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Abstract

Log periodogram (LP) regression is shown to be consistent and to have a mixed normal
limit distribution when the memory parameter d = 1. Gaussian errors are not required.
Tests of d = 1 based on LP regression are consistent against d < 1 alternatives but
inconsistent against d > 1 alternatives. A test based on a modified LP regression that is
consistent in both directions is provided.
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1 Introduction

Fractional processes are growing in popularity with empirical researchers in economics and
finance. In part, this is explained by their capacity to capture long range characteristics
of economic data that elude other models, a feature that is particularly important in mod-
eling the volatility of financial asset returns. In part also, models of fractional integration
are attractive to empirical researchers because they provide liberation from the classical di-
chotomy of I(0) and I(1) time series and applications now cover a range of different time
series from asset returns and exchange rates to interest rates and inflation (see Baillie, 1995,
for an overview). A natural goal in many of these studies is to assess the extent to which the
series under study may depart from a simple unit root model. To make such an assessment,
an inferential theory that includes the unit root case is desirable, especially one that retains
generality with regard to the short memory component of the series. One of the goals of the
present paper is to provides such a theory.

*Thanks go to the NSF for research support under Grant No. SBR 97-30295. Computations were performed
in GAUSS and the paper was typed by the author in SW2.5.
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Our focus of interest is therefore the estimation of the memory parameter ‘d’ of a frac-
tionally integrated process Xy in a model of the form

(1-L)* X, = u, (1)

where u; is stationary with zero mean and continuous spectral density f,(A) > 0. In such
models, a commonly used estimator in empirical work is the log periodogram (LP) estimator
(Geweke and Porter-Hudak, 1983) d obtained from the following least squares regression

~ L2
log (I (As)) = ¢ — dlog ‘1 — ™" + residual (2)

taken over fundamental frequencies

—

As = % 18 = 1,...,m} for some m < n. Here

1 >sm1 Tslog I (As)
2 >l @3 7

where I;(As) = wyz(As)ws(N)* is the periodogram and w,(As) is the discrete Fourier trans-

form (dft), wy(As) = ﬁ S7 1 XettAs of the time series X;. The regression (2) is motivated

by the form of the log spectrum of X; and has appeal because of its nonparametric treatment

d=

(3)

of uy and the convenience of linear least squares. Under Gaussian assumptions and in the

stationary case, where d € (—%, %) Robinson (1995) developed consistency and asymptotic

)
normality results for a version of d which trims out low frequencies periodogram ordinates
(i.e. takes s > [, for some m > [ > 1), as suggested by Kiinsch (1986). Hurvich and Beltrao
(1993) have developed data-driven criteria for the selection of m; and Hurvich, Deo, and
Brodsky (1998) extend Robinson’s (1995) results to include low frequencies ordinates and
find an optimal choice of the number of periodogram ordinates in the regression. This work
provides a foundation of asymptotic theory validating (2) for use with Gaussian data in the
stationary case. However, there is presently no theory for the unit root case where d =1 in
(1).

The present paper studies LP regression in this unit root case. This case is of interest
for several reasons. First, the unit root model is an important special case of (1) which has
received substantial attention in itself, but which is presently not covered by the existing
theory of semiparametric estimation of d. The case is particularly important in economic
applications, where, as indicated earlier, one is often concerned about assessing the extent of
the departure from a simple unit root model. The intensive interest in testing the unit root
hypothesis in the econometric literature has focussed on tests against stationary alternatives
within the context of autoregressive models, rather than tests against nonstationary fractional
alternatives. Second, it is well known that the corresponding semiparametric unit root limit
theory is nonstandard (Phillips, 1987) and it is of interest to discover whether there are any
unusual features to the limit theory in the semiparametric estimation of d when d = 1. Third,
it has recently been shown by Kim and Phillips (1999a) that d is inconsistent when d > 1.
So d = 1 turns out to be the boundary case for consistent estimation by log periodogram
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regression. Moreover, Kim and Phillips show that d —y 1 when d > 1, and this asymptotic
bias in estimation is certain to bias inference about departures from unit root model if it is
not corrected.

