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Abstract

There is an emerging consensus in empirical finance that realized volatility series
typically display long range dependence with a memory parameter (d) around 0.4
(Andersen et. al. (2001), Martens et. al. (2004)). The present paper provides some
analytical explanations for this evidence and shows how recent results in Lieberman
and Phillips (2004a, 2004b) can be used to refine statistical inference about d with
little computational effort. In contrast to standard asymptotic normal theory now
used in the literature which has an O

¡
n−1/2

¢
error rate on error rejection prob-

abilities, the asymptotic approximation used here has an error rate of o
¡
n−1/2

¢
.

The new formula is independent of unknown parameters, is simple to calculate and
highly user-friendly. The method is applied to test whether the reported long mem-
ory parameter estimates of Andersen et. al. (2001) and Martens et. al. (2004) differ
significantly from the lower boundary (d = 0.5) of nonstationary long memory.

Keywords and Phrases: ARFIMA; Edgeworth expansion; Fourier integral expan-
sion; Fractional differencing; Improved inference; Long memory; Pivotal statistic;
Realized volatility; Singularity.

JEL Classification: C 13, C22



1 Introduction

It is well known that by sampling intraday returns sufficiently frequently, the in-
tegrated volatility of the process can be very well approximated by the realized
volatility (henceforth, RV), the latter defined as the sum of squared returns over
a specified period (usually a day). See, for instance, Merton (1980), Andersen et.
al. (2001) and Barndorff-Nielsen and Shephard (2002). This result holds, as in
Andersen et. al. (2001), under the simple assumption that the returns propagate
as semimartingales, processes which take the form of the sum of a local martingale
and a predictable component with finite variation. Barndorff-Nielsen and Shephard
(2002) have, in fact, demonstrated that for stochastic volatility models the inte-
grated volatility can be recovered exactly from the entire path of the process, at
least in the absence of microstructure noise. The implication of this result is that
the actual volatility can be estimated quite accurately by simple summation of the
squared intraday returns, such as those sampled at 5- or 30- minute frequencies.
Accurate measurement and forecasting of volatility are of great importance in

the financial analysis and practice, be it for asset pricing, risk management or asset
allocation. For this reason, the accuracy, nonparametric generality and practical
convenience of the RV estimator has caused an understandable excitement in the
literature lately, with applications to stock indices, exchange rates, futures and more.
See, for instance, Martens et. al. (2004) and the references therein.
One of the core issues in the literature is the optimal sampling frequency for RV

measurement. There is a trade off between accuracy, in terms of variance reduc-
tion, and microstructure bias. As the sampling frequency increases, microstructure
noise becomes progressively more dominant in the RV estimate, to the extent that
volatility estimates based on sampling every few seconds can overestimate the true
volatility by a factor of two or more (Zhang et. al. (2005b)). Thus, while it may
seem somewhat counterintuitive to use less frequently observed data in RV calcu-
lations, there is some consensus in the literature that use of a 5- to 30- minute
sampling interval is optimal and effectively reduces bias (from microstructure noise)
while limiting variance increases (Andersen and Bollerslev (1998), Ait Sahalia et.
al. (2005)). Zhang et. al. (2005a) discussed five alternative estimators, suggest-
ing subsampling, averaging and bias correction over two time scales as the ideal
estimator.
Recent empirical studies indicate that one of the stylized facts of realized volatil-

ity series is that they display evidence of long memory with a fractional difference
parameter d of around 0.4. See, among others, Andersen et. al. (2001) and Martens
et. al. (2004). The former used the log periodogram (LP) regression estimator of
Geweke and Porter Hudak (1983) and log-variance plots to estimate d. The long
memory feature of realized volatility is perhaps not so surprising, given that RV is an
increasing process constituted from squared returns and the latter are well known to
manifest long range dependence. For modeling long memory, the ARFIMA (p,d,q)
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model has been extensively employed. See, among others, Li (2002), Andersen et.
al. (2003), Pong et. al. (2004), Martens and Zein (2004). Bandi and Perron
(2001) considered spectral methods in estimation, whereas for forecasting, Deo et.
al. (2004) suggested a long memory stochastic volatility model. In addition to the
methods in the aforementioned references, there is a large array of techniques to
choose from, almost every imaginable type of approach now being used: graphical,
heuristic, nonparametric semiparametric and parametric. An early overview of some
of these methods is given in Beran (1994), but since then many new techniques have
been developed, some of which are designed to allow for data with nonstationary as
well as stationary long memory (Phillips, 1999; Shimotsu and Phillips, 2005; Abadir,
Distaso and Giraitis, 2005).
Of course, the literature on long memory processes has a long history and sub-

