GAUSSIAN INFERENCE IN AR(1) TIME SERIES WITH OR WITHOUT A UNIT ROOT

By
Peter C. B. Phillips and Chirok Han

January 2006

COWLES FOUNDATION FOR RESEARCH IN ECONOMICS YALE UNIVERSITY Box 208281
New Haven, Connecticut 06520-8281
http://cowles.econ.yale.edu/

Gaussian Inference in AR(1) Time Series with or without a Unit Root*

Peter C. B. Phillips
Cowles Foundation, Yale University University of York \& University of Auckland
Chirok Han
Victoria University of Wellington

July 2005

Abstract

This note introduces a simple first-difference-based approach to estimation and inference for the $\mathrm{AR}(1)$ model. The estimates have virtually no finite sample bias, are not sensitive to initial conditions, and the approach has the unusual advantage that a Gaussian central limit theory applies and is continuous as the autoregressive coefficient passes through unity with a uniform \sqrt{n} rate of convergence. En route, a useful CLT for sample covariances of linear processes is given, following Phillips and Solo (1992). The approach also has useful extensions to dynamic panels.

Keywords: Autoregression, differencing, Gaussian limit, mildly explosive processes, uniformity, unit root.
JEL Classification Numbers: C22.
First Completed Draft: April, 2005

1 Main Results

We consider a simple $\operatorname{AR}(1)$ model in which $y_{t}=\alpha+u_{t}, u_{t}=\rho u_{t-1}+\varepsilon_{t}$, with $\rho \in(-1,1]$ and $\varepsilon_{t} \sim \operatorname{iid}\left(0, \sigma^{2}\right)$. When $|\rho|<1$, the process u_{t} may be initialized in the infinite past. When $\rho=1$, we may initialize at $t=-1$ and u_{-1} may be any random variable and may even depend on n, as it does in distant past initializations where, for example, $u_{-1}=\sum_{j=1}^{[n \tau]} \varepsilon_{-j}=O_{p}(\sqrt{n})$ where $[n \tau]$ is the integer part of $n \tau$ for some $\tau>0$. In both stationary and nonstationary cases, observations on y_{t} satisfy

$$
\begin{equation*}
y_{t}=(1-\rho) \alpha+\rho y_{t-1}+\varepsilon_{t}, \quad \rho \in(-1,1] . \tag{1}
\end{equation*}
$$

[^0]Model (1) is equivalent to the conventional formulation $y_{t}=\alpha+\rho y_{t-1}+\varepsilon_{t}$ for all $|\rho|<1$. At the boundary value $\rho=1$, the intercept produces a time trend in y_{t} for the latter model, as is well-known. In contrast, under (1), the data are either stationary about a fixed mean (α) when $|\rho|<1$ or form a simple unit root process when $\rho=1$.

The present note provides an estimator of the autoregressive coefficient ρ in (1) that has a Gaussian limit distribution which is continuous as ρ passes through unity. We start by transforming (1) to the new regression equation

$$
\begin{equation*}
2 \Delta y_{t}+\Delta y_{t-1}=\rho \Delta y_{t-1}+\eta_{t}, \quad \eta_{t}=2 \Delta \varepsilon_{t}+(1+\rho) \Delta y_{t-1} \tag{2}
\end{equation*}
$$

where Δ is the usual difference operator. Least squares on (2) yields the following estimator of ρ

$$
\begin{equation*}
\hat{\rho}_{n}=\frac{\sum_{t=1}^{n} \Delta y_{t-1}\left(2 \Delta y_{t}+\Delta y_{t-1}\right)}{\sum_{t=1}^{n}\left(\Delta y_{t-1}\right)^{2}} \tag{3}
\end{equation*}
$$

where it is assumed that $\left\{y_{t}: t=-1,0, \ldots, n\right\}$ are observed. The following limit theory applies.

Theorem 1 For all $\rho \in(-1,1], \sqrt{n}\left(\hat{\rho}_{n}-\rho\right) \Rightarrow N(0,2(1+\rho))$ as $n \rightarrow \infty$.
This result changes when $\rho>1$ and the system becomes explosive. In fact, $\hat{\rho}_{n}$ is inconsistent and the limit distribution is non-normal and no invariance principle applies, as in the case of the conventional serial correlation coefficient (c.f. White, 1958). More particularly, since $\Delta y_{t-1}=O_{p}\left(\rho^{t}\right)$ when $\rho>1$, it is clear from (2) that in this case $\hat{\rho}_{n} \rightarrow_{p} 1+2 \rho$. However, when ρ is in the local vicinity of unity and the system in only mildly explosive, the limiting distribution is still Gaussian, as we now show.

Let $\rho=\rho_{n}$ and $a_{n}=\rho_{n}-1$ depend on the sample size n, so that a_{n} measures local deviations from unity and $a_{n} \rightarrow 0$ as $n \rightarrow \infty$. The system is now formally a triangular array, but it is convenient to omit the additional subscript in the notation. Since $u_{t}=\rho_{n} u_{t-1}+\varepsilon_{t}$, we have

$$
\begin{equation*}
u_{t-2}=\rho_{n}^{t} u_{-2}+\sum_{j=1}^{t} \rho_{n}^{t-j} \varepsilon_{j-2} \tag{4}
\end{equation*}
$$

and because $y_{t}=\alpha+u_{t}$,

$$
\begin{equation*}
\Delta y_{t-1}=a_{n} u_{t-2}+\varepsilon_{t-1} \tag{5}
\end{equation*}
$$

Using (5), we write

$$
\begin{equation*}
\sum_{t=1}^{n}\left(\Delta y_{t-1}\right)^{2}=a_{n}^{2} \sum_{t=1}^{n} u_{t-2}^{2}+2 a_{n} \sum_{t=1}^{n} u_{t-2} \varepsilon_{t-1}+\sum_{t=1}^{n} \varepsilon_{t-1}^{2} \tag{6}
\end{equation*}
$$

and since $\eta_{t}=2\left(\Delta \varepsilon_{t}+\Delta y_{t-1}\right)+a_{n} \Delta y_{t-1}=2\left(a_{n} u_{t-2}+\varepsilon_{t}\right)+a_{n} \Delta y_{t-1}$ due to (5), we have

$$
\begin{equation*}
\sum_{t=1}^{n} \Delta y_{t-1} \eta_{t}=2 \sum_{t=1}^{n}\left(a_{n} u_{t-2}+\varepsilon_{t-1}\right)\left(a_{n} u_{t-2}+\varepsilon_{t}\right)+a_{n} \sum_{t=1}^{n}\left(\Delta y_{t-1}\right)^{2} \tag{7}
\end{equation*}
$$

So from (6) and (7),

$$
\begin{equation*}
\hat{\rho}_{n}=\rho_{n}+\left(a_{n}+\delta_{n}\right)+\xi_{n} \tag{8}
\end{equation*}
$$

where

$$
\begin{align*}
\delta_{n} & =\frac{2 a_{n}^{2} \sum_{t=1}^{n} u_{t-2}^{2}}{a_{n}^{2} \sum_{t=1}^{n} u_{t-2}^{2}+2 a_{n} \sum_{t=1}^{n} u_{t-2} \varepsilon_{t-1}+\sum_{t=1}^{n} \varepsilon_{t-1}^{2}}, \tag{9}\\
\xi_{n} & =\frac{2 \sum_{t=1}^{n}\left[a_{n} u_{t-2}\left(\varepsilon_{t-1}+\varepsilon_{t}\right)+\varepsilon_{t} \varepsilon_{t-1}\right]}{a_{n}^{2} \sum_{t=1}^{n} u_{t-2}^{2}+2 a_{n} \sum_{t=1}^{n} u_{t-2} \varepsilon_{t-1}+\sum_{t=1}^{n} \varepsilon_{t-1}^{2}} . \tag{10}
\end{align*}
$$

Here, $a_{n}+\delta_{n}$ explains the transition of the bias from zero to $\rho_{n}+1$ as ρ_{n} increases beyond unity, and the quantity ξ_{n} is instrumental in determining the asymptotic distribution.

In the unit root case where $a_{n}=0$, the bias term $a_{n}+\delta_{n}$ is zero, and $\sqrt{n} \xi_{n}=$ $2 n^{-1 / 2} \sum_{t=1}^{n} \varepsilon_{t} \varepsilon_{t-1} / n^{-1} \sum_{t=1}^{n} \varepsilon_{t-1}^{2} \Rightarrow N(0,4)$, giving the result of Theorem 1. If $\rho_{n}=\rho>1$, i.e., if u_{t} is explosive, then $\sum_{t=1}^{n} u_{t-2}^{2}$ dominates the other terms related with ε_{t}, so $\delta_{n} \rightarrow_{p} 2$, and ξ_{n} converges to zero at an exponential rate, as can be shown using analytical tools similar to those in recent work by Phillips and Magdalinos (2005).

