
 1

 
Optimal Time to Sell in Real Estate Portfolio 

Management 
 

Fabrice Barthélémy and Jean-Luc Prigent 
 

ThEMA, University of Cergy-Pontoise, Cergy-Pontoise, France 
E-mails: fabrice.barthelemy@u-cergy.fr; jean-luc.prigent@u-cergy.fr 

 

Abstract 

This paper examines the properties of optimal times to sell a diversified real estate 
portfolio. The portfolio value is supposed to be the sum of the discounted free cash 
flows and the discounted terminal value (the discounted selling price). According to 
Baroni et al. (2007b), we assume that the terminal value corresponds to the real estate 
index. The optimization problem corresponds to the maximization of a quasi-linear 
utility function. We consider three cases. The first one assumes that the investor 
knows the probability distribution of the real estate index. However, at the initial time, 
he has to choose one deterministic optimal time to sell. The second one considers an 
investor who is perfectly informed about the market dynamics. Whatever the random 
event that generates the path, he knows the entire path from the beginning. Then, 
given the realization of the random variable, the path is deterministic for this investor. 
Therefore, at the initial time, he can determine the optimal time to sell for each path of 
the index. Finally, the last case is devoted to the analysis of the intertemporal 
optimization, based on the American option approach. We compute the optimal 
solution for each of these three cases and compare their properties. The comparison is 
also made with the buy-and-hold strategy. 
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1. Introduction 

The research concerning real estate holding period is rather limited and exclusively 
empirical. For the US, the holding durations are mainly determined by tax laws as 
shown by Hendershott and Ling (1984), Gau and Wang (1994) or Fisher and Young 
(2000). For small residential investment, Brown and Geurts (2005) examine 
empirically how long does an investor own an apartment building. They found that 
the average holding period is around five years, through a sample of apartment 
buildings of between 5 and 20 units over the period 1970-1990 in the city of San 
Diego. For the UK market, Rowley, Gibson and Ward (1996) emphasized the 
existence of ex ante expectations about holding periods, for real real estate investors 
or new property developers. Indeed, the holding period decision is related to 
depreciation or obsolescence factors. Brown (2004) proves that the risk peculiar to 
real estate investments may explain the behaviour of real estate investors. However, 
applying the CAPM for individuals to understand their portfolio management does 
not yield relevant results, as shown by Geltner and Miller (2001).  
Collett, Lizieri and Ward (2003) examine empirically the ex post holding periods and 
show that these values are higher than those claimed by investors. Knowing the 
holding period is important for investment in commercial real estate portfolios and 
moreover the analysis period has to be specified. Using the database of properties 
provided by IPD in the UK over an 18-year period, their empirical analysis shows that 
the median holding period is about seven years. Additionally, higher the return, lower 
the holding period. However, this empirical study cannot lead to conclusions about 
the relation between asset volatility and holding period. This is due to the absence of 
proxy to measure this eventual relationship.  
 
In this paper, we search for theoretical optimal times to sell in a real estate portfolio. 
As a byproduct, our models provide analytical solutions whose properties illustrate 
most of the previous empirical results. For this purpose, we extend the model of 
Baroni et al. (2007a, b) by considering two other maximization issues.1 First, we 
determine the optimal holding period if the investor is perfectly informed about the 
growth rate dynamics. This corresponds to the best ideal case where the investor, as a 
new period starts, would know exactly the price dynamics, and would be able to 
choose the best time to sell the asset. This approach determines the upper bound of the 
present value of the portfolio as a function of holding period policy, in the sense that 
it maximizes present value using perfect forsight. This case thus serves as a sort of 
benchmark. In Baroni et al. (2007b), the investor does not know the dynamics, but 
only knows its probability distribution. The solutions are analyzed by using 
simulations and quasi explicit formulae. Secondly, we study the optimal holding 
period for an intertemporal maximization, according to the American option 
approach. In that case, at each time during a given management period, the investor 
compares the present portfolio value (the discounted value of the selling price at this 
time) with the maximal expected value he could have if he would keep the asset. He 
sells as soon as the present value is higher than this expectation.  
This is a completely different issue than the random times in a real estate portfolio 
context examined by Bond et al. (2007). In their model, the marketing period risk 
corresponds to time-on-the-market that indicates how long it takes to sell an asset 
once you put it on the market to sell it. It is an exogenous random variable. In our 
model, the times to sell are endogenously determined from the optimization problems.  
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The structure of the paper is laid out as follows: Section 2 presents results of Baroni et 
al. (2007b) in a continuous-time framework. Section 3 provides the analysis of the 
perfectly informed investor. Section 4 develops the American option approach. 
Comparisons of these three approaches are presented in Section 5. In particular, we 
emphasize the case for which the deterministic optimal time is not degenerated 
(neither equal to the initial time nor to the maturity). Moreover, in this section, we 
also introduce the buy-and hold strategy. Most of the proofs are gathered in the 
Appendix.  