stantially predates that of RV, with applications in many fields such as hydrology,
where studies began with Hurst (1951), economics, finance, physics, internet traffic
and more.
At the crux of most estimation methods lies the fact that the spectral density,

f (λ), of a stationary long memory process with a parameter d ∈ (0, 1/2) asymptotes
at the origin, behaving like

Cλ−2d as λ→ 0+, (1)

where C is a finite and positive constant and λ is frequency, so that low frequency
behavior is a dominant characteristic of the series.. For this reason, the slope of
a graph of the log-periodogram, viewed as an estimate of log f (λ), against log λ,
for small enough λ-values, provides a preliminary indication of the value of d. Of
course, this feature of f (λ) near the origin motivated the LP regression estima-
tor as a semiparametric procedure, its asymptotic properties being worked out by
Robinson (1995a). Other semiparametric procedures include the local Whittle esti-
mator (Künsch, 1987, and Robinson, 1995b) and the exact local Whittle estimator
(Shimotsu and Phillips, 2005), which is consistent for all values of d.
Classical methods for the estimation of d include the maximum likelihood esti-

mator (MLE) and the full band Whittle estimator. Under certain conditions, the√
n-normalized and mean subtracted MLE and Whittle estimators of d are asymp-

totically N (0, 6/π2). The conditions for narrow band LP regression and Whittle
estimation are weaker because the behavior of the spectrum f (λ) in only an im-
mediate neighborhood of the origin is used in developing the estimates and their
asymptotic properties. To clarify, suppose that the true process is a stationary and
invertible ARFIMA(p,d,q) model with spectrum

f (λ) = C (λ)
¯̄
1− eiλ

¯̄−2d
,

where

C (λ) =
σ2
¯̄
a
¡
eiλ
¢¯̄2

2π |b (eiλ)|2
,
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and a (·) and b (·) are polynomials with all roots lying outside the unit circle. Now,

C (0) =
σ2 |a (1)|2

2π |b (1)|2
= C,

where C is as in (1) and does not depend on λ. However, for λ sufficiently far from
zero, C (λ) may fluctuate substantially and have local peaks in the short memory
spectrum away from the origin. In a certain sense, therefore, ignoring behavior of
the spectrum over a wider band of larger λ values is tantamount to treating the
process as an ARFIMA (0,d,0) process locally, because such a process has spectral
density f (λ) = C

¯̄
1− eiλ

¯̄−2d
, defined on [−π, π], with C not depending on λ. The

same is true for any estimator that merely uses the localizing feature (1).
The Whittle and exact maximum likelihood estimators are broadband estima-

tors, taking account of the entire spectrum. For this reason, the conditions for the as-
ymptoticN (0, 6/π2) are stronger than those assumed for LP and other semiparamet-
ric estimators based only on narrow band conditions like the local Whittle and exact
local Whittle estimators. Specifically, what is required is that f (λ) = C

¯̄
1− eiλ

¯̄−2d
,

over the full band [−π, π] and not only near the origin. In other words, for √n con-
vergence and the limiting N (0, 6/π2) distribution to apply, the process needs to
follow an ARFIMA (0, d, 0) model.
The asymptotic N (0, 6/π2) result is appealing in its simplicity and the fact that

it does not involve unknown parameters. However, as with many asymptotic results,
in finite samples the use of the asymptotic normal tables may result in inaccurate
confidence intervals, p-values and rejection probabilities. In studying these issues,
Lieberman and Phillips (2004a, 2004b) refined the limit theory by deriving second-
order expansions for the distributions of the exact and Whittle MLE’s which are
uniform and second-order pivotal. Instead of the usual O

¡
n−1/2

¢
error rate for

the asymptotic distribution, the higher order result has an error of reduced order
o
¡
n−1/2

¢
and the pivotal characteristic (or independence of unknown parameters)

of the second-order expansion makes it an attractive option in applications.
In Section 2, we provide analytical explanations for the apparent long memory

property of RV series. In Section 3, we review the relevant results in Lieberman
and Phillips (2004a, 2004b). As far as we know, this is the first attempt to apply
Edgeworth expansions to do statistical inference on the long memory parameter
with RV data, although Zhang et. al. (2005b) derived Edgeworth expansions for
the RV estimator itself. Practical aspects of the expansion are discussed in Section
5. The usefulness of our results is demonstrated in Section 5. Section 6 concludes.