The work reported in this paper complements some other recent research on LP regression
and testing in the nonstationary case. Hurvich and Ray (1995) looked at the behavior of peri-
odogram ordinates of a fractionally integrated process with memory parameter d € [0.5,1.5)
and found evidence of bias in log periodogram regression when d > 1. Velasco (1999a) showed
consistency of an LP estimator that trims out low frequency ordinates, under Gaussian as-
sumptions and for % < d < 1. Kim and Phillips (1999a) showed log periodogram regression is
consistent for % < d < 1 without requiring Gaussianity or trimming, as well as demonstrating
inconsistency for d > 1. Some simulation results covering nonstationary cases were reported
in Hurvich and Ray (1995) and Velasco (1999b), both revealing evidence of estimation bias
when d > 1. Finally, Robinson (1994) and Tanaka (1999) show how to use Lagrange multiplier
and Wald theory for testing values of d in parametric models that include both stationary and
non stationary cases, but exclude weak nonparametric dependence; and Robinson’s (1994)
tests were applied by Gil-Alana and Robinson (1997) to the extended version of the Nelson
and Plosser (1982) data set.

The approach in the present paper draws on an exact representation of the discrete Fourier
transform (dft) in the unit root case. This representation was developed by the author in
other work (Phillips, 1999, and Corbae, Ouliaris and Phillips, 1999) and the aspects of the
general theory given in Phillips (1999) that we need here are reviewed briefly in Section 2.
Section 3 gives the limit theory for d in the unit root case. Gaussianity is not assumed
and the approach to establishing a central limit theorem for linear combinations of nonlinear
functions of periodogram ordinates is based on a new embedding argument that relies on a
strong approximation for partial sums of linear processes, which is given in the Appendix
(Lemma D) together with other technical results that are needed. This approach to a CLT
for linear combinations of discrete Fourier transforms is useful outside the present context of
log periodogram regression and is of some independent interest. Some additional theory and
implications for testing are discussed in Section 4. Concluding remarks are made in Section
5 and proofs are given in the Appendix in Section 6.

2 Preliminaries

This section gives explicit assumptions for our development and briefly reviews some repre-
sentations of the dft of a fractionally integrated time series given in Phillips (1999). While
these representations are valid in both stationary and nonstationary cases, they will be used
here only in the unit root case, where they take an especially simple form.

The fractionally integrated process X; is defined as in (1), with u; = 0 for all j < 0.
Explicit conditions on u; (¢t > 0) are given in the following.



Assumption A For all t > 0, u has Wold representation

u=C(L)e; =Y cjery, Y jlegl <oo, C(1)#£0, (4)
§=0

7=0
with e, = iid (0,02) with E(|e;|?) < oo, for some q > 4.

The ¢'th moment condition on the errors ; is useful in the embedding argument used
in the proof of our main theorem and in lemmas D and E of Section 5. The linear process
formulation and summability condition in (4) covers a wide class of short memory processes
and, as in Phillips (1999), enables us to use a decomposition technique to develop a convenient
representation of the dft of a fractionally integrated process. In particular, from theorem 2.2
of Phillips (1999) we have

. 1 ~ s
wy (A) = 1w, (A) Dy (e d) + Norm (Xno(d) = ™ Xpn(d)) (5)

where .
X)\n(d) = -511)\ (eii)\ld d) Xn = Z Jkpeiip/\anp (6)

p=0

When u; = 0 for ¢t <0, as is assumed above, X; = 0 for ¢ < 0 and, hence, X’Ao(d) = 0. In this
case, (5) becomes

wy (A) = wz (A) Dy, (e”‘; d) — \;%Em (e_D‘L; d) X,
= wy (\) Dy (e“; d) - ﬁeim)@n(d). (7)

Equation (7) shows that the exact relation between wg(\) and w, () involves a correction
term that depends on X an(d). When d = 1, we have the simplification Xy, (1) = —e*X,,,
and (5) becomes

I\

7 € in.
wy (A) = (1 —e /\) wy (A) + \/2—7T—n (6 A X, — XO) ) (8)
or simply .
i 62/\ inA
wa (V) = (1= ™), (V) + e X

when Xy = 0, a result given earlier in Corbae, Ouliaris and Phillips (1999). Rewriting this
last equation as

Wy, ()\) ei(n—&-l))\ X,

wa(A) = 1—e*  1—e \fom ©)
1 : X
_ _ in+1)A n 1
T |we(N) —e T | (10)



5

it is immediately apparent that both components will influence the asymptotic behavior of
the data dft w, (\) when d = 1.