2. Optimal time T* to sell, chosen at time 0 

In this section, the time of sale is pre-set, committed irrevocably at time 0, based on 
the expected dynamics of the portfolio value and its cash flow. The real estate 
portfolio value is defined as the sum of the discounted free cash flows (FCF) and the 
discounted terminal value (the selling price). Denote k  as the weighted average cost 
of capital (WACC), which is used to discount the different free cash flows, and the 
terminal value. We assume that the free cash flow grows at a constant rate g .2 

2.1. Continuous-time model 

As Baroni et al. (2007a), we suppose that the price dynamics, which corresponds to 
the terminal value of a diversified portfolio (for instance a real estate index), follows a 
geometric Brownian motion: 

 
t

t
t

d P dt dW
P

µ σ= + , (1) 

where tW  is a standard Brownian motion. We have: 

 2
0 exp 1 2t tP P t Wµ σ σ  

  
  

= − / + . (2) 

This equation assumes that the real estate return can be modelled as a simple diffusion 
process where parameters µ  and σ  are respectively equal to the trend and to the 
volatility. The expected return of the asset at time t  is given by: 

 ( )
0

exptPE t
P

µ
 

= . 
 

 (3) 

Then the future real estate index value at time t, discounted at time 0, can be 
expressed as: 
 
 2

0 exp 1 2t tP P k t Wµ σ σ  
  
  

= − − / + , (4) 

with 

 [ ]( )
0

exptPE k t
P

µ
 

= − . 
 

 (5) 

Denote by 0FCF  the initial value of the free cash flow. The continuous-time version 
of the sum of the discounted free cash flows sFCF  is equal to: 

 [ ]
0

0 0

t t
k g sks

t sC FCF e ds FCF e ds− −−= = ,∫ ∫  (6) 

which leads to 
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 [ ]0 1 k g t
t

FCFC e
k g

 − −
  
 

= − .
−

 (7) 

 

Introduce the real estate portfolio value process V , which is the sum of the 
discounted free cash flows and the future real estate index value at time t, discounted 
at time 0: 
 

 t t tV C P= + . (8) 

2.2. Characteristics of TV  

We determine the portfolio value TV  for a given maturity T . This assumption on the 
time horizon allows to take account of selling constraints before a limit date. The 
higher T , the less stringent this limit. Additionally, this hypothesis allows the study 
of buy-and-hold strategies (see section 5). The future portfolio value at maturity, 
discounted at time 0, is given by: 
 

[ ] 20
01 exp 1 2k g T

T T

FCFV e P k T W
k g

µ σ σ   − −  
         

= − + − − / + .
−

 

 

The portfolio value TV  is the sum of a deterministic component and a Lognormal 
random variable.  

2.3. Determination of T ∗  

We determine the optimal solution at time 0,  for a given maturity T  and for an 
investor maximising a quasi linear expected utility. First note that the sum of the 
discounted free cash flows ( tC ) is always increasing due to the cash accumulation 
over time. Second, we have to analyze the expectation of the future real estate index 
value at time t, discounted at time 0: if the price return µ  is higher than the WACC 
k , then, the optimal solution is simply equal to the maturity T . Thus, in what 
follows, we consider the case kµ < . Consequently, not selling the asset implies a 
higher but a smaller discounted expected terminal value [ ]

0
k tP e µ− . Hence, the investor 

has to balance between more (discounted) flows and less expected discounted index 
value.  
 
