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Abstract

Denis Sargan’s intellectual influence in econometrics is discussed and some of
his visions for the future of econometrics are considered in this memorial article.
One of Sargan’s favorite topics in econometric theory was finite sample theory,
including both exact theory and various types of asymptotic expansions. We pro-
vide some summary discussion of asymptotic expansions of the type that Sargan
developed in this field and give explicit representations of Sargan’s formula for
the Edgeworth expansion in the case of an econometric estimator that can be
written as a smooth function of sample moments whose distributions themselves
have Edgeworth expansions.
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“A student is like green grass and a great teacher is like the spring
sun. The benefit from the sun is infinite, and little grass can hardly pay
it back, although it tries its best” (Chinese Saying).

1. Lessons in Research

In an era where the half life of academic research can often be measured in a matter
of months, Denis Sargan’s published papers show a remarkable durability. A quick
dip into a Sargan paper reveals concerns (such as dynamic specification, the marriage
of simultaneity and serial dependence, or the finite sample properties of econometric
estimators) that are as relevant today as they were at the time of writing. Sar-
gan’s papers are filled with technical innovations and much of his work shows little
sign of aging even after decades of subsequent research. In this sense, Sargan’s re-
search contributions and the concerns that motivated his work have become classics
of econometric literature.

Most of Sargan’s major works were published in Econometrica and were there-
fore widely accessible when published and are now conveniently accessible online.
Nonetheless, much of Sargan’s thinking about econometrics was never published.
Fortunately, because of his extraordinary pedagogical impact over several decades at
the London School of Economics (LSE) and more generally within the econometrics
community in the United Kingdom, many of his ideas and techniques have become
part of the intellectual fabric of econometrics. Naturally enough, Sargan’s intellec-
tual legacy remains strongest in the UK, although his former students are now widely
scattered internationally.

Sargan’s students and colleagues at the LSE had the added advantage of watching
his mind work at close quarters - in seminars and in valuable dyadic conversations with
him. In my own case, I came from New Zealand to do research at the LSE and knew
many of his published contributions well. But it was a surprise for me to discover
the rich vein of material in his unpublished papers. My first short meeting with
Denis took place in his LSE office in October, 1971. In what was a characteristically
unassuming way, Denis opened a cabinet and revealed a dusty bottom drawer that
was full of unpublished papers. He pulled out a selection of these, saying ‘these will
give you an idea of the sort of thing we are working on at LSE’.

To the uninitiated, a Sargan working paper often looked like an inpenetrable jun-
gle of mathematics and conceptual exposition. Formulae ran for pages, algebraic
symbols carried strange decorations, notation might be assumed and undefined, un-
usual branches of mathematics might be called upon without remark, theorems might
be cited without reference as if they were as familiar to the reader as the author, and
the mathematics might be entangled in a high level discussion that confronted some
deep conceptual issues of econometric modeling. These papers required a sustained

2



effort to read and an enormous commitment to master that involved months of de-
voted line-by-line reading. Looking back now on my own experience with them, the
effort proved to be a valuable and long-lived investment.

All of Sargan’s working papers were at the cutting technical edge of the subject.
They dealt with difficult topics like FIML, Edgeworth expansions and stochastic
differential equations, all in an imaginative way that was very different from what I
had seen in the literature to 1970. By the time I had finished reading these working
papers, a lot of new econometrics had come my way. More significantly, I had learnt
some memorable new lessons about research:

(i) No Problem is Too Difficult to Tackle

Sargan’s papers revealed that no problem was too difficult to tackle. With the right
approach, conceptualization and mathematics you can always make headway even
when things may at first seem impossible. Throughout his career, Sargan continued
to surprise the econometrics community by tackling problems that seemed impossible,
looking at problems that other researchers would hardly contemplate as tractable, and
often doing so with new and astonishing results. For example, while other researchers
were doing what was eminently possible by worrying about first order conditions and
a precise limit theory for FIML using central limit theory and nonlinear regression,
Sargan was doing the apparent impossible by developing a finite sample theory and
refined asymptotics using Edgeworth expansions. This powerful example inspired all
of us who stood around him in the UK.

