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Abstract

This paper introduces generalized potential functions of complete information

games and studies the robustness of sets of equilibria to incomplete information.

A set of equilibria of a complete information game is robust if every incomplete

information game where payoffs are almost always given by the complete information

game has an equilibrium which generates behavior close to some equilibrium in the

set. This paper provides sufficient conditions for the robustness of sets of equilibria in

terms of argmax sets of generalized potential functions and shows that the sufficient

conditions generalize the existing sufficient conditions for the robustness of equilibria.
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1 Introduction

Outcomes of a game with common knowledge of payoffs may be very different from out-

comes of the game with a “small” departure from common knowledge, as demonstrated

by Rubinstein (1989) and Carlsson and van Damme (1993). This observation lead Kajii

and Morris (1997a) to study what equilibria of complete information games are not much

affected by weakening of the assumption of common knowledge; they studied the robust-

ness of equilibria to incomplete information. An equilibrium of a complete information

game is robust if every incomplete information game with payoffs almost always given

by the complete information game has an equilibrium which generates behavior close to

the equilibrium.

Kajii and Morris (1997b) demonstrated that robustness can be seen as a very strong

refinement of Nash equilibria. The refinements literature examines what happens to a

given Nash equilibrium in perturbed version of the complete information game. A weak

class of refinements requires only that the Nash equilibrium continues to be equilibrium

in some nearby perturbed game. The notion of perfect equilibria by Selten (1975) is

the leading example of this class. A stronger class requires that the Nash equilibrium

continues to be played in all perturbed nearby games. The notion of stable equilibria

by Kohlberg and Mertens (1986) or that of strictly perfect equilibria by Okada (1981)

are leading examples of this class. Robustness belongs to the latter, stronger class of

refinements. Moreover, robustness to incomplete information allows an extremely rich

set of perturbed games. In particular, while Kohlberg and Mertens (1986) allowed only

independent action trembles across players, the definition of robustness leads to highly

correlated trembles and thus an even stronger refinement. Indeed, Kajii and Morris

(1997a) constructed an example in the spirit of Rubinstein (1989) to show that even

a game with a unique Nash equilibrium, which is strict, may fail to have any robust

equilibrium.

Kajii and Morris (1997a) and Ui (2001) provided sufficient conditions for the ro-

bustness of equilibria. Kajii and Morris (1997a) introduced the concept of p -dominance

where p = (p1, . . . , pn) is a vector of probabilities. An action profile is a p -dominant

equilibrium if each player’s action is a best response whenever he assigns probability

at least pi to his opponents choosing actions according to the action profile. Kajii and

Morris (1997a) showed that a p -dominant equilibrium with
P
i pi < 1 is robust. Ui
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(2001) considered robust equilibria of potential games, a class of complete information

games possessing potential functions. As considered by Monderer and Shapley (1996), a

potential function is a function on the action space such that it incorporates information

about players’ preferences over the action space that is sufficient to determine all the

equilibria. Ui (2001) showed that the action profile that uniquely maximizes a potential

function is robust.

The purpose of this paper is to provide a new sufficient condition for the robustness.

The condition unifies and generalizes the sufficient conditions provided by Kajii and

Morris (1997a) and Ui (2001).1 Furthermore, the condition applies not only to the

robustness of equilibria but also the robustness of sets of equilibria. This paper introduces

generalized potential functions and provides the condition in terms of argmax sets of

generalized potential functions.

We start by defining the robustness concept as a set valued one,2 the robustness of

sets of equilibria to incomplete information. A set of equilibria of a complete information

game is robust if every incomplete information game with payoffs almost always given

by the complete information game has an equilibrium which generates behavior close to

some equilibrium in the set. If a robust set is a singleton then the equilibrium is robust

in the sense of Kajii and Morris (1997a, 1997b). Because some games have no robust

equilibria, it is natural to ask if a set of equilibria is robust.

We then introduce generalized potential functions. A generalized potential function

is a function on a covering of the action space, a collection of subsets of the action space

such that the union of the subsets is the action space. It incorporates some information

about players’ preferences over the collection of subsets. We call each element of the

domain of a generalized potential function an action subspace. If an action subspace

maximizes a generalized potential function and the generalized potential function has

a unique maximum then we call the action subspace a generalized potential maximizer

(GP-maximizer).

The main results state that there exists a correlated equilibrium assigning probability

1 to a GP-maximizer and that the set of such correlated equilibria is robust. This
1This unification of conditions based on potential arguments and conditions based on p-dominance

may be of interest in other contexts. For example, potential arguments are widely used in evolutionary

contexts and Sandholm (2001) has a p-dominance sufficient condition for almost global convergence.
2Kohlberg and Mertens (1986) were the first to propose making sets of equilibria the objects of a

theory of equilibrium refinements.
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immediately implies that if a GP-maximizer consists of one action profile then the action

profile is a robust equilibrium. It should be noted that a robust set induced by the GP-

maximizer condition is not always minimal. A robust set is minimal if no robust set is

a proper subset of the robust set. In this paper, we do not explore the problem of how

to identify minimal robust sets.

It is not so straightforward to find GP-maximizers from the definition. One reason

is that, as we will see later, a complete information game may have multiple generalized

potential functions with different domains. We restrict attention to generalized potential

functions with two special classes of domains. One class of domains are unordered parti-

tions of action spaces. We introduce best-response potential functions as functions over

the partitions such that the best response correspondence of the function defined over

the partition coincides with that of a complete information game. Potential functions of

Monderer and Shapley (1996) form a special class of best-response potential functions

with the finest partitions.3 We show that a best-response potential function is a gen-

eralized potential function. The other class of domains are those induced by ordered

partitions of action spaces. We introduce monotone potential functions as functions over

the partitions such that the best response correspondence of the function defined over

the partition and that of a complete information game has some monotonic relationship

with respect to the order relation of the partition. We show that a monotone potential

function naturally induces a generalized potential function where the domain consists of

intervals of the ordered partition. We then show that a p-dominant equilibrium withP
i pi < 1 is the induced GP-maximizer, by which the discussion of Kajii and Morris

(1997a) and that of Ui (2001) are unified.

Rosenthal (1973) was the first to use potential functions in noncooperative game

theory.4 He used potential functions as tools for finding pure-action Nash equilibria.5

Recent studies such as Blume (1993, 1997), Ui (1997, 2001), and Hofbauer and Sorger
3Morris and Ui (2002) demonstrated that the class of best-response potential functions with the finest

partitions are much larger than the class of potential functions.
4 In cooperative game theory, Hart and Mas-Colell (1989) introduced potential functions. The poten-

tial functions of Monderer and Shapley (1996) can be regarded as an extension of the potential functions

of Hart and Mas-Colell (1989) to noncooperative games, as demonstrated by Ui (2000).
5 In traffic network theory, non-atomic games similar to the finite games of Rosenthal (1973) are studied

and non-atomic potential functions are used to calculate pure-action Nash equilibria. See Oppenheim

(1995), for example.
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(1999) used potential functions as tools for finding Nash equilibria satisfying some cri-

teria for equilibrium selection. Since a narrow class of games admit potential functions,

attempts have been made to introduce tools for a broader class of games. Monderer and

Shapley (1996) introduced ordinal potential functions6 and generalized ordinal potential

functions. Voorneveld (2000) introduced best-response potential functions,7 which are

different from best-response potential functions in this paper. These functions inherit

ordinal aspects of potential functions and serve as tools for the former use (finding pure-

action equilibria). They are in clear contrast to generalized potential functions in this

paper, which serve as tools for the latter use (refining equilibria).

The organization of this paper is as follows. Section 2 defines robust sets of equilibria.

Section 3 introduces generalized potential functions. Section 4 provides the main results.

Section 5 discusses best-response potential functions and Section 6 discusses monotone

potential functions. Section 7 concludes the paper.

2 Robust Sets

A complete information game consists of a finite set of players N , a finite action set Ai

for i ∈ N , and a payoff function gi : A → R for i ∈ N where A =
Q
i∈N Ai. We write

A−i =
Q
j 6=iAj and a−i = (aj)j 6=i ∈ A−i. We also write, for S ∈ 2N , AS =

Q
i∈S Ai

and aS = (ai)i∈S ∈ AS . Because we will fix N and A throughout the paper, we simply

denote a complete information game by g = (gi)i∈N .

An action distribution µ ∈ ∆(A) is a correlated equilibrium of g if, for each i ∈ N ,X
a−i∈A−i

µ(ai, a−i)gi(ai, a−i) ≥
X

a−i∈A−i
µ(ai, a−i)gi(a0i, a−i)

for all ai, a0i ∈ Ai.8 An action distribution µ ∈ ∆(A) is a Nash equilibrium of g if it is a

correlated equilibrium and, for all a ∈ A, µ(a) =Qi∈N µi(ai) where µi ∈ ∆(Ai). We also
say that a ∈ A is a Nash equilibrium if µ ∈ ∆(A) with µ(a) = 1 is a Nash equilibrium.

Consider an incomplete information game with the set of players N and the action

space A. Let Ti be a countable set of types of player i ∈ N . The state space is

T =
Q
i∈N Ti. We write T−i =

Q
j 6=i Tj and t−i = (tj)j 6=i ∈ T−i. Let P ∈ ∆(T ) be

6See also Kukushkin (1999).
7Ui (1997) considered similar functions in the context of stochastic evolutionary games.
8For any finite or countable set S, ∆(S) denotes the set of all probability distributions on S.
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the prior probability distribution on T with
P
t−i∈T−i P (ti, t−i) > 0 for all i ∈ N and

ti ∈ Ti. A payoff function of player i ∈ N is a bounded function ui : A × T → R.
Because we will fix T , N , and A throughout the paper, we simply denote an incomplete

information game by (u, P ) where u = (ui)i∈N .