We also focus on the sub case g µ< ,  which corresponds to empirical data3.  
 
The optimization problem is: 
 [0 ] tt TMax E V 

  ∈ , .  (9) 

 
Since the expectation of tV  is equal to: 

 [ ] [ ]0
01 k g t k t

t
FCFE V e P e
k g

µ − − −        
= − + ,

−
 (10) 

we deduce: 

 [ ] ( ) [ ]
0 0

k g t k ttE V
FCF e P k e

t
µµ

 
  − − − ∂

= + − .
∂

 (11) 
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Then, the optimal holding period is determined as follows. 
 
Case 1: The initial price 0P  is smaller than 0 ( )FCF k T

k e µ
µ

− −
− . 

Then, the optimal time to sell T ∗  corresponds to the maturity T . Since the Price 
Earning Ratio (PER) 0

0

P
FCF  is too small (<  ( )k Te

k
µ

µ
− −

− ), the sell is not relevant before 
maturity. 
 
Case 2: The initial price 0P  lies between the two values 0 ( )FCF k T

k e µ
µ

− −
−  and 0FCF

k µ− . 

Then, the optimal time to sell T ∗  is solution of the following equation:  

 0tE V
t

 
  ∂

= .
∂

 (12) 

From Equation (11), we deduce4:  

 0

0

1 1ln FCFT
g P kµ µ

∗  
= × . − − 

 (13) 

 
In particular, note that T ∗  is a decreasing function of the initial price 0P  and of the 
difference between the index return µ  and the growth rate g  of the free cash flows. 
This latter property was empirically observed by Brown and Geurts (2005). It means 
that investors sell property sooner when values rise faster than rent. 
 
Case 3: The initial price 0P  is higher than 0FCF

k µ− . 

Then, the optimal time to sell T ∗  corresponds to the initial time 0 . Since the PER 
0

0

P
FCF  is sufficiently large ( >  1

k µ− ), there is no reason to keep the asset P . As an 

illustration, the cumulative value tC  of the tFCF  values, of the expectation of the 
index value [ ]tE P  and the expectation of the portfolio value [ ]tE V  are displayed in 
Figure 1. We consider two sets of parameter values for a 20  year management period 
( 20T = ).  
 
We note that the discounted expected value tV  of the portfolio is concave. The 
parameter values imply that the optimal holding period, T ∗ , is respectively equal to 
9 13.  years and 16.11 years. For these two examples, the optimal time to sell T ∗  is 
smaller than the maturity T . In the second example, the discounted portfolio value 
varies up to 20%.5  
 
Knowing the optimal time to sell T ∗ ,  which is deterministic, the probability 
distribution of the discounted portfolio value 

T
V ∗  can be determined. The value 

T
V ∗ is 

equal to:  

 ( ) 20
01 exp 1 2

( )
k g T

T T

FCFV e P k T W
k g

µ σ σ
 ∗  
   
   ∗ ∗     

− − ∗ 
 
 

= − + − − / + .
−

  

Denote 0 ( )
( ) 1FCF k g T
k gA e

 ∗
 
 
 
 

− −
−= −  the cumulative discounted free cash flow value at T ∗ . 

Since, from (13), the optimal time to sell satisfies: 
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 ( )
0

0

1 ln FCFT
g P kµ µ

∗  
= ,  − − 

 

then, we deduce: 

 
( )

( )
0 0

0

1
( )

k g
gFCF FCFA

k g P k

µ

µ

−
−−   = − ,  − −   

 

and the cdf 
T

VF
∗

 of 
T

V ∗ is given by: 

 2

0

0 if

( ) 1 ln 1 2 ifT
V

v A

F v v AN k T v A
PT

µ σ
σ

∗

  
   ∗         ∗     

, ≤


=  − − − − / , > 
 

  (14) 

 

where N  denotes the cdf of the standard Gaussian distribution. 
 