The representation (5) shows that the dft of a fractionally integrated process comprises
two distinct components. The first of these is the dft of the innovations u;, scaled by the
transfer function of the differencing filter, D, (ei/\; d) . The second involves a weighted sinu-

soidal sum, X an(d), of the observations X;. When d = 1, both components simplify. The
transfer function is then simply D, (e”‘; 1) = 1 — ¢ and the sinusoidal sum (6) becomes
X an(1) = —e* X,,, which depends only on the final sample observation.

Since the limit behavior of these two components is rather easily obtained in the unit
root case, we can expect to develop dft asymptotics for integrated processes by analyzing the
two terms in (9), rather than by attempting to work directly with the dft of X itself. Some
results along these lines are presented in Phillips (1999) and Corbae, Ouliaris and Phillips
(1999). Moreover, the representations follow by algebraic simplification and so these, and
results obtained from them, turn out not to depend upon distributional specifications like

Gaussianity.
At the fundamental frequencies Ay = %, s=1,...,n, (10) becomes
1 A An

The component (27n)~/2X,, in (11) is independent of frequency and influences the asymp-
totic behavior of wy (As) for all values of s. This property means that w, (\s) is spatially
correlated across all the fundamental frequencies. In effect, there is leakage across all the
fundamental frequencies from the zero frequency (s = 0), i.e. from w,(Ng) = (2mn) 1/2X,,.

A further complicating factor in log periodogram regression is that one needs to work
with a logarithmic function of the periodogram ordinates. In effect, the model underlying
the empirical regression (2) involves the logarithm of the squared modulus of (11), i.e.,

X, |2
\V2mn

The second term in (12) involves the dft of the stationary errors, w,, (\s), coupled with the

log [, (A)|* = —21log |1 — ¢ wy (As) — e

+ log

(12)

leakage factor wy(Xg) = (27n)~1/2X,, from s = 0. The asymptotic analysis of log periodogram
regression requires that we treat both the nonlinearity in (12) and the spatial correlation
arising from this leakage.

3 Log-Periodogram Regression in the Unit Root Case

The approach we adopt in resolving the technical difficulties just mentioned is to expand
the probability space in which the processes are defined in such a way that the data can be
represented almost surely and up to a negligible error in terms of a Brownian motion that
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is defined on the same space. The argument invokes an almost sure invariance principle and
embedding.
More specifically, define the partial sum process Sy = Zle u; for k > 1, and Sy = 0, for
k = 0. Since u; has finite moments of order ¢ > 2p > 4, we can expand the probability space
as necessary to set up a partial sum process that is distributionally equivalent to Si and a
Brownian motion B(-) with variance 27 f,,(0) on the same space for which
sup |Sk—B(k)| = oas(n¥), (13)
0<k<n
giving a uniform approximation to Sy over 0 < k£ < n in terms of the Brownian motion
B. In (13), p satisfies ¢ > 2p > 4, so that p > 2. When ¢ and p are large, the error
order of magnitude in this approximation becomes small and it is bounded, or O, s(1), when
Sy is Gaussian. When the components wu; in Sy are independent, almost sure invariance
principles or strong approximations of the type (13) have been proved by many authors using
a variety of techniques, a popular recent approach being the Hungarian construction, e.g.
Shorack and Wellner (1986) and Csorgo, M. and L. Horvédth (1993). A strong approximation
result justifying the representation (13) in the case where u; is a linear processes satisfying
Assumption A is given in lemma D in the Appendix. Setting S, = n~%/ 222?:111]-, we can
write this approximation in the form

sup
0<k<n

Snk — B(%)‘ = Oq.s ( ! ) . (14)

11
n2 r
As shown in (36) and (37) in the Appendix, the approximation (14) leads to the simultaneous
representation of the dft

1 . TLST m 1
Wy, ()\s) = —\/E/O 62 dB (7’) +Oa.s <z> + 0q.s ( %_l)
n2 »

£, + O (%) + 0us (n;_%) , (15)

with the error magnitude holding uniformly over s = 1,...,m, and the representation
=L B1) 1 (

VoA )‘““’“( T ) 1o

The variables (£,)7; and n that appear in (15 and (16) are Gaussian and independent.

X 1

1
2

SR
SR

n

The simple form of (15) and (16) enables us to develop a limit theory for frequency
averages of the second term in (12). Log periodogram asymptotics follow directly. The
outcome is the following result, which gives the asymptotic distribution of d when d = 1.