(ii) Problems are often Simplified by Generalization

By formulating a problem in a general way and developing the appropriate math-
ematics to handle that generality, it is often possible to achieve substantial simpli-
fications. This is a principle we encounter everyday when we are teaching elegant
methods that have been developed in the past, the projection matrix algebra of the
general linear model that was worked out by Aitken (1935) being one prominent ex-
ample in econometrics. In spite of such constant reminders, one sees a widespread
reluctance to implement this principle in research. Of course, it requires imagination
and courage to make the conceptual and mathematical leaps that are involved in suc-
cessful generalization and it is always safer to follow established paths. Yet, time and
again throughout his career, Sargan demonstrated the power of the principle of gen-
eralization, many of his papers making highly imaginative technical and conceptual
leaps forward.

One fascinating example was his finite sample theory for the FIML estimates of
the structural coefficients and demonstration of the fact that these estimates have
Cauchy-like tails, a property that we now know extends to cointegration vector esti-
mates that are obtained by reduced rank regression (Phillips, 1994). Another example
was Sargan’s remarkable 3 page proof that the FIML estimates of the reduced form
coefficients have finite sample moments to order T − m − n (i.e., the sample size
less the number of variables in the system), whereas those obtained by other meth-
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ods (such as instrumental variables) usually have no moments and heavier tails with
greater probabilities of outliers, a fact that is of importance in forecasting from struc-
tural systems. These results, among many others, were presented at study group and
workshop meetings at the LSE in the early 1970’s. The structural form FIML paper
was first given at the 1970 World Congress of the Econometric Society. Versions of
the results eventually appeared in Sargan (1988b, chs.3 & 6).

Sargan usually developed the mathematics he needed as he went along, so that his
articles became voyages of discovery in technique as well as purveyors of econometric
methodology and applications. He was particularly creative with matrix algebra,
one example being his constructive use of 0,1 matrices like selectors, duplicators,
commutators and permutators, long before they were systematically studied in the
mathematical and statistical literatures.

(iii) Don’t Shirk Algebraic Complexity

Sargan’s papers (particularly his unpublished papers) reveal a love of algebraic
complexity. Some researchers find it convenient to gloss over algebraic detail as tire-
some. This practice is encouraged by modern symbolic computation and is often
endorsed by journal editors who are working under space limitations and who want
to achieve page reductions in lengthy papers. In contrast, Sargan seemed to delight
in filling pages of a paper with long strings of algebraic calculation, sometimes going
well over a page, devising intriguing new notation as he went along. One senses that
it was the intimate familiarity with these algebraic details, even in ferociously com-
plicated cases, that enabled Sargan to make headway on difficult problems. Grinding
your way through a lot of algebraic detail to reach completion may appear like a very
unimaginative exercise, but sometimes it is this very process that enriches the under-
standing of a problem to the stage where major conceptual leaps become possible.
In what sense then is it better to pretend that the details and the hard work don’t
exist?

(iv) Maintain an Active Concern for Economic Issues

Econometricians do well to keep an active interest in economic issues and a concern
for statistical methods that are suitable for economic models and data. Interestingly,
Sargan never seemed to get preoccupied with probability or statistics. One never got
the impression that Sargan was writing a paper for statisticians or probabilists. He
always seemed to be writing papers on econometric methods for use in economics,
maintaining a focus on econometric problems and the estimation of economic rela-
tions. In fact, his papers often have these very words in their titles. In recent years,
this clarity of focus is much less common. The interface between econometrics and
statistical theory is now much more fluid than it was in the 1950’s, 60’s and 70’s, when
Sargan did his major work. Econometricians now do research that is often identified
as easily, if not more easily, with the subject of statistics than it is with economics.
Many publish their work in probability and statistics journals. It is, of course, impor-
tant that econometric technique, methodology and proof be evaluated in the wider

4



circle of statistical research, a principle that was well understood by prominent early
researchers like Francis Edgeworth, Irving Fisher, and Tjalling Koopmans. But what
is ultimately more important is that the connection with economics be maintained as
a strong one, something these early researchers never forgot. Sargan’s research also
did just that, by concentrating on issues that he felt to be of importance to economic
researchers and by keeping an eye on empirical economic applications.

2. Sargan’s Vision for the Future of Econometrics

Sargan sought not just to do econometrics and do it very well, he also had a vision
of where it could most fruitfully go in the future. Three areas where that vision was
most powerful were in dynamic specification, identification, and improving inference.
These topics manifested themselves repeatedly in Sargan’s major contributions over
the period 1960 - 1985.