Fig. 1 tC , [ ]tE P  and [ ]tE V  as functions of time t in [0,20] 
 

  
Case 1: 0 04 4 3 8 4 100 100 22% g % k % P FCFµ = . , = , = . , = , = / . 

  
Case 2: 0 06 2 9 5 100 100 15% g % k % P FCFµ = , = , = . , = , = / . 

 
The pdf of 

T
V ∗ are illustrated in Figure 2 for two different volatilities. Higher the 

volatility, larger the range of admissible discounted portfolio values. Up to a 
translation, these are the pdfs of a Lognormal distribution, with a peak near the initial 
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value of the index 0 100P = . 
 

Fig. 2 Pdf of VT* 
 

  
 0 04 4 5%, 3 8 4 100 100 22% g % k % P FCFµ σ= . , = = , = . , = , = / .  

 

  
 0 04 4 10%, 3 8 4 100 100 22% g % k % P FCFµ σ= . , = = , = . , = , = / .  

 

3. Optimal time T** to sell for a perfectly informed investor 

In this section the investor is assumed to have a perfect foresight about the entire 
future price path. Paths are random (the investor do not choose the realized path) but, 
at time 0, he knows the whole trajectory. Knowing the path, he can optimize on it, 
which leads to a deterministic solution conditionally to this information. But, taking 
into account the randomness of the path just before time 0, the optimal time to sell is a 
random variable. This corresponds to an ‘ideal’ case which is not realistic but 
provides an upward benchmark. First, we examine the distribution of the optimal 
holding period T ∗∗ . Second, we indicate the distribution of the optimal value 

T
V ∗∗ .  

 
 

3.1. Probability distribution of T** 

We search for the probability distribution of the random time T ∗∗  at which the path of 
the process V  reaches its maximum, where V is the present value of the portfolio. 
This distribution is not explicitly known but can be simulated. The simulated pdf of 
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the real estate portfolio value is illustrated in Figure 3. Two cases are examined:  
•  The first one corresponds to a relatively small values of the drift µ.  
and the initial free cash flow 0FCF .  
•  The second one corresponds to a higher value of the drift µ  and to a 
higher value of the initial free cash flow 0FCF .  
 

 
Case 1. Early selling: 

 0 00 03 0 03 0 02 0 084 100 100 22 20g k P FCF Tµ σ= . , = . , = . , = . , = , = / , =   
 

Case 2. Late selling:   

0 00 06 0 03 0 02 0 084 100 100 13 20g k P FCF Tµ σ= . , = . , = . , = . , = , = / , =   
 

Fig. 3 Simulated pdf of T ∗∗  (case 1 and case 2) 
 

  
 
The time T ∗∗  at which the discounted portfolio value reaches its maximum depends 
on the sign of its drift which is an increasing function of both the drift µ.  and the 
initial free cash flow 0FCF .Hence, if the real estate price return and/or the initial free 
cash flow 0FCF  are not high enough, the optimal strategy consists on selling quickly.  
For both higher discounted cash flows and higher expected discounted index value, 
the optimal strategy is to sell lately. This shape modification is modelled by the 
Brownian motion with drift as shown in Appendix A1.  
 
3.2. Probability distribution of V T∗∗  
Recall that T ∗∗  is random since the investor does not choose the realized path even he 
knows it (he just observes the trial outcome without selecting it). Now, we search for 
the probability distribution of the maximum value TV ∗∗ .  We provide an explicit 
formula by means of a mild approximation. This latter one is justified as shown by 
Monte Carlo simulations of the true probability distribution (see Figures 4 and 5).  
Introduce the function G  defined by:  

 21 1( ) 1
2 22 2 2 2

myy t y tG m y t Erfc m e Erfc m
t t

   
, , = − − − + ,      

   
 

 

where the function Erfc  is given by: 
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22( ) u

x

Erfc x e du
π

∞
−= .∫  

Denote also  

 20

0

( ) 1 2 and ( ) lnFCF vA v k B v
v P

µ σ
 

= + − − / , = . 
 