When $\rho_{n} \downarrow 1$ at a rate such that neither $a_{n}^{2} \sum_{t=1}^{n} u_{t-2}^{2}$ nor $\sum_{t=1}^{n} \varepsilon_{t-1}^{2}$ dominates each other, the asymptotics will be located somewhere in between those two extreme cases. The exact border-line rate of ρ_{n} is determined by the condition that

$$
\begin{equation*}
c_{n}=\rho_{n}^{n} / \sqrt{n} \rightarrow c \in[0, \infty) \text { as } n \rightarrow \infty, \quad \rho_{n} \geq 1 \tag{11}
\end{equation*}
$$

One example that satisfies (11) with $c>0$ is $\rho_{n}=(c \sqrt{n})^{1 / n}$ in which case $c_{n} \equiv c$. This ρ_{n} converges to unity at a rate slower than n^{-1} and faster than $n^{-\beta}$ for any $\beta<1$ when n is large.

Now suppose that the u_{t} series is initialized at $t=-2$ and the effect of the initial status is negligible in the sense that

$$
\begin{equation*}
\tilde{u}_{-2}=a_{n}^{1 / 2} \sigma^{-1} u_{-2} \rightarrow_{p} 0 . \tag{12}
\end{equation*}
$$

Let $c_{*}=\lim _{n \rightarrow \infty} \rho_{n}^{-n} \in[0,1]$ and $c_{* *}=\lim n a_{n} \rho_{n}^{-n}$. If $c>0$, then $c_{*}=c_{* *}=0$, and if $a_{n}=o\left(n^{-1}\right)$, then $c_{*}=1$ because $\log \rho_{n}^{-n}=-n \log \rho_{n}=-n \log \left(1+a_{n}\right)=-n\left[a_{n}+o\left(a_{n}\right)\right] \rightarrow 0$, and $c_{* *}=0$. Note that $c_{* *}$ is not always zero. One example is $\rho_{n}=1+c / n$, in which case $n a_{n}=c$ and $\rho_{n}^{n} \rightarrow e^{c}$, therefore $c_{* *}=c / e^{c}$. Using (8), (9), (10) and Lemma 7, we have the following result.

Theorem 2 When $\rho_{n} \geq 1$, under (11) and (12),

$$
\hat{\rho}_{n}=\rho_{n}+\left(\rho_{n}-1\right)+\delta_{n}+\xi_{n},
$$

where
(i) $\delta_{n} \Rightarrow \frac{1}{2} c^{2} X^{2} /\left(\frac{1}{4} c^{2} X^{2}+1\right)$,
(ii) $\sqrt{n} \xi_{n} \Rightarrow(c X Y+2 Z) /\left(\frac{1}{4} c^{2} X^{2}+1\right)$,
with

$$
\left(\begin{array}{l}
X \tag{13}\\
Y \\
Z
\end{array}\right) \sim N\left(0,\left[\begin{array}{ccc}
1-c_{*}^{2} & c_{* *} & 0 \\
c_{* *} & 1-c_{*}^{2} & 0 \\
0 & 0 & 1
\end{array}\right]\right)
$$

Note that the covariance $c_{* *}$ of X and Y is irrelevant for the limit distribution of $\sqrt{n}\left(\hat{\rho}_{n}-\rho_{n}\right)$ because if $c=0$ then the $X Y$ term disappears from $\sqrt{n} \xi_{n}$ and if $c>0$ then $c_{* *}=0$.

If $c=\infty$, then $\delta_{n} \rightarrow_{p} 2$ and thus $\hat{\rho}_{n}=2 \rho_{n}+1+o_{p}(1)$, implying that

$$
\frac{\sum_{t=1}^{n} \Delta y_{t-1} \Delta \varepsilon_{t}}{\sum_{t=1}^{n}\left(\Delta y_{t-1}\right)^{2}}=\rho_{n}+o_{p}(1) .
$$

Furthermore, in this case the limit distribution of $\sqrt{n} \xi_{n}$ is degenerate and when appropriately (i.e., exponentially) scaled, it can be shown that the limit distribution is Cauchy-like. We do not pursue this case in the present paper.

On the other hand, if $c=0$ and $\rho_{n} \downarrow 1$ sufficiently fast, we still have a Gaussian limit distribution, as follows.

Theorem 3 If $\rho_{n}^{2 n} / \sqrt{n} \rightarrow 0$, then under (12), $\sqrt{n}\left(\hat{\rho}_{n}-\rho_{n}-a_{n}\right) \Rightarrow N(0,4)$.
An obvious example satisfying the condition for Theorem 3 is the conventional local to unity case, where $\rho_{n}=1+c / n, \rho_{n}^{n} \rightarrow e^{c}$ and hence $n^{-1 / 2} \rho_{n}^{n} \rightarrow 0$. In this case $\sqrt{n} a_{n} \rightarrow 0$ and so the bias does not affect the limit distribution, giving $\sqrt{n}\left(\hat{\rho}_{n}-\rho_{n}\right) \Rightarrow N(0,4)$, as in Theorem 1 when $\rho=1$. Thus, Theorem 1 holds with the same \sqrt{n} rate as ρ passes through unity to locally explosive values.

The novelty in this result is that the limit distribution is clearly continuous as ρ passes through unity. So the Gaussian limit theory may be used to construct confidence intervals for ρ that are valid across stationary, nonstationary and even locally explosive cases. However, such confidence intervals are wide compared with those that are based on the usual serial correlation coefficient and clearly the $N(0,4)$ limit theory is insensitive to local departures from unity.

Differencing in the regression equation (2) reduces the signaling information carried by the regressor Δy_{t-1} in comparison to the usual levels-based approach. The effects are most obvious when $\rho_{n} \rightarrow 1$ in which case the conventional serial correlation coefficient has a higher rate of convergence (c.f. Phillips and Magdalinos, 2005), so $\hat{\rho}_{n}$ is infinitely deficient over this band of ρ_{n} values. On the other hand, the limit theory is not sensitive to initial conditions at all when $\rho=1$, as is the limit theory for the conventional serial correlation.

Simulation results are provided in Table 1. The limit theory is apparently quite accurate even for small n. Noticeably, there is virtually no bias in the estimator, unlike conventional serial correlations, and the t-ratio is well approximated by the standard normal.

2 Models with Trend

Next consider the corresponding model with a linear trend. Define $y_{t}=\alpha+\gamma t+u_{t}$, where $u_{t}=\rho u_{t-1}+\varepsilon_{t}, \varepsilon_{t} \sim \operatorname{iid}\left(0, \sigma^{2}\right)$, and $\rho \in(-1,1]$, with the initial conditions at $t=-2$ and

Table 1: Simulation evidence from 50,000 replications. The t-ratios are computed using $\sqrt{n}\left(\hat{\rho}_{n}-\rho\right) / \sqrt{2\left(1+\hat{\rho}_{n}\right)}$. The simulated variances of the t-ratios are given in the ' $\mathrm{v}(t)$ ' columns.