(i) Better Dynamic Specification

Sargan’s (1964) Colston Conference paper was largely motivated by empirical is-
sues of dynamic specification that arose in an applied study of wage inflation in the
UK. In such applications, as had earlier been emphasized in the work of Sargan’s
LSE colleague Bill Phillips (1956, 1958), the dynamic time form of responses plays a
crucial role in the economic impact of phenomena like inflation and, in consequence,
policy responses to it. Sargan’s contribution was seminal for many reasons, which
are examined in detail by David Hendry (2003) elsewhere in this memorial issue and
which we only mention in passing here. What has proved perhaps to be the most
significant contribution from the econometric perspective is that, in seeking to pro-
vide a foundation for empirical specification searches, Sargan laid out the elements of
a practical methodology for specifying dynamic relations that involves working from
general forms to more specific formulations and sought to provide a justification for
the econometric testing that plays a role in this reduction process. That mantle of
methodological research was taken up in earnest at the LSE in the 1970’s and 1980’s
and has, in consequence, become known as the ‘LSE approach’, under the leader-
ship of David Hendry in an extensive agenda of applied and theoretical econometric
research.

These themes continued to be present in Sargan’s later research, including his
efforts on testing for the presence of common factors in the equation errors and dy-
namics (Sargan, 1977, 1980a). We now commonly think of these procedures within
the wider context of econometric model selection, a literature that arose from the
early work of Akaike (1973), Leamer (1978), Schwarz (1978) and Rissanen (1978),
and which connects in important ways to Bayesian methods of model choice where
there are even earlier antecedents (e.g., Jeffreys, 1961). Indeed, one of Sargan’s
later long- unpublished works (2001) on significance testing takes account of these
contributions and, in particular, the issue of consistent model choice (or completely
consistent significance testing procedures) in developing rules for increasingly conser-
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vative statistical tests whereby the critical values expand at logarithmic rates with
the sample size, so that the probability of type I (as well as type II) errors goes to
zero asymptotically.

Dynamic specification now forms part of the core subject matter of time series
econometrics. The issues arising from it have become no less important over time,
although they may take on different forms, as the subject has moved on to include
nonparametric and semiparametric methods, and to encompass the nonstationarity
and long memory properties of economic data. While there is no explicit mention
of it in Sargan’s work, the data-driven approaches to modeling and specification
searching (e.g., Andrews, 1991; Hendry, 2001; Hendry and Krolzig, 1999,2001,2002;
Phillips, 1992,1995a&b, 1996, 1999, 2003; and Robinson, 1991) that are now being
implemented in practical work seem to be very much in the spirit of Sargan’s tradition.

(ii) Recognising the Effects of Near Lack of Identification

Early researchers on simultaneous equations methodology recognized the practical
difficulties of assessing identification. Tests for underidentification, like the Koop-
mans and Hood (1953) test were a manifestation of this concern. Later, Sargan
(1958) developed a version of this test that was applicable with instrumental vari-
able estimation, and GMM versions are also possible (Arellano, Hansen and Sentana,
1999). In practical work, however, these tests are seldom used, and empirical re-
search generally proceeds as long as an equation is apparently ‘identified’ by order
conditions or some other restrictions. Sargan recognised that such practices were
potentially hazardous and that, in the event of near lack of identification, the asymp-
totic properties of econometric estimators and tests would be affected. In a paper
given to a Royal Statistical Society study group in 1975 that was eventually pub-
lished in Sargan (1988a, ch.12), he explored the relationship between identification
and consistent estimability in systems of simultaneous stochastic equations. Later, in
his Presidential address to the Econometric Society in 1980, Sargan (1983a) looked
at nonlinear in parameter models that were nearly unidentified in the sense that
the first order rank condition for local identification failed but higher order shape
conditions held so that there was still identification. In ‘singular’ cases like these,
Sargan found that the conventional asymptotic theory for instrumental variables es-
timation broke down, with lower rates of convergence and a non normal limit theory
applying. A subsequent paper, Sargan (1983b), showed that similar problems of sin-
gularity occured in dynamic models with autoregressive errors. Although a general
limiting distribution theory was not given in that case, Sargan remarked that “ ...in
finite samples the distributions of estimators derived from models which are almost
singular tend to approximate those from models which are exactly singular”.