 

Then, the approximated cdf of TV ∗∗  is given explicitly by:  
 

 
0

0

0 for
[ ] ( ) ( ) forT

v P
P V v A v B vG T v P

σ σ
∗∗

, < ,
≤ =   , , > ,   

 (15) 

 
Figure 4 illustrates Relation (15) while Figure 5 shows the quality of the 
approximation.  
 

Fig. 4 Approximated Pdf of VT** 

120 140 160 180

0.005

0.01

0.015

0.02

0.025

0.03

 
 

 
Fig. 5 Simulated Pdf of VT** 

   
 
From Figures 4 and 5, we deduce for example that:  
 

•  The probability that the real estate portfolio value is higher than 0P  is  equal to 
1. Thus, whatever the path, the investor receive at least 0P . Indeed, if all the 
future discounted portfolio values are lower than the initial price, he knows he 



 10

has to sell at time 0 and then receives exactly 0P . 
 

•  The median is about 125  ( 025% P= + ).  
 

•  The probability to receive more than 150  ( 050% P= + ) is about 10% .  

3.3. Numerical illustrations 

The distribution of T ∗∗  is very sensitive to the volatility parameter, through the 
terminal value. This is not the case for the solution T ∗ . To illustrate this feature, we 
consider the parameter values: 

0 00 044 0 03 0 084 100 100 22 20g k P FCF Tµ = . , = . , = . , = , = / , = , 
and three volatility levels 0 0005σ = . , 0 005σ = .  and 0 05σ = . .  
 
In Figure 6, each column corresponds to a different volatility level and provides 
simulated paths of VT**, then the Pdf of T** and finally the Pdf of VT**. 
 

Fig. 6 Simulated paths of V and Pdf of T** and VT** 
 

0 0005σ = .  0 005σ = .  0 05σ = .  

 
 
When the volatility is small, the Pdf of T** is concentrated on the value of T* as 
expected. When the volatility is increasing, the range of T** becomes larger. When 

0 05σ = . , the shape of Pdf is a mix of the Pdf of case 1 and 2 in Figure 3. This is due 
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to the Brownian motion (as illustrated in Figure 13 of Appendix A1). 
In terms of portfolio value, more volatility implies higher benefits, as the investor in 
this case is perfectly informed about the path. Note also that when the discounted 
portfolio values are never higher than the initial price 0P , the optimal time to sell is 
t=0. Then the optimal value is equal to its smallest value 0P . 

4. American optimal selling time T*** 

In this third case, we allow that the investor may choose the optimal time to sell, 
according to market fluctuations and information from past observations. In this case, 
he faces an “American” option problem. Recall that the investor preferences are 
modelled by means of linear utility (standard assumption in real estate literature). At 
any time t before selling, he compares the present value tP  with the maximum of the 
future value he expects given the available information at time t (mathematically 
speaking he computes the maximum expected value of his portfolio on all t T,J -
measurable stopping times τ ). It means that he decides to sell at time t only if the 
portfolio value at this time is higher than the maximal value that he can expect to 
receive if he does not sell at this time t . Thus, he has to compare tP  with 

sup
t T t tE C C Pτ τ τ,

 
 ∈  

− + ,J J  where sC  denotes the FCF value at time s . All the 

proofs of this section are detailed in Appendix B.  
 
4.1. The optimal solution T ∗∗∗  
 
Intuitively, the optimal time T ∗∗∗  must be the first time where the asset price tP  is 
“sufficiently” high. At this price level, the future free cash flows (received in case of 
no sell) will not be high enough to balance an expected index value lower than the 
price tP  at time t (the expected index value decreases with time as the discounted 
trend kµ −  is negative).  
The optimal time T ∗∗∗  corresponds exactly to the first time at which the asset price tP  

is higher than the deterministic level 0 ( )FCF k g t
k eµ

− −
−  (see Appendix B). This result 

generalizes the case 3 obtained at time t=0, in section 2.3, where the investor sells 
directly the asset if the price 0P  is higher than 0FCF

k µ− . Since the return of the discounted 

free cash flows is equal to ( )k g te− − , the price tP  has to be compared with the value 
0 ( )FCF k g t

k eµ
− −

− .  
Figure 7 shows the points at which different realized paths of tP  cross the 
deterministic level (black curve). Five paths are simulated for four different volatility 
levels.  
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Fig. 7 Paths of the index value Pt 
 

0 01σ = .  0 02σ = .  
 