A (mixed) strategy of player i ∈ N is a mapping σi : Ti → ∆(Ai). We write

Σi for the set of strategies of player i. The strategy space is Σ =
Q
i∈N Σi. We write

Σ−i =
Q
j 6=iΣj and σ−i = (σj)j 6=i ∈ Σ−i. We write σi(ai|ti) for the probability of ai ∈ Ai

given σi ∈ Σi and ti ∈ Ti. For σ ∈ Σ and σ−i ∈ Σ−i, we write σ(a|t) =
Q
i∈N σi(ai|ti)

and σ−i(a−i|t−i) =
Q
j 6=i σj(aj |tj) respectively. Let σP ∈ ∆(A) be such that σP (a) =P

t∈T P (t)σ(a|t) for all a ∈ A. We call σP an action distribution generated by σ.
A strategy profile σ ∈ Σ is a Bayesian Nash equilibrium of (u, P ) if, for each i ∈ N ,X

t−i∈T−i

X
a∈A

P (t−i|ti)σ(a|t)ui(a, t) ≥
X

t−i∈T−i

X
a−i∈A−i

P (t−i|ti)σ−i(a−i|t−i)ui((a0i, a−i), t)

for all ti ∈ Ti and a0i ∈ Ai where P (t−i|ti) = P (ti, t−i)/
P
t−i∈T−i P (ti, t−i). Let Ui(σ) =P

t∈T
P
a∈A P (t)σ(a|t)ui(a, t) be the payoff of strategy profile σ ∈ Σ to player i ∈ N .

Then, σ ∈ Σ is a Bayesian Nash equilibrium of (u, P ) if and only if, for each i ∈ N ,
Ui(σ) ≥ Ui(σ0i,σ−i) for all σ0i ∈ Σi.

For given g, consider the following subset of Ti:

Tuii = {ti ∈ Ti |ui(a, (ti, t−i)) = gi(a) for all a ∈ A, t−i ∈ T−i with P (ti, t−i) > 0}.

When ti ∈ Tuii is realized, payoffs of player i are given by gi and he knows his payoffs.

We write Tu =
Q
i∈N T

ui
i .

Definition 1 An incomplete information game (u, P ) is an ε-elaboration of g if P (Tu) =

1− ε for ε ∈ [0, 1].

Payoffs of a 0-elaboration are given by g with probability 1 and every player knows

his payoffs. It is straightforward to see that if a 0-elaboration has a Bayesian Nash

equilibrium σ ∈ Σ then an action distribution generated by σ, σP ∈ ∆(A), is a correlated
equilibrium of g. Kajii and Morris (1997a, Corollary 3.5) showed the following property

of ε-elaborations, which we will use later.

Lemma 1 Let {(uk, P k)}∞k=1 be such that (uk, P k) is an εk-elaboration of g and εk → 0

as k → ∞. Let σk be a Bayesian Nash equilibrium of (uk, P k) and let σkP be an action
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distribution generated by σk. Then {σkP}∞k=1 has a subsequence which converges to some

correlated equilibrium of g.

We say that a set of correlated equilibria of g is robust if, for small ε > 0, every

ε-elaboration of g has a Bayesian Nash equilibrium σ ∈ Σ such that σP ∈ ∆(A) is close
to some equilibrium in the set.

Definition 2 A set of correlated equilibria of g, E ⊆ ∆(A), is robust to all elaborations

in g if, for every δ > 0, there exists ε̄ > 0 such that, for all ε ≤ ε̄, every ε-elaboration of

g has a Bayesian Nash equilibrium σ ∈ Σ such that maxa∈A |µ(a)− σP (a)| ≤ δ for some

µ ∈ E .

If E is a singleton then the equilibrium in E is robust in the sense of Kajii and
Morris (1997a).

Kajii and Morris (1997b) considered a weaker version of the robustness of equilibria

than that of Kajii and Morris (1997a).9 We consider the corresponding version of the ro-

bustness of sets of equilibria. A type ti ∈ Ti\Tuii is committed if player i of this type has a

strictly dominant action atii ∈ Ai such that ui((atii , a−i), (ti, t−i)) > ui((ai, a−i), (ti, t−i))
for all ai ∈ Ai\{atii }, a−i ∈ A−i, and t−i ∈ T−i with P (ti, t−i) > 0. An ε-elaboration of

g is canonical if every ti ∈ Ti\T uii is committed for all i ∈ N .

Definition 3 A set of correlated equilibria of g, E ⊆ ∆(A), is robust to canonical

elaborations in g if, for every δ > 0, there exists ε̄ > 0 such that, for all ε ≤ ε̄,

every canonical ε-elaboration of g has a Bayesian Nash equilibrium σ ∈ Σ such that
maxa∈A |µ(a)− σP (a)| ≤ δ for some µ ∈ E .

If E is a singleton then the equilibrium in E is robust in the sense of Kajii and
Morris (1997b).

In Section 4, we will provide two sufficient conditions for the robustness of sets of

equilibria, one for the robustness to all elaborations and the other for the robustness to

canonical elaborations respectively.

For either of the robustness concepts, if E is robust then a set of correlated equilibria
E 0 with E ⊆ E 0 is also robust. A robust set E is minimal if no robust set is a proper
subset of E . In this paper, we do not explore the problem of how to identify minimal

robust sets.
9The difference between them is an open question.
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3 Generalized Potentials

Monderer and Shapley (1996) defined weighted potential functions of complete informa-

tion games.

Definition 4 A function f : A→ R is a weighted potential function of g if there exists

wi > 0 such that

gi(ai, a−i)− gi(a0i, a−i) = wi
¡
f(ai, a−i)− f(a0i, a−i)

¢
(1)

for all i ∈ N , ai, a0i ∈ Ai, and a−i ∈ A−i. A complete information game g is a weighted

potential game if it has a weighted potential function. When wi = 1 for i ∈ N , we call
f a potential function and g a potential game.

Suppose that g has a weighted potential function f . ThenX
a−i∈A−i

λi(a−i)
¡
gi(ai, a−i)− gi(a0i, a−i)

¢
= wi

X
a−i∈A−i

λi(a−i)
¡
f(ai, a−i)− f(a0i, a−i)

¢
for all i ∈ N , ai, a0i ∈ Ai, and λi ∈ ∆(A−i). Thus, we have

arg max
ai∈Ai

X
a−i∈A−i

λi(a−i)gi(ai, a−i) = arg max
ai∈Ai

X
a−i∈A−i

λi(a−i)f(ai, a−i) (2)

for all i ∈ N and λi ∈ ∆(A−i). We generalize (2) to define generalized potential func-
tions.10

Before providing a formal definition, we present an example. Let Ai = {0, 1, 2} for
i ∈ N ≡ {1, 2}. We define a collection of subsets of Ai, Ai = {{0, 1}, {0, 1, 2}} for i ∈ N ,
and define A = {X1×X2 |X1 ∈ A1, X2 ∈ A2}. Consider g and F : A→ R given by the

following tables.

g

0 1 2

0 3, 2 2, 3 0, 0

1 2, 3 3, 2 0, 0

2 0, 0 0, 0 1, 1

F

{0, 1} {0, 1, 2}
{0, 1} 2 0

{0, 1, 2} 0 1

10The existence of a function f such that property (2) is satisfied is in fact a necessary but not a

sufficient condition for g to be a weighted potential game. See the discussion in Section 5 and Morris

and Ui (2002).
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The function F has the following property: for Λi ∈ ∆(Aj) and λi ∈ ∆(Aj) with
λi(0) + λi(1) ≥ Λi({0, 1}),

Xi ∩ arg max
ai∈Ai

X
aj∈Aj

λi(aj)gi(ai, aj) 6= ∅ for all Xi ∈ arg max
X0
i∈Ai

X
Xj∈Aj

Λi(Xj)F (X
0
i ×Xj)

where i 6= j. As we will see later, F is a generalized potential function of g.

To provide the formal definition, we first introduce the domain of a generalized po-

tential function denoted by A. For each i ∈ N , let Ai ⊆ 2Ai\∅ be a covering of Ai.
That is, Ai is a collection of nonempty subsets of Ai such that

S
Xi∈Ai Xi = Ai. The

domain of a generalized potential function is A = {Qi∈N Xi |Xi ∈ Ai for i ∈ N}. We
write A−i = {

Q
j 6=iXj |Xj ∈ Aj for j 6= i} and X−i =

Q
j 6=iXj ∈ A−i. Note that A and

A−i are coverings of A and A−i respectively. We call X ∈ A an action subspace.

We then introduce, for Λi ∈ ∆(A−i), a corresponding subset of ∆(A−i) denoted
by ∆Λi(A−i). Imagine that player i believes that a−i ∈ A−i is chosen in two steps:
first, X−i ∈ A−i is chosen according to Λi ∈ ∆(A−i), and then, a−i ∈ X−i is chosen
according to some λ

X−i
i ∈ ∆(A−i) such that λX−ii assigns probability 1 to X−i, i.e.,P

a−i∈X−i λ
X−i
i (a−i) = 1. Then, the induced belief of player i over A−i is λi ∈ ∆(A−i)

such that

λi(a−i) =
X

X−i∈A−i
Λi(X−i)λ

X−i
i (a−i)

for all a−i ∈ A−i. We write ∆Λi(A−i) for the set of the beliefs of player i over A−i
induced by the above rule:

∆Λi(A−i) = {λi ∈ ∆(A−i) |λi(a−i) =
X

X−i∈A−i
Λi(X−i)λ

X−i
i (a−i) for a−i ∈ A−i,

λ
X−i
i ∈ ∆(A−i) with

X
a−i∈X−i

λ
X−i
i (a−i) = 1 for X−i ∈ A−i}.

