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1. Introduction

The core of the general equilibrium research agenda has centered around questions of existence
and uniqueness of competitive equilibria and stability of the price adjustment mechanism. Despite
the resolution of these concerns, i.e., the existence theorem of Arrow and Debreu; Debreu’s results
on local uniqueness; Scarf’s example of global instability of the tatonnement price adjustment
mechanism; and the Sonnenschein-Debreu—Mantel theorem, general equilibrium theory continues
to suffer the criticism that it lacks falsifiable implications or, in Samuelson’s terms, “meaningful
theorems.”

Comparative statics analysis is the primary source of testable restrictions in economic theory.
This mode of analysis is most highly developed within the theory of the household and theory of
the firm, e.g., Slutsky’s equation, Shepard’s lemma, etc. As is well known from the Sonnenschein—
Debreu—Mantel theorem, the Slutsky restrictions on individual excess demand functions do not
extend to market excess demand functions. In particular, as shown by Mas-Colell {12}, utility
maximization subject to a budget constraint imposes no testable restrictions on the set of equilib-
rium prices. The disappointing attempts of Walras, Hicks and Samuelson to derive comparative
statics for the general equilibrium model are chronicled in Inagro and Israel [11}, Moreover, there
has been no substantive progress in this field since Arrow and Hahn’s discussion of monotone
comparative statics for the Walrasian model [5].

If we denote the market excess demand function as Fz(p) where the profile of individual
endowments ¥ is fixed but market prices p may vary, then F~(p) is the primary construct in
the research on existence and uniqueness of competitive equilibria, the stability of the price
adjustment mechanism, and comparative statics of the Walrasian model. A noteworthy exception
is the monograph of Balasko [6] who addressed these questions in terms of properties of the
equilibrium manifold. To define the equilibrium manifold we denote the market excess demand
function as F(1, p), where both % and p may vary. The equilibrium manifold is defined as the set
{(®,p)|F(®,p) = 0}. Contrary to the result of Mas-Colell, cited above, we shall show that utility

maximization subject to a budget constraint does impose testable restrictions on the equilibrium



manifold. Hence, general equilibrium theory does have implications that are falsifiable.

To this end we consider an alternative source of testable restrictions within economic theory:
the nonparametric analysis of revealed preference theory as developed by Samuelson, Houthakker,
Afriat, Richter, Diewert, Varian and others for the theory of the household and the theory of the
firm. For us, the seminal proposition in this field is Afriat’s theorem {1} for data on prices and
consumption bundles. Recall that Afriat, using the Theorem of the Alternative, proved the equiv-
alence of a finite family of linear inequalities — now called the Afriat inequalities — that contain
unobservable utility levels and marginal utilities of income; his axiom of revealed preference,
“cyclical consistency” — finite families of linear inequalities that contain only observables (i.e.,
prices and consumption bundles); and the existence of a concave, continuous monotonic utility
function rationalizing the observed data. The equivalence of the Afriat inequalities and cyclical
consistency is an instance of a deep theorem in model theory, the Tarski-Seidenberg theorem on
quantifier elimination.

The Tarski-Seidenberg theorem — see Van Den Dries [15] for an extended discussion — proves
that any finite system of polynomial inequalities can be reduced to an equivalent finite family of
polynomial inequalities in the coefficients of the given system. They are equivalent in the sense
that the original system of polynomial inequalities has a solution if and only if the parameter
values of its coefficients satisfy the derived family of polynomial inequalities. In addition, the
Tarski-Seidenberg theorem provides an algorithm which, in principle, can be used to carry out
the elimination of the unobservable — the quantified — variables, in a finite number of steps.
Each time a variable is eliminated, an equivalent system of polynomial inequalities is obtained,
which contains all the variables except those that have been eliminated up to that point. The
algorithm terminates in one of three mutually exclusive and exhaustive states: (i) 1 = 0, i.e., the
original system of polynomial inequalities is never satisfied; (ii) 1 = 1, i.e., the original system is
always satisfied; (iii) an equivalent finite family of polynomial inequalities in the coefficients of
the original system that is satisfied only by some parameter values of the coeflicients.

To apply the Tarski-Seidenberg theorem, we must first express the structural equilibrium



conditions of the pure trade model as a finite family of polynomial inequalities. Moreover, to
derive equivalent conditions on the data, the coefficients in this family of polynomial inequalities
must be the market observables — in this case, individual endowments and market prices —
and the unknowns must be the unobservables in the theory — in tMs case, individual utility
levels, marginal utilities of income, and consumption bundles. A family of equilibrium conditions
having these properties consists of the Afriat inequalities for each agent; the budget constraint of
each agent; and the market clearing equations of each observation. Using the Tarski-Seidenberg
procedure to eliminate the unknowns must therefore terminate in one of the following states: (i)
1 = 0 — the given equilibrium conditions are inconsistent, (i) 1 = 1 — there is no finite data set
that refutes the model, or (iii) the equilibrium conditions are testable.