0 05σ = .  0 10σ = .  
 

 
 
Using the previous characterization of T ∗∗∗  we can determine its probability 
distribution. Notations:  

1 2gm µ
σ σ−= − /  and 0

0

1
( )ln FCF

P ky σ µ−
 = .   

- For the case 0

0 ( ) 1FCF
P k µ− ≤ ,  we have 0T ∗∗∗ = .   

- For the case 0

0 ( ) 1FCF
P k µ− > , for any t T< , we have 

 

                21 1
2 22 2 2 2

myy t y tP T t Erfc m e Erfc m
t t

∗∗∗    
 ≤ = − + + ,        

   
 

 and  (16) 

21 11
2 22 22 2

myy T y TP T T Erfc m e Erfc m
T T

∗∗∗
   

     = = − − − + .     
   

 

 
As illustrated in Figure 8 (for 10  20% Tσ = , = ), the probability that the optimal 
American time to sell T ∗∗∗ may be not negligible (about 15%  for this numerical case, 
which corresponds to the size of the jump of the cdf). 
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Fig. 8 Cdf of T*** 
 

5 10 15 20 25

0.2

0.4

0.6

0.8

1

 
 

4.2. The portfolio value V
T∗∗∗  and its cdf 

The portfolio value 
T

V ∗∗∗  can be determined by using the fact that, if the optimal time 

to sell T ∗∗∗  is before the maturity T ,  then the index value 
T

P ∗∗∗  is equal to the 

deterministic level 0 ( )FCF k g T
k eµ

∗∗∗− −
− . Consequently, we get:  

 

           ( )0 ( )1 if
( ) ( )

k g T
T

FCF gV e T T
k g k

µ
µ

∗∗∗

∗∗∗
− − ∗∗∗ −= + , < − − 

 

 and  (17) 

( ) 20
01 exp 1 2 if

( )
k g T

TT

FCFV e P k T W T T
k g

µ σ σ∗∗∗
   − − ∗∗∗ 
    

   
= − + − − / + , =

−
 

 
The previous determination of the value 

T
V ∗∗∗  allows the explicit (and exact) 

computation of its cdf.  
 
Denoting:  

 
( )0 0

0

( )
( )

0

11 1( ) ln ( ) ln
FCF k g T FCF
k g k g

FCF
k g

v e gz v g v
P k g k v

µ
σ µ

−
− −

−

 − −  − = ; = × 
  − − −   

, 

 
the cdf of 

T
V ∗∗∗  is defined by:  

 
- If 0 ( )1FCF k g T

k gv e − −
  −  

≤ − ,  

( ) 0
T

VF v
∗∗∗

= ; 

 
- If ( )0 0( ) ( )1 1FCF FCF gk g T k g T

k g k g ke v eµ
µ

   −− − − −
      − − −   

− < < + , 

 
( )2

( ) 2( )( )
T

ym
V

z v mT yz v mTF v N e N
T T∗∗∗

 − + −  = − ;      
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- If ( ) ( )0 0( )1 1FCF FCFg gk g T
k g k k g ke vµ µ

µ µ
 − −− −
  − − − − 

+ ≤ ≤ + , 

 ( ) ( ( )) ( )
T

VF v G m y g v G m y T
∗∗∗

= , , − , ,  

 2( ) ( )

2 2
ymz v mT y mT z v mT y mTN e N N N

T T T T

        − − − − −+ − − − ;                        
 

 
- If ( )0 1FCF g

k g k vµ
µ

−
− −+ <  

 ( ) 1 ( )
T

VF v G m y T
∗∗∗

= − , ,  

 2( ) ( )

2 2
ymz v mT y mT z v mT y mTN e N N N

T T T T

        − − − − −+ − − − .                        
 (18) 

 

5. Comparison of the three optimal strategies and the buy-and hold one 

We examine both the probability distributions of the optimal times to sell T ∗ , T ∗∗  and 
T ∗∗∗  and the corresponding discounted portfolio values 

T
V ∗ , 

T
V ∗∗  and 

T
V ∗∗∗ . We 

introduce also the comparison with the buy-and hold portfolio TV . The sensitivity 

analysis is done with respect to the volatility σ  and to the maturity T . Note that, 
since the portfolio value 

T
V ∗∗  dominates the other ones, its cdf is always below the cdf 

of the others (“first order stochastic dominance”). 
 
