s) + o(1), using Assumption 4. When s = 2 + 2r, the term O(md+/2n=9)
is really o(m?t1/2n=9) in (8.26) and the latter is o(1) using Assumption 4. Hence, in
this case too, Ty, = —vy(r,s) + o(1).

When 2r < s < 2427, Ty, is given by the right-hand side of (8.26) with the term
that contains by o, deleted and with ¢ = s. Hence, by the remarks following (8.26),
Thpn = O(m* T 20=%) = —u,,(r, 5).

Now we prove (8.21). Parts of the proof are similar to parts of Robinson’s (1995a)
proof of his equation (4.8). Let £ = k'/31og?3 k. We have

¢
Z <£ —2ml; — E(ﬁ — 27'('15]')) = 0, (k3 10g¥3 k) as n — oo (8.28)
= \yg 9i

by the same argument as in Robinson (1995a, p. 1648). We write

k
I; I;
> <—J —2rl; — E(- - 27r15j)>
Jj=t+1

gj 9j
k I: f; I f; k f;
= > <(—J —onl )X — B(Z - 27r15j)—3> +2m Y (I; - ELy) (—J — )
Pt 9i fi 9i et 9i
= Ay + As. (829)
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We have

2
k
EAI<E| ) <ﬁ—2ﬂ€j>§—] = O(k**10g"P ko kn™1/%),  (8.30)
j=tr1 77 J

where the equality holds by the same proof as in Robinson (1995a, pp. 1648-51) for

the quantity given in the third equation on his p. 1648. The only difference is that the

factor fj/g; does not appear in Robinson (1995a). It can be shown that this factor

has no impact on the proof because f;/g; =1+ o(1) uniformly over j =1, ..., m.
Next, we have

k f 2 k 1—1 f f
EA3 = 4n? Z Var(I.;) (g_] - 1) + 8n? Z Z Cov(Lei, Icj) <g_z - 1) (_j N 1)
, j ‘
k

j=b+1 i=0+1 j=0+1 9i
k i—1
=0(1) > A?+0omn™) Y YOV
j=t+1 =041 j=0+1
— or(Fy2e k™ kag
05y + o= (Eye)
= o(k(Ey) (831)

where the second equality uses (8.25) and Theorem 5.2.4 of Brillinger (1975, p. 125),
which states that Var(I.;) = O(1) and Cov(Il,I;) = O(n!) uniformly over
i,7 =1,...,n. Brillinger’s Assumption 2.6.2(1) imposes strict stationarity, which does
not hold in the present case. However, his proof only requires fourth-order station-
arity. The fourth order cumulant spectrum of {e; : t = 1,2, ...} is the same as that of
an iid process with finite fourth moment, which is sufficient.

Combining (8.28)—(8.31) gives (8.21). O

Proof of Lemma 3. To prove part (a), we first establish that d*(r) is consistent.
Due to the non-uniform behavior of R,(d,8) around d = dy — 1/2, it is necessary to
divide the interval [dy, ds] into two parts: D; and Dy, where

D1 = [max(dl,do — 1/2 +w),d2} and
Dy = [dl, max(dl,dg — 1/2 + w)) (832)

for some small w > 0.
Let N5 = {d: |d—dy| < 8} for 0 < § < 1/2. We show that P(d*(r) € Ns) = o(1),
where N5 denotes the complement of Ns. We have

P(d*(r) € Ng) <P <deﬁingp R.(d,0"(r)) — Rr(dp,0%(1)) < O)

P (56%2 Ro(d,6°(r)) — Ry (do, 0°(r)) < o) o (833)
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To prove that the first term on the right-hand side of (8.33) is 0,(1), we use
Robinson’s (1995a, Theorem 1) proof that

P < inf  R(d,0) — Rr(do,0) < 0) = o(1). (8.34)
deNgsNDy

His proof is based on writing R,(d,0) — R-(dp,0) as U(d) — T'(d) and showing that

inf ;5 p, U(d) > 0 and supye p, |T(d)| = 0p(1). We write

RT(d7 0" (T)) - R’r<d07 9*(7"))
= U(d) = T(d) + [(Rr(d,6"(r)) = Rr(d,0)) — (Br(do, 0" (r)) — Ry (do,0))] -
(8.35)