Unlike Gaussian elimination — the analogous procedure for linear systems of equations —
the running time of the Tarski-Seidenberg algorithm is in general not polynomial and in the
worst case can be doubly exponential. See the volume edited by Arnon and Buchberger [4] for
more discussion of the complexity of the Tarski-Seidenberg algorithm. Fortunately, it is often
unnecessary to apply the Tarski-Seidenberg algorithm to determine if the given equilibrium theory
has testable restrictions on finite data sets. It suffices to show that the algorithm cannot terminate
with 1 = 0 or with 1 = 1. In fact, as we shall show, this is the case for the pure trade model.

It follows from the Arrow-Debreu existence theorem that the Tarski-Seidenberg algorithm
applied to this system will not terminate with 1 = 0. In the next section, we construct an example
of a pure trade model where no values of the unobservables are consistent with the values of the
observables. Hence the algorithm will not terminate with 1 = 1. Therefore the Tarski-Seidenberg
theorem implies for any finite family of profiles of individual endowments @ and market prices p
that these observations lie on the equilibrium manifold of a pure trade economy, for some family
of concave, continuous and monotonic utility functions, if and only if they satisfy the derived
family of polynomial inequalities in @ and p. This family of polynomial inequalities in the data
constitutes the set of testable restrictions of the Walrasian model of pure trade.

It may be difficult, using the Tarski-Seidenberg algorithm, to derive these testable restric-



tions on the equilibrium manifold in a computationally efficient manner for every finite data set,
although we are able to derive restrictions for two observations. If there are more than two ob-
servations our restrictions are necessary but not sufficient. That is, if there are at least three
observations, then even if our conditions hold for every pair of observations, the data need not
lie on any equilibrium manifold. Consequently, we call our conditions the weak axiom of revealed
equilibrium or WARE. Of course, if our conditions are violated for any pair of observations then
the Walrasian model of pure trade is refuted.

An important distinction between our model and Afriat’s model is that we do not assume
individual consumptions are observed as did Afriat. As a consequence the Afriat inequalities in
our model are nonlinear in the unknowns.

This paper is organized as follows. Section 2 presents necessary and sufficient conditions for
observations on market prices, individual incomes and total endowments to lie on the equilibrium
manifold of some pure trade economy. Section 3 specializes the results to equilibrium manifolds
corresponding to economies whose consumers have homothetic utility functions. In the final sec-

tion of the paper we discuss extensions and empirical applications of our methodology.

2. Restrictions in the Pure Trade Model

We consider an economy with K commodities and T traders, where the intended interpretation
is the pure trade model. The commodity space is R¥ and each agent has ]Rf as her consumption
set. Each trader is characterized by an endowment vector w; € ]Rf+ and a utility function
Vi . IRf — K. Utility functions are assumed to be continuous, monotone and concave.

An allocation is a consumption vector z; for each trader such that z; € RX and £L,z,
= XTI w,. The price simplex A = {p € ]Rf |ZK p; = 1}. We shall restrict attention to strictly
positive prices § = {p € A|p; > 0 for all i}. A competitive equilibrium consists of an allocation
{z:}L_, and prices p such that each z; is utility maximizing for agent ¢ subject to her budget
constraint. The prices p are called equilibrium prices.

Suppose we observe a finite number N of profiles of individual endowment vectors {w} }7_, and



market prices p”, where r = 1, ..., N, but we do not observe the utility functions or consumption
vectors of individual agents. For each family of utility functions {V;}L, there is an equilibrium
manifold, which is simply the graph of the Walras correspondence, i.e., the map from profiles of

individual endowments to equilibrium prices.

We say that the pure trade model is testable if for every N there exists a finite family of
polynomial inequalities in w] and p” fort = 1, ...,T and r = 1, ..., N such that observed pairs
of profiles of individual endowments and market prices satisfy the given system of polynomial

inequalities iff they lie on some equilibrium manifold.

To prove that the pure trade model is testable, we first recall Afriat’s Theorem [1]:

AFRIAT’S THEOREM: The following conditions are equivalent:

(A.1) There exists a nonsatiated utility function that “rationalizes” the data (»*, x"),-=1,_,_'N; i.e.,
there ezists a nonsatiated function u(z) such that for all i = 1, ..., N, and all z such that
p'z’' > p'z, u(a') > u(z).

(A.2) The data satisfy “Cyclical Consistency (CC)?”; i.e., for all {r, s, t, ..., q} p"z" > p"2°, p*2*

> pizt, ..., p729 > plz” implies p'z" = p'z*, p*z® = p°zt, ..., pTz7 = pia”.

(A.3) There exist numbers U, X* > 0, i = 1,...,n such that U* < U’ + Mpi(zi — 27) for

i,j=1,.., N,

(A.4) There ezists a nonsatiated, continuous, concave, monotonic utility function that rationalizes
the data.