Definition 5 A function F : A → R is a generalized potential function of g if, for all

i ∈ N , Λi ∈ ∆(A−i), and λi ∈ ∆Λi(A−i),

Xi ∩ arg max
a0i∈Ai

X
a−i∈A−i

λi(a−i)gi(a0i, a−i) 6= ∅

for every

Xi ∈ arg max
X0
i∈Ai

X
X−i∈A−i

Λi(X−i)F (X 0
i ×X−i)
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such thatXi is maximal in the argmax set ordered by the set inclusion relation. An action

subspace X∗ ∈ A is a generalized potential maximizer (GP-maximizer) if F (X∗) > F (X)

for all X ∈ A\{X∗}.

It is clear that F : A → R in the above example is a generalized potential function

because ∆Λi(Aj) ⊆ {λi ∈ ∆(Aj) |λi(0) + λi(1) ≥ Λi({0, 1})} where i 6= j.
At the extreme, consider F : A → R such that Ai = {Ai} for all i ∈ N . Note that

A = {A}. Clearly, every complete information game has a generalized potential function
of this type. At the other extreme, consider F : A→ R such that Ai = {{ai} | ai ∈ Ai}
for all i ∈ N . Note that A = {{a} | a ∈ A}. A weighted potential game has a generalized
potential function of this type, which we prove in Section 5.

Lemma 2 If g is a weighted potential game with a weighted potential function f then

g has a generalized potential function F : A→ R such that Ai = {{ai} | ai ∈ Ai} for all

i ∈ N and F ({a}) = f(a) for all a ∈ A.

Before closing this section, we give a characterization of ∆Λi(A−i).

Lemma 3 For all Λi ∈ ∆(A−i), λi ∈ ∆Λi(A−i) if and only ifX
a−i∈B−i

λi(a−i) ≥
X

X−i∈A−i
X−i⊆B−i

Λi(X−i)

for all B−i ∈ 2A−i.

This lemma is an immediate consequence of the result of Strassen (1964), which is

well known in the study of Dempster-Shafer theory.11 Dempster-Shafer theory considers

non-additive probability functions called belief functions. Every Λi ∈ ∆(A−i), called a
basic probability assignment, defines a corresponding belief function vΛii : 2A−i → [0, 1]

such that

vΛii (B−i) =
X

X−i∈A−i
X−i⊆B−i

Λi(X−i)

for all B−i ∈ 2A−i . It is known that the correspondence between Λi and vΛii is one-to-

one. An additive probability function λi ∈ ∆(A−i) is said to be compatible with a belief
function vΛii if

λi(B−i) ≥ vΛii (B−i)
11Dempster (1967, 1968) and Shafer (1976).
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for all B−i ∈ 2A−i .12 Strassen (1964) proved that, for all Λi ∈ ∆(A−i), λi is compatible
with vΛii if and only if λi ∈ ∆Λi(A−i), which is exactly Lemma 3.

4 Main Results

Suppose that g has a generalized potential function F : A → R with a GP-maximizer

X∗. Let EX∗ be the set of correlated equilibria of g that assign probability 1 to X∗:

EX∗ = {µ ∈ ∆(A) |µ is a correlated equilibrium of g such that
X
a∈X∗

µ(a) = 1}.

Our main results state that EX∗ is nonempty and robust. We present two theorems
below. In Theorem 1, we consider all generalized potential functions and provide a

sufficient condition for the robustness to canonical elaborations. In Theorem 2, we

consider a special class of generalized potential functions such that Ai ∈ Ai for all i ∈ N
and provide a sufficient condition for the robustness to all elaborations.

Theorem 1 If g has a generalized potential function F : A→ R with a GP-maximizer

X∗, then EX∗ is nonempty and robust to canonical elaborations in g.

Theorem 2 If g has a generalized potential function F : A→ R with a GP-maximizer

X∗ such that Ai ∈ Ai for all i ∈ N , then EX∗ is nonempty and robust to all elaborations

in g.

If EX∗ is a singleton, then it is a minimal robust set and the equilibrium in EX∗
is robust in the sense of Kajii and Morris (1997a, 1997b). Clearly, if a GP-maximizer

consists of one action profile, then EX∗ is a singleton. It is straightforward to see that
EX∗ of the example in the previous section is also a singleton where the GP-maximizer
consists of four action profiles.

It should be noted that EX∗ is not always a minimal robust set. For example, if a
generalized potential function is such that Ai = {Ai} for all i ∈ N , then EX∗ is the set of
all correlated equilibria.13 The above theorems are useful only when we have nontrivial

generalized potential functions.
12 In literature of non-additive probabilities written by economists, λi is called a core of v

Λi
i because it

is a core when we regard B−i ∈ 2A−i as a coalition.
13Kajii and Morris (1997a) remarked the robustness of the set of all correlated equilibria.
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In the remainder of this section, we prove Theorem 1 and Theorem 2 simultaneously.

The proof is presented in four steps.

For the first step, let (u, P ) be an ε-elaboration of g and consider collections of

mappings

Ξi = {ξi : Ti → Ai | for all ti ∈ Ti\Tuii , ξi(ti) ∈ Ai contains
every undominated action of type ti},

Ξ = {ξ : T → A| ξ(t) =
Y
i∈N

ξi(ti) for all t ∈ T where ξi ∈ Ξi for all i ∈ N}

where we say that ai ∈ Ai is an undominated action of type ti if it is not a strictly
dominated action of type ti. We say that ai ∈ Ai is a strictly dominated action of type
ti if there exists a0i ∈ Ai such that ui((a0i, a−i), (ti, t−i)) > ui((ai, a−i), (ti, t−i)) for all

a−i ∈ A−i and t−i ∈ T−i with P (ti, t−i) > 0. Note that Ξ is nonempty if and only if, for
all i ∈ N and ti ∈ Ti\Tuii , there exists Xi ∈ Ai such that Xi contains every undominated
action of type ti. As considered in Theorem 1, if (u, P ) is canonical and player i of type

ti ∈ Ti\T uii has a strictly dominant action atii ∈ Ai then Ξ is nonempty because Ai is a
covering of Ai and there exists Xi ∈ Ai such that atii ∈ Xi. As considered in Theorem
2, if Ai ∈ Ai for all i ∈ N then Ξ is nonempty because Ai contains every action. To

summarize, we have the following lemma.

Lemma 4 If (u, P ) is canonical then Ξ is nonempty. If Ai ∈ Ai for all i ∈ N then Ξ is

nonempty.

For the second step, let V : Ξ→ R be such that

V (ξ) =
X
t∈T

P (t)F (ξ(t))

for all ξ ∈ Ξ and consider the set of its maximizers Ξ∗ = argmaxξ∈Ξ V (ξ).

Lemma 5 If Ξ is nonempty then Ξ∗ is nonempty. If ξ∗ ∈ Ξ∗ thenX
t∈T, ξ∗(t)=X∗

P (t) ≥ 1− εκ

where κ is a positive constant.
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Proof. Let {ξk ∈ Ξ}∞k=1 be such that

lim
k→∞

V (ξk) = sup
ξ∈Ξ

V (ξ).

Let Qk ∈ ∆(T ×A) be such that Qk(t,X) = P (t)δ(ξk(t),X) for all (t,X) ∈ T ×A where
δ : A × A → {0, 1} is such that δ(X 0,X) = 1 if X 0 = X and δ(X 0,X) = 0 otherwise.

ThenX
(t,X)∈T×A

Qk(t,X)F (X) =
X

(t,X)∈T×A
P (t)δ(ξk(t),X)F (X) =

X
t∈T

P (t)F (ξk(t)) = V (ξk).

We regard {Qk}∞k=1 as a sequence of probability measures on a discrete metric space
T × A. Note that, for every ε > 0, there exists a finite subset Sε ⊂ T such thatP
(t,X)∈Sε×AQ

k(t,X) = P (Sε) > 1 − ε for all k ≥ 1. This implies that {Qk}∞k=1 is
tight because Sε ×A is finite and thus compact. Accordingly, by Prohorov’s theorem,14
{Qk}∞k=1 has a weakly convergent subsequence {Qkl}∞l=1 such that Qkl → Q∗ as l →∞.
It is straightforward to see that there exists ξ∗ ∈ Ξ such that

Q∗(t,X) = lim
l→∞

Qkl(t,X) = P (t) lim
l→∞

δ(ξkl(t),X) = P (t)δ(ξ∗(t),X)

for all (t,X) ∈ T ×A. Then

sup
ξ∈Ξ

V (ξ) = lim
l→∞

V (ξkl)

= lim
l→∞

X
(t,X)∈T×A

Qkl(t,X)F (X)

=
X

(t,X)∈T×A
Q∗(t,X)F (X) = V (ξ∗).

Therefore, ξ∗ ∈ Ξ∗ and thus Ξ∗ is nonempty.
Let F ∗ = F (X∗), F 0 = maxX∈A\{X∗} F (X), and F 00 = minX∈A F (X). Note that

F ∗ > F 0 ≥ F 00. Let ξ ∈ Ξ be such that ξi(ti) = X∗i for all ti ∈ Tuii and i ∈ N . We have

V (ξ∗) ≥ V (ξ)
=
X
t∈Tu

P (t)F (ξ(t)) +
X

t∈T\Tu

P (t)F (ξ(t))

≥ P (Tu)F ∗ + (1− P (Tu))F 00 = (1− ε)F ∗ + εF 00.

14See Billingsley (1968), for example.
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We also have

V (ξ∗) =
X

t∈T, ξ∗(t)=X∗
P (t)F (ξ∗(t)) +

X
t∈T, ξ∗(t)6=X∗

P (t)F (ξ∗(t))

≤
X

t∈T, ξ∗(t)=X∗
P (t)F ∗ +

1− X
t∈T, ξ∗(t)=X∗

P (t)

F 0.
Combining the above inequalities, we have

(1− ε)F ∗ + εF 00 ≤
X

t∈T, ξ∗(t)=X∗
P (t)F ∗ +

1− X
t∈T, ξ∗(t)=X∗

P (t)

F 0
and thus X

t∈T, ξ∗(t)=X∗
P (t) ≥ 1− εκ

where κ = (F ∗ − F 00)/(F ∗ − F 0) > 0.