3.1 Theorem Let X; follow (1) with d =1 and u; satisfy (4). If

3

m

+ — 0, (17)

S |

1
n n2



then
~ 0 1
vm (d — d) —4 MN <0, o? (W)> = / N (0, 102 (W)> pdf (W) dW (18)
0
Here, W is x2 with pdf (W) = [2%F(%)}*16*W/2W_% and
2

M

o* (W) =e‘WZ%{¢<1+j)2+w’<1+j)}— [e‘WZ%WH)
j=0 7" j=0 J°

where P(z) = T"(2)/T(2) is the psi function, the logarithmic derivative of the gamma function
T, and ¢'(2) is the trigamma function, its first derivative.

Condition (17) on the frequency band {5, 1 < s < m} restricts the range of the effective
sample size m (the number of periodogram ordinates) in the log periodogram regression (2).
The condition holds when m = O(ng_‘s) for any § > 0, when p > 6.

The variance of the limit distribution (18) is 1/4 times

2
1

27(})

> ¢(1+') +¢/(1+.) o0 3 .1
R o
1 ii¢ 1+J'Z(1+k) /Ome_gwwj+k_%dw
{ ¥ (1+5)° (1+J)}F(J+%)
]=0 j! <%)J+%

\/—_gg 'k:'

e VI2Wsaw

/OOO WZ { (1+24)* w’(1+j)}—{ewi%jw<l+j>

—_

(19)

since
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Figure 1: Densities of log periodogram estimator: n = 200, m = [n%%?].
and o
_ J 1l 4
Y(147) = { _g RN j é (1) C = 0.577215 (Euler’s constant). (21)

where (20) and (21) are standard - e.g. Gradshteyn and Ryzhik (1965, 8.365 & 8.366). The

summation in the third term of (19) can be written as

R OMON

i‘”(lﬂ)j(l) @ Zw (1+k) <2 ]>k(§>k

Hence, the variance of the limit distribution of \/m (c/i\ - d) is

s e ) - ] (2). (3)
o5 = ﬂ+4\/§j20 4! :
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Numerical evaluation gives 03 = 0.3948, which is slightly smaller than 72/24 = 0.4112, the
limiting variance of \/m (c? — d) in the stationary case. Thus, the limit distribution of the
log periodogram estimator in the unit root case, although mixed normal, has less dispersion
than in the stationary case. This is confirmed in finite sample simulations. Figure 1 shows
the sampling distributions of the log periodogram estimator (based on 10,000 replications)

n0'65]. The reduction in the variance when

for several values of d when n = 200 and m = |
d =1 in comparison with d = 0.4 is apparent, as is the downward bias towards unity when

d > 1. The latter is systematically explored in Kim and Phillips (1999a).

4 Testing a Unit Root against Fractional Alternatives

Theorem 3.1 shows that the conventional LP regression theory, viz. the limit distribution
N (O, g-i) for /m (cf - d) that is known to apply in the stationary case (Robinson, 1995,
Hurvich et al, 1998), is invalid at d = 1. Nevertheless, the limit theory in theorem 3.1 could
easily be used for testing d = 1 simply by adjusting critical values to conform with the correct
mixed normal limit distribution given in (18). Such critical values could readily be computed
by numerical methods. The resulting test would involve the computation of /m (J — 1) and
calibration against the critical values from the limit distribution (18). Since it is known (Kim
and Phillips, 1999a) that LP regression is consistent for —% < d < 1, such a test would be
consistent against such alternatives. However, it is also known (Kim and Phillips, 1999a)
that LP regression is inconsistent when d > 1, and indeed d —p 1 for all d > 1. Thus, the
test would be inconsistent against alternatives d > 1.

The theory in Sections 2 and 3 gives us a simple way of constructing a valid test. We
need an estimator of d that is consistent for both d < 1 and d > 1 to accomplish this.
Consistent estimation of d around unity is possible by using a new estimator called modified
log periodogram regression suggested in Phillips (1999). Here, the estimator can be obtained
quite simply from (9), which at the fundatmental frequencies {\s : s = 1,...,m} is

Wy, (Ag) et X,

s (As) = - — . . 22
w( ) 1—62/\5 1—62/\5\/27'(—77, ( )

We construct the modified dft
eirs Xn

1 —es \/2mn’

and associated periodogram ordinates I,,(A\s) = vz (As) vz (Xs)". Observe that v, (\s) and

Ve (As) =wg (Ns) + (23)

I,(Xs) are both observable functions of the data. With this simple data transformation we
have the following exact model

L, (M)

+ log 7(0)

log I,(As) = ¢ —2log )1 — et
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with ¢ = log f,, (0) . Modified LP regression is simply a least squares regression of log I,,(As)

on log ‘1 — ei’\S) . Set as = log )1 — el and z = a5 — @, with @ = m™! S0t 1 as. Then, the

modified LP estimator is simply

d— 12?11 xslog I, ()
2 Sy a2 .