Versions of Afriat’s theorem for SARP (the Strong Axiom of Revealed Preference, due to
Houthakker [10]) and SSARP (the Strong SARP, due to Chiappori and Rochet [9]) can be found
in Matzkin and Richter [13] and in Chiappori and Rochet [9], respectively.l

We consider the structural equilibrium conditions for N observations on pairs of profiles

of individual endowment vectors {w] }th1 and market prices p” for r = 1, ..., N, which are:

1 Chiappori and Rochet [9] show that SSARP characterizes demand data that can be rationalized by strictly
monotone, strictly concave, C* utility functions. Define the binary relationship R® by: z'R°z if p'z* > p'z. Let R
be the transitive closure of R°. Then, SARP is satisfied iff for all ¢, s: [(z'Rz* & z* # £°) = (not z°Rz")]; SSARP
is SARP together with [(p® # ap” for all @ > 0) = (z* # z"))].



a{ﬁ}r:l,...,N;t:l,...,Tv {’\;}r=l,...,N;t=l,...,N7 {z:}r=1,...,N;t=l,...,T such that

V,-V, - Xp*(z} —25)<0 r,s=1,.,N;t=1,.,T (1.1)
Al>0,2z; >0 r=1,.,N; t=1,..,T (1.2)
pz=pw; r=1,.,N;t=1,..,T (1.3)

Ll =S w] r=1,..,N (1.4)

this family of conditions will be called the equilibrium inequalities. The observable variables
in this system are the w] and p”; hence this is a nonlinear family of polynomial inequalities
in unobservable utility levels, I_/:; marginal utilities of income, A}; and consumption vectors
z7. Choose T concave, continuous and monotonic utility functions and N profiles of individual
endowment vectors. Then by the Arrow—Debreu existence theorem there exist equilibrium prices
and competitive allocations, together with the competitive prices and allocations and profiles
of endowment vectors, satisfy the equilibrium inequalities. Therefore, the Tarski-Seidenberg
algorithm applied to the equilibrium inequalities will not terminate with 1 = 0.

The following example of a pure trade economy with two goods and two traders proves that
the algorithm will not terminate with 1 = 1. In Figure 1, we superimpose two Edgeworth boxes,
which are defined by the aggregate endowment vectors w! and w?. The first box, (1), is ABCD
and the second box, (2), is AEFG. The first agent lives at the A vertex in both boxes and the
second agent lives at vertex C in box (1) and at vertex F in box (2). The individual endowments
wi, wl; s?, w? and the two price vectors p! and p? define the budget sets of each consumer.
The sections of the budget hyperplanes that intersect with each Edgeworth box constitute the
set of potential equilibrium allocations. All pairs of allocations in box (1) and box (2) that lie on
the given budget lines violate Cyclical Consistency, i.e., the Weak Axiom of Revealed Preference
(WARP) in this case, for the first agent (the agent living at vertex A). By Afriat’s theorem there is

no solution to the equilibrium inequalities. This example is easily extended to pure trade models

with any finite number of goods or traders.



Figure 1
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THEOREM 1: The pure trade model is testable.

Proor: The system of equilibrium inequalities is a finite family of polynomial inequalities, hence
we can apply the Tarski-Seidenberg algorithm. We have shown above that the algorithm cannot

terminate with 1 =0 or with 1 = 1.

Since it is often difficult to observe individual endowment vectors, in the next theorem we
restate the equilibrium inequalities where the observables are the market prices, incomes of con-
sumers and aggregate endowments. Let I] denote the income of consumer ¢ in observation r and

w” the aggregate endowment in observation r.

THEOREM 2: Let (p", {IJ}L,, w") forr = 1, ..., N be given. Then there ezists a set of contin-
uous, concave and monotone utility functions {V;}L, such that for each r = 1, ..., N; p" is an
equilibrium price vector for the exchange economy ({Vi}_,, {IJ},, w") iff there ezist numbers
{V}e=1,...Tir=1,..n and {AJhi=1,. Typ=1,...N and vectors {2]}i=1,.. Tyr=1,..N satisfying

5 78

V, -V, = Ap®(z; —2{) <0 r,s=1,..,N;t=1,..T (2.1)

Al>0,z;>0 r=1,..,N; t=1,..,T (2.2)

"
[
-

M
-
~

pzy=I r=1,.,N;t (2.3)

T el=w r=1,.,N (2.4)



PROOF: Suppose that there exist {V;}, {A7} and {z]} satisfying (2.1)-(2.4). Then, by Afriat’s
Theorem, (2.1)-(2.3) imply that for each ¢, there exists a continuous, concave, and monotone
utility function V; : ]Rf = IR such that for each r, z7 is one of the maximizers of V; subject to
the budget constraint p"y < I7. Hence, since {z7}7_, define an allocation, i.e., satisfy (2.4), p" is
an equilibrium price vector for the exchange economy {V}L,, {wi}L,) foreach r =1, ..., N.
The converse is immediate, since given continuous, concave and monotone utility functions,
V;, the equilibrium price vectors p” and allocations {z}}L_, satisfy (2.3) and (2.4) by definition.
The existence of {A7}L_, such that (2.1) and (2.2) hold follows from the Kuhn-Tucker Theorem,

where V, = Vi(z}).