For the third step, let Ξ be partially ordered by the relation ⊆ such that ξ ⊆ ξ0 for

ξ, ξ0 ∈ Ξ if and only if ξi(ti) ⊆ ξ0i(ti) for all ti ∈ Ti and i ∈ N .

Lemma 6 If Ξ∗ ⊆ Ξ is nonempty, then it contains at least one maximal element. If ξ∗

is a maximal element of Ξ∗, then (u, P ) has a Bayesian Nash equilibrium σ∗ ∈ Σ such

that σ∗(t) ∈ ∆(A) assigns probability 1 to the action subspace ξ∗(t) ∈ A for all t ∈ T ,

i.e.,
P
a∈ξ∗(t) σ

∗(a|t) = 1 for all t ∈ T .

Proof. If every linearly ordered subset of Ξ∗ has an upper bound in Ξ∗, then Ξ∗ contains

at least one maximal element by Zorn’s Lemma. Let Ξ0 ⊆ Ξ∗ be linearly ordered. Fix
t = (ti)i∈N ∈ T . For each i ∈ N , observe that

{Xi |Xi = ξ0i(ti), ξ
0 ∈ Ξ0} ⊆ Ai

is linearly ordered by the set inclusion relation. Since this set is finite, it has a maximum

element, which is equal to
S

ξ0i∈Ξ0i ξ
0
i(ti) ∈ Ai. Clearly, there exists ξ(i,t) ∈ Ξ0 such that

ξ
(i,t)
i (ti) =

S
ξ0i∈Ξ0i ξ

0
i(ti). Consider {ξ(i,t) | i ∈ N} ⊆ Ξ0. Since this set is linearly ordered

and finite, it has a maximum element ξ(j,t). Simply denote it by ξhti, which satisfies

ξ
hti
i (ti) =

S
ξ0i∈Ξ0i ξ

0
i(ti) for all i ∈ N . For ε > 0, consider {ξhti | t ∈ T, P (t) > ε} ⊆ Ξ0.

Since this set is linearly ordered and finite, it has a maximum element ξhsi. Simply

14



denote it by ξε, which satisfies ξεi (ti) =
S

ξ0i∈Ξ0i ξ
0
i(ti) for all ti ∈ Ti and i ∈ N such that

P (t) > ε. Let ξ̃ ∈ Ξ be such that ξ̃i(ti) =
S

ξ0i∈Ξ0i ξ
0
i(ti) for all ti ∈ Ti and i ∈ N . Note

that ξ̃ is an upper bound of Ξ0. Since ξε(t) = ξ̃(t) for t ∈ T with P (t) > ε, it must be

true that

|V (ξ̃)− V (ξε)| ≤ max
X,X0∈A

|F (X)− F (X 0)| ×
X

t∈T, P (t)≤ε
P (t).

This implies that limε→0 |V (ξ̃) − V (ξε)| = 0. Note that V (ξε) = maxξ∈Ξ V (ξ) because

ξε ∈ Ξ∗. Therefore, V (ξ̃) = maxξ∈Ξ V (ξ) and thus ξ̃ ∈ Ξ∗, which completes the proof of
the first half of the lemma.

We prove the second half. Let ξ∗ ∈ Ξ∗ be a maximal element. Let ξ∗i ∈ Ξi be such
that ξ∗(t) =

Q
i∈N ξ∗i (ti) for all t ∈ T and write ξ∗−i(t−i) =

Q
j 6=i ξ

∗
j (tj).

We write Σ∗i = {σi ∈ Σi |
P
ai∈ξ∗i (ti) σi(ai|ti) = 1 for all ti ∈ Ti}, Σ

∗ =
Q
i∈N Σ

∗
i , and

Σ∗−i =
Q
j 6=iΣ

∗
j . We show that there exists a Bayesian Nash equilibrium σ∗ ∈ Σ∗.

Let βi : Σ∗−i → 2Σ
∗
i be such that βi(σ−i) = argmaxσi∈Σi Ui(σi,σ−i) ∩ Σ∗i for all

σ−i ∈ Σ∗−i and β : Σ∗ → 2Σ
∗
be such that β(σ) =

Q
i∈N βi(σ−i) for all σ ∈ Σ∗. Note

that β is the best response correspondence of (u, P ) restricted to Σ∗.

We show that β has nonempty values. This is true if and only if, for all i ∈ N ,
σ−i ∈ Σ∗−i, and ti ∈ Ti,

ξ∗i (ti) ∩ arg max
ai∈Ai

X
t−i∈T−i

X
a−i∈A−i

P (t−i|ti)σ−i(a−i|t−i)ui((ai, a−i), t) 6= ∅. (3)

Suppose that ti ∈ Ti\T uii . Then (3) is true because ξ∗i (ti) contains every undominated
action of type ti.

Suppose that ti ∈ T uii . Rewrite the left-hand side of (3) as

ξ∗i (ti) ∩ arg max
ai∈Ai

X
t−i∈T−i

X
a−i∈A−i

P (t−i|ti)σ−i(a−i|t−i)ui((ai, a−i), t)

= ξ∗i (ti) ∩ arg max
ai∈Ai

X
a−i∈A−i

 X
t−i∈T−i

P (t−i|ti)σ−i(a−i|t−i)
 gi(ai, a−i)

= ξ∗i (ti) ∩ arg max
ai∈Ai

X
a−i∈A−i

λtii (a−i)gi(ai, a−i)

(4)

where λtii ∈ ∆(A−i) is such that

λtii (a−i) =
X

t−i∈T−i
P (t−i|ti)σ−i(a−i|t−i)
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for all a−i ∈ A−i. Because ξ∗ is a maximal element of Ξ∗,

ξ∗i (ti) ∈ arg max
Xi∈Ai

X
t−i∈T−i

P (t−i|ti)F (Xi × ξ∗−i(t−i))

= arg max
Xi∈Ai

X
X−i∈A−i

 X
t−i∈T−i

ξ∗−i(t−i)=X−i

P (t−i|ti)

F (Xi × ξ∗−i(t−i))

= arg max
Xi∈Ai

X
X−i∈A−i

Λtii (X−i)F (Xi ×X−i)

and ξ∗i (ti) is maximal in the argmax set where Λ
ti
i ∈ ∆(A−i) is such that

Λtii (X−i) =
X

t−i∈T−i
ξ∗−i(t−i)=X−i

P (t−i|ti)

for all X−i ∈ A−i. This implies that if λtii ∈ ∆Λ
ti
i
(A−i) then

ξ∗i (ti) ∩ arg max
ai∈Ai

X
a−i∈A−i

λtii (a−i)gi(ai, a−i) 6= ∅ (5)

by the definition of generalized potential functions. To see that λtii ∈ ∆Λ
ti
i
(A−i), rewrite

λtii (a−i) as

λtii (a−i) =
X

X−i∈A−i

X
t−i∈T−i

ξ∗−i(t−i)=X−i

P (t−i|ti)σ−i(a−i|t−i)

=
X

X−i∈A−i
Λtii (X−i)λ

ti,X−i
i (a−i)

where

λ
ti,X−i
i (a−i) =



X
t−i∈T−i

ξ∗−i(t−i)=X−i

P (t−i|ti)σ−i(a−i|t−i)
Λtii (X−i)

if Λtii (X−i) 6= 0,

1

|X−i| if Λtii (X−i) = 0 and a−i ∈ X−i,
0 if Λtii (X−i) = 0 and a−i 6∈ X−i.

Because σ−i ∈ Σ∗−i and thus
P
a−i∈ξ∗−i(t−i) σ−i(a−i|t−i) = 1 for all t−i ∈ T−i, we have

λ
ti,X−i
i ∈ ∆(A−i) with

P
a−i∈X−i λ

ti,X−i
i (a−i) = 1. This implies that λtii ∈ ∆Λ

ti
i
(A−i)

and thus (5). Therefore, (3) is true by (4) and (5).
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We have shown that β has nonempty values. We can show that Σ∗ is compact15 and

convex and that β has a closed graph and convex values. By Kakutani-Fan-Glicksberg

fixed point theorem, β has a fixed point σ∗ ∈ Σ∗, which is a Bayesian Nash equilibrium
of (u, P ).

We now report the fourth and final step. An immediate implication of the above

lemmas is the following. If (u, P ) is canonical (the case considered in Theorem 1), or if

Ai ∈ Ai for all i ∈ N (the case considered in Theorem 2), then (u, P ) has a Bayesian

Nash equilibrium σ∗ ∈ Σ such that Pa∈ξ∗(t) σ
∗(a|t) = 1 for all t ∈ T andX

a∈X∗
σ∗P (a) =

X
a∈X∗

X
t∈T

P (t)σ∗(a|t)

≥
X

t∈T, ξ∗(t)=X∗
P (t)

X
a∈X∗

σ∗(a|t)

=
X

t∈T, ξ∗(t)=X∗
P (t) ≥ 1− εκ

(6)

where ξ∗ is a maximal element of Ξ∗. Thus, to complete the proof, it is enough to show

that, for every δ > 0, there exists ε̄ > 0 such that, for all ε ≤ ε̄ and every ε-elaboration

with a Bayesian Nash equilibrium σ∗ satisfying (6), there exists µ ∈ EX∗ such that
maxa∈A |µ(a)− σ∗P (a)| ≤ δ.

Seeking a contradiction, suppose otherwise. Then, for some δ > 0, there exists a

sequence {(uk, P k)}∞k=1 such that:

• (uk, P k) is an εk-elaboration of g and εk → 0 as k →∞.