The previous parameter values, 00 044 0 03 0 084 100g k Pµ = . , = . , = . , = , and 

0 100 22FCF = / ,  are considered.  
 
5.1. Cdf of T ∗∗ and T ∗∗∗ , according to the volatility σ   
 
The maturity T  is equal to 20 and then we have 9 13T ∗ = . . Graphical results are 
presented in Figure 9. 
 

- For small volatility level, the cdf of T ∗∗∗  is rather concentrated near 
T ∗ , whereas, for higher values, the shape of the cdf of T ∗∗∗  looks 
similar to the cdf of T ∗∗ .   

 
- Additionally, for the American case, the probability that the selling 

occurs at maturity ( [ ]P T T∗∗∗ = ) is almost equal to 0, for small 
volatility levels. However, for higher volatility values, this probability 
is about 15%.  Indeed, this probability converges to a limit which is 

equal to 
0

( )0
ln

1
FCF

P ke µ−
 −  − . 

 
-  Moreover, higher the volatility, higher the probability of smaller 

American optimal times, as usually observed empirically (see Collett et 
al., 2003). 
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Fig. 9 Cdf of T** and T*** with respect to σ  

0 01σ = .  0 05σ = .  
 

0 10σ = .  0 15σ = .  
 

 
 

5.2. Cdf of TV , 
T

V ∗ T
V ∗∗ and

T
V ∗∗∗ with respect to σ  

 
We assume also that 20T =  and then 9 13T ∗ = . . Graphical results are presented in 
Figure 10.  

- For small volatility level, the cdf of 
T

V ∗∗∗  is almost equal to the cdf of 

T
V ∗ . For higher values, two components of the cdf of 

T
V ∗∗∗  can be 

clearly identified. The smallest values of 
T

V ∗∗∗ (approximately values up 

to 95), correspond to an optimal time to sell T ∗∗∗  equal to the maturity 
( 20T = ): the discounted portfolio values were too small so that it was 
not optimal to sell before maturity.  

 

- For any given threshold L  smaller than 105,  the probability that the 
American portfolio value 

T
V ∗∗∗  is smaller than L , is always weaker 

than the corresponding value for 
T

V ∗ .  The American option approach 
leads to smaller losses, when comparing the discounting portfolio 
value to the initial price ( 0 100P = ). More generally, this approach 
prevents from large fluctuations of the price dynamics. When the index 
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price falls, the American criterion provides protection against 
downside risk. When the index price rises significantly, this approach 
leads to an earlier sell, in order to insure the profit of this increase. If 
after the sell the index dynamics goes down, the investor did right 
avoiding then lower profits or even losses. Finally, if after the sell the 
index dynamics goes up, his profit would have been higher if he had 
not sold. 

 
- The shape and the values of the cdf of TV  (the buy-and hold approach), 

look like the cdf of 
T

V ∗ .  except for very small volatilities.  
 

Fig. 10 Cdf of TV , 
T

V ∗ T
V ∗∗ and

T
V ∗∗∗ with respect to σ  

0 01σ = .  0 05σ = .  
 

0 10σ = .  0 15σ = .  
 

 
5.3. Cdf of T** and T*** with respect to T  
 
Graphical results are presented in Figure 11 ( 5%σ = ). 
 

- In the American option approach, the probability to sell at maturity 
(given by [ ]P T T∗∗∗ = ) is almost equal to 90%  for small maturity (see 
the jump of the cdf for 2T = ), whereas for long maturity, it becomes 
very smaller (around 6%, for 30T = ). 
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-  For the perfectly informed case, the probability to exercise at maturity 
is null ( [ ] 0P T T∗∗ = = ), whatever the maturity. The shape of the cdf of 
T ∗∗∗  looks similar to the cdf of T ∗∗  for high maturity.  