For two observations (r = 1, 2) and the Chiappori-Rochet version of Afriat’s theorem we use
quantifier elimination, in the Appendix, to derive from the equilibrium inequalities the testable
restrictions for the pure trade model with two consumers (¢ = a, b). We call the family of polyno-
mial inequalities obtained from this process the Weak Aziom of Revealed Equilibrium (WARE).
Define the vector Z] (r = 1,2;t = a,b) by 7} = argmax,{p°z|p’z = I],0 < = < w’} where
r # s. Hence, among all the bundles that are feasible in observation r and are on the budget
hyperplane of consumer ¢ in observation r, ZJ is the bundle that costs the most under prices p*
(s # r) (%7 is unique since prices are strictly positive).

We will say that observations {p”},=1,2, {I] }r=1,21t=a,b, {W" }r=1,2 satisfy WARE if
) Vr=1,2, L+ =pw
@) (Vr,s=1,2(r#s) (Mt=0,b), [(¢°F <I)=> (@'E > I
) (rs=1,2(#s), (L), @EHLR)= 0w >pv)

In the next theorem we show that WARE characterizes data that lie on some equilibrium manifold.
Condition (I) says that the sum of the individuals’ incomes equals the value of the aggregate
endowment. Condition (II) applies when all the bundles in the budget hyperplane of consumer ¢
in observation r that are feasible in observation r can be purchased with the income and prices

faced by consumer t in observation s (s # r) (i.e., p°Z; < I?). The condition then requires



that some of the bundles that are feasible in observation s and are in the budget hyperplane of
consumer £ in observation s cannot be purchased with the income and prices faced by consumer ¢
in observation r (i.e., p"Z; > I7). Clearly, unless this condition is satisfied, it will not be possible
to find consumption bundles consistent with equilibrium and satisfying SSARP. Note that this
condition is not satisfied by the observations in Figure 1. Condition (III) says that when for
each of the agents all the bundles that are feasible and affordable under observation r can be
purchased with the agent’s income and the price of observation s, then the aggregate endowment
in observation s must cost more than the aggregate endowment in observation r when evaluated
at the prices of observation r. This guarantees that at least one of the pairs of consumption
bundles in observation s that contain for each agent feasible and affordable bundles that could
not be purchased with the income and price of observation r are such that they add up to the

aggregate endowment.

THEOREM 3: Let {p"}r=12, {I] }r=12:t=ap, {W }r=1,2 e given such that p' is not a scalar mul-
tiple of p?. Then the equilibrium inequalities for strictly monotone, strictly concave, C* utility
functions have a solution, i.e., the data lies on the equilibrium manifold of some economy whose
consumers have strictly monotone, strictly concave, C*® utility functions, iff the data satisfy

WARE.

This result follows from the Tarski—Seidenberg theorem, because WARE can be derived by quanti-
fier elimination. In the Appendix we provide a direct proof of Theorem 3, which helps to interpret

WARE.

3. Restrictions When Utility Functions Are Homothetic

In applied general equilibrium analysis — see Shoven and Whalley [14] — utility functions are
often assumed to be homothetic. We next derive testable restrictions on the pure trade model un-
der this assumption. These restrictions can be used as a specification test for computable general

equilibrium models, say in international trade, where agents have homothetic utility functions.
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Afriat [2, 3] and Varian [17] developed the Homothetic Axiom of Revealed Preference (HARP),
which is equivalent to the Afriat inequalities for homothetic utility functions. For two observations
{r", 2" }r=12 HARP reduced to: (p"z")(p°z") > (p'z")(p°z") for r,s = 1,2 (r # s). If we
substitute these for the Afriat inequalities in the equilibrium inequalities (1.1)-(1.4), we obtain
a nonlinear system of polynomial inequalities were the unknowns (or unobservables) are the
consumption vectors z} for 7 = 1, 2 and t = @, b. In the Appendix, we use quantifier elimination
to derive the testable restrictions of this model on the observable variables, which we call the
Homothetic-Weak Aziom of Revealed Preferences (H-WARE).

Given observations {p" }r=12, {I] }r=12;t=apy {¥" }r=1,2, We define the following terms:
Yo = LI, v = LI}, v = (Pw?)(P*w')

Y1=T—Ya—Twr Y2 ==Y~ Tw)’ = $YaVw

_ Ta T b
TI—FE—E, Te=pw _177—3
P ek ) A e Y i
1T 2plw? 2T 2plw?

s = max{0, r1, t;}, sz = min{re, {2}

z; = argmzin{p’zlp'z =I[,0<z<w'} where r£s(r=1,2; t=a,b).
Our Homothetic-Weak Aziom of Revealed Equilibrium (H-WARE) is
(HI) ¥, >0,
(HII) s < s
(HII) s < p*Z7,
(HIV) p?zl < s
(H.V) 1!+ I} = p'v! and I? + I} = p*w?