• (uk, P k) has a Bayesian Nash equilibrium σ∗k with
P
a∈X∗ σ

∗k
P (a) ≥ 1− εkκ.

• max
a∈A

|µ(a)− σ∗kP (a)| > δ for all µ ∈ EX∗ or EX∗ = ∅.

By Lemma 1, {σ∗kP }∞k=1 has a subsequence {σ∗klP }∞l=1 such that

lim
l→∞

max
a∈A

|µ(a)− σ∗klP (a)| = 0

where µ ∈ ∆(A) is a correlated equilibrium of g. BecauseX
a∈X∗

µ(a) = lim
l→∞

X
a∈X∗

σ∗klP (a) ≥ lim
l→∞

(1− εklκ) = 1,

we have µ ∈ EX∗ . This is a contradiction, which completes the proof of the theorems.
15A strategy subspace Σ∗ is compact with the topology of weak convergence defined in {ρσ ∈ ∆(T ×

A) |σ ∈ Σ∗, ρσ(t, a) = P (t)σ(a|t) for all (t, a) ∈ T ×A}.
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5 Unordered Domains

We restrict attention to the class of generalized potential functions such that domains

are partitions of action spaces. Let Pi ⊆ 2Ai\∅ be a partition of Ai. We write P =

{Qi∈N Xi |Xi ∈ Pi for i ∈ N} and P−i = {Qj 6=iXj |Xj ∈ Pj for j 6= i}, which are
partitions of A and A−i, respectively. The partition element of Pi containing ai ∈ Ai is
denoted by Pi(ai). Similarly, the partition element of P containing a and that of P−i
containing a−i are denoted by P (a) and P−i(a−i), respectively. We say that a function

v : A→ R is P-measurable if v(a) = v(a0) for a, a0 ∈ A with a0 ∈ P (a).

Definition 6 A P-measurable function v : A → R is a best-response potential function

of g if, for each i ∈ N ,

Xi ∩ arg max
a0i∈Ai

X
a−i∈A−i

λi(a−i)gi(a0i, a−i) 6= ∅

for all Xi ∈ Pi and λi ∈ ∆(A−i) such that

Xi ⊆ arg max
a0i∈Ai

X
a−i∈A−i

λi(a−i)v(a0i, a−i).

A partition element X∗ ∈ P is a best-response potential maximizer (BRP-maximizer) if

v(a∗) > v(a) for all a∗ ∈ X∗ and a 6∈ X∗.

For example, consider the special case where Pi is the finest partition, i.e., Pi =
{{ai}}ai∈Ai for all i ∈ N . Then, it is straightforward to see that a function v : A→ R is

a best-response potential function of g if and only if

arg max
a0i∈Ai

X
a−i∈A−i

λi(a−i)v(a0i, a−i) ⊆ arg max
a0i∈Ai

X
a−i∈A−i

λi(a−i)gi(a0i, a−i)

for all i ∈ N and λi ∈ ∆(A−i).16 For example, a weighted potential function is a

best-response potential function by (2). However, a best-response potential function

is not always a weighted potential function, even if there are no dominated actions,

as demonstrated by Morris and Ui (2002). Thus the class of best-response potential

functions is much larger than the class of weighted potential functions.
16A best-response potential function considered by Voorneveld (2000) is a function satisfying this

condition for the class of beliefs such that λi(a−i) = 0 or 1. Thus, best-response potential functions in

this paper form a special class of those in Voorneveld (2000).
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A best-response potential function v induces a generalized potential function. Let

F : A → R be such that A = P and F (P (a)) = v(a) for all a ∈ A. Note that

P-measurability of v implies that F is well defined. Since A−i is a partition of A−i,
λi ∈ ∆Λi(A−i) if and only if

P
a−i∈X−i λi(a−i) = Λi(X−i) for all X−i ∈ A−i by Lemma 3.

Thus, for Λi ∈ ∆(A−i) and λi ∈ ∆Λi(A−i),X
X−i∈A−i

Λi(X−i)F (X 0
i ×X−i) =

X
a−i∈A−i

λi(a−i)v(a0i, a−i)

if X 0
i = Pi(a

0
i). This implies that, if

Xi ∈ arg max
X0
i∈Ai

X
X−i∈A−i

Λi(X−i)F (X 0
i ×X−i),

then

Xi ⊆ arg max
a0i∈Ai

X
a−i∈A−i

λi(a−i)v(a0i, a−i)

and thus

Xi ∩ arg max
a0i∈Ai

X
a−i∈A−i

λi(a−i)gi(a0i, a−i) 6= ∅

for all λi ∈ ∆Λi(A−i) by the definition of best-response potential functions. Therefore,

F : A → R is a generalized potential function. This proves Lemma 2 and immediately

implies the following result by Theorem 1.

Proposition 1 If g has a best-response potential function v : A → R with a BRP-

maximizer X∗, then EX∗ is nonempty and robust to canonical elaborations in g.

This proposition generalizes the result of Ui (2001), who showed that the action

profile that uniquely maximizes a potential function is robust to canonical elaborations.

6 Ordered Domains

Let Pi be a partition of Ai such that Pi is linearly ordered by the order relation ≤i for
i ∈ N . Let Zi and Zi be the smallest and the largest elements of Pi, respectively. The
corresponding product order relation over P is denoted by ≤N , and that over P−i is
denoted by ≤−i, respectively. If Pi(ai) ≤i Zi for ai ∈ Ai and Zi ∈ Pi, we simply write
ai ≤i Zi. For Xi ⊆ Ai, we say that ai ∈ Xi is minimal in Xi if ai ≤i Pi(xi) for all xi ∈ Xi
and that ai ∈ Xi is maximal in Xi if ai ≥i Pi(xi) for all xi ∈ Xi.
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Definition 7 Let X∗ ∈ P be given. A P-measurable function v : A→ R with v(a∗) >

v(a) for all a∗ ∈ X∗ and a 6∈ X∗ is a monotone potential function of g if, for all i ∈ N
and λi ∈ ∆(A−i), there exists

ai ∈ arg max
a0i≤iX∗i

X
a−i∈A−i

λi(a−i)gi(a0i, a−i),

ai ∈ arg max
a0i≤iX∗i

X
a−i∈A−i

λi(a−i)v(a0i, a−i)

such that Pi(ai) ≥i Pi(ai), and symmetrically, there exists

ai ∈ arg max
a0i≥iX∗i

X
a−i∈A−i

λi(a−i)gi(a0i, a−i),

ai ∈ arg max
a0i≥iX∗i

X
a−i∈A−i

λi(a−i)v(a0i, a−i)

such that Pi(ai) ≤i Pi(ai). A partition element X∗ ∈ P is called a monotone potential

maximizer (MP-maximizer).

We restrict attention to a complete information game g satisfying strategic comple-

mentarities or a monotone potential function v satisfying strategic complementarities in

the following sense.

Definition 8 A complete information game g satisfies strategic complementarities if,

for each i ∈ N ,
gi(ai, a−i)− gi(a0i, a−i) ≥ gi(ai, a0−i)− gi(a0i, a0−i)

for all ai, a0i ∈ Ai and a−i, a0−i ∈ A−i such that Pi(ai) >i Pi(a0i) and P−i(a−i) >−i
P−i(a0−i). A function v : A → R satisfies strategic complementarities if an identical

interest game g with gi = v for all i ∈ N satisfies strategic complementarities.

Note that if the partition Pi is the finest one, then the order relation ≤i naturally
induces an order relation over the action set Ai and the above definition of strategic

complementarities reduces to the standard one.

A monotone potential function v with an MP-maximizer X∗ induces a generalized

potential function with a GP-maximizerX∗ if g or v satisfies strategic complementarities.

Let A be such that

Ai = {[Z 0i, Z 00i ] |Z 0i, Z 00i ∈ Pi, Z 0i ≤i X∗i ≤i Z 00i }
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for i ∈ N where [Z 0i, Z
00
i ] ⊆ Ai is such that

[Z 0i, Z
00
i ] =

[
Z0i≤iZi≤iZ00i

Zi.

Note that [Zi, Zi] = Ai ∈ Ai. For Z 0−i, Z 00−i ∈ P−i with Z 0−i ≤−i Z 00−i and Z 0, Z 00 ∈ P
with Z 0 ≤N Z 00, we write

[Z 0−i, Z
00
−i] =

Y
j 6=i
[Z 0j , Z

00
j ] =

[
Z0−i≤−iZ−i≤−iZ00−i

Z−i,

[Z 0, Z 00] =
Y
i∈N
[Z 0i, Z

00
i ] =

[
Z0≤NZ≤NZ00

Z.

Then, we have

A−i = {[Z 0−i, Z 00−i] |Z 0−i, Z 00−i ∈ P−i, Z 0−i ≤−i X∗−i ≤−i Z 00−i},
A = {[Z 0, Z 00] |Z 0, Z 00 ∈ P, Z 0 ≤N X∗ ≤N Z 00}.

Note that, for [Z 0i, Z
00
i ] ∈ Ai and [Z 0−i, Z 00−i] ∈ A−i, [Z 0, Z 00] = [Z 0i, Z 00i ] × [Z 0−i, Z 00−i] ∈ A.

Let F : A→ R be such that

F ([Z 0, Z 00]) = V (Z 0) + V (Z 00)

where V : P → R is such that V (P (a)) = v(a) for all a ∈ A, which is well defined by
P-measurability of v. Note that F (X∗) > F (X) for all X ∈ A\{X∗}. By showing that
F is a generalized potential function, we claim the following result.

Proposition 2 Suppose that g has a monotone potential function v : A → R with an

MP-maximizer X∗. If g or v satisfies strategic complementarities, then EX∗ is nonempty

and robust to all elaborations in g.