 
Fig. 11 Cdf of T** and T*** with respect to T  

2T =  
 

10T =  

20T =  30T =  

 
5.4. Cdf of TV , 

T
V ∗ T

V ∗∗ and
T

V ∗∗∗ according to the maturity T  
 
Graphical results are presented in Figure 12 ( 5%σ = ).  
 

- For small maturity, the cdf of 
T

V ∗∗∗  is almost equal to the cdf of 
T

V ∗ . 
The difference comes from the probability to sell before maturity, 
which modifies the probability to receive high portfolio values.  

 
- For longer maturities, this difference is more important. The 

cumulative distribution functions diverge more and more, except for 
the smallest portfolio values.  

 

- Whatever the maturity, the numerical upper bound of 
T

V ∗∗∗  is around 
115 (this bound is still present for other volatility values, as seen in 
Figure 10). Hence, higher portfolio values may be obtained with the 
T ∗  case. When the a priori optimal time to sell T ∗ is higher than the 
maturity (T T∗ > ), the portfolio values TV  corresponding to the buy-
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and-hold strategy are exactly the same as the values *T
V of the strategy 

T ∗ . When T T∗ < , higher the maturity, higher the difference between 
the cdfs of TV  and *T

V . 
 

Fig. 12 Cdf of TV , 
T

V ∗ ,
T

V ∗∗ and
T

V ∗∗∗ with respect to T  

2T =  10T =  
  

20T =  30T =  
 

6. Conclusion 

This paper proves that real estate portfolio value strongly depends on the optimal time 
to sell. Three kinds of such optimal times are considered. The first one implicitly 
assumes that the investor can only choose the optimal time to sell at the initial date. 
However, generally such a solution is not time consistent: the same computation of 
optimal time to sell at a future date leads to a different solution. A second one 
corresponds to a perfectly informed investor. This is an upward benchmark but not 
too realistic. Finally, a more “rational” approach is introduced to take account of 
intertemporal management and cumulative information. This is the American option 
framework. For each of these models, the optimal times to sell and portfolio values 
are explicitly determined (an approximation is used for the “perfectly informed” case) 
and also simulated. We compare the solutions, using various parameter values of the 
real estate markets, in particular the volatility index and the portfolio maturity. The 
American approach allows the reduction of the probability to get small portfolio 
values. This property is reinforced both when the volatility and the maturity are 
increasing.  
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Appendix 

Appendix A: The case T** 

A.1. Comments about the pdf 
T

f ∗∗ .   

This pdf is not known since the process V  to be maximized on the time interval [0 ]T,  
has the following form: 
 0(1 ) tbt Wat

tV c e P e σ+−= − + ,  

where a  and b  are non negative constant.  
However, for a 55process X  defined as a geometric Brownian motion with drift by 
 0 0with 0 and 0tbt W

tX X e Xσ σ+= > > , 

the pdf of T ∗∗  is known. Indeed, note that 0

b
tt W

tX X eσ
σ 

 
 
 
 

+= . Therefore, the 

maximization of X  is equivalent to the maximization of the process Y  defined by 
b

tt W
tY eσ += .   

Recall the probability density function 
1Tf  of the first time 1T  before T  at which a 

Brownian motion with drift ( )mW  reaches its maximum (see Borodin and Salminen, 
2002). Let ( )mW  be defined by: 
 ( )m

t tW mt W= + ,  

where W  is a standard Brownian motion. Then, the probability density of the random 
time 1T  at which the path of the process ( )mW reaches its maximum is given by:  
 
 

1
( )Tf v =  

 
( )

( )
( )22 22 2

2 2 2 2

m T vm v m T ve m m e mErfc Erfc
v T vπ π

− − /− /
  −     + − − .        −     

 (19) 

 
Figure 13 illustrates the inversion of the cdf curves, as observed in Figure 