This work by Sargan on near lack of identification anticipated much future re-
search. A limit theory for instrumental variables estimates in exactly singular (or
totally unidentified) systems was given a few years later in Phillips (1989). In this
limit theory, instrumental variable estimates converge weakly to random variables,
reflecting in the limit the uncertainty about the coefficients that is implicit in their
lack of identification. This new limit theory is similar to what has been found to

6



apply in the weakly identified cases that have been considered more recently (e.g.,
Staiger and Stock, 1997). As Sargan (1983b) put it, when there is a failure of the
first order conditions for local identifiability, “...the resulting estimates of the model
will not possess the usual asymptotic normality properties”. There are also major
effects on statistical testing and some procedures are now known to better reflect
the uncertainty that is implied by lack of identification or near lack of identification
than others (Kleibergen, 2000; Forchini and Hillier, 2002; Moreira, 2001). We further
know that increasing the number of instruments in a controlled way can help to pro-
duce consistent estimates, thereby compensating for the fact that the instruments are
individually weak, or in some cases, even irrelevant (Chao and Swanson, 2002; Han
and Phillips, 2002). As this field of research deepens and researchers become more
aware of earlier thinking, Sargan’s seminal contributions to the subject will hopefully
become better recognised.

(iii) Improving Inference

The finite sample properties of econometric estimators and tests were a concern to
researchers even in the early days of the Cowles Commission studies of simultaneous
equations. New approaches to fitting equations were typically justified, as they are
today, by asymptotic arguments, while the behavior of econometric methods in finite
samples is what is most relevant in applications. Sargan realized that limited data and
model complexity both strain conventional asymptotic justifications. In a research
agenda that spanned nearly 25 years from the early 1960’s, Sargan sought to find
methods by which finite sample inference in econometrics might be improved. Using
exact distribution theory, asymptotic expansions, moment approximations, and sim-
ulation methods he provided analyses of the finite sample properties of econometric
estimators in a wide range of settings.

Sargan’s Walras-Bowley lecture to the North American Meetings of the Econo-
metric Society in 1974 (published in Econometrica, 1976) summarized much of his
research on this topic and was distinctive because of the generality of the approach
as well as the variety of the methods it suggested. Most obvious were the general for-
mulae he gave for Edgeworth expansions of econometric estimators, that were based
on an earlier algorithm developed by Chambers (1967). The constructive process
underlying this algorithm is detailed in Section 4 below. Sargan’s dream was that
general formulae of this type could be incorporated into regression software and, with
the deployment of estimated coefficients, used to adjust critical values and improve
inference.

As it turned out, however, this dream was never realized. For it soon became clear
that Edgeworth approximations were not accurate enough to be used in empirical
research. Indeed, in many cases they do not improve on first order asymptotic theory.
Somewhat ironically, when the first order asymptotic theory is itself poor, this failing
of the Edgeworth approximation is particularly noticeable. In such cases the gap
that needs to be made up by the Edgeworth approximation is too large for its higher
order terms to perform satisfactorily. The problem was shown to be especially acute
in dynamic models (Phillips, 1977) where the usual asymptotics progressively break

7



down as the nonstationarity zone is approached. In consequence, Sargan’s dream
of practical implementation and widespread use of Edgeworth expansions was never
fulfilled. Instead, asymptotic expansions of this type are now used mainly to explain
the good and bad performance of first order asymptotics and to justify simulation-
based approximations like the bootstrap.

Sargan himself recognised the importance of simulation based approaches to im-
proving inference, suggesting in his Walras Bowley lecture a parametric version of the
bootstrap, which he called the Barnard approximation, following an earlier suggestion
that was made by George Barnard. Sargan’s development of this simulation-based
approximation was distinctive because it made constructive use of first order asymp-
totics through control variates to aid the simulation. While none of these methods
has since been systematically employed in applied work, the thrust of the research
agenda to improve inference was clear and his work marries well with recent develop-
ments on the bootstrap and its justification by way of asymptotic expansions, where
the impact on applied research has been substantial.

3. Mentorship

Doctoral students suffer a common plight as they search for thesis topics, agonize
over technical problems and seek guidance and inspiration from the literature and
mentors. One of Sargan’s major lifetime contributions was to help relieve this aca-
demic suffering. He had a deep and sincere desire to help people that was manifest
in the help he gave all his Ph.D students and younger colleagues, often writing out
pages of mathematical derivations to help them formulate a problem and overcome
technical obstacles. Sargan’s generosity to his students and colleagues was legendary
at the LSE and undoubtedly played a major role in attracting the large number of
doctoral students in econometrics that he supervised. It is well illustrated by this
personal story I heard from one of Sargan’s students. Not being able to prove a result
himself but knowing it was vital to his dissertation work, this student gave Sargan a
‘proof’ that started out the argument, worked backwards from the desired result and
filled in the middle with a load of rubbish. After a couple of weeks, Sargan called
him in and gave him a new proof, saying simply ‘I don’t think the original one quite
worked’.