Proof. By Theorem 2, it is enough to show that F : A→ R given above is a generalized

potential function of g with a GP-maximizer X∗.

For Λi ∈ ∆(A−i), let Z∗i , Z∗∗i ∈ Pi be such that

[Z∗i , Z
∗∗
i ] ∈ arg max

[Z0i,Z
00
i ]∈Ai

X
[Z0−i,Z

00
−i]∈A−i

Λi([Z
0
−i, Z

00
−i])F ([Z

0
i, Z

00
i ]× [Z 0−i, Z 00−i])

and [Z∗i , Z
∗∗
i ] is maximal in the argmax set ordered by the set inclusion relation. We

prove that

[Z∗i , Z
∗∗
i ] ∩ arg max

xi∈Ai

X
a−i∈A−i

λi(a−i)gi(xi, a−i) 6= ∅ (7)
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for all λi ∈ ∆Λi(A−i).
First, we calculateX

[Z0−i,Z
00
−i]∈A−i

Λi([Z
0
−i, Z

00
−i])F ([Z

0
i, Z

00
i ]× [Z 0−i, Z 00−i])

=
X

[Z0−i,Z
00
−i]∈A−i

Λi([Z
0
−i, Z

00
−i])V (Z

0
i × Z 0−i)

+
X

[Z0−i,Z
00
−i]∈A−i

Λi([Z
0
−i, Z

00
−i])V (Z

00
i × Z 00−i)

=
X

Z0−i≤−iX∗−i

 X
Z00−i≥−iX∗−i

Λi([Z
0
−i, Z

00
−i])

V (Z 0i × Z 0−i)
+

X
Z00−i≥−iX∗−i

 X
Z0−i≤−iX∗−i

Λi([Z
0
−i, Z

00
−i])

V (Z 00i × Z 00−i).
Thus, we have

Z∗i = min

arg max
Z0i≤iX∗i

X
Z−i∈P−i

Γ0i(Z−i)V (Z
0
i × Z−i)

 ,
Z∗∗i = max

arg max
Z00i ≥iX∗i

X
Z−i∈P−i

Γ00i (Z−i)V (Z
00
i × Z−i)


where Γ0i,Γ

00
i ∈ ∆(P−i) are such that

Γ0i(Z−i) =


X

Z00−i≥−iX∗−i
Λi([Z−i, Z 00−i]) if Z−i ≤−i X∗−i,

0 otherwise,

Γ00i (Z−i) =


X

Z0−i≤−iX∗−i
Λi([Z

0
−i, Z−i]) if Z−i ≥−i X∗−i,

0 otherwise.

Next, consider λi ∈ ∆Λi(A−i). Let Γi ∈ ∆(P−i) be such that

Γi(Z−i) =
X

a−i∈Z−i
λi(a−i)

for all Z−i ∈ P−i. We show that Γ00i first order stochastically dominates Γi and Γi first
order stochastically dominates Γ0i. We say that Q−i ⊆ P−i is a decreasing subset of
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P−i if Z−i ∈ Q−i and Z 0−i ≤−i Z−i together imply Z 0−i ∈ Q−i. The definition of the
stochastic dominance relation says that Γ00i first order stochastically dominates Γi if, for

any decreasing subset Q−i ⊆ P−i,X
Z−i∈Q−i

Γi(Z−i) ≥
X

Z−i∈Q−i
Γ00i (Z−i). (8)

It is known that Γ00i first order stochastically dominates Γi if and only if, for any increasing

function17 Gi : P−i → R,X
Z−i∈P−i

Γi(Z−i)Gi(Z−i) ≤
X

Z−i∈P−i
Γ00i (Z−i)Gi(Z−i).

We show (8) for two cases separately, X∗−i 6∈ Q−i and X∗−i ∈ Q−i. If X∗−i 6∈ Q−i, then
Z−i ≥−i X∗−i is false for all Z−i ∈ Q−i and thusX

Z−i∈Q−i
Γi(Z−i) ≥

X
Z−i∈Q−i

Γ00(Z−i) = 0

because Γ00i (Z−i) = 0 unless Z−i ≥−i X∗−i. If X∗−i ∈ Q−i, Lemma 3 implies that

X
Z−i∈Q−i

Γi(Z−i) =
X

Z−i∈Q−i

 X
a−i∈Z−i

λi(a−i)


=

X
a−i∈

S
Z−i∈Q−i Z−i

λi(a−i)

≥
X

[Z0−i,Z
00
−i]∈A−i

[Z0−i,Z
00
−i]⊆

S
Z−i∈Q−i Z−i

Λi([Z
0
−i, Z

00
−i])

=
X

Z00−i≥−iX∗−i
Z00−i∈Q−i

 X
Z0−i≤−iX∗−i

Λi([Z
0
−i, Z

00
−i])


=

X
Z−i≥−iX∗−i
Z−i∈Q−i

Γ00i (Z−i)

=
X

Z−i∈Q−i
Γ00i (Z−i).

Therefore, Γ00i first order stochastically dominates Γi. Symmetrically, we can show that

Γi first order stochastically dominates Γ0i.
17We say that Gi : P−i → R is increasing if Gi(Z−i) ≥ Gi(Z0−i) for Z−i ≥−i Z0−i.

23



Using the stochastic dominance relation, we show that

[Z∗i ,X
∗
i ] ∩ arg max

xi≤iX∗i

X
a−i∈A−i

λi(a−i)gi(xi, a−i) 6= ∅, (9)

[X∗i , Z
∗∗
i ] ∩ arg max

xi≥iX∗i

X
a−i∈A−i

λi(a−i)gi(xi, a−i) 6= ∅, (10)

which imply (7). For Z−i ∈ P−i, let λZ−ii ∈ ∆(A−i) be such that

λ
Z−i
i (a−i) =


λi(a−i)
Γi(Z−i)

if Γi(Z−i) > 0 and a−i ∈ Z−i,
1

|Z−i| if Γi(Z−i) = 0 and a−i ∈ Z−i,
0 if a−i 6∈ Z−i.

Note that
P
a−i∈Z−i λ

Z−i
i (a−i) = 1 and λi(a−i) =

P
Z−i∈P−i Γi(Z−i)λ

Z−i
i (a−i) for all

a−i ∈ A−i. Thus,X
a−i∈A−i

λi(a−i)gi(xi, a−i) =
X

Z−i∈P−i
Γi(Z−i)

X
a−i∈A−i

λ
Z−i
i (a−i)gi(xi, a−i).

Let λ0i ∈ ∆(A−i) be such that

λ0i(a−i) =
X

Z−i∈P−i
Γ0i(Z−i)λ

Z−i
i (a−i).

Then, we haveX
a−i∈A−i

λ0i(a−i)v(xi, a−i) =
X

Z−i∈P−i
Γ0i(Z−i)

X
a−i∈A−i

λ
Z−i
i (a−i)v(xi, a−i)

=
X

Z−i∈P−i
Γ0i(Z−i)V (Pi(xi)× Z−i).

This implies that Z∗i = Pi(a
0
i) where

a0i ∈ arg max
xi≤iX∗i

X
a−i∈A−i

λ0i(a−i)v(xi, a−i)

is minimal in the argmax set. Let

ai ∈ arg max
xi≤iX∗i

X
a−i∈A−i

λi(a−i)v(xi, a−i)

24



be minimal in the argmax set and let

bi ∈ arg max
xi≤iX∗i

X
a−i∈A−i

λi(a−i)gi(xi, a−i),

b0i ∈ arg max
xi≤iX∗i

X
a−i∈A−i

λ0i(a−i)gi(xi, a−i)

be maximal in the argmax sets, respectively. Since v is a monotone potential function, it

must be true that Pi(ai) ≤i Pi(bi) and Pi(a0i) ≤i Pi(b0i). Suppose that g satisfies strategic

complementarities. For any xi ∈ Ai with Pi(xi) <i Pi(b0i),

gi(b
0
i, a−i)− gi(xi, a−i) ≥ gi(b0i, a0−i)− gi(xi, a0−i)

whenever P−i(a−i) >−i P−i(a0−i). This implies thatX
a−i∈A−i

λ
Z−i
i (a−i)

¡
gi(b

0
i, a−i)− gi(xi, a−i)

¢ ≥ X
a−i∈A−i

λ
Z0−i
i (a−i)

¡
gi(b

0
i, a−i)− gi(xi, a−i)

¢
whenever Z−i >−i Z 0−i. In other words,

P
a−i∈A−i λ

Z−i
i (a−i)

¡
gi(b

0
i, a−i)− gi(xi, a−i)

¢
is

increasing in Z−i. Since Γi first order stochastically dominates Γ0i, it must be true thatX
a−i∈A−i

λi(a−i)
¡
gi(b

0
i, a−i)− gi(xi, a−i)

¢
=

X
Z−i∈P−i

Γi(Z−i)
X

a−i∈A−i
λ
Z−i
i (a−i)

¡
gi(b

0
i, a−i)− gi(xi, a−i)

¢
≥

X
Z−i∈P−i

Γ0i(Z−i)
X

a−i∈A−i
λ
Z−i
i (a−i)

¡
gi(b

0
i, a−i)− gi(xi, a−i)

¢
=

X
a−i∈A−i

λ0i(a−i)
¡
gi(b

0
i, a−i)− gi(xi, a−i)

¢ ≥ 0.
This implies that Pi(b0i) ≤i Pi(bi). Therefore, Z∗i = Pi(a

0
i) ≤i Pi(b0i) ≤i Pi(bi) and

thus (9) is true. Suppose that v satisfies strategic complementarities. By the similar

discussion, for any xi ∈ Ai with Pi(xi) <i Pi(a0i),X
a−i∈A−i

λi(a−i)
¡
v(a0i, a−i)− v(xi, a−i)

¢
=

X
Z−i∈P−i

Γi(Z−i)
X

a−i∈A−i
λ
Z−i
i (a−i)

¡
v(a0i, a−i)− v(xi, a−i)

¢
≥

X
Z−i∈P−i

Γ0i(Z−i)
X

a−i∈A−i
λ
Z−i
i (a−i)

¡
v(a0i, a−i)− v(xi, a−i)

¢
=

X
a−i∈A−i

λ0i(a−i)
¡
v(a0i, a−i)− v(xi, a−i)

¢
> 0.
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This implies that Pi(a0i) ≤i Pi(ai). Therefore, Z∗i = Pi(a0i) ≤i Pi(ai) ≤i Pi(bi) and thus
(9) is true.