If the last term on the right-hand side of (8.35) is 0,(1) uniformly over d € Dy, then
the rest of Robinson’s proof of (8.34) goes through without change. The desired
property follows from

sup  |Rq(d,0) — R.(d,0)| = sup  |log(G(d,8)/G(d,0)) — _ZPT Aj,0)]
de[dy,d2],0€0 deldy,d2],0€0 j=1
= log(1 + O0p(X3,)) + O(A,)
= Op(A7) = 0p(1). (8.36)

The second equality holds because supyeg |m ™+ Yo pr(Ng, 0)] = O()2)) and a mean
value expansion of exp(:) about zero gives

exp(pr(X;,0)) = 1+ (1+¢(0))pr(A5,0), where
sup |Cg( )| = ( ); (8.37)
0€O,j=1,....m
which implies that supgeq, 4,1.0co ]G(d 6)/G(d 0) — 1| = Op(\2) = op(1).

It remains to show that the second term on the right-hand side of (8.33) is o(1).
We assume that max(d;,dy —1/24+w) = dy — 1/2 +w; otherwise, Dy is an empty set
and the conclusion is trivially true. As in Robinson’s (1995a) proof on pp. 163840,
we put p = exp(m 1Y 7', logk) and write

Ry(d, 0%(r)) = Re(do, 0" (r)) = log D(d)/ D (o), (8.38)

where D(d) is defined in our case by

A -\ 2d—2dg
=m 121 exp (B(\j, 0% (r))) (ZJ—)) 7240 and

BN, 07 (r)) = p(Ag,0°(r) = m ™Y p(Ae, 0°(r)). (8.39)
k=1
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It is easy to see that

inf D(d) >m™" ZI]- exp (P(\;,0%(r))) ajj*®, where
j=1

de Do
A\ 2w—1

L for 1<j<p

aj = ;) 2d1~2do . (8.40)
(5) forp <j<m.
Thus, P(infgep, R(d,0*(r)) — R.(do,8*(r)) < 0) is bounded by
P m Y Lexp (5N, 0°(r)) (a5 — 1)5*% <0 . (8.41)
j=1
To show that (8.41) is o(1), we use Robinson’s proof that
Pm > Ij(a; —1)72% <0 | =o(1). (8.42)
j=1

His proof remains valid if we replace I; by Ijexp(p(A;,0%(r))) and I.; by
I.jexp (p(Aj,0%(r))) . The reason is that exp (p(A;,6%(r))) = 1+ o(1) uniformly over
j < m. The only step that is not obvious is to show that m™! Z;n:1
(a; — 1) {2mI.;exp(p(N;,07(r))) — 1} = op(1). In fact,

-1

NE

m (a; — 1) {27 exp(p(N;, 07(r))) — 1}
j=1
=m 1) (a5 — 1)2rL; {exp(p(A;,60°(r)) = 1} +m ™) (a; — 1)(2nL; — 1)
j=1 Jj=1
=o0, [m™* zm:(aj +1)2nl; | 4+ o0p(1), (8.43)
j=1

where the last equality follows from Robinson’s proof and the fact exp(p(A;,0%(r))) =
1+ o(1). It suffices to show that m~! > jei(aj +1)2ml; = O(1). This follows from
> iia; =0(m) and I.; = O(1).

Next, we use Robinson’s (1995a) proof of the log® m-consistency of d*(0) (given
on his pp. 1642-43) to obtain log® m-consistency of d*(r). His proof parallels his
consistency proof except that he needs to show that supye p, nn; [7(d)| = op(log™%m)
for some § > 0. His proof can be used to show that d*(r) is log® m—consistent by
replacing T'(d) by T'(d) + R (d,0*(r)) — R.(d,0) — (R,(do, 0" (r)) — Rr(do,0)) as above
and by replacing op(log_6 m) by op(log_10 m). Using (8.36) and Assumption 4, this
term is o,(log~°m), as desired.
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The only other change to Robinson’s proof that is needed is to take account of the
difference between his Assumption A4’, which requires m!*%%(logZm)/n?* — 0, and
our weaker Assumption 4, which requires m®*t1/2 /n® = O(1). For Robinson’s proof to
go through (to show log® m-consistency of d*(r)), his (4.7) needs to be o,(log 1%m).
Given his equations (4.8) and (4.9), this holds provided (log'®m)(m/n)? = o(1).
Our Assumption 2 implies that Robinson’s Assumption A1’ and (4.8) hold with 5 =
min{s, 2}. Our Assumption 4 implies that (log'® m)(m/n)8 = o(1). Hence, Robinson’s
proof goes through under our weaker assumption on m.