$\rho=0$				$\rho=0.3$			$\rho=0.5$		
n	$E(\hat{\rho})$	$n \mathrm{v}(\hat{\rho})$	$\mathrm{v}(t)$	$E(\hat{\rho})$	$n \mathrm{v}(\hat{\rho})$	$\mathrm{v}(t)$	$E(\hat{\rho})$	$n \mathrm{v}(\hat{\rho})$	$\mathrm{v}(t)$
40	0.023	2.009	1.025	0.317	2.548	1.020	0.512	2.896	1.019
80	0.012	2.001	1.007	0.310	2.554	1.001	0.506	2.937	1.006
160	0.007	2.031	1.017	0.304	2.560	0.995	0.503	2.958	0.999
320	0.003	2.012	1.007	0.303	2.569	0.993	0.502	2.973	0.997
$\rho=0.9$				$\rho=0.95$			$\rho=1$		
n	$E(\hat{\rho})$	$n \mathrm{v}(\hat{\rho})$	$\mathrm{v}(t)$	$E(\hat{\rho})$	$n \mathrm{v}(\hat{\rho})$	$\mathrm{v}(t)$	$E(\hat{\rho})$	$n \mathrm{v}(\hat{\rho})$	$\mathrm{v}(t)$
40	0.903	3.651	1.026	0.951	3.706	1.018	1.001	3.848	1.028
80	0.902	3.672	0.997	0.951	3.782	0.999	1.001	3.910	1.009
160	0.901	3.759	1.004	0.950	3.833	1.000	0.999	3.964	1.010
320	0.901	3.729	0.989	0.950	3.847	0.995	1.000	3.977	1.003

the same specifications as before. The implied model is

$$
\begin{equation*}
y_{t}=(1-\rho) \alpha+\rho \gamma+(1-\rho) \gamma t+\rho y_{t-1}+\varepsilon_{t} . \tag{14}
\end{equation*}
$$

For this model, we use double differencing to eliminate the intercept and the trend, leading to

$$
\begin{equation*}
\Delta^{2} y_{t}=\rho \Delta^{2} y_{t-1}+\Delta^{2} \varepsilon_{t} \tag{15}
\end{equation*}
$$

By recursion, we have

$$
\begin{equation*}
\Delta^{2} y_{t-1}=\sum_{j=0}^{\infty} \rho^{j} \Delta^{2} \varepsilon_{t-j-1}=\varepsilon_{t-1}-(2-\rho) \varepsilon_{t-2}+(1-\rho)^{2} \sum_{j=2}^{\infty} \rho^{j-2} \varepsilon_{t-j-1}, \tag{16}
\end{equation*}
$$

and then

$$
\begin{equation*}
E\left(\Delta^{2} y_{t-1}\right)^{2}=1+(2-\rho)^{2}+\frac{(1-\rho)^{4}}{1-\rho^{2}}=\frac{2(3-\rho) \sigma^{2}}{1+\rho} \tag{17}
\end{equation*}
$$

Further, since $\Delta^{2} \varepsilon_{t}=\varepsilon_{t}-2 \varepsilon_{t-1}+\varepsilon_{t-2}$, we have

$$
\begin{equation*}
E \Delta^{2} y_{t-1} \Delta^{2} \varepsilon_{t}=[-2-(2-\rho)] \sigma^{2}=-(4-\rho) \sigma^{2} \tag{18}
\end{equation*}
$$

It follows from (17) and (18) that

$$
\begin{equation*}
E \Delta^{2} y_{t-1} \tilde{\eta}_{t}=0, \quad \text { where } \tilde{\eta}_{t}=2 \Delta^{2} \varepsilon_{t}+\phi \Delta^{2} y_{t-1}, \quad \phi=\frac{(4-\rho)(1+\rho)}{3-\rho} \tag{19}
\end{equation*}
$$

The orthogonality condition (19) leads to the regression model

$$
\begin{equation*}
\tilde{\eta}_{t}=2\left(\Delta^{2} y_{t}-\rho \Delta^{2} y_{t-1}\right)+\phi \Delta^{2} y_{t-1}=\left(2 \Delta^{2} y_{t}+\Delta^{2} y_{t-1}\right)-\theta \Delta^{2} y_{t-1} \tag{20}
\end{equation*}
$$

where

$$
\begin{equation*}
\theta=1+2 \rho-\phi=-\frac{(1-\rho)^{2}}{3-\rho} \tag{21}
\end{equation*}
$$

Least squares regression on (20) produces the estimator

$$
\begin{equation*}
\hat{\theta}_{n}=\frac{\sum_{t=1}^{n} \Delta^{2} y_{t-1}\left(2 \Delta^{2} y_{t}+\Delta^{2} y_{t-1}\right)}{\sum_{t=1}^{n}\left(\Delta^{2} y_{t-1}\right)^{2}} \tag{22}
\end{equation*}
$$

where it is assumed that $\left\{y_{t}: t=-2,-1,0, \ldots, n\right\}$ are observed. The estimate $\hat{\theta}_{n}$ is consistent for θ and because $\Delta^{2} y_{t}$ is stationary for all $\rho \in(-1,1]$, it is asymptotically normal, as shown in the following theorem.

Theorem 4 For all $\rho \in(-1,1], \sqrt{n}\left(\hat{\theta}_{n}-\theta\right) \Rightarrow N\left(0, V_{\rho}\right)$ with

$$
\begin{aligned}
V_{\rho} & =\left(\frac{1+\rho}{3-\rho}\right)^{2} \sum_{1}^{\infty} b_{k}^{2}, \\
b_{1} & =2(3-\rho)+(1-\rho)^{2}-\left\{(2-\rho)+2(1-\rho)^{2} /(1+\rho)\right\} \phi, \\
b_{2} & =-(2-\rho)\left[1+(1-\rho)^{2}\right]+(1-\rho)^{3} \phi /(1+\rho) \\
b_{k} & =\rho^{k-3}(1-\rho)^{3}[(1-\rho)+\rho \phi /(1+\rho)], \quad k \geq 3,
\end{aligned}
$$

where ϕ and θ are defined in (19) and (21) respectively.
Some simulations are reported in Table 2, where the data for y_{t} are generated by (14) with $\alpha=\gamma=1$ and $\varepsilon_{t} \sim N(0,1)$. For small sample sizes, $\hat{\theta}_{n}$ seems to be slightly biased upwards. Note that $\hat{\theta}_{n}$ needs to be transformed back to $\hat{\rho}$ in order to estimate V_{ρ} and compute the t-ratio. The recovery of $\hat{\rho}$ is conducted according to $\rho=\frac{1}{2}[2+\theta-\sqrt{\theta(\theta-8)}]$ if $\theta<0$ and $\rho=1$ if $\theta \geq 0$. This right censoring seems to cause slightly large variations in the t-ratio for $\rho \simeq 1$ with small sample sizes.

Note that $\sum_{k=3}^{\infty} b_{k}^{2}=(1-\rho)^{6}[(1-\rho)+\rho \phi /(1+\rho)]^{2} /(1+\rho)$, which is continuous in ρ. Thus V_{ρ} is continuous in ρ and the asymptotic distribution is again continuous as ρ passes through unity. When $\rho=1$, we have $\theta=0, b_{1}=1, b_{2}=-1$, and $b_{k}=0$ for all $k \geq 3$, and the next result follows directly.

Corollary 5 If $\rho=1$, then $\sqrt{n} \hat{\theta}_{n} \Rightarrow N(0,2)$.

3 Extensions and Applications

The difference-based approach to estimation that is explored above can be particularly useful in dynamic panel data models with fixed effects. For dynamic panels, the transformation (2)

Table 2: Simulation evidence relating to Theorem 4 with 50,000 replications.

$\begin{gathered} \rho=0 \\ \left(\theta=-0.333, V_{\rho}=1.210\right) \end{gathered}$				$\begin{gathered} \rho=0.3 \\ \left(\theta=-0.181, V_{\rho}=1.547\right) \end{gathered}$			$\begin{gathered} \rho=0.5 \\ \left(\theta=-0.1, V_{\rho}=1.751\right) \end{gathered}$		
n	$E(\hat{\theta})$	$n \mathrm{v}(\hat{\theta})$	$\mathrm{v}(t)$	$E(\hat{\theta})$	$n \mathrm{v}(\hat{\theta})$	$\mathrm{v}(t)$	$E(\hat{\theta})$	$n \mathrm{v}(\hat{\theta})$	$\mathrm{v}(t)$
40	-0.308	1.267	1.026	-0.159	1.594	1.119	-0.078	1.756	1.166
80	-0.321	1.240	0.993	-0.170	1.569	1.052	-0.089	1.746	1.092
160	-0.326	1.240	0.998	-0.176	1.554	1.015	-0.094	1.780	1.074
320	-0.330	1.224	1.000	-0.179	1.573	1.019	-0.097	1.764	1.034
$\begin{gathered} \rho=0.9 \\ \left(\theta=-0.005, V_{\rho}=1.990\right) \end{gathered}$				$\begin{aligned} & \rho=0.95 \\ & \left..001, V_{\rho}=1.997\right) \end{aligned}$			$\begin{gathered} \rho=1 \\ \left(\theta=0, V_{\rho}=2\right) \end{gathered}$		
n	$E(\hat{\theta})$	$n \mathrm{v}(\hat{\theta})$	$\mathrm{v}(t)$	$E(\hat{\theta})$	$n \mathrm{v}(\hat{\theta})$	$\mathrm{v}(t)$	$E(\hat{\theta})$	$n \mathrm{v}(\hat{\theta})$	$\mathrm{v}(t)$
40	0.019	1.973	1.228	0.023	2.013	1.253	0.024	2.002	1.244
80	0.007	2.001	1.175	0.010	2.005	1.177	0.013	1.994	1.170
160	0.001	1.985	1.114	0.005	1.988	1.115	0.005	1.997	1.120
320	-0.002	1.977	1.075	0.003	2.010	1.090	0.004	2.000	1.083

effectively eliminates fixed effects and because information about the autoregressive coefficient accumulates as the number of both individual and time series observations increases, the cost of first differencing disappears rather quickly. Moreover, as the simulations indicate, there is virtually no time series autoregressive bias in this approach, so that the dynamic panel bias is correspondingly small. Furthermore, there is no weak instrument problem as $\rho \rightarrow 1$ in this new approach, as there is with conventional GMM approaches. Moreover, the Gaussian limit theory with estimable variances also holds with the time span T fixed and large N, not just for large T. Also, in view of Theorem 4, incidental linear trends can be eliminated, while still retaining standard Gaussian asymptotics with estimable variances. This last fact allows for the construction of valid panel unit root tests in the presence of incidental trends. These issues are being explored by the authors in other work.