Condition (H.I) guarantees that ¢; and t; are real numbers. Conditions (H.II)-(H.IV) guarantee

the existence of a vector z! whose cost under prices p? is between s; and s;. The values of s;



and s, guarantee that equilibrium allocations can be found. Condition (H.V) says that the sum

of the individuals’ incomes equals the value of the aggregate endowment.

THEOREM 4: Let {p?}r=12, {I] }r=1,2it=ap, {¥" }r=1,2 e given. Then the equilibrium inequalities
for homothetic utility functions have a solution, i.e., the data lies on the equilibrium manifold of

some economy whose consumers have homothetic utility functions, iff the data satisfy H-WARE.

This result follows by the Tarski-Seidenberg theorem, because H-WARE can be derived by quan-
tifier elimination. The necessity and sufficiency of H-WARE may, however, be better understood

by reading the direct proof of Theorem 4, which we provide in the Appendix.

4. Empirical Applications and Extensions

For an empirical test of the pure exchange model, one might use cross-sectional data to obtain
the necessary variation in market prices and individual incomes. Assuming that sampled cities
or states have the same distribution of tastes but different income distributions and consequently
different market prices, the observations can serve as market data for our model. In the stylized
economies in our examples one should think of each “trader” as an agent type that represents
numerous small consumers each having the same tastes and incomes.

There is a large variety of situations that fall into the structure of a general equilibrium
exchange model and for which data are available. For example, our methods can be used in a
multiperiod capital market model, where agents have additively separable (time invariant) utility
functions, to test whether spot prices are equilibrium prices, by using only observations on the spot
prices and the individual endowments in each period. They can be used to test the equilibrium
hypothesis in an assets market model where agents maximize indirect utility functions over feasible
portfolios of assets, using observations on the outstanding shares of the assets, each trader’s initial
asset holdings, and the asset prices. Or, they can be used in a household labor supply model of
the type considered in Chiappori [6], to test whether the unobserved allocation of consumption

within the household is determined by a competitive equilibrium, using data on the labor supply,
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wages, and the aggregate consumption of the household.

To apply the methodology to large data sets, it is necessary to devise a computationally
efficient algorithm for solving large families of equilibrium inequalities. A promising approach is
to restrict attention to special classes of utility functions. As an example, if traders are assumed
to have quasilinear utility functions — all linear in the same commodity (say the kth) — then
the equilibrium inequalities can be reduced to a family of linear inequalities by choosing the kth
commodity as numeraire. We can then use the simplex algorithm or the interior point algorithm of
Karmarkar — which runs in polynomial time — to test for or compute solutions of the equilibrium
inequalities.

The more challenging problem in economic theory is to recast the equilibrium inequalities to
allow random variation in tastes. Some recent progress has been made in this area by Brown
and Matzkin [7]. They consider a random utility model, which gives rise to a stochastic family
of Afriat inequalities, that can be identified and consistently estimated. If their approach can
be extended to random exchange models then this is a significant step in empirically testing the
Walrasian hypothesis.

The methodology can also be extended to find testable restrictions on the equilibrium manifold
of economies with production technologies. Only observations on the market prices, individuals’
endowments, and individuals’ profit shares are necessary to test the equilibrium model in pro-
duction economies. Inn particular, for a Robinson Crusoe economy, where the consumer has a
nonsatiated utility function we have derived the following restrictions on the observable variables,

for any number of observations. A direct proof of the result is given in the Appendix.

THEOREM 5: The data (p", w™) forr = 1, ..., N lies in the equilibrium manifold of a Robinson

Crusoe economy iff (p", w") for r =1, ..., N satisfy Cyclical Consistency (CC).

Testable restrictions for other economic models can also be derived using the methodology

that we have presented in this paper.
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APPENDIX

Derivation of WARE Using Quantifier Elimination:
The polynomial inequalities characterizing the pure trade model for two observations and two

consumers with strictly monotone, strictly concave, C* utility functions are: 3{V} },=1,2:4=a,

{Af}r=1,2it=ab, {2} }r=1,2t=a,6 such that

(C1) V2=V, - Mpl(a2—2})<0, t=a,b
(C2) V,-V:= A%z} —22)<0, t=a,b
(C3) X >0, r=1,2;t=a,b

(C4) pai=I, r=1,2;t=a,b

(C5) pr£p*=>zl#2?, t=a,b

(C6) 21 >0, r=1,2;t=a,b

(C7) zi+zi=w", r=1,2

((C.1)~(C.5) follow from Chiappori and Rochet [9].) The equivalent expression, after eliminating

{A}r=1,2it=a b, ist H{V{ }r=1,2it=a s {2} }r=12;t=ap such that
(C1) pl(a2—2l)<0=Vi<V,, t=a,b