Stories like this one make it clear that in our small world of econometrics Sargan
was an academic bodhisattva. According to Buddhist teaching, a bodhisattva is
someone who gives up nirvana to relieve the suffering of others and help them on the
path to enlightenment. Sargan most certainly performed both these roles in good
measure. Beyond this, Sargan’s eminent good taste in research, his capacity for right
thinking and his principled leadership had an enormous indirect impact, instilling in
all those around him the aspiration to go out and help others in their turn. This
bodhicitta has produced a large progeny of grandstudent descendents who are now
working econometricians in institutions all around the globe — an invisible college
of econometricians that makes for an astonishing legacy of intellectual influence and
practice.
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4. Constructing Edgeworth Expansions

What follows is a skeleton of the constructive process by which Edgeworth expansions
are derived in a general, smooth case, explicating the algebra given in Sargan’s (1976)
original treatment that was itself based on Chambers (1967). The history of this
construction is old, dating back to Edgeworth’s original development (which even
included functions of multivariate statistics, although this seems to have gone largely
unnoticed), Wallace (1958), Phillips (1977, 1982), Withers (1983) and Hall (1992) in
various notations and at various levels of generality.

Part of the difficulty of Edgeworth expansions is notational. The complexity of the
formulae in general cases is formidable, strains intuition and often leads to repeated
algebraic errors, the latter problem affecting many published articles, including some
of the final expressions given in Sargan (1976, 1977a). One advantage of the notation
used in the following development is that the essential ingredients remain explicit
in the final formulae, so that one can see the impact of the form of the econometric
estimator and the distributional properties of the underlying data on the finite sample
distribution.

Once the algebra is laid out in a suitably general form, it can all be done flawlessly
by symbolic computer manipulation. This type of implementation was envisaged
by both Chambers (1967) and Sargan (1976), but the programs available at the
time were of limited capability. Symbolic manipulation has now advanced to the
stage where quite general implementations of this type are possible. A recent book
by Andrews and Stafford (2000) shows how this can be accomplished, developing
Edgeworth expansions, Bartlett corrections, and Cornish-Fisher expansions at some
level of generality.

Let θn (m) be a statistic (such as the error in an econometric estimator or a t-
ratio type test statistic) with an asymptotic normal distribution. This statistic is
dependent on m, a vector of sample moments with density pdf(m), and the sample
size n. In the simplest cases, the function θn (m) will be known explicitly from the
form of the estimator or the test statistic. When θn is an extremum estimator, the
functional dependence θn(m) is obtained by inverting the power series development
of the first order conditions of the extremum problem, at least up to an appropriate
order of approximation that will depend on how far we want to develop the Edgeworth
series. It is similarly convenient to assume that m is appropriately centred about
corresponding population moments so that E (m) = 0, and that θn(0) = 0.We further
assume that m has moments of a high enough order for the operations that follow
to be valid, that the standardized moment mn =

√
nm has cumulants of the same

order of magnitude in n as would a simple standardized mean of iid variates (i.e., the
cumulants of nm are O(n) as n→∞) and that mn →d N (0, V ) with a nonsingular
variance matrix V = (vij). The limit normal distribution of the standardized moment
mn =

√
nm is the fountainhead from which the Edgeworth expansion for θn (m)

springs.
In an attempt to make the final formulae easier to interpret we use the following
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notation:

θn (m) : =
√
ne (m) =

√
ne
¡
mn/
√
n
¢

cf (x; θn) : =

Z
eixθn(m)pdf (m) dm = characteristic function (cf) of θn

cf (z;mn) : =

Z
eiz

0mn
pdf (mn) dmn = cf of mn

cgf (z;mn) : = log [cf (z;mn)] = cumulant generating function (cgf) of mn

pdf (r) : =
1

2π

Z
e−irxcf (x; θn) dx = probability density function (pdf) of θn

er =
∂e (0)

∂mr
, ers =

∂2e (0)

∂mr∂ms
, cgfab =

∂2cgf (0;mn)