4 Proofs

Let $X_{t}=C(L) \varepsilon_{t}=\sum_{0}^{\infty} c_{j} \varepsilon_{t-j}$ and $Y_{t}=D(L) \varepsilon_{t}=\sum_{0}^{\infty} d_{j} \varepsilon_{t-j}$ where $\varepsilon_{t} \sim i i d\left(0, \sigma^{2}\right)$. Let $\sum_{0}^{\infty} c_{j} d_{j}=0$ so that X_{t} and Y_{t} are uncorrelated. Define $\psi_{k}=\sum_{0}^{\infty}\left(c_{j} d_{k+j}+c_{k+j} d_{j}\right)$. We first establish a useful CLT for $n^{-1 / 2} \sum_{t=1}^{n} X_{t} Y_{t}$, in a manner similar to Phillips and Solo (1992).

Theorem $6 \sum_{1}^{\infty} \psi_{k}^{2}<\infty$ and $n^{-1 / 2} \sum_{t=1}^{n} X_{t} Y_{t} \Rightarrow N\left(0, \sigma^{4} \sum_{1}^{\infty} \psi_{k}^{2}\right)$ if

$$
\begin{equation*}
\sum_{1}^{\infty} s\left(c_{s}^{2}+d_{s}^{2}\right)<\infty \tag{23}
\end{equation*}
$$

Proof. Let $a_{j}=\left|c_{j}\right|+\left|d_{j}\right|$. Then $\left|c_{j} d_{k}+c_{k} d_{j}\right| \leq\left|c_{j} d_{k}\right|+\left|c_{k} d_{j}\right| \leq a_{j} a_{k}$ for all j and k, and (23) implies that

$$
\begin{equation*}
\sum_{0}^{\infty} a_{s}^{2}<\infty, \quad \sum_{1}^{\infty} s a_{s}^{2}<\infty \tag{24}
\end{equation*}
$$

because $a_{j}^{2} \leq 2\left(c_{j}^{2}+d_{j}^{2}\right)$. Thus

$$
\begin{aligned}
\sum_{1}^{\infty} \psi_{k}^{2} & =\sum_{k=1}^{\infty}\left[\sum_{j=0}^{\infty}\left(c_{j} d_{k+j}+c_{k+j} d_{j}\right)\right]^{2} \leq \sum_{k=1}^{\infty}\left(\sum_{j=0}^{\infty} a_{j} a_{k+j}\right)^{2} \\
& \leq \sum_{k=1}^{\infty}\left(\sum_{j=0}^{\infty} a_{j}^{2}\right)\left(\sum_{j=0}^{\infty} a_{k+j}^{2}\right)=\left(\sum_{0}^{\infty} a_{j}^{2}\right)\left(\sum_{1}^{\infty} s a_{s}^{2}\right)<\infty
\end{aligned}
$$

by (24), so $\sum_{1}^{\infty} \psi_{k}^{2}<\infty$ is proved.
For the CLT, write $X_{t} Y_{t}=\sum_{0}^{\infty} c_{j} d_{j} \varepsilon_{t-j}^{2}+\sum_{j=0}^{\infty} \sum_{k=j+1}^{\infty}\left(c_{j} d_{k}+c_{k} d_{j}\right) \varepsilon_{t-j} \varepsilon_{t-k}=Z_{a t}+Z_{b t}$. We will show that

$$
\begin{align*}
& n^{-1 / 2} \sum_{t=1}^{n} Z_{a t} \rightarrow_{p} 0 \tag{25}\\
& n^{-1 / 2} \sum_{t=1}^{n} Z_{b t} \Rightarrow N\left(0, \sigma^{4} \sum_{1}^{\infty} \psi_{k}^{2}\right) . \tag{26}
\end{align*}
$$

For (25), let $f_{j}=c_{j} d_{j}$ and $F(L)=f_{j} L^{j}$. Then $Z_{a t}=F(L) \varepsilon_{t}^{2}$. Apply the Phillips-Solo device to $F(L)$ to get $F(L)=F(1)+\tilde{F}(L)(L-1)=\tilde{F}(L)(L-1)$, where $\tilde{F}(L)=\sum_{0}^{\infty} \tilde{f}_{j} L^{j}$, which simplifies because $F(1)=\sum_{0}^{\infty} c_{j} d_{j}=0$ by supposition. Thus, we have

$$
\begin{equation*}
n^{-1 / 2} \sum_{t=1}^{n} Z_{a t}=n^{-1 / 2}\left(\tilde{Z}_{a 0}-\tilde{Z}_{a n}\right), \quad \tilde{Z}_{a t}=\sum_{0}^{\infty} \tilde{f}_{j} \varepsilon_{t-j}^{2} \tag{27}
\end{equation*}
$$

Now (25) follows if $\sup _{t} E\left|\tilde{Z}_{a t}\right|<\infty$. But

$$
E\left|\tilde{Z}_{a t}\right| \leq E \sum_{0}^{\infty}\left|\tilde{f}_{j}\right| \varepsilon_{t-j}^{2}=\sigma^{2} \sum_{0}^{\infty}\left|\tilde{f}_{j}\right| \leq \sigma^{2} \sum_{j=0}^{\infty} \sum_{k=j+1}^{\infty}\left|f_{j}\right|=\sigma^{2} \sum_{1}^{\infty} s\left|f_{s}\right|
$$

and furthermore

$$
\sum_{1}^{\infty} s\left|f_{s}\right|=\sum_{1}^{\infty} s\left|c_{s} d_{s}\right| \leq\left(\sum_{0}^{\infty} s c_{s}^{2}\right)^{1 / 2}\left(\sum_{0}^{\infty} s d_{s}^{2}\right)^{1 / 2}<\infty
$$

by (24). So (25) is proved. For (26), let $g_{k, j}=c_{j} d_{k+j}+c_{k+j} d_{j}$. Then

$$
\begin{aligned}
Z_{b t} & =\sum_{j=0}^{\infty} \sum_{k=j+1}^{\infty}\left(c_{j} d_{k}+c_{k} d_{j}\right) \varepsilon_{t-j} \varepsilon_{t-k}=\sum_{j=0}^{\infty} \sum_{r=1}^{\infty}\left(c_{j} d_{r+j}+c_{r+j} d_{j}\right) \varepsilon_{t-j} \varepsilon_{t-r-j} \\
& =\sum_{r=1}^{\infty} \sum_{0}^{\infty} g_{r, j} \varepsilon_{t-j} \varepsilon_{t-r-j}=\sum_{r=1}^{\infty} G_{r}(L) \varepsilon_{t} \varepsilon_{t-r}, \quad G_{r}(L)=\sum_{0}^{\infty} g_{r, j} L^{j} .
\end{aligned}
$$

Use the Phillips-Solo device again to each $G_{r}(L)$ to get $G_{r}(L)=G_{r}(1)+\tilde{G}_{r}(L)(L-1)$. Thus

$$
\begin{equation*}
n^{-1 / 2} \sum_{t=1}^{n} Z_{b t}=n^{-1 / 2} \sum_{t=1}^{n} \sum_{r=1}^{\infty} G_{r}(1) \varepsilon_{t} \varepsilon_{t-r}+n^{-1 / 2} \sum_{r=1}^{\infty}\left(\tilde{v}_{r 0}-\tilde{v}_{r n}\right), \tag{28}
\end{equation*}
$$

where $\tilde{v}_{r t}=\tilde{G}_{r}(L) \varepsilon_{t} \varepsilon_{t-r}=\sum_{0}^{\infty} \tilde{g}_{r, j} \varepsilon_{t-j} \varepsilon_{t-r-j}$ with $\tilde{g}_{r, j}=\sum_{s=j+1}^{\infty} g_{r, s}$. But

$$
\sum_{r=1}^{\infty} \tilde{v}_{r t}=\sum_{r=1}^{\infty} \sum_{j=0}^{\infty} \tilde{g}_{r, j} \varepsilon_{t-j} \varepsilon_{t-r-j}=\sum_{j=0}^{\infty} \varepsilon_{t-j}\left(\sum_{r=1}^{\infty} \tilde{g}_{r, j} \varepsilon_{t-r-j}\right),
$$