(C.2) pXzl—22)<0=>V, <V, t=a,b

(C4) paf=I, r=1,2;t=a,b

(Ch5) pr#pP=>z}#2%, t=a,b

(C6) 2z} >0, r=1,2;t=a,b

(C7T zi+zj=w", r=1,2
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(C.1") and (C.2') are the necessary and sufficient conditions on {Vtr}r=1,2;t=a,b, {z}}r=12;t=a,, and
{IT}r=12:t=a guaranteeing that there exist {A]}r=1,2;t=0, satisfying (C.1)-(C.3). Elimination of

{V;}r=12:t=ap yields the equivalent expression: 3{z] }r=12;t=a, such that
(C.1") pMa?—12})<0=p*(z}-2})>0, t=a,b

(C4) paf=I], r=1,2t=a,b

(C5) pr#p* =zt #2], t=ab

(C6) 2z} >0, r=1,2;t=a,b

(C7) zi+zj=w", r=1,2

(C.1") is the necessary and sufficient condition that guarantees there exist {V3}r=1,2:t=0p satisfy-

ing (C.1')—(C.2'). Note that we have just shown how, for two observations, SSARP can be derived
by quantifier elimination. Next, elimination of {z}},=1,> and usage of (C.4) yields the expression:

Jz!, z2 such that

(C.A"1) p ol <I=pzs>I, s#r

(C1"2) p(w —zl)SE=>p (v —23)>I, s#r
(C4") prat=IT, r=1,2

(C.5") p' #p* = (2} # 22) & (v! — 2} # w? — 20)]
(C6) 0<al<w' , r=1,2

(C7) DI+ =pw, r=1,2

Let 2z} = argmax,{p°z[p'z = I], 0 < z < w"}, where r # 5. Note that I] + I] = p"w” implies
z

that 27 + 2] = w". Then, elimination of zZ gives: 3z} such that
(C.1".1) pzl <I? = p'72 > I}

(C.1"2) pP(w! —al) < I = pl(w? — 22) > I}
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(C.1™.3) [(pPa} < I2) & (p*(w! —22) < )] = p'w? > plw!

(C4") plag=1,

(C.6') 0<z!<w!

(C7) I+ =pw , r=1,2

((C.5") does not impose restrictions.) Finally, elimination of z! yields
(C.1*.1) p'22 < I} = p?zL > I?

(C1°2) P -2) <} = Pl —20) > I}

(C.13) [(p'22 < I}) & (p'(w? - 22) < )] = pPw' > pPu’

(C.1"4) [(p%7} < ID) & (PA(w' - 2) < )] = p'w? > plu!

(C) II+=pw, r=1,2

This family of polynomial inequalities can be written as:

(I vr=1,2, I+ =pw"

(I) (Yr,s=1,2(r#s)) (Vt=0,b), (0’7 < I}) = (9% > I})]
() (Vr,s=1,2(r#3), (PP <L) & (p°7, < B)] = (p"w* > p'w’)

which is our Weak Aziom of Revealed Equilibrium (WARE).

Direct Proof of Theorem 3: Suppose that there exist strictly monotone, strictly concave C*°
utility functions V, and Vj such that p" is an equilibrium price vector for (I3, I}, w") for r = 1, 2.
Let z] be the unique maximizer of V; subject to the budget constraint determined by (p", I7) for
r=1,2and t = a,b. Then

0<z;, r=1,2;t=a,b (3.1)

itz =w, r=1,2 (3.2)
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Let us show that WARE is satisfied. First note that
I+ =pz,+pz,=pw for r=1,2

Next suppose that p"z; < I7. Then for all z such that 0 < z < w® and p°z = I}, p'z < I7. In
particular, p"z{ < I7. Since zj and z} satisfy SSARP, p°z} > I;’. Hence p°Z{ > I? and we have
shown that conditions (I) and (II) of WARE are satisfied.

Next suppose that when s # r, p’75 < I7 and p'Z; < Ij. Then p’z; < I7 and p'zj < Ij.
By SSARP p°z] > I? and p°z} > Ij. Since z} + zj = w’, it follows that p’w” = p*(z + z})
> I + IPp°w®. So p*w” > p*w’® and we have shown that condition (IIT) of WARE is satisfied.
This completes the proof of necessity.

To prove sufficiency, we show that WARE implies that there exists {z}}r=1,2:t=a,6 satisfying
SSARP, the budget equations, and the market clearing equations. The result will then follow
from Chiappori and Rochet [9].

We first note that WARE implies that there exists s = 1 or s = 2 such that either
CASE 1: p'23 > I7 and p*z] > I for r # s, or
CASE 2: p'Z5 > I7, p'Z > I}, and p"w® > p'w" for r # s.