2 Autocovariance structure of the RV estimator

In this section we provide analytical explanations for the evidence of long memory
in RV data. To fix ideas, denote by ε = (ε1, ..., εT )

0 the entire vector of intraday
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returns and assume for simplicity that it is stationary N(μ1,Σ), where 1 is a T × 1
vector of 1’s and Σ is positive definite. The assumption of Gaussianity is generally
inessential for our arguments to carry through and is only made to simplify the
notation. Denote by γε (s), (s = 0, 1, 2, ...), the autocovariances of {εt}Tt=1. Let
Ys =

PsN
t=(s−1)N+1 ε

2
t , (s = 1, . . . , n), with n = T/N . In words, Ys is the RV estimate

of day s, in each day there are N records of high frequency returns and the sample
is over n days. The autocovariance of order j of Y is given by

γY (j) = E (Y1Y1+j)−E2 (Y1)

=
NX
t=1

(j+1)NX
l=jN+1

E
¡
ε21ε

2
1+j

¢
−
Ã
E

Ã
NX
t=1

ε2t

!!2
.

To obtain the expectation, let et be a canonical vector with unity in the t-th position
and zero’s elsewhere. If x ∼ N (a,Σ) and if A and B are fixed, symmetric T × T
matrices, then we know that (e.g., Searle, 1971)

E (x0Ax) = tr (AΣ) + a0Aa

Cov (x0Ax, x0Bx) = 2tr (AΣBΣ) + 4a0AΣBa.

Noting that ε2s = ε0ese
0
sε, (s = 1, ..., T ), and using these results, we obtain

E
¡
ε21ε

2
1+j

¢
= Cov

¡
ε0e1e

0
1ε, ε

0e1+je
0
1+jε

¢
+E2 (ε0e1e

0
1ε)

= 2tr
¡
e1e

0
1Σe1+je

0
1+jΣ

¢
+ 4μ210e1e

0
1Σe1+je

0
1+j1

+
¡
tr (e1e01Σ) + μ210e1e

0
11
¢2

= 2γ2ε (j) + 4μ
2γε (j) +

¡
γε (0) + μ2

¢2
.

Hence,

γY (j) =
NX
t=1

(j+1)NX
l=jN+1

³
2γ2ε (t− l) + 4μ2γε (t− l) +

¡
γε (0) + μ2

¢2´− ¡N ¡γε (0) + μ2
¢¢2

= 2N
N−1X

h=−(N−1)

µ
1− |h|

N

¶¡
γ2ε (jN + h) + 2μ2γε (jN + h)

¢
.

The behavior of γY (j) for large j depends on those of γε (s) and whether or not N
is fixed.
Next, we analyze the variance of Ȳn = n−1

Pn
s=1 Yi. It is well known that the

variance of the sample mean of a long memory process behaves as n2d−1 (see, for

instance, Beran 1994, equation (4.13)). Here, V ar
¡
Ȳn
¢
= n−2var

³PT
t=1 ε

2
t

´
. If it

simply holds that as a process, {ε2t}
T
t=1 are long memory with a memory parameter

d and N is independent of T , then

V ar
¡
Ȳn
¢
≤ Kn−2T 2d+1 = KN2d+1n2d−1
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for some 0 < K < ∞, so that {Ys}ns=1 is a long memory process with a memory
parameter d. However, {Ys}ns=1 can be long memory even if the {ε2t}

T
t=1 are short

memory. To see this, notice that

V ar
¡
Ȳn
¢
=

1

n2
var

Ã
TX
t=1

ε2t

!

=
2T

n2

T−1X
h=−(T−1)

µ
1− |h|

T

¶¡
γ2ε (h) + 2μ

2γε (h)
¢

=
2N

n

T−1X
h=−(T−1)

µ
1− |h|

T

¶¡
γ2ε (h) + 2μ

2γε (h)
¢
.