Thus, we have

$$
\begin{equation*}
E\left(\sum_{r=1}^{\infty} \tilde{v}_{r t}\right)^{2}=\sigma^{4} \sum_{j=0}^{\infty} \sum_{r=1}^{\infty} \tilde{g}_{r, j}^{2}=\sigma^{4} \sum_{j=0}^{\infty} \sum_{r=1}^{\infty}\left(\sum_{k=j+1}^{\infty} g_{r, k}\right)^{2} \tag{29}
\end{equation*}
$$

and again because $\left|g_{k, j}\right| \leq a_{j} a_{k+j}$,

$$
\begin{aligned}
& \sum_{j=0}^{\infty} \sum_{r=1}^{\infty}\left(\sum_{k=j+1}^{\infty} g_{r, k}\right)^{2} \leq \sum_{j=0}^{\infty} \sum_{r=1}^{\infty}\left(\sum_{k=j+1}^{\infty} a_{k} a_{r+k}\right)^{2} \\
& \leq \sum_{j=0}^{\infty} \sum_{r=1}^{\infty}\left(\sum_{k=j+1}^{\infty} a_{k}^{2}\right)\left(\sum_{k=j+1}^{\infty} a_{r+k}^{2}\right)=\sum_{j=0}^{\infty}\left(\sum_{k=j+1}^{\infty} a_{k}^{2}\right)\left(\sum_{r=1}^{\infty} \sum_{k=j+1}^{\infty} a_{r+k}^{2}\right) \\
& =\sum_{j=0}^{\infty}\left(\sum_{k=j+1}^{\infty} a_{k}^{2}\right)\left(\sum_{s=j+1}^{\infty}(s-j) a_{s+1}^{2}\right) \leq \sum_{j=0}^{\infty}\left(\sum_{k=j+1}^{\infty} a_{k}^{2}\right)\left(\sum_{s=1}^{\infty} s a_{s}^{2}\right) \\
& =\left(\sum_{1}^{\infty} s a_{s}^{2}\right)^{2}<\infty, \quad \text { by }(24) .
\end{aligned}
$$

Thus (29) is finite uniformly in t, so the second term of (28) converges in probability to zero.
The first term of (28) is $n^{-1 / 2} \sum_{t} \varepsilon_{t} \varepsilon_{t-1}^{g}$ where $\varepsilon_{t-1}^{g}=\sum_{r=1}^{\infty} G_{r}(1) \varepsilon_{t-r}$ with $G_{r}(1)=\psi_{r}=$ $\sum_{0}^{\infty}\left(c_{j} d_{r+j}+c_{r+j} d_{j}\right)$. This term will be shown to follow the martingale CLT, which holds if (i) a version of Lindeberg condition holds, and if (ii) $n^{-1} \sum_{t=1}^{n}\left(\varepsilon_{t} \varepsilon_{t-1}^{g}\right)^{2} \rightarrow_{p} \sigma^{4} \sum_{1}^{\infty} \psi_{k}^{2}$. The Lindeberg condition follows directly from stationarity and integrability. The convergence in probability (ii) holds if $n^{-1} \sum_{1}^{n}\left(\varepsilon_{t-1}^{g}\right)^{2} \rightarrow_{p} \sigma^{2} \sum_{1}^{\infty} \psi_{k}^{2}$, which is satisfied by Lemma 5.11 of Phillips and Solo. (See 5.10 of Phillips and Solo for details.) Now the stated CLT follows by (25) and (26) because $X_{t} Y_{t}=Z_{a t}+Z_{b t}$.

It is of some independent interest from a technical point of view that only a finite second moment is assumed for ε_{t} in the above derivation.

Theorem 1 is now proved using Phillips and Solo (1992, theorem 3.7) for the denominator and our Theorem 6 for the numerator. Below, the regularity conditions are automatically satisfied because of the exponentially decaying coefficients in the lag polynomials.

Proof of Theorem 1. First note that

$$
\begin{equation*}
\sqrt{n}\left(\hat{\rho}_{n}-\rho\right)=\frac{n^{-1 / 2} \sum_{t=1}^{n} \Delta y_{t-1} \eta_{t}}{n^{-1} \sum_{t=1}^{n}\left(\Delta y_{t-1}\right)^{2}} \tag{30}
\end{equation*}
$$

When $\rho=1$, we have $\Delta y_{t}=\varepsilon_{t}$ and $\eta_{t}=2 \Delta \varepsilon_{t}+2 \Delta y_{t-1}=2 \varepsilon_{t}$, so

$$
\sqrt{n}\left(\hat{\rho}_{t}-\rho\right)=\frac{2 n^{-1 / 2} \sum_{t} \varepsilon_{t-1} \varepsilon_{t}}{n^{-1} \sum_{t} \varepsilon_{t-1}^{2}} \Rightarrow \frac{2 N\left(0, \sigma^{4}\right)}{\sigma^{2}}={ }_{d} N(0,4)
$$

as stated. For $|\rho|<1$, since

$$
\begin{equation*}
\Delta y_{t-1}=\rho \Delta y_{t-2}+\Delta \varepsilon_{t-1}=\sum_{0}^{\infty} \rho^{j} \Delta \varepsilon_{t-j-1}=\varepsilon_{t-1}-(1-\rho) \sum_{1}^{\infty} \rho^{j-1} \varepsilon_{t-j-1} \tag{31}
\end{equation*}
$$

we find $E\left(\Delta y_{t-1}\right)^{2}=\sigma^{2}\left[1+(1-\rho)^{2} \sum_{1}^{\infty} \rho^{2(j-1)}\right]=2 \sigma^{2} /(1+\rho)$ and hence

$$
\begin{equation*}
\frac{1}{n} \sum_{t=1}^{n}\left(\Delta y_{t-1}\right)^{2} \rightarrow_{a . s .} \frac{2 \sigma^{2}}{1+\rho} \tag{32}
\end{equation*}
$$

by Theorem 3.7 of Phillips and Solo (1992). We also have

$$
\begin{equation*}
\eta_{t}=2 \Delta \varepsilon_{t}+(1+\rho) \Delta y_{t-1}=2 \varepsilon_{t}-(1-\rho) \varepsilon_{t-1}-\left(1-\rho^{2}\right) \sum_{1}^{\infty} \rho^{j-1} \varepsilon_{t-j-1} \tag{33}
\end{equation*}
$$

Let $\Delta y_{t-1}=\sum_{0}^{\infty} c_{j} \varepsilon_{t-j}$ and $\eta_{t}=\sum_{0}^{\infty} d_{j} \varepsilon_{t-j}$, where

$$
\begin{array}{cl}
c_{0}=0, & d_{0}=2 \\
c_{1}=1, & d_{1}=-(1-\rho) \\
c_{k}=-\rho^{k-2}(1-\rho), & d_{k}=-\rho^{k-2}\left(1-\rho^{2}\right), \quad k \geq 2
\end{array}
$$

due to (31) and (33). Clearly $E \Delta y_{t-1} \eta_{t}=-(1-\rho)+(1-\rho)\left(1-\rho^{2}\right)\left(1+\rho^{2}+\cdots\right)=0$, and by Theorem 6, we have

$$
\begin{equation*}
n^{-1 / 2} \sum_{t=1}^{n} \Delta y_{t-1} \eta_{t} \Rightarrow N\left(0, \sigma^{4} \sum_{1}^{\infty} \psi_{k}^{2}\right), \quad \psi_{k}=\sum_{j=0}^{\infty}\left(c_{j} d_{k+j}+c_{k+j} d_{j}\right) \tag{34}
\end{equation*}
$$