∂za∂zb
, cfab (z;m

n) =
∂2cf (z;mn)

∂za∂zb
etc

We also employ the convenient notational summation device that a repeated subscript
is summed over itself, e.g. ersmrms =

P
r

P
s ersmrms, and assume that e has

continuous derivatives to the order required by the necessary expansions. In first
order asymptotics, θn (m) →d N

¡
0, ω2

¢
with ω2 = e00V e0 = vijeiej , where e0 =

∂e (0) /∂m = (er) and where we assume ω2 > 0.
The constructive process for the Edgeworth expansion begins with the Taylor

representation

θn (m) =
√
ne (m) =

√
n

½
ermr +

1

2
ersmrms +

1

6
erstmrmsmt +Op

¡
n−2

¢¾
= erm

n
r +

1

2
√
n
ersm

n
rm

n
s +

1

6n
erstm

n
rm

n
sm

n
t +Op

³
n−3/2

´
, (1)

which is a polynomial in the componentsmn
r with terms involving higher order powers

of n−1/2 that are of decreasing importance as n→∞. This polynomial representation
produces a corresponding expansion for the characteristic function of θn (m) . Pro-
ceeding in a purely formal operational way which is attentive to orders of magnitude,
we get

cf (x; θn) =

Z
eixθn(m

n)pdf (mn) dmn

=

Z
e
ixermn

r+
ix
2
√
n
ersmn

rm
n
s+

ix
6n

erstmn
rm

n
sm

n
t +O(n−3/2)pdf (mn) dmn

=

Z
eixerm

n
r

·
1 +

ix

2
√
n
ersm

n
rm

n
s +O

¡
n−1

¢¸
pdf (mn) dmn,

and noting that

cfab (z;mn) :=

Z
(imn

a) (im
n
b ) e

iz0mn
pdf (mn) dmn,

we deduce that

cf (x; θn) = cf
¡
xe0;mn

¢
+

ixers
2
√
n

µ
1

i

¶2
cfrs

¡
xe0;mn

¢
+O

¡
n−1

¢
= cf

¡
xe0;mn

¢− ixers
2
√
n
cfrs

¡
xe0;mn

¢
+O

¡
n−1

¢
. (2)
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Formula (2) writes the characteristic function of θn as a series of linear forms in-
volving the cf of mn and its successive derivatives with coefficients depending on the
derivatives of e. Note the presence of the complex constant i =

√−1 in (2) which
arises because the cf is, in general, complex.

The next step in the process is to expand the cf of mn in a series about the c.f of
the limiting distribution of mn. To achieve this, we first expand the cgf of mn in the
following Taylor series at the origin

cgf (z;mn) =
1

2
cgfijzizj +

1

6
cgfijkzizjzk +O

¡
z4
¢
, (3)

where we note that the first non zero term is quadratic since mn is centred about its
mean value. By definition

cf (z;mn) = exp {cgf (z;mn)} , (4)

so that setting z = xe0 in (3) and (4) we obtain

cf
¡
xe0;mn

¢
= exp

½
x2

2
cgfijeiej +

x3

6
cgfijkeiejek +O

¡
x4
¢¾

= exp

½
x2

2
cgfijeiej

¾·
1 +

x3

6
cgfijkeiejek +O

¡
x4
¢¸

. (5)

Similar expressions now hold for the derivatives. In particular

cfab
¡
xe0;mn

¢
= exp

½
x2

2
cgfijeiej

¾h
cgfab + (cgfajej)(cgfbkek)x

2 +O
³
n−1/2

´i
, (6)

where we use the fact that the cumulants of mn of order p are O(n1−p/2), so that
cgfijk = O(n−1/2).

Using (5) and (6) in (2) we find the following series expansion for the cf of θn

cf (x; θn) = exp

½
x2

2
cgfijeiej

¾·
1− ix

2
√
n
cgfrsers

+
x3

6

½
cgfijkeiejek −

3i√
n
ers
¡
cgfrjej

¢
(cgfskek)

¾¸
+O

¡
n−1

¢
= exp

½
−x

2

2
ω2
¾·
1− ix

2
√
n
cgfrsers

+
x3

6

½
cgfijkeiejek −

3i√
n
ers
¡
cgfrjej

¢
(cgfskek)

¾¸
+O

¡
n−1

¢
(7)

since ω2 = vijeiej = −cgfijeiej , the variance of the limiting distribution of θn.
Since (7) involves second and third derivatives of the cumulant generating function
cgf(z;mn) at the origin, some of the coefficients in (7) again involve the complex
constant i.