If it holds that

lim
T→∞

T−1X
h=−(T−1)

|h| |γε (h)| =M <∞, (2)

then
n

2N
V ar

¡
Ȳn
¢
→T→∞ 2π

¡
fZ (0) + 2μ

2fε (0)
¢
<∞, (3)

where fZ (0) and fε (0) are the spectral densities of a random variable Z with auto-
covariances γZ (s) = γ2ε (s), (s = 0, 1, 2, ...), and of ε, respectively, evaluated at zero.
The bound on the right hand side of (3) is a consequence of (2). All stationary and
invertible ARMA(p,q) models satisfy (2). If N is fixed, then V ar

¡
Ȳn
¢
= O (n−1),

which characterizes a short memory process. However, if N is chosen to satisfy
N = O

¡
n2d
¢
, then even though the intraday increments {εt}Tt=1 are short memory

satisfying (2), this sampling scheme renders {Yt}nt=1 to be long memory.
While in particular research one usually sets N apriori to be independent of n,

in a sample which has a large N relative to T , the series {Yt}nt=1 may exhibit long
memory characteristics, even though in actual fact it is not. We emphasize that the
preceding arguments are sufficient for the generation of a long memory time series.
They are not necessary.

3 A simple formula for refined inference on d

Denote by d̂n either the Whittle or ordinary MLE of d and by d0 the true value of d,
which is assumed to lie in (0, 1/2). Let δ̂n =

√
n
³
d̂n − d0

´
. For an ARFIMA(0,d,0)

model with unknown mean and variance, Lieberman and Phillips (2004b) showed
that the second order distribution function of δ̂n, evaluated at x/

√
κn,1,1, is

H̃
(1),A

δ̂n
(x/
√
κn,1,1) = Φ (x) +

ζ(3)
√
nζ3/2 (2)

φ (x)
©
x2 + 2

ª
, (4)
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where Φ (·) and φ (·) are the standard normal cdf and pdf respectively, ζ (·) is the
Riemann-zeta function and κn,1,1 is the variance of the score function. For instance,
for the Whittle score,

κn,1,1 =
1

2n
tr
³
MnṪ

d
W,nMnT

d
n

´2
,

whereMn = In−n−1110, In is an identity matrix of order n, T d
n is an n×n Toeplitz

matrix with elements

T d
n (j, k) =

σ2

2π

Z π

−π

¯̄
1− e−iλ

¯̄−2d
ei(j−k)λdλ,

and Ṫ d
W,n is the first-order derivative with respect to d of the matrix T d

W,n with
elements

T d
W,n (j, k) =

1

2πσ2

Z π

−π

¯̄
1− e−iλ

¯̄2d
ei(j−k)λdλ.

Note that for both estimators it holds that

κn,1,1 =
π2

6
+O

¡
n−1+2

¢
, ∀ > 0,

which is consistent with the fact that the asymptotic variance of the
√
n—normalized

estimators is 6/π2.
The main feature of (4) is that it does not depend on unknown parameters,

thereby making it attractive in applications. The expansion is uniform and valid in
the sense that

sup
x∈R

sup
d∈D∗

¯̄̄̄
Pr
d0

³
δ̂n ≤ x/

√
κn,1,1

´
− H̃

(1),A

δ̂n
(x/
√
κn,1,1)

¯̄̄̄
= o

¡
n−1/2

¢
, (5)

where D∗ is any closed subset of (0, 1/2). The improvement over the asymptotic
N (0, 6/π2) lies in the fact that the error of the approximation is o

¡
n−1/2

¢
rather

than O
¡
n−1/2

¢
.