To summarize, if either g or v satisfies strategic complementarities, (9) is true. Sim-

ilarly, we can show that (10) is true. Therefore, we obtain (7).

We can obtain the simpler form of the MP-maximizer condition if a complete infor-

mation game satisfies diminishing marginal returns. We say that a complete information

game satisfies diminishing marginal returns if every player’s payoff function is concave

with respect to his own action. Let Z+i ∈ Pi be the smallest element larger than Zi 6= Zi,
and Z−i ∈ Pi be the largest element smaller than Zi 6= Zi.

Definition 9 A complete information game g satisfies diminishing marginal returns if,

for each i ∈ N and a−i ∈ A−i,

gi(a
+
i , a−i)− gi(ai, a−i) ≤ gi(ai, a−i)− gi(a−i , a−i)

for ai 6∈ Zi ∪ Zi, a+i ∈ Pi(ai)+, and a−i ∈ Pi(ai)−.

In the case of diminishing marginal returns, we will see that the MP-maximizer

condition reduces to the following simpler condition.

Definition 10 Let X∗ ∈ P be given. A P-measurable function v : A→ R with v(a∗) >

v(a) for all a∗ ∈ X∗ and a 6∈ X∗ is a local potential function of g if, for each i ∈ N ,
ai ∈ Zi with Zi >i X∗i , and a−i ∈ Z−i ,X

a−i∈A−i
λi(a−i)gi(a−i , a−i) ≥

X
a−i∈A−i

λi(a−i)gi(ai, a−i)

for all λi ∈ ∆(A−i) such thatX
a−i∈A−i

λi(a−i)v(a−i , a−i) ≥
X

a−i∈A−i
λi(a−i)v(ai, a−i),

and symmetrically, for each i ∈ N , ai ∈ Zi with Zi <i X∗i , and a+i ∈ Z+i ,X
a−i∈A−i

λi(a−i)gi(a+i , a−i) ≥
X

a−i∈A−i
λi(a−i)gi(ai, a−i)

for all λi ∈ ∆(A−i) such thatX
a−i∈A−i

λi(a−i)v(a+i , a−i) ≥
X

a−i∈A−i
λi(a−i)v(ai, a−i).

A partition element X∗ ∈ P is called a local potential maximizer (LP-maximizer).
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We show that if a complete information game satisfies diminishing marginal returns,

then a local potential function is a monotone potential function, by which we claim the

following result.

Proposition 3 Suppose that g has a local potential function v : A → R with an LP-

maximizer X∗. If g satisfies diminishing marginal returns, and if g or v satisfies strategic

complementarities, then EX∗ is nonempty and robust to all elaborations in g.

Proof. By Proposition 2, it is enough to show that if g satisfies diminishing marginal

returns, then a local potential function v is a monotone potential function. Let

ai ∈ arg max
xi≤iX∗i

X
a−i∈A−i

λi(a−i)gi(xi, a−i)

be maximal in the argmax set and let

ai ∈ arg max
xi≤iX∗i

X
a−i∈A−i

λi(a−i)v(xi, a−i)

be minimal in the argmax set. We prove that Pi(ai) ≥i Pi(ai). If Pi(ai) = Zi, then

Pi(ai) ≥i Pi(ai). If Pi(ai) 6= Zi, then Pi(ai)
− exists, and it must be true that, for all

a−i ∈ Pi(ai)−, X
a−i∈A−i

λi(a−i)
¡
v(ai, a−i)− v(a−i , a−i)

¢
> 0.

Since v is a local potential function,X
a−i∈A−i

λi(a−i)
¡
gi(ai, a−i)− gi(a−i , a−i)

¢ ≥ 0
for all a−i ∈ Pi(ai)−. Since g satisfies diminishing marginal returns, we must haveX

a−i∈A−i
λi(a−i)

¡
gi(xi, a−i)− gi(x−i , a−i)

¢ ≥ 0
for all xi ≤i Pi(ai)− and x−i ∈ Pi(xi)−. This implies thatX

a−i∈A−i
λi(a−i)gi(ai, a−i) ≥

X
a−i∈A−i

λi(a−i)gi(xi, a−i)

for all xi ≤i Pi(ai)−. Therefore, it must be true that Pi(ai) ≥i Pi(ai).
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Symmetrically, let

ai ∈ arg max
xi≥iX∗i

X
a−i∈A−i

λi(a−i)gi(xi, a−i)

be minimal in the argmax set and let

ai ∈ arg max
xi≥iX∗i

X
a−i∈A−i

λi(a−i)v(xi, a−i)

be maximal in the argmax set. By the symmetric argument, we can prove that Pi(ai) ≤i
Pi(ai).

Combining the above arguments, we conclude that a local potential function v is a

monotone potential function.

Proposition 3 has an important implication in the special case where

Pi = {{a∗i }, Ai\{a∗i }}

with {a∗i } ≤i Ai\{a∗i } for all i ∈ N and an LP-maximizer is {a∗}. Note that a com-
plete information game satisfies diminishing marginal returns in the trivial sense. It is

straightforward to see that a function v : A → R is a local potential function with an

LP-maximizer {a∗} if and only if

• v(a∗) > v(a) for a 6= a∗,

• for all i ∈ N , v(ai, a−i) = v(a0i, a−i) for ai, a0i ∈ Ai\{a∗i } and a−i ∈ A−i,

• for all i ∈ N , if X
a−i∈A−i

λi(a−i)v(a∗i , a−i) ≥
X

a−i∈A−i
λi(a−i)v(ai, a−i), (11)

then X
a−i∈A−i

λi(a−i)gi(a∗i , a−i) ≥
X

a−i∈A−i
λi(a−i)gi(ai, a−i) (12)

for ai 6= a∗i .

One can show that if g has a p-dominant equilibrium a∗ with
P
i∈N pi < 1, then

g has a local potential function v of this type. Let p = (pi)i∈N ∈ [0, 1]N . Kajii and
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Morris (1997a) defined a∗ ∈ A to be a p-dominant equilibrium of g if, for all i ∈ N and

λi ∈ ∆(A−i) with λi(a
∗
−i) ≥ pi,X

a−i∈A−i
λi(a−i)gi(a∗i , a−i) ≥

X
a−i∈A−i

λi(a−i)gi(ai, a−i)

for ai ∈ Ai. Kajii and Morris (1997a) showed that a p-dominant equilibrium withP
i∈N pi < 1 is robust to all elaborations. This is an immediate consequence of Propo-

sition 3, the above discussion and the following lemma.

Lemma 7 If g has a p-dominant equilibrium a∗ with
P
i∈N pi < 1, then g has a local

potential function v : A→ R with an LP-maximizer {a∗} such that

v(a) =

 1−Pi∈N pi if a = a∗,

−Pi∈S pi if ai = a∗i for i ∈ S and ai 6= a∗i for i 6∈ S.

In addition, v satisfies strategic complementarities.

Proof. Note that v is P-measurable and v(a∗) > v(a) for a 6= a∗. Note also that

v(a∗i , a−i)− v(ai, a−i) =
 1− pi if a−i = a∗−i,

−pi otherwise

for ai 6= a∗i . Thus, v satisfies strategic complementarities.
Suppose that λi ∈ ∆(A−i) satisfies (11). Then, for ai 6= a∗i ,X
a−i∈A−i

λi(a−i) (v(a∗i , a−i)− v(ai, a−i)) = λi(a
∗
−i)(1− pi) +

X
a−i 6=a∗−i

λi(a−i)(−pi)

= λi(a
∗
−i)− pi ≥ 0.

Because a∗ is a p-dominant equilibrium, (12) is true, which completes the proof.

Local potential functions have the following dual characterization, which is easier to

apply in finding local potential functions. We use it when we discuss examples. The dual

characterization translates the condition with respect to beliefs to the condition with re-

spect to payoff differences.18 Remember that, in weighted potential functions, the payoff

difference condition (1) leads to the belief condition (2). The following lemma provides

the payoff difference condition corresponding to the belief condition in Definition 10.
18See Morris and Ui (2002) for the duality argument between beliefs and payoff differences.
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Lemma 8 Let X∗ ∈ P be given. A P-measurable function v : A→ R with v(a∗) > v(a)

for all a∗ ∈ X∗ and a 6∈ X∗ is a local potential function of g if and only if, for each

i ∈ N , there exists µi(a−i , ai) ≥ 0 for ai ∈ Zi with Zi >i X∗i and a−i ∈ Z−i such that

gi(a
−
i , a−i)− gi(ai, a−i) ≥ µi(a−i , ai)

¡
v(a−i , a−i)− v(ai, a−i)

¢
for all a−i ∈ A−i, and symmetrically, there exists µi(a+i , ai) ≥ 0 for ai ∈ Zi with

Zi <i X
∗
i and a+i ∈ Z+i such that

gi(a
+
i , a−i)− gi(ai, a−i) ≥ µi(a+i , ai)

¡
v(a+i , a−i)− v(ai, a−i)

¢
for all a−i ∈ A−i.

Proof. Suppose that v satisfies the condition in the lemma. Then,X
a−i∈A−i

λi(a−i)
¡
gi(a

−
i , a−i)− gi(ai, a−i)

¢
≥ µi(a−i , ai)

X
a−i∈A−i

λi(a−i)
¡
v(a−i , a−i)− v(ai, a−i)

¢
.