The limit distribution of this estimator when d = 1 is given in the following result.

(24)

4.1 Theorem Let X; follow (1) with d =1 and w; satisfy (4). If

n

then

" 24

\/E(J—d) —>dN<O 12) (25)

Thus, d has the same limit distribution at d = 1 as the well known limit distribution of the
LP estimator in the stationary case (Robinson, 1995, and Hurvich et al., 1998). In fact, Kim
and Phillips (1999b) show that the limit theory (25) for d applies for values of d over the
range 0 < d < 2. In particular, d is consistent for values of d around unity and not equal
to unity. Thus, a semiparametric test for a unit root against fractional alternatives can be
based simply on the statistic
(i
ST

with critical values obtained from the standard normal distribution. This test is consistent
against both d < 1 and d > 1 fractional alternatives.

5 Concluding Remarks

Log periodogram regression is shown to be consistent and to have a mixed normal limit
distribution when d = 1. This case turns out to define the boundary for consistent estimation
of d by log periodogram regression. For larger values of d, it is known that d —p 1 (Kim and
Phillips, 1999a). Thus, LP regression encounters nonstandard limit theory at the unit root
boundary, just like the serial correlation coefficient, but of a different form.

In view of the inconsistency of LP regression when the memory parameter d > 1, the
LP estimator d is unsuitable for testing a unit root against two-sided fractional alternatives.
Fortunately, there is a simple alternative procedure based on modified LP regression which
produces consistent estimates of d for d > 1 and for d < 1. Tests for a unit root based on the
modified LP estimator are easy to construct, involve only the standard normal distribution
and apply under nonparametric weak dependence for the short memory component. They
therefore seem suitable for general implementation in empirical research. As in the case of
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conventional unit root tests, when there are deterministic trends in the model, it is desirable
to extract the trends under the null as in Schmidt and Phillips (1992) before implementing the
Zg test given here. Additionally, issues relating to finding an ‘optimal’ choice of the number
of ordinates m in the construction of the estimator d~, as well as developing data-determined
methods of choosing m are still to be considered.

6 Appendix

The first two lemmas report moment expressions which can be obtained straightforwardly
from known results. They are given here for convenience. Lemma C gives the limit distribtion
of a sample average of nonlinear functions of correlated Gaussian variates, which is useful in
proving the main theorem. Lemma D gives a strong approximation result for partial sums
of linear processes satisfying Assumption A with ¢ > 4. A weaker approximation result that
holds when ¢ > 2 is given in Lemma E.

6.1 Lemma A If Re(a),Re(v) >0, then

/ (logz) e %2 ldz = —~
0
and W)
o —az v— v
| og 2 e ezt = =2 {0 (1)~ log (@) + 4 ()}
0 a
where 1 (v) is the psi function, the logarithmic derivative of the gamma function T (v), and

Y (v), the first derivative of ¥ (v), is the trigamma function.

6.2 Proof Start by differentiating with respect to v the equation
I'(v o0
a(,/) — / efazzufldz7
0
giving the first result

I’ (I/) B F(V) loga _ F(V) [w (I/) —log (CL)} _ /oo e~ 0% =1 log (Z) dz,
0

a’ a’ a’

where 1 (v) is the logarithmic derivative of the gamma function. Subsequent differentiation
yields the second result.

I'@)

(IV

{00 —tog @+ 1)} = [~ 2 (log 2)2 .