We emphasize that the developments leading to (4) and (5) hold strictly only
under the assumption that the process is Gaussian ARFIMA (0, d, 0) with unknown
mean and variance. However, the application of the approximation can be extended
to higher order ARFIMA (p, d, q) models and to other processes in a local way as
follows. Suppose that the underlying process {Xt} has spectral density

fX (λ) =
¯̄
1− eiλ

¯̄−2d
fu (λ) ,

where fu (λ) =
P∞

h=−∞ γu (h) e
−ihλ and

P∞
h=−∞ |h| |γu (h)| < ∞, which includes

all stationary and invertible ARFIMA (p, d, q) models. Then, since
¯̄
1− eiλ

¯̄2
=
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4 sin2
¡
λ
2

¢
, we have

fX (λ) =
¯̄
1− eiλ

¯̄−2d
fu (λ) = λ−2dfu (λ)

∙
sin2 (λ/2)

(λ/2)2

¸−d
= λ−2d {fu (0) +O (λ)} , as λ→ 0, .

so that (1) holds. The k’th autocovariance of Xt is therefore

γx (k) =

Z π

−π
eiλkfu (λ)

¯̄
1− eiλ

¯̄−2d
dλ

= 2Re

½Z π

0

eiλkfu (λ)
¯̄
1− eiλ

¯̄−2d
dλ

¾
= 2Re

½Z π

0

eiλkλ−2dg (λ) dλ

¾
, (6)

where g (λ) = fu (λ)
h
sin2(λ/2)

(λ/2)2

i−d
is continuously differentiable over [0, π] . The Fourier

integral in (6) has a critical point at λ = 0 and may be expanded as k → ∞ by
standard methods for Fourier integral asymptotic expansions (e.g., Bleistein and
Handelsman (1975) p. 91), givingZ π

0

eiλkλ−2dg (λ) dλ = Γ (1− 2d) eπi(1−2d)/2g (0) k−(1−2d)
©
1 +O

¡
k−1
¢ª

= Γ (1− 2d) eπi/2e−πdifu (0) k−(1−2d)
©
1 +O

¡
k−1
¢ª

= iΓ (1− 2d) e−πdifu (0) k−(1−2d)
©
1 +O

¡
k−1
¢ª

.

Hence

γx (k) =
2Γ (1− 2d) sin (πd) fu (0)

k1−2d
©
1 +O

¡
k−1
¢ª

, (7)

so that the autocovariances decay according to the power law O
¡
1/k1−2d

¢
. At least

to the first order, these autocovariances correspond to those of an ARFIMA (0, d, 0)
model with error variance G0. The latter have the explicit form (e.g., Brockwell and
Davis, 1991, page 468)

γx (k) =
(−1)k Γ (1− 2d)

Γ (k − d+ 1)Γ (1− k − d)
G0 =

(−1)k Γ (1− 2d)
Γ (k − d+ 1)Γ (1− k − d)

G0

and, using the reflection formula Γ (1− k − d) = π/ {Γ (k + d) sin (π (k + d))} and
asymptotic expansion Γ (k + d) /Γ (k − d+ 1) = k−(1−2d) {1 +O (k−1)} , we get

γx (k) =
(−1)k Γ (1− 2d) sin (π (k + d))Γ (k + d)

πΓ (k − d+ 1)
G0

∼ Γ (1− 2d) sin (πd)
πk1−2d

G0

½
1 +O

µ
1

k

¶¾
,
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which corresponds to (7) when fu (0) = G0/2π.
This approximation provides some justification for the use of our formula outside

the strict ARFIMA (0, d, 0) setting, at least when the error spectrum fu (λ) is flat
in some neighborhood of the origin.

4 Practical aspects of the approximation

Frequently, the analysis of RV data is conducted in two stages. In the first stage,
the series is analyzed for its degree of integration d and differenced (or fractionally
differenced) by this degree. The second stage seeks to model the differenced series.
See Anderson et. al. (2001) and Martens et. al. (2004). For this reason, it is
important to obtain good estimates and perform accurate inference on d at the first
stage. Our higher order asymptotic formula (4) can be used for this purpose and
this section explains some of the practical aspects of its implementation.
For a one-sided hypothesis, consider the results summarized in Table 1 and note

that ζ (2) = 1.64493 and that ζ (3) = 1.20206. It is clear that the difference between
the normal approximation and the Edgeworth expansion is substantial, even for
n = 1000.
For a two-sided hypothesis of the form H0 : d = d0 vs. H1 : d 6= d0, the normal

approximation as well as the Edgeworth expansion yield P
³¯̄̄
δ̂n

¯̄̄
≤ x/

√
κn,1,1

´
=

2Φ (x) − 1. However, our result (5) implies that the error is o
¡
n−1/2

¢
, rather than

O
¡
n−1/2

¢
. This refinement is an outcome of the correction term of the expansion

(4) being an even function in x.
With the normal approximation, the usual asymptotic 95% confidence interval is