To see this, note that when

(r°Z. < ;) & (P°7 < Ip) (3.3)

Conditions (II) and (III) in WARE imply that Case 2 occurs. When (3.3) is not satisfied, one of

the following situations must occur: either

Pz <) & P > L), or (3:4)
(r°z. > 1) & (PPZ < L), or (3.5)
Pz > 1) & (P°% > L) - (3.6)

If (3.4) or (3.5) occurs, Condition (II) implies that Case 1 occurs. We can divide the case where

(3.4) occurs into [(3.4) & (p*w” > p’w?®)] and [(3.4) & (p°w™ < p*w?)]. The first situation falls
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in Case 2. In the second situation, Condition (III) in WARE implies that either (p"z5 > I7) or
(p"Z; > I7), which imply that Case 1 occurs.

When Case 1 is true, let z3 = Z3 and z} = Z;. Then,

Pz, =1, Pgy =1, (3.7)

a
Pzl >I;, pPrp> 1. (3.8)

Let z§ = w* — z2 and 2], = w" — z]. Then {z]};=12;t=q satisfly the equilibrium equalities by
definition and SSARP by (3.8). By (3.7) and Condition (I) in WARE, z} and z satisfy the

budget equations.

When Case 2 is true,? it follows from Condition (I) in WARE that

I=p v -L <p'w -1 . (3.9)

a

Since p'z] > I] and 7} = w® — z3, it follows that p"25 < p"w® — I]. So, since p'z; > I and

I < p"w® — I}, there must exist z satisfying

0<z: < v, (3.10)
p’zi =1, and (3.11)
I<pzi<pw' -I. (3.12)

Let z; = w® — z3. Then z} and z] satisfy the equilibrium equality. By (3.11) and Condition (I)

in WARE, p°z} = I;. By (3.12) p*z} = p"(w* —z}) = p'w® — p'z} > p'w’ — p"w® + I} = I}. So,
P> I . (3.13)

Let z7 be any vector such that 0 < z, < w" and p"z] = I]. Let 2} = w" — z]. It then follows that
prz; = p'w” —p'z] = I and 0 < z} < w'. Finally, by (3.12) and (3.13), {2} }r=1,2;t=a,s satisfy

SSARP.

2 The original proof of this case contained an error. We thank Susan Snyder for pointing it out to us.
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Derivation of H-WARE Using Quantifier Elimination: We have to eliminate the quantifiers

in the following expression: 3z, 22, 2}, zZ such that
(H.1) (p'z2)(p*22) 2 e

(H2) (p'z§)(P?z}) = 1

(H3) paf=I, r=1,2;t=a,b
(H4) 27 >0, r=1,2;t=a,b
(H5) zi+zj=w", r=1,2

This is equivalent to: 3z}, z2 such that
(H.1) (p'z2)(p’za) 2 7

(H2) (pH(w? - 22)) (PP’ = 21) > 3
(H3) praf =10, r=1,2

(H4) w">27>0, r=1,2

(H5) L+ =pw, r=1,2

which is equivalent to: 3z} such that

— Ya
(H‘l'l) (plzg) _>_ pzzl
b 1,2
(H12) plud - 2 > pl2
p*(w! —z3)
(H.1.3) plw?- Tb Ja

P’ -2} © pal

(H.3") p'zl =1}
(H4") w'>27 >0
H5") I+ =pw, r=1,2

Or, equivalently, 3z} such that
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- (P23 (p*w') - % > pizl > s

Tw
1Y
(7.L1) (p'w? — p'2 P'Z;

(H1.2) (P'w?)(P*23)* + (1 — 7w = 12)(P*2}) + 7ap’w! <0

(H3") plzl=1}, r=1,2

(H4") w'>zl>0, r=1,2

(HS") I+ =pw , r=1,2

Using the fact that w? — 22 = 72, (H.1.1’) can be written as
Tb

H.1.1" 2,,1 _ 16 S 2z1>_7¢1_
( ) pP'w ng_}’ e = iz

The necessary and sufficient condition for the existence of z. satisfying (H.1.1"), (H.1.2'), (H.3")-

(H.5") are:

» _TJa 151 2,1 2,1 _ b Ya 2,1 _ b
H.1 < < - —, and <p‘w
(H.17) pizz SPZs PLSPw =5 pis? SP =

(H2") WQ = (‘I’l)2 - 47a7w >0

o ¥ -V¥ 1=1 2.1
(H.3%) —W—_sza? p°z; <

(H4*) L+ =pw , r=1,2

Conditions (H.1*)-(H.4*) are our Homothetic Weak Axiom of Revealed Equilibrium.

Direct Proof of Theorem 4: We first prove the necessity of H-WARE. Suppose that there exist
monotone, concave, and homothetic utility functions rationalizing the data. Let {z]},=1 2:t=q, be
obtained by maximizing such utility functions over the budget constraints determined by {p"},=1,2
and {I7},=1.2. Then,

z; 20, r=1,2;t=a,b (4.1)

pri=IL, r=1,2t=a,b (4.2)

otz =w , r=1,2 (4.3)
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(p'z3)(p’2;) > 72 and (4.4)
(P2 (Fah) 2 % (45)
By (4.3) and (4.5), 75 < p'(w? — z2)p?*(w! — z}). So that

¥ = =7 — T

(' w?)(p*w?) — (P w?)(p?zl) — (p'22)(P*w') + (p'22)(P*2}) — Yo — Yw

IA

—(p'z2)p?*(w! - z}) — (p'w?)(p*zl) — 7. < O .