6.3 Lemma B

=0
2
o (&
N (5)
e - +
|: JZ‘) ! v 2
6.4 Proof The density of x2 () is
df( ) e—6/2—2/2 (6)] o514 e—0/2—2/2,5-1 <I/ § >
by \z2) = —— S~z " TN N 01\ 5,47
L(5)22 5 \4/ JH(3), I'(3)2 24
where o[} (a,2) = ]‘?‘;O#Z)j.SO
J
6—6/2 o) (g) oo 5 .
E (log (X3 () = v 7 / 6_2/225_1+310g(z)dz
s @)) = T X, b
J
et & (8) rg+i)
= s> i o (F i) +log?]
e e, oy
= (8)
6*6/22 ' {;b (5 —l—])—l—logQ}
=0 7
5/2 %" (%)j V..
=0 I
Next
J
2 6_6/2 s (%) 0 v
E (log (X (6) = % S / e*/2,5 7140 (log 2)2 dz
( ( )) F(§)22JZOJ!(§)J» 0
J
e 8/2 X (%) r(gﬂ)ﬂ v 2
= N\ ol v v 1/’(_+j>+10g(2)] +¢,(_+
F(§)22 ]goj'(i)] <%)2+] 2 2

12
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and then

Var (log (2 9)) = £ (1os ()" - (£ (18 (¢ )))

giving the two stated results. B

6.5 Lemma C Let £, = \/% 3 e2™sTdB (r) and 1 = \/%—W 3 dB(r), where B is Brownian

As| gnd @ =

motion with variance 27 f,(0). Then, if s = as —a where ag = log‘l —e

mil Zgnzl Qs,

1 i 2 2 _ * 2
ﬁ;xslogms—m —4 MN (o,a (W)) :/O N(O,U (W)) pdf (W) dW,

where
2

)

o? *WZ { (1+44)* ¢(1+g} [WZ i Y (1+7)

and W is chi-squared with one degree of freedom and pdf (W) = [QZF(%)] Le=W/211 3.

6.6 Proof Set

1 /
55 = E /O 27rzs7"dB fu / 27rzsrdW fu (0) Zs, say,

fu (0)Y

where W is standard Brownian motion, and {Z,}" = iid N, (0,1) and is independent of Y,
which is N(0,1). It is convenient to write Zs = (;, + (o4¢. The components (4, (o, in this

decomposition are independent and each is NV (0, %) . Then

and

logle, —nf* = log (fu(0) +log [(Cr. — ¥)* + (3,
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— 1og (54 (0) +1og [2{(G1, - V) + G,
~ 105 (5£(0)) +log [Guy], sy (26)

Conditional on Y, (1, — Y is N ( Y, 5 ) and so, conditional on Y,

_ 2 2
Gy — s 15;)2 Qo _ 2{(C -V + &} =30

Thus, conditional on Y, the family {G,y }7* are independent and identically distributed non-
central chi-squared variates with two degrees of freedom and noncentrality parameter 6 where

2
— = —9y2
1/v/2
It follows from Lemma B and (21) that

o (&
E(logGoy|Y) = E(log(x3(6)) V) = 5/22<2> ¢ (1+7) +1log2

(s} é : J
65/22(2) (Z%_ )_65/20+10g2

=1 k=1
o (& iq

= 6_6/2,Z<2) ZE _5/2—C+10g2
=1 k=1

= Hy, 83y

Further,

Var (log Ggy'|Y) = Var ((log (X% (6)) |Y)>

2

J
) )
=0 J°

s (8
2

= Oy, say.

Thus, conditional on Y, log Gy is iid (py, UY) It follows that, conditional on Y,

1 m
\/_ Zws log Ggy = NG sz (log Gsy — py)

Jj=1
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satisfies the Lindeberg-Feller central limit theorem (c.f. Robinson, 1995, p. 1070) and we

have
LN (0,03 | lim liaﬂ = N (0,0} | lim lfjaﬂ
v ’ npem)nzjzl s ’ nkaaznzjzl 8

= N(0,0}),

1 m
— sz log Gy
vm =

since
2

1 1 1
lim — x?z/ lo xde—(/ lo wdw) =1
i =% [ (log ) | (log)

j=1

Unconditionally, we therefore have

—o0

— /OOON<

1 & . oo
ﬁjzlxslogGSYHM'N(O,a%) - / N(o,ai)pdf(y)dy
0,0% (W

)) pdf (W)dw,  (27)

where
BW) = VY S e (1)
i=o J°
, 2
e Tyasgp)
=0
and

W =Y? =%
It follows from (38), (26) and (27) that

— E rglogléy — | = — E wslogGSy—>/ N (0,0 (W) ) pdf (W) dW,
vm = | | vm 0 ( ( )> W)
as stated. W