so it only remains to calculate the ψ_{k} 's. After some algebra, we get

$$
\sum_{j=0}^{\infty} c_{j} d_{k+j}=-\rho^{k-1}(1-\rho), \quad k \geq 1
$$

and

$$
\sum_{j=0}^{\infty} c_{1+j} d_{j}=3-\rho, \quad \sum_{j=0}^{\infty} c_{k+j} d_{j}=-\rho^{k-2}(1-\rho)(2-\rho), \quad k \geq 2
$$

implying that

$$
\psi_{1}=2, \quad \psi_{k}=-2 \rho^{k-2}(1-\rho), \quad r \geq 2
$$

So the variance in (34) is $\sigma^{4}\left[4+4(1-\rho)^{2} \sum_{2}^{\infty} \rho^{2(k-2)}\right]=8 \sigma^{4} /(1+\rho)$. Finally, from (30), (32) and (34) with the calculated variance, we have

$$
\sqrt{n}\left(\hat{\rho}_{n}-\rho\right) \Rightarrow\left(\frac{1+\rho}{2 \sigma^{2}}\right) N\left(0, \frac{8 \sigma^{4}}{1+\rho}\right)={ }_{d} N(0,2(1+\rho)),
$$

as stated.
Theorem 4 will be proved next because it involves similar algebra. Recall that $\phi=$ $(4-\rho)(1+\rho) /(3-\rho)$ and $\theta=-(1-\rho)^{2} /(3-\rho)$.
Proof of Theorem 4. Write

$$
\begin{equation*}
\sqrt{n}\left(\hat{\theta}_{n}-\theta\right)=\frac{n^{-1 / 2} \sum_{t} \Delta^{2} y_{t-1} \tilde{\eta}_{t}}{n^{-1 / 2} \sum_{t}\left(\Delta^{2} y_{t-1}\right)^{2}} . \tag{35}
\end{equation*}
$$

The denominator of (35) converges almost surely to $2(3-\rho) \sigma^{2} /(1+\rho)$ by (17) and Theorem 3.7 of Phillips and Solo (1992). As for the numerator of (35), because of the exponential decay in the coefficients of the lag polynomials we may invoke Theorem 6. Let $\Delta^{2} y_{t-1}=\sum_{0}^{\infty} c_{j} \varepsilon_{t-j}$ with

$$
\begin{equation*}
c_{0}=0, c_{1}=1, c_{2}=-(2-\rho), c_{k}=\rho^{k-3}(1-\rho)^{2}, k \geq 3, \tag{36}
\end{equation*}
$$

due to (16). Because $\tilde{\eta}_{t}=2 \Delta^{2} \varepsilon_{t}+\phi \Delta^{2} y_{t-1}=2 \varepsilon_{t}-4 \varepsilon_{t-1}+2 \varepsilon_{t-2}+\phi \sum_{0}^{\infty} c_{j} \varepsilon_{t-j}$, we also have $\tilde{\eta}_{t}=\sum_{0}^{\infty} d_{j} \varepsilon_{t-j}$ with

$$
\begin{equation*}
d_{0}=2+\phi c_{0}, d_{1}=-4+\phi c_{1}, d_{2}=2+\phi c_{2}, d_{k}=\phi c_{k}, k \geq 3 \tag{37}
\end{equation*}
$$

Note that $\sum_{0}^{\infty} c_{j} d_{j}=0$. We can show that $\sum_{j=2}^{\infty} c_{j} c_{k+j}=\rho^{k-1} \mu$ where $\mu=-2(1-\rho)^{2} /(1+\rho)$ for $k \geq 1$. (First show the result for $k=1$, and then use the recursion $c_{j+1}=\rho c_{j}, j \geq 3$.) Using this fact and (36) and (37), we can show that

$$
\begin{aligned}
& \sum_{j=0}^{\infty} c_{j} d_{k+j}=2 c_{1}\{k=1\}+\left(c_{k+1}+\rho^{k-1} \mu\right) \phi \\
& \sum_{j=0}^{\infty} c_{k+j} d_{j}=2\left(c_{k}-2 c_{k+1}+c_{k+2}\right)+\left(c_{k+1}+\rho^{k-1} \mu\right) \phi
\end{aligned}
$$

for $k \geq 1$. Adding term by term, we get

$$
\psi_{k}=2 b_{k}=2\left[c_{1}\{k=1\}+\left(c_{k}-2 c_{k+1}+c_{k+2}\right)+\left(c_{k+1}+\rho^{k-1} \mu\right) \phi\right]
$$

and by Theorem $6, n^{-1 / 2} \sum_{t=1}^{n} \Delta^{2} y_{t-1} \tilde{\eta}_{t} \Rightarrow N\left(0,4 \sigma^{4} \sum_{1}^{\infty} b_{k}^{2}\right)$. The result then follows by combining the limits for the numerator and denominator.

Next we prove the theorem for the mildly explosive case (11). Define

$$
\begin{equation*}
X_{n, k}=\left(\frac{2 a_{n}}{\sigma^{2}}\right)^{1 / 2} \sum_{t=1}^{n} \rho_{n}^{-t} \varepsilon_{t-k}, \quad Y_{n, k}=\left(\frac{2 a_{n}}{\sigma^{2}}\right)^{1 / 2} \sum_{t=1}^{n} \rho_{n}^{-(n-t)} \varepsilon_{t-k}, \tag{38}
\end{equation*}
$$

$W_{n}=n^{-1} \sum_{t=1}^{n} \varepsilon_{t-1}^{2} / \sigma^{2}$, and $Z_{n}=n^{-1 / 2} \sum_{t=1}^{n} \varepsilon_{t} \varepsilon_{t-1} / \sigma^{2}$. We will deal with the individual terms of (6) and (7) one by one. Note that $\varepsilon_{t} \sim \operatorname{iid}\left(0, \sigma^{2}\right)$.

Lemma 7 The following is true:

$$
\begin{aligned}
\frac{a_{n}^{2}}{n \sigma^{2}} \sum_{t=1}^{n} u_{t-2}^{2} & =\frac{c_{n}^{2} X_{n, 2}^{2}}{2\left(\rho_{n}+1\right)}+\frac{\rho_{n}^{2}\left(c_{n}^{2}-n^{-1}\right) \tilde{u}_{-2}^{2}}{\rho_{n}+1} \\
& +\frac{\sqrt{2} c_{n} \tilde{u}_{-2}}{\rho_{n}+1}\left(\rho_{n}^{2} c_{n} X_{n, 2}-n^{-1 / 2} Y_{n, 2}\right)-\nu_{1 n} \\
\frac{2 a_{n}}{n^{1 / 2} \sigma^{2}} \sum_{t=1}^{n} u_{t-2} \varepsilon_{t-k} & =c_{n} X_{n, 2} Y_{n, k}+\sqrt{2} c_{n} Y_{n, k} \tilde{u}_{-2}-\nu_{2 n, k}, \quad k=0,1
\end{aligned}
$$

where

$$
\begin{aligned}
\nu_{1 n} & =\frac{a_{n}}{n\left(\rho_{n}+1\right)} \sum_{t=1}^{n} \varepsilon_{t-2}^{2}+\frac{2 a_{n}}{n\left(\rho_{n}+1\right)} \sum_{j=1}^{n} \sum_{k=j+1}^{n} \rho_{n}^{k-j} \varepsilon_{j-2} \varepsilon_{k-2} \\
& =O_{p}\left(a_{n}\right)+O_{p}\left(n^{-1 / 2} c_{n}\right), \\
\nu_{2 n, k} & =\frac{a_{n}}{\sqrt{n}} \sum_{t=1}^{n} \sum_{j=t+1}^{n} \rho_{n}^{t-j} \varepsilon_{j-2} \varepsilon_{t-k}=O_{p}\left(a_{n}^{1 / 2}\right), \quad k=0,1 .
\end{aligned}
$$

Proof of Lemma 7. The expressions are worked out using the identities $\sum_{t=1}^{n} \sum_{j=1}^{t} x_{t j}=$ $\sum_{j=1}^{n} \sum_{t=j}^{n} x_{t j}, \sum_{t=2}^{n} \sum_{j=1}^{t-1} x_{t j}=\sum_{j=1}^{n-1} \sum_{t=j+1}^{n} x_{t j}$, and $\sum_{t=j+1}^{n} \sum_{k=j+1}^{n} x_{t k}=\sum_{k=j+1}^{n} \sum_{t=k}^{n} x_{t k}$.