Using (4.4), (4.5), the definitions of 2 and %2, and (4.3), it follows that

2, 1 N a) Ya > Ya r
2 =25 71 (4.6)
Pae = 0PR)d) 2 plad) 2 7
and
2w - z1) = p?al = (P%)(P )> 2L
p (w Ia) - p p .T = plzz el pIE§
so that
2.1 2,1 T
P%SPw";l—E-g‘—Tz- (4.7)
Using again (4.4) and (4.5) we get that
Ya 1.2 2L
> d >
P pral P pet —al)

so that adding up and using (4.3) we get

1,2 Ya Yo
pw 2
Pl | P

o1y o (P)(P'ea)” + (1 = e = w)(p'za) +7eptw! S0

Consider the quadratic function f(t) = (p'w?)t2 + (76 — Yo — Yw)t + 7ap*w!. Notice that
f(0) = vap®w! >0, f(0) = (13 — % — W) = ¥1 <0, f(p?z}) < 0, and f'(t) = 2p'w? > 0
for all t. Hence the equation f(t) = 0 must have real roots t; and t;, which implies that ¥, =

(Y6 = Ya = Yw)? = 4%aYw 2 0, proving (H.1), and

0<t; <plzl <ts. (4.8)
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Since by (4.6) and (4.7), 11 < p?zl < r, it follows that s; = max{0, r, t;} < p?zl <
min{ry, 23} = s, which proves (H.II). Moveover, since s; < p?z} < sg, it follows by the def-
initions of 7} and 2! that p%z} < s and p?z} > sy, which prove (H.III) and (H.IV). Finally, (H.V)
is satisfied by (4.2) and (4.3). This completes the proof of necessity. To show the sufficiency of
H-WARE, we first note that by (H.1) #; and t; are real numbers and by (H.II) and the defini-
tion of s1, 0 < t5. By (H.II)-(H.IV), there exists zl such that p'z} = I}, 0 < z! < w!, and

51 < p’zl < sy. Take one such zl. It follows that

t; < p’zl <t and (4.9)
r<pzy<ry. (4.10)
The latter expression implies that
p’zl < pPw! — ;g—;—g- = ptuw! - pl(_wzb:g) and p’zl > I—;’Iy—;z- so that
P2 < plu? pl(wjb_ o1y 2nd (4.11)
P> pZ;}, : (4.12)

Let f(t) = (t—t1)(t—1t2). Forall t € [t;, t2] f(t) < 0. Hence, (4.9) implies that (p?z} —t;)(p?z -

t2) <0, or, for

-, — 1/2 ¥ ¥, )1/2
tl = 1—(q,2)__ and t2 — LU}__ we have
2plw2 2p1w2
v 2!
2,12 2,1 1 p
(p za) + (p za, p1w2 +7aplw2 S 0 M
Rearranging terms, we get that
Ya 1.2 Yo
<
peel S P T a0t — gy

Hence,

Ya < (p'z2)(p?zl) and 7, < p(w? - 22)pP(w! —2l) . (4.13)
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With (4.13) we have completed the proof that {p"}r=1,2, {I; }r=1,2, and {2 }r=1,2 satisfy HARP.
Let z} = w! — 2! and 2? = w? — z2. Since 0 < zl < w?, 0 < 22 < w?, plzg = I3, and p*zl = I2,
it follows, using (H.V), that 0 < z} < w!, 0 < 2% < w?, p'z} = I, p*z} = IZ, and by above

v < (p'2?)(p*z}). Hence, also {p"},=12, {I[J}r=12, and {2}},=1,2 satisfy HARP.

Proof of Theorem 5: Let z" and y" denote, respectively, a consumption and production plan
in observation r. If (p”, w")N, satisfy CC, then (p", 2" = w", y" = 0),=1,.. N satisfy the Afriat
inequalities for utility maximization and profit maximization (see Varian [18]), and markets clear.
Suppose that (p", w™)V_, does not satisfy CC but lies in the equilibrium manifold. Let z™ and y"
denote, respectively, any equilibrium consumption and equilibrium production plan in observation

r. Since CC is violated, there exists {s, v, f, ..., €} such that
pawv < pswa’ pvwf < pvwv’ “‘,Pews < pewe (51)

where at least one of the inequalities is strict. Profit maximization (p*y"
< p*ye, p¥y! < pUvY, ..., P°y® < p°y°®) and markets clearing (z¥ = w¥ 4+ y¥, z° = w® + ¢°, zf =
wl + 7, ..., 2¢ = w® + ¢°) imply with (5.1) that

p’z® < p'z®, p'zf <p'z?, .., P2’ < pef (52)

where at least one of the inequalities is strict. Since (5.2) is inconsistent with utility maximization,

a contradiction has been found.
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