6.7 Lemma D Let S; = Zle uj for k > 1, and So = 0, for k = 0, where u; satisfies
Assumption A but with E |e|? < oo for some ¢ > 2p > 4. Then, the probability space on which
the u; and Sy are defined can be expanded in such a way that there is a process distributionally

equivalent to Sk and a Brownian motion B(-) with variance 27 f,,(0) on the new space for

which g k: .
k; —_
%—B(ﬁ)‘ = oa.s(—n%_% ). (28)

sup
0<k<n
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6.8 Proof In view of Assumption A, we may use the BN decomposition (see Phillips and
Solo, 1992) to write B
C(Ly=Cc(1)+C(L)(L-1)

where C (L) = Y% & L7 with & = 3.5°.,; ¢ and Y22 [¢j| < oo. Then,
u=C(1)e +€-1— &,

with & = C (L) &, and
t
Sy =C(1) Zé‘j +&g—¢ = Smf + €0 — &4,
=1

where S,y = 2321 n; and n; = C(1)¢;. Next, since 7; is iid with mean zero and finite
moments of order ¢ > 2p > 4, we may use a strong approximation to the partial sum process
Syt of n;. In particular, by a result of Komlés, Major and Tusnddy (see Csorgé and Horvath,
1993, p.18) we can expand the probability space as necessary to set up a partial sum process
that is distributionally equivalent to Sy and a Brownian motion B(-) with variance 27 f,,(0)
on the same space for which

1
sSup |Snl€_B(k)| = Oa.s(nq )7 (29)
0<k<n
giving a uniform approximation to S, over 0 < k < n in terms of the Brownian motion B.

Next, since
|Sk—=B(k)| < [Spr—B(k)| + [E0 — &k

we have g L g L &
k nk €k
sup |—=—B(—)| < sup |—=—-B(—)|+2 sup —. 30
nggn Vn (n)‘ _nggn N (n)' nggn n (30)
Now
g 1
sup M = Og.s. < T 1) (31)
0<k<n VT n2 p
holds if &l
€k
max = 0g.5. (1) (32)
0<k<n 7
But
~ = 1q
leax ‘&i‘>6] = P[ma}c@>5q}
0<k<n nr 0<k<n np

1 & .
= P | > [El"1 Bl > nrs] > o
ne g=1

E (Z’,g:1 5,071 [|gk|q > nﬁéﬂ)
ngéq
E (Bl 1 el > nv67))

q__
nr 184

7
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by stationarity of . It follows that

< Z ’5/’6’

since ¢ > 2p. Result (32) then follows by the Borel Cantelli lemma. We deduce from (29),

(30) and (31).that
Sk k — Y 1
:7ﬁ—ﬁB(E)'—- a.s. (n%%>7

6.9 Remark It is apparent from the above proof that if all we need is

sup
0<k<n

giving the stated result. W

Sk k ‘ 1
sup |—=—B(—)| =o , 33
nggn NG (n) p(n%§> (33)
then in place of (32) the following is sufficient
[kl _
2, T =), (34)
Apparently, (34) holds if
leax ysli’>(5 = P[maxu>5p}
0<k<n 3% 0<k<n N

— l Z [Ek|P L[|Ekf > ndP] > 6P

(Zk:l Exl” 1 [[Ex]” > né?))
n%(sq
E (k" 1[[Exl" > né])

= 6]0 e d 0’

which will be so when E (|g|") < co. By Minkowski’s inequality, we have

B(&P) - E( > )< (iuaﬂpmekwﬁ)
7=0 J=0

DG Elel” < [ Dodlel] Elexl
§=0 7=0

Thus, (33) holds if the moment condition in Assumption A is simply E (|eg|F) < oo for any
p > 2. Stated formally, the result is given as Lemma E below. Akonom (1993, theorem 3)
gave a similar result, using a different method of proof.

Ek—j
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6.10 Lemma E Let S; = Zé?:l uj for k> 1, and So = 0, for k = 0, where u; satisfies
Assumption A but with E |g;[F < co for some p > 2. Then, the probability space on which the
uj and Sy are defined can be expanded in such a way that there is a process distributionally
equivalent to Sy and a Brownian motion B(-) with variance 27 f,,(0) on the new space for
which

Sk k

25| = ol

sup
0<k<n

).

1_1
n2 r

6.11 Proof of Theorem 3.1 Set a; = log ‘1 — s
Then,

and r5 = as—a, where@ = m 1 3.7 | as.