Formula (7) is an asymptotic expansion of the cf of θn about the cf of its limit
distribution, exp

©−12x2ω2ª. The approximation obtained by truncating the higher
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order terms of O
¡
n−1

¢
is just a polynomial (in x) multiple of this asymptotic cf. By

inverting (7) term by term we deduce the corresponding asymptotic expansion of the
pdf of θn. To do so, we use the relation

(−1)k ϕ(k) (z) = 1

2π

Z
(it)k e−t

2/2e−itzdt,

or, as is more appropriate here,

1

ωk+1
Hk

³ r
ω

´
ϕ
³ r
ω

´
=
(−1)k
ωk

ϕ(k)
³ r
ω
z
´
=
1

2π

Z
(is)k e−s

2ω2/2e−isrds, (8)

where ϕ (z) = (1/
√
2π) exp

©−z2/2ª is the standard normal density and Hk (z) are
the Hermite polynomials, the first four of which are:

H0 (z) = 1, H1 (z) = z, H2 (z) = z2 − 1, H3 (z) = z3 − 3z.

By inversion in this manner we find from (7) and (8) that the pdf of θn has the
following asymptotic expansion as n→∞

pdf (r) =
1

ω
ϕ
³ r
ω

´·
1 +

1√
n

½
a1

³ r
ω

´
+ a3

³ r
ω

´3¾¸
+O

¡
n−1

¢
, (9)

where

a1 = − 1

2ω
cgfrsers −

1

2ω3

h
3ers

¡
cgfrjej

¢
(cgfskek) + in1/2cgfijkeiejek

i
, (10)

a3 =
1

2ω3

h
3ers

¡
cgfrjej

¢
(cgfskek) + in1/2cgfijkeiejek

i
, (11)

ω2 = −cgfijeiej .

Expression (9) gives the Edgeworth expansion of the density of θn explicitly to
order O

¡
n−1/2

¢
. Terms of higher order are obtained in an analogous way by carrying

each of the expansions to higher level. They are given explicitly to order O
¡
n−1

¢
in

Sargan (1976, 1977), although both sets of formulae have algebraic slips, and Phillips
(1977). Withers (1983) subsequently gave correspondingly general formulae for the
case of a regular functional of the empirical distribution of a random sample from an
absolutely continuous distribution. The algebra quickly becomes impractical beyond
the second order but it is eminently suited to symbolic computing and numerical
evaluation. The coefficients a1 and a3 determine the amount of bias and skewness in
the distributional approximation and their magnitude is determined by the second
and third cumulants of the distribution of mn (through the terms cgfrs and cgfijk)
and derivatives of θn to the second order (i.e., ei and ers).

Three different levels of approximation are involved in the construction leading
to (9):

(i) The approximation (1) of the statistic θn by a low order polynomial in a vector
of more basic moment statistics mn.
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(ii) The approximate representation (2) of the cf of θn in terms of the cf of mn and
its successive derivatives.

(iii) The approximate representation (5) and (6) of the cf of mn in terms of the cf
of the limiting distribution of mn.

Of these approximations, (i) is often the most heroic. The adequacy of a poly-
nomial representation of θn in terms of mn will depend on many factors. The most
important of these is the width of the domain in θn- space over which a good ap-
proximation to the distribution of θn is required. In many cases (e.g., when the
dimension of m is large relative to n, or when there are singularities in θn(m) close
to the origin), it may not be possible to adequately capture the random behavior of
θn by a polynomial approximation in anything else but a very small neighborhood
of the origin (the probability limit of m). In other cases (e.g., when the moments m
arise from time series whose parameters are close to the region of nonstationarity) the
approximation (iii) may also be quite poor. When any of the approximations (i)-(iii)
is inadequate, we can expect the Edgeworth expansion to perform poorly. Often, the
worst affected regions of the distribution are the tails, where the shape of the true
density necessarily depends on the behavior of θn in outlying regions of its space of
definition.