Part (b) of the Lemma is proved in the text. O

Proof of Theorem 3(b). The choice of r as the largest integer less than s/2 implies
that s > 2r and s < 2+2r. Hence, v,,(r, s) = O(m*t/?n=%) = O(1). By the definition
of m, m¥/? = Dé/ 2ps/(2s+1) Ip consequence, the result of Theorem 3(b) follows from

sup
fef(s7a767K)

» m2(d(r) — do)
! <( m'/?Diag ((2mrm/n)?, ..., (2mm/n)*") (@(7‘) - (90) )

— Q;lun(r, s) < x) — @(Q}/%)

— 0

(8.44)

as n — oo for all z € R™F1.

To prove (8.44), we use the results of Sections 4 and 5. We show that these
results hold uniformly over f € F(s,a,d,K). To this end, we note that although
() is not necessarily smooth of order s for f € F(s,a,d, K), conditions (ii) and (iii)
of F(s,a,d, K) provide the Taylor expansion of log ¢(A) which is all that is needed
in the proofs of Lemma 2(c) and (e), where smoothness of order s is used.

Let unif-f abbreviate uniformly over f € F(s,a,d, K).

The proof of Lemma 1 goes through unif-f provided conditions (ii)—(iv) hold
unif-f and {K,, : n > 1} in condition (iv) does not depend on f. In consequence, the
conclusion of the Lemma is that a solution to the FOCs holds wp— 1 unif-f and
Bn(V, — v0) = —Yn + 0p(1) unif-f. To verify that conditions (ii)—(iv) of Lemma 1
hold unif-f when L, (y) = mR,(d, ), we need to show that parts (a)—(c) of Lemma
2 hold with o, (1) holding unif-f. Inspection of their proofs shows that they do. Part
(d) of Lemma 2 does not depend on f, so uniformity over f is not an issue.

Inspection of the proof of part (e) of Lemma 2 shows that 77, = o0,(1) unif-f;
T = o(1) unif-f because Theorem 2 of Robinson (1995b) holds unif-f by Lemma
3(b) of Andrews and Guggenberger (1999); and Ty,, = —v,, (7, s) + o(1) unif-f using
the definition of F(s,a, ¢, K). The term T3 ,,, which is asymptotically normal, does not
depend on f. Hence, its distribution function differs from that of a normal distribution
function unif-f trivially. Combining these results yields

sup  |Pp(B;,tSn(do,00) + vn(r,s) < x) — 0(Q,V22) - 0asn — oo (8.45)
feF(s,a,6,K)

for all 2 € R™!. Inspection of the proof of Lemma 3 shows that it holds unif-f.
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Given the above unif—f extensions of the results of Lemmas 1-3, Theorems 1 and
2 and Corollaries 1 and 2 have analogous extensions. The results of the extended
Theorems 1 and 2 are the same as that of (8.44) with c?(r) replaced by d(r) and d(r)
respectively. The result of the extended Corollary 2 is exactly (8.44). O
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earlier version of this paper and Carol Copeland for proofreading the paper. Andrews
thanks the National Science Foundation for research support via grant number SBR—
9730277. Sun thanks the Cowles Foundation for support under a Cowles prize. The
authors’ email addresses are donald.andrews@yale.edu and yixiao.sun@yale.edu.

2 The confidence intervals are constructed using [(B, YJ.By 1) 711 to estimate
the standard error of m'/2(d(r) — do) rather than [Q;'];; = ¢,/4, which appears
in the asymptotic normality result of Corollary 2 (and is the limit as n — oo of
[(B;1J,B; 1)1, see Lemma 2(d)), because [(B,,J,B,; ') !]11 is closer to the finite
sample Hessian matrix than is [!]1; and it performs better in finite samples.
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TABLE 1

Minimum RMSE for Several Semiparametric Estimators of do
for ARFIMA(1, 1, 0) Processes with AR Parameter ¢ and

do =0

Estimator

LPW-0
LPW-1
LPW-2

GPH-0
GPH-1
GPH-2

FEXP

@ An asterisk denotes the smallest value in each column.

0

.033*
.052
.067

.042
.066
.084

.047

3

.081
.075*
075"

.098
.093
.092

.090

6

126
116
115*

.150
142
.140

138

¢

9

297
.276*
.280

.335
327
.325

325

-3

.067
058"
067

077
.070
.084

.086

072
.055*
.067

.083
.069
.084

A17

.073
.063*
.074

.084
.079
.090

170
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