The next lemma provides a useful simplification.
Lemma $8 X_{n, 2}=X_{n, 0}+o_{p}(1)$ and $Y_{n, 1}=Y_{n, 0}+o_{p}(1)$.
Proof. Let $k_{1 n}=\left(2 a_{n} / \sigma^{2}\right)^{1 / 2}$ (only for notational simplicity). Then

$$
\begin{aligned}
X_{n, 2} & =k_{1 n} \sum_{t=1}^{n} \rho_{n}^{-t} \varepsilon_{t-2}=k_{1 n} \sum_{t=-1}^{n-2} \rho_{n}^{-(t+2)} \varepsilon_{t} \\
& =k_{1 n}\left(\rho_{n}^{-2} \sum_{t=1}^{n} \rho_{n}^{-t} \varepsilon_{t}+\rho_{n}^{-1} \varepsilon_{-1}+\rho_{n}^{-2} \varepsilon_{0}-\rho_{n}^{-(n-1)} \varepsilon_{n-1}-\rho_{n}^{-n} \varepsilon_{n}\right) \\
& =\rho_{n}^{-2} X_{n, 0}+k_{1 n}\left(\rho_{n}^{-1} \varepsilon_{-1}+\rho_{n}^{-2} \varepsilon_{0}-\rho_{n}^{-(n-1)} \varepsilon_{n-1}-\rho_{n}^{-n} \varepsilon_{n}\right) \\
& =\rho_{n}^{-2} X_{n, 0}+O_{p}\left(k_{n}\right)=X_{n, 0}+O_{p}\left(a_{n}^{1 / 2}\right),
\end{aligned}
$$

under (11), because $X_{n, k}=O_{p}(1)$ and $\rho_{n}^{-2}=1-a_{n}\left(\rho_{n}+1\right) / \rho_{n}^{2}=1-O\left(a_{n}\right)$. Similarly,

$$
\begin{aligned}
Y_{n, 1} & =k_{2 n} \sum_{t=1}^{n} \rho_{n}^{t-n} \varepsilon_{t-1}=k_{2 n} \sum_{t=0}^{n-1} \rho_{n}^{t+1-n} \varepsilon_{t}, \quad k_{2 n}=\left(2 a_{n} / \sigma^{2}\right)^{1 / 2} \\
& =k_{2 n}\left(\rho_{n} \sum_{t=1}^{n} \rho_{n}^{t-n} \varepsilon_{t}+\rho_{n}^{1-n} \varepsilon_{0}-\rho_{n} \varepsilon_{n}\right) \\
& =\rho_{n} Y_{n, 0}+k_{2 n}\left(\rho_{n}^{1-n} \varepsilon_{0}-\rho_{n} \varepsilon_{n}\right)=Y_{n, 0}+O_{p}\left(a_{n}^{1 / 2}\right)
\end{aligned}
$$

under (11).
Now let $X_{n}=X_{n, 0}=\left(2 a_{n} / \sigma^{2}\right)^{1 / 2} \sum_{t=1}^{n} \rho_{n}^{-t} \varepsilon_{t}$ and $Y_{n}=Y_{n, 0}=\left(2 a_{n} / \sigma^{2}\right)^{1 / 2} \sum_{t=1}^{n} \rho_{n}^{t-n} \varepsilon_{t}$ for notational simplicity. We obtain the limit distribution of $\left(X_{n}, Y_{n}, Z_{n}\right)$. The following lemma will be useful in proving the CLT in Lemma 10.

Lemma 9 Under (11),
(i) $\max _{1 \leq t \leq n} a_{n}^{1 / 2} \rho_{n}^{-t}\left|\varepsilon_{t}\right| \rightarrow_{p} 0$;
(ii) $\max _{1 \leq t \leq n} a_{n}^{1 / 2} \rho_{n}^{t-n}\left|\varepsilon_{t}\right| \rightarrow_{p} 0$;
(iii) $\max _{1 \leq t \leq n} n^{-1 / 2}\left|\varepsilon_{t} \varepsilon_{t-1}\right| \rightarrow_{p} 0$.

Proof. We prove (i) and (ii) and (iii) follow similarly. Let $b_{n t}=a_{n} \rho_{n}^{-2 t}$. Then (i) states that $\max _{1 \leq t \leq n} b_{n t}^{1 / 2}\left|\varepsilon_{t}\right| \rightarrow_{p} 0$ or equivalently that $\max _{1 \leq t \leq n} b_{n t} \varepsilon_{t}^{2} \rightarrow_{p} 0$. So we shall show that

$$
P\left\{\max _{1 \leq t \leq n} b_{n t} \varepsilon_{t}^{2}>\delta\right\} \rightarrow 0 \text { for all } \delta>0
$$

Fix $\delta>0$. Because

$$
P\left\{\max _{1 \leq t \leq n} b_{n t} \varepsilon_{t}^{2}>\delta\right\}=1-\prod_{t=1}^{n}\left(1-P\left\{b_{n t} \varepsilon_{t}^{2}>\delta\right\}\right)
$$

this probability converges to zero if and only if $\sum_{t=1}^{n} P\left\{b_{n t} \varepsilon_{t}^{2}>\delta\right\} \rightarrow 0$. But

$$
\begin{aligned}
\sum_{t=1}^{n} P\left\{b_{n t} \varepsilon_{t}^{2}>\delta\right\} & =\sum_{t=1}^{n}\left(b_{n t} / \delta\right) \cdot\left(\delta / b_{n t}\right) P\left\{\varepsilon_{t}^{2}>\delta / b_{n t}\right\} \\
& \leq \sum_{t=1}^{n}\left(b_{n t} / \delta\right) E \varepsilon_{t}^{2} 1\left\{\varepsilon_{t}^{2}>\delta / b_{n t}\right\} \\
& \leq \sum_{t=1}^{n}\left(b_{n t} / \delta\right) \max _{1 \leq j \leq n} E \varepsilon_{j}^{2} 1\left\{\varepsilon_{j}^{2}>\delta / b_{n t}\right\} \\
& \leq \delta^{-1}\left(\sum_{t=1}^{n} b_{n t}\right) E \varepsilon_{1}^{2} 1\left\{\varepsilon_{1}^{2}>\delta / a_{n}\right\} \rightarrow 0
\end{aligned}
$$

because $b_{n t} \leq a_{n}, a_{n} \rightarrow 0, E \varepsilon_{1}^{2}<\infty$, and $\sum_{t=1}^{n} b_{n t} \leq a_{n} /\left(\rho_{n}^{2}-1\right)=1 /\left(\rho_{n}+1\right)=O(1)$. This proves (i).

Lemma 10 Under (11), $\left(X_{n}, Y_{n}, Z_{n}\right) \Rightarrow(X, Y, Z)$ with limit distribution (13).

Proof. The limit variance matrix is straightforwardly obtained by calculation. For the joint Gauss limit, we use the Cramér-Wold device and show that for any constants $\lambda_{1}^{*}, \lambda_{2}^{*}$ and λ_{3}^{*},

$$
U_{n}=\lambda_{1}^{*} X_{n}+\lambda_{2}^{*} Y_{n}+\lambda_{3}^{*} Z_{n},
$$

converges to a normal distribution. Let $\lambda_{1}=\sqrt{2} \sigma^{-1} \lambda_{1}^{*}, \lambda_{2}=\sqrt{2} \sigma^{-1} \lambda_{2}^{*}$, and $\lambda_{3}=\sigma^{-2} \lambda_{3}^{*}$. Then by the definition of X_{n}, Y_{n} and Z_{n}, we have

$$
U_{n}=\sum_{t=1}^{n} \zeta_{n t}, \quad \zeta_{n t}=a_{n}^{1 / 2}\left(\lambda_{1} \rho_{n}^{-t}+\lambda_{2} \rho_{n}^{t-n}\right) \varepsilon_{t}+\lambda_{3} n^{-1 / 2} \varepsilon_{t} \varepsilon_{t-1}
$$

Let $\mathcal{F}_{n t}$ be the σ-field generated by $\varepsilon_{j}, j \leq t$. Then $\zeta_{n t}$ is a martingale difference array with respect to $\mathcal{F}_{n t}$. We invoke the martingale difference CLT (e.g., Theorem CLT of Phillips and Solo, 1992), which requires that
(i) $\sum_{t=1}^{n} \zeta_{n t}^{2} \rightarrow_{p} \frac{1}{2}\left[\left(\lambda_{1}^{2}+\lambda_{2}^{2}\right)\left(1-c_{*}^{2}\right)+2 \lambda_{1} \lambda_{2} c_{* *}\right] \sigma^{2}+\lambda_{3}^{2} \sigma^{4}$;
(ii) $\max _{1 \leq t \leq n}\left|\zeta_{n t}\right| \rightarrow_{p} 0$.