In this connection, it is worth mentioning that whereas θn itself may possess no
finite integral order moments and its distribution may have heavy tails, all moments
of the approximating density in (9) are finite. In such cases, the finite moments of
the approximating polynomial representation of θn become pseudo-moments of θn.
They can readily be calculated from ((9). For instance, the first pseudo-moment is
given by

E (θn) =

Z
1

ω
ϕ
³ r
ω

´·
r +

ω√
n

½
a1

³ r
ω

´2
+ a3

³ r
ω

´4¾¸
dr =

ω√
n
(a1 + 3a3)

= − 1

2
√
n
erscgfrs = −

1

2
√
n
erscfrs (0;m

n) . (12)

These moment approximations are sometimes called Nagar approximations, follow-
ing their early use by Nagar (1959) for approximating the distribution of k-class
estimates in simultaneous equations. Sargan (1974) developed criteria for the valid-
ity of such approximations, and Appendix A of his Walras Bowley lecture (Sargan,
1976) extended that theory to a general setting comparable to the above, allowing
for arbitrary order moments and expansions of arbitrary order. Appendix C (part
4) of the same lecture (Sargan, 1976) went on to apply the formulae (essentially (12)
above) to extract the bias of the three stage least squares estimator of a structural
coefficient matrix in a simultaneous equations system. The same appendix utilized
commutation matrix algebra to simplify the matrix manipulations in those deriva-
tions.

In later work, Sargan (1982) used pseudo-moment expansions of the type given
in (12) to help interpret the descriptive moment statistics conventionally reported
in Monte Carlo experiments. When the moments of the underlying distribution are
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infinite, Sargan showed that such simulation based moment statistics can be validly
interpreted as estimates of the actual moments of the Edgeworth approximating dis-
tributions up to a certain order, depending on the sample size and the number of
replications.

Many econometric test criteria are asymptotically chi-square rather than asymp-
totically normal. Expansions of the distributions of such criteria about their chi-
square limits are also possible and of practical interest. Sargan (1980b) developed
a validity theory for such expansions in a general functional context like that above
but in the somewhat simpler case where some of the constituent moment functions
mn were normally distributed. An algorithm for extracting the explicit form of such
expansions comparable in generality to the above was given in Phillips and Park
(1988). These results have proved useful in analyzing the behavior of econometric
test statistics and comparing tests. But, like the expansion (9), they have not been
found sufficiently reliable to implement in empirical research.

All of these contributions show Sargan’s concern to produce methods that would
be useful in practical econometric work and his desire to achieve general results. He
clearly had a passion for finite sample theory and was equally comfortable doing exact
theory, asymptotic expansions, proving validity theorems or deriving algorithms. As
it has transpired, none of these methods explored by Sargan are now in systematic use
in practical work. They are also less frequently referenced in theoretical contributions
than they were in the 1970’s or early 1980’s when the trail of finite sample theory
in econometrics was being blazed. Nonetheless, they provide a substantial body
of knowledge and technical innovation that is an important part of fabric of this
discipline.

5. Conclusion

The history of econometrics in the second half of the twentieth century is still to be
written, but there is no doubt that Denis Sargan will figure in that history as one of
the preeminent econometric theorists of the era. Sargan initiated a research agenda of
great scope that influenced almost every major area of the discipline. His early work
enriched and deepened the theory of instrumental variables and revealed the vast
potential of this approach. His work on finite sample theory gave that burgeoning
field both vitality and generality, offering the promise of empirical implementation
and signaling the important role that computer simulation methods would play in
improving inferential accuracy in applied research. His work on dynamic specification
opened up a new field of research in the discipline that continues to impact applied
time series research and thinking about econometric methodology. His research on
dynamic panel modeling and unit roots pointed the way to new possibilities as those
fields were beginning to emerge. At his retirement dinner held at Oxford University
in 1985, Sargan told an enthralled audience of econometricians that he started off his
academic career in econometrics with a few ideas that he wanted to pursue in econo-
metric research and hoped to publish in good journals. That work was now pretty
much completed, he said, and he was happy to hand over to a younger generation.
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One can hardly imagine a more modest way of summing up such a distinguished
career.

Since Denis Sargan’s passing, the world of econometric theory and its applications
has moved on. But many of the themes of his research are present in ongoing work,
albeit with new concerns occupying theorists and new approaches being followed by
empirical researchers. Fortunately, Sargan’s thinking about econometrics is preserved
in his scientific contributions and is being kept alive through his teachings and the
strong collegial influence he had in the econometrics community of the United King-
dom. The academic world has a great need for people like Denis Sargan who are
prepared to invest in the people around them and help others in their own academic
struggles. His life and career are a powerful example to us all.
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