> > ey Tslog lwy ()‘8)’2
2d = ,
Dt 2

and, from (12),

2
i Xn

+log \V2mn

wy (As) — €

log |wz (As)|> = —21log )1 — et

so that )
1 xm _ 1 i
2y/m (d—1) = = =1 s IOglwggflg e X ,

Next, we proceed to find a more convenient representation for w, (\s) and X,/ /n in (35).
Using partial summation, we write for s =1,...,m

(35)

1 n 2mist 1 n 2mist 1 n 2mist
wy (Ng) = e n u=A e n S| — Si_1A (e n
(As) V2mn ; ¢ (\/ 2mn t) V2mn ; -t ( )
1 1 j

2mn V2mn

1 5, 1 &S 2mist=1) / 2mis
e — e = en —1).
Ver v/ 2w ; NG ( )

In view of the embedding (14)

Sp 1 t—1 1
=B|— a.s ;
\/ﬁ < n > o (n %)
where the error magnitude holds uniformly in ¢ = 1, ..,n. Then, we have
1 1 1 " t— 1 1 2mis(t—1) 27is
Wy (As) = —— |B(1) + 045 — B(—)—}—oa,s —|le = e n
) \/ﬁl W (n _%)] \/ﬁ;l n (n%_%)] (
wis(t— TS ].
G

nt
1 2msi (1 1 2misr m 1
= ﬁB(l)_\/ﬁ/o B(r)—i—oa.s (n%_%)‘|€ dT(l-FO(E))‘FOas( %_%)

Nl=
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1 27mss } m 1
= B(r Qmsrdr + Ous <—> + 045 | ——
27r \/27r / TAn ’ n% >

1
= 27’[’7,S’r‘dB + Oa, K} (m> + Oa 8§ )
\/%/ 1)+ Oas (5 ) oo \ 15

where the error magnitude holds uniformly in s < m. When s = 0, we have in the same way

Xo _ 1o,
B+, <n> 37)

Now use the notation

271'257‘
dB (
= B,

The variates {{,},-, are independent complex Gaussian N (0, f,, (0)) and are independent
of 1, which is real Gaussian N(0, f,,(0)). Writing

0 0) =€+ O () o

11
n2 »p

and
Xy n 1
= 0] _— s
Vorn O \ T I

and using the fact that >"5°; |zs| = O (m) (c.f. Robinson, 1995, p. 1067), we have

1 & 1T o |?
— Tglog [wy (Ag) — —=e"" X
/—m ~ 8 g U( S) 27T7’L
1 ?

1
55_77""011.8(@)""011.8( T 1)
n n2 v

s {log |65 —nl* +log

1 & 1
L logfﬁs 77‘ +0 (\/m;’mso loa.s <%> + 0q.s (n%_%)]

= \/EZJUS log

s§=

—

3

V)
Il
—

NE

w
I
_

w
I
_

I
E Ul

NGERANGE
2 R
o
=1 =
+ +
S 2
— 3
S NI
~—

+ .
3
/m—\ ~
B
~—

s=1 n
= Zws log €, — 77|2 + 0a.s. (1) (38)
s=1
when s
m (39)
n n:"r

(36)
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Then, from (38) and Lemma C we deduce that

2 0
wa () — e x, | oy /O N(O,a2(W))pdf(W)dW (40)

1 m
ﬁ Z Tg IOg
s=1

V2mn
Finally, using (40) and m~! -7, 22 — 1 in (35), we obtain

~ 1 o0 1
vm (d — 1) —q MN <0, Z(TQ (W)> = / N (0, 102 (W)> pdf (W) dW,
0
giving the required result. W

6.12 Proof of Theorem 4.1 From (24) we have

d = 12?11 xslog I, ()

2 PR 7
and so ) )
~ ——= Y0 wslog [wy (As)]
N\ m 2 sm1 s 1og [wy (As
2y/m (d 1) = Ty 2 (41)

Proceeding as in the proof of theorem 3.1, we have

LS log g Q) = —= 3 2, log |Euf? + 0.5, (1) (2

Vi = Vi = R

under (39), and then, just as in the proof of Lemma C but with Y = 0, we get

1 m ) 7T2
— g1 N — . 4
m S;x og ‘fs‘ —d (07 6 > ( 3)

Note that this case follows directly from Lemma C when W = 0 a.s. and then the limit
distribution is normal with variance

from (20) or Gradshteyn and Ryzhik (1965, 8.366). Combining (42) and (43) withm=1 "7 | 22 —
1 in (41), we obtain

2\%(3—1) —>dN<O,%2>,

giving the stated result. W
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