Clearly, if X
a−i∈A−i

λi(a−i)
¡
v(a−i , a−i)− v(ai, a−i)

¢ ≥ 0,
then X

a−i∈A−i
λi(a−i)

¡
gi(a

−
i , a−i)− gi(ai, a−i)

¢ ≥ 0.
Thus, v satisfies the first half of the condition in Definition 10. By the symmetric

argument, we can show that v also satisfies the second half. Therefore, v is a local

potential function.

Suppose that v is a local potential function. To show that µi(a−i , ai) and µi(a
+
i , ai)

exist, we use Farkas’ Lemma.19 Farkas’ Lemma says that, for finite dimensional vectors

a0,a1, . . . ,am ∈ Rn, the following two conditions are equivalent.

• If (a1,y), . . . , (am,y) ≤ 0 for y ∈ Rn, then (a0,y) ≤ 0.

• There exists x1, . . . , xm ≥ 0 such that x1a1 + · · ·+ xmam = a0.
19See textbooks of convex analysis such as Rockafellar (1970).
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Since v is a local potential function, ifX
a−i∈A−i

λi(a−i)
¡
v(a−i , a−i)− v(ai, a−i)

¢ ≥ 0,
then X

a−i∈A−i
λi(a−i)

¡
gi(a

−
i , a−i)− gi(ai, a−i)

¢ ≥ 0.
This implies that, if (ya−i)a−i∈A−i ∈ RA−i is such that

−
X

a−i∈A−i
ya−i

¡
v(a−i , a−i)− v(ai, a−i)

¢ ≤ 0,
−ya−i ≤ 0 for a−i ∈ A−i,

then

−
X

a−i∈A−i
ya−i

¡
gi(a

−
i , a−i)− gi(ai, a−i)

¢ ≤ 0.
By Farkas’ Lemma, there exist x ≥ 0 and xa−i ≥ 0 for a−i ∈ A−i such that

−x ¡v(a−i , a−i)− v(ai, a−i)¢− X
a0−i∈A−i

xa0−iδ
a0−i(a−i) = −

¡
gi(a

−
i , a−i)− gi(ai, a−i)

¢
for all a−i ∈ A−i where δa0−i : A−i → R is such that δa

0
−i(a−i) = 1 if a−i = a0−i and

δa
0
−i(a−i) = 0 otherwise. Thus,

gi(a
−
i , a−i)− gi(ai, a−i) ≥ x

¡
v(a−i , a−i)− v(ai, a−i)

¢
and we can choose µi(a−i , ai) = x. Symmetrically, we can show the existence of µi(a

+
i , ai),

which completes the proof.

We report a couple of generalized potential functions using the local potential function

characterization.

Example 1

For i ∈ N = {1, . . . , n}, let Ai = {1, 2} and Pi = {{1}, {2}} where Pi is linearly ordered
by the rule {1} ≤i {2}. Note that g satisfies diminishing marginal returns in the trivial

sense. By Lemma 8, v : A → R is a local potential function with an LP-maximizer

{1} = {(1, . . . , 1)} if and only if v(1) > v(a) for all a 6= 1 and there exists µi ≥ 0 such
that gi(1, a−i)− gi(2, a−i) ≥ µi (v(1, a−i)− v(2, a−i)) for all a−i ∈ A−i and i ∈ N .
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To illustrate the condition, consider a unanimity game g such that

gi (a) =


yi if a = 1,

zi if a = 2,

0 otherwise

where yi, zi > 0 for all i ∈ N . Note that g satisfies strategic complementarities. A

function v : A → R is a local potential function with an LP-maximizer {1} if and only
if v(1) > v(a) for all a 6= 1 and there exists µi ≥ 0 such that yi ≥ µi (v(1)− v(2,1−i)),
−zi ≥ µi (v(1,2−i)− v(2)), and 0 ≥ µi (v(1, a−i)− v(2, a−i)) for a−i 6= 1−i,2−i, for all

i ∈ N . Because zi > 0, we must have µi > 0 and v(1,2−i) − v(2) < 0. Then, we can

show that the above condition implies that yi/µi > zj/µj for all i 6= j. In other words,
{1} is an LP-maximizer only if there exists µi > 0 for i ∈ N such that yi/µi > zj/µj for

all i 6= j. We show this when i = 1 and j = n. Let {ak ∈ A}nk=0 be such that, for each
k, aki = 1 if i > k and a

k
i = 2 if i ≤ k. Note that a0 = 1 and an = 2. We have

y1/µ1 ≥ v(a0)− v(a1),
0 ≥ v(ak−1)− v(ak) for k ∈ {2, . . . , n− 1},

−zn/µn ≥ v(an−1)− v(an).

Thus, y1/µ1 − zn/µn ≥
Pn
k=1

¡
v(ak−1)− v(ak)¢ = v(a0)− v(an) = v(1)− v(2) > 0.

It should be noted that there exist an open set of games that do not have any

local potential function. For example, all games in the neighborhood of the following

unanimity game do not have a local potential function with an LP-maximizer {1} or {2}.
Let N = {1, 2, 3}, y1 = 6, y2 = y3 = 1, z1 = z2 = z3 = 2. If {1} is an LP-maximizer,
then it must be true that 1/µ2 > 2/µ3 and 1/µ3 > 2/µ2 , which implies that 1 > 4.

Thus, {1} is not an LP-maximizer. If {2} is an LP-maximizer, then it must be true
that 2/µ2 > 6/µ1 and 2/µ1 > 1/µ2, which implies that 4 > 6. Thus, {2} is not an
LP-maximizer.

Example 2

For i ∈ N = {1, . . . , n}, let Ai = {0, 1, 2} and Pi = {{0, 1}, {2}} where Pi is linearly
ordered by the rule {0, 1} ≤i {2}. Note that g satisfies diminishing marginal returns in

the trivial sense. By Lemma 8, a P-measurable function v : A → R is a local potential
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function with an LP-maximizer X∗ = {0, 1}N if and only if v(a∗) > v(a) for all a∗ ∈ X∗
and a 6∈ X∗, and there exists µ0i , µ1i ≥ 0 such that

gi(0, a−i)− gi(2, a−i) ≥ µ0i (v(0, a−i)− v(2, a−i)) ,
gi(1, a−i)− gi(2, a−i) ≥ µ1i (v(1, a−i)− v(2, a−i))

for all a−i ∈ A−i and i ∈ N .
For example, consider the following game:

gi (a) =


yi(a) if a ∈ X∗,
zi if a = 2,

0 otherwise

where yi : X∗ → R is such that yi(a) > 0 for all a ∈ X∗ and zi > 0. Note that g satisfies

strategic complementarities. A P-measurable function v : A → R is a local potential

function with an LP-maximizer X∗ if and only if v(a∗) > v(a) for all a∗ ∈ X∗ and
a 6∈ X∗, and there exists µaii ≥ 0 for ai ∈ {0, 1} such that yi(a) ≥ µaii (v(a)− v(2, a−i))
for a−i ∈ X∗−i, −zi ≥ µaii (v(ai,2−i)− v(2)), and 0 ≥ µaii (v(a)− v(2, a−i)) for a−i 6∈
X∗−i ∪ {2−i}, for all i ∈ N . Note that µaii > 0 and v(ai,2−i)− v(2) < 0 because zi > 0.

In general, a robust set induced by the LP-maximizer, EX∗ , is not a singleton. For
example, let N = {1, 2, 3} and zi = 1 for all i ∈ N . Let the restricted game (yi)i∈N
be the cyclic matching pennies game; each player’s payoffs depend only on his own

action and the action of his “adversary.” Player 3’s adversary is player 2, player 2’s

adversary is player 1, and player 1’s adversary is player 3. Thus, for example, player

1’s payoffs are completely independent of player 2’s action. Every player tries to choose

action different from his adversary’s. Player 1’s restricted payoff function is such that

y1(1, 0, a3) = y1(0, 1, a3) = 3 and y1(1, 1, a3) = y1(0, 0, a3) = 2 for all a3 ∈ {0, 1}. The
other players’ restricted payoff functions are given similarly. Then, v : A→ R such that

v(a) =


2 if a ∈ X∗,
1 if a = 2,

0 otherwise

is a local potential function and X∗ is an LP-maximizer. Thus, EX∗ is a robust set. By
the discussion of Example 3.1 of Kajii and Morris (1997a), EX∗ is not a singleton and
any single correlated equilibrium in EX∗ is not robust.
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Frankel et al. (2001) report further discussion of singleton GP-maximizers for games

with strategic complementarities and diminishing marginal returns, using the LP-maximizer

condition. For example, they show that a two player, three action, symmetric payoff

game in that class always has an LP-maximizer and give an example of a two player,

four action, symmetric payoff game with no LP-maximizer.

7 Concluding Remarks

This paper introduces generalized potential functions and provides sufficient conditions

for the robustness of sets of equilibria. The special cases of the conditions unify the

sufficient conditions for the robustness of equilibria provided by Kajii and Morris (1997a)

and Ui (2001).

There are several open questions concerning the robustness of equilibria to incomplete

information. Our “potential” technique could help with investigating them. One of the

basic questions is when robust equilibria are unique if they exist. Kajii and Morris

(1997a) showed that a strictly p-dominant equilibrium with
P
i∈N pi < 1 is the unique

robust equilibrium. We do not find examples of generic games with multiple robust

equilibria. However, we do not yet conclude whether or not robust equilibria of generic

games are unique if they exist. Using generalized potential functions, we can make

examples of robust equilibria of various games, which could help with investigating the

question.

This paper is the first step in studying the robustness of sets of equilibria. Topics for

the future work include the problem of how to identify minimal robust sets.
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