d̂n ± 1.96
√
6/ (π

√
n). This confidence interval is symmetric and equal—tailed. With

the same x = 1.96 and n = 1000, say, the upper tail based on the Edgeworth
expansion equals 0.019 whereas the lower tail equals 0.031, so that the Edgeworth
expansion confidence interval is not an equal—tailed one. This is due to the skewness
of the distribution expansion. To obtain an equal—tailed confidence interval with
the Edgeworth expansion, we need to find x1 and x2 such that H̃

(1),A

δ̂n
(x1/
√
κn,1,1) =

1− H̃
(1),A

δ̂n
(x2/
√
κn,1,1). With n = 1000, for example, H̃(1),A

δ̂n
(1.852/

√
κn,1,1) = 0.975

and H̃
(1),A

δ̂n
(−2.061/√κn,1,1) = 0.025.

5 Empirical Examples

Martens et. al. (2004) analyzed the S&P 500 series over the period January 3,
1994 until December 29, 2000. Their RV series are based on 5-minute intraday
and 30-minute intranight returns. It appears from their Figure 2 that the log RV
series is approximately Gaussian. An ARFIMA model for that series yielded a fitted
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memory parameter of d̂n = 0.471. Four other modeling schemes resulted in a fitted
d̂n between 0.363 and 0.495. See Table 3 of their paper.
To demonstrate how our method can be used, suppose that the hypothesis

of interest is H0 : d = 0.5 vs. H1 : d < 0.52. In this case, there are n =
1767 observations (see p 4 of Martens et. al. (2004)) so the standardized statis-
tic
p
1767/6π (0.471− 0.5) = −1.5635. In this case, Φ (−1.5635) = 0.059 and the

Edgeworth expansion (4) gives a 0.068 probability. The difference 0.009 is due to the
correction term of the expansion. Hence, with both the normal and Edgeworth ap-
proximations we cannot reject the null of nonstationary long memory, with a higher
p-value assigned by the Edgeworth expansion.
Similar evidence of long memory is given in Table 3 of Andersen et. al. (2001)

who analyzed DM/$ and Yen/$ series. They used LP regression with an optimal
narrow band frequency setting ofm = [n4/5] frequencies (Hurvich et. al. (1998)) and
reported what they termed a “typical value” of 0.4 - see p 52 of their paper. These
estimates coincide with the results of Granger et. al. (2000) for daily absolute and
square returns series and the intraday DM/$ returns considered by Andersen and
Bollerslev (1997). It is clear that the estimates are statistically significant from zero.
With 2449 observations,

p
2449/6π (0.4− 0.5) = −6.347, so the hypothesisH0 : d =

0.5 can be firmly rejected by both the normal and Edgeworth approximations. The
latter, in fact, gives a 6.5× 10−10 p-value.

6 Remarks

One of the stylized facts emerging about realized volatility is that such series dis-
play stationary long memory with memory parameter d around 0.4. It is impor-
tant to draw accurate inference on d and to assist in this process the present
paper proposes the use of second—order refinements by Lieberman and Phillips
(2004a, 2004b) of conventional asymptotic formulae. An advantage of the proce-
dure is that the statistic is second order pivotal, so that the distributional expan-
sion depends only on known constants. While these refinements are strictly valid
only for ARFIMA(0, d, 0) processes, the paper shows that they are locally valid
for the general ARFIMA(p, d, q) case since the lag k autocovariance of a general
ARFIMA(p, d, q) process has leading term given by the lag k autocovariance of an
ARFIMA(0, d, 0) process, with an error of the order k−1.

2Our results only hold under stationarity, so that technically speaking the null hypothesis should
be H0 : d = 0.5− ε, for some small positive ε.
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Table 1: Normal approximation and Edgeworth expansion3

Normal Edgeworth
x Φ (x) n = 100 n = 1000 n = 10000
1.645 0.95 0.978 0.959 0.953
1.96 0.975 0.994 0.981 0.977
2.326 0.99 1.001 0.994 0.991

3The Edgeworth expansion is given in (2).
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