But (ii) is already proved by Lemma 9 because

$$
\max _{1 \leq t \leq n}\left|\zeta_{n t}\right| \leq \lambda_{1} \max _{1 \leq t \leq n} a_{n}^{1 / 2} \rho_{n}^{-t}\left|\varepsilon_{t}\right|+\lambda_{2} \max _{1 \leq t \leq n} a_{n}^{1 / 2} \rho_{n}^{t-n}\left|\varepsilon_{t}\right|+\lambda_{3} \max _{1 \leq t \leq n} n^{-1 / 2}\left|\varepsilon_{t} \varepsilon_{t-1}\right|
$$

so it remains to prove (i). Write

$$
\begin{aligned}
\sum_{t=1}^{n} \zeta_{n t}^{2} & =\sum_{t=1}^{n} a_{n}\left(\lambda_{1} \rho_{n}^{-t}+\lambda_{2} \rho_{n}^{t-n}\right)^{2} \varepsilon_{t}^{2}+\lambda_{3}^{2} \sum_{t=1}^{n} n^{-1} \varepsilon_{t}^{2} \varepsilon_{t-1}^{2} \\
& +2 \lambda_{3} \sum_{t=1}^{n} a_{n}^{1 / 2} n^{-1 / 2}\left(\lambda_{1} \rho_{n}^{-t}+\lambda_{2} \rho_{n}^{t-n}\right) \varepsilon_{t}^{2} \varepsilon_{t-1} \\
& =Q_{1 n}+\lambda_{3}^{2} Q_{2 n}+2 \lambda_{3} Q_{3 n}, \quad \text { say. }
\end{aligned}
$$

We show that $Q_{1 n} \rightarrow_{p} \frac{1}{2}\left[\left(\lambda_{1}^{2}+\lambda_{2}^{2}\right)\left(1-c_{*}^{2}\right)+2 \lambda_{1} \lambda_{2} c_{* *}\right] \sigma^{2}, Q_{2 n} \rightarrow_{p} \sigma^{4}$, and $Q_{3 n} \rightarrow_{p} 0$ by invoking Theorem 11 at the end. (Readers are recommended to refer to that theorem before proceeding.)

For $Q_{1 n}$, let $b_{n t}=a_{n}\left(\lambda_{1} \rho_{n}^{-t}+\lambda_{2} \rho_{n}^{t-n}\right)^{2}$ and $v_{n t}=b_{n t}\left(\varepsilon_{t}^{2}-\sigma^{2}\right)$. Clearly, this $v_{n t}$ is a row-wise martingale difference with respect to the natural σ-field, and condition (a) of Theorem 11 is obviously satisfied because ε_{t} are iid. It is just a matter of calculation that $\sum_{t=1}^{n} b_{n t} \rightarrow \frac{1}{2}\left[\left(\lambda_{1}^{2}+\lambda_{2}^{2}\right)\left(1-c_{*}^{2}\right)+2 \lambda_{1} \lambda_{2} c_{* *}\right]$ and $\sum_{t=1}^{n} b_{n t}^{2} \rightarrow 0$, so by the theorem, $\sum_{t=1}^{n} v_{n t} \rightarrow_{p} 0$. Now because $Q_{1 n}=\sum_{t=1}^{n} v_{n t}+\sigma^{2} \sum_{t=1}^{n} b_{n t}$, we have the desired convergence for $Q_{1 n}$.

For $Q_{2 n}$, let $v_{n t}=n^{-1}\left(\varepsilon_{t}^{2}-\sigma^{2}\right)\left(\varepsilon_{t-1}^{2}-\sigma^{2}\right)$ and $b_{n t}=n^{-1}$. Then $v_{n t}$ constitutes a martingale difference array, and by Theorem 11, $\sum_{t=1}^{n} v_{n t} \rightarrow_{p} 0$. Now

$$
\frac{1}{n} \sum_{t=1}^{n} \varepsilon_{t}^{2} \varepsilon_{t-1}^{2}=\sum_{t=1}^{n} v_{n t}+\frac{\sigma^{2}}{n} \sum_{t=1}^{n}\left(\varepsilon_{t}^{2}-\sigma^{2}\right)+\frac{\sigma^{2}}{n} \sum_{t=1}^{n}\left(\varepsilon_{t-1}^{2}-\sigma^{2}\right)+\sigma^{4} \rightarrow_{p} \sigma^{4} .
$$

Next, for $Q_{3 n}$, let $b_{n t}=\left(a_{n} / n\right)^{1 / 2}\left(\lambda_{1} \rho_{n}^{-t}+\lambda_{2} \rho_{n}^{t-n}\right)$ and $v_{n t}=b_{n t}\left(\varepsilon_{t}^{2}-\sigma^{2}\right) \varepsilon_{t-1}$. Then condition (a) of Theorem 11 is obvious, and condition (c) is also straightforwardly verified. Condition (b) also holds: If $\lim n a_{n}>0$, then $\sum_{t=1}^{n} b_{n t} \leq\left(n a_{n}\right)^{-1 / 2}\left(\lambda_{1}+\rho_{n} \lambda_{2}\right)$, which is finite in the limit, and if $n a_{n} \rightarrow 0$, then $\sum_{t=1}^{n} b_{n t} \leq\left(a_{n} / n\right)^{1 / 2} n\left(\lambda_{1}+\lambda_{2}\right)=\left(n a_{n}\right)^{1 / 2}\left(\lambda_{1}+\lambda_{2}\right) \rightarrow 0$. And as a result $\sum_{t=1}^{n} v_{n t} \rightarrow_{p} 0$. Now

$$
Q_{3 n}=\sum_{t=1}^{n} v_{n t}+\sigma^{2} \sum_{t=1}^{n} b_{n t} \varepsilon_{t-1} \rightarrow_{p} 0
$$

because the second term converges to zero in L_{2}. Thus, the conditions for the martingale CLT are all satisfied and we have the stated result.

Proof of Theorem 2. Combine (8), (9), (10), Lemma 7, Lemma 8, and Lemma 10.
Proof of Theorem 3. If $\rho_{n}^{2} / \sqrt{n}=\sqrt{n} c_{n}^{2} \rightarrow 0$, then $\left(a_{n}^{2} / \sqrt{n}\right) \sum_{t=1}^{n} u_{t-2}^{2} \rightarrow_{p} 0$ by Lemma 7 , and therefore $\sqrt{n} \delta_{n} \rightarrow_{p} 0$. Also, because $c=0$ in this case, $\sqrt{n} \xi_{n} \Rightarrow 2 Z \sim N(0,4)$. So

$$
\sqrt{n}\left(\hat{\rho}_{n}-\rho_{n}-a_{n}\right)=\sqrt{n} \delta_{n}+\sqrt{n} \xi_{n} \Rightarrow N(0,4)
$$

as stated.
The following result is adapted from Davidson's (1994) Theorem 19.7, and is used in the proof of Lemma 10. For a more general and detailed treatment, see Davidson (1994).

Theorem 11 Let $\left\{v_{n t}\right\}$ be a row-wise martingale difference array, and $\left\{b_{n t}\right\}$ an array of positive constants. If
(a) $\left\{v_{n t} / b_{n t}\right\}$ is uniformly integrable,
(b) $\lim \sup _{n \rightarrow \infty} \sum_{t=1}^{n} b_{n t}<\infty$,
(c) $\lim _{n \rightarrow \infty} \sum_{t=1}^{n} b_{n t}^{2}=0$,
then $\sum_{t=1}^{n} v_{n t} \rightarrow_{L_{1}} 0$ and thus $\sum_{t=1}^{n} v_{n t} \rightarrow_{p} 0$.

References

[1] Davidson, J. (1994). Stochastic Limit Theory, Oxford University Press.
[2] Phillips, P. C. B. and T. Magdalinos (2005). Limit Theory for Moderate Deviations from a Unit Root, Cowles Foundation Discussion Paper \#1471, Yale University.
[3] Phillips, P. C. B. and V. Solo (1992). Asymptotics for Linear Processes, Annals of Statistics, 20(2), 971-1001.
[4] White, J. S. (1958). The Limiting Distribution of the Serial Correlation Coefficient in the Explosive Case, Annals of Mathematical Statistics, 29, 1188-1197.

[^0]: *Phillips acknowledges support from a Kelly Fellowship at the Business School, University of Auckland, and the NSF under Grant SES 04-142254. Han thanks Douglas Steigerwald, Peter Thomson, Jin Seo Cho, John Owens and John Randal for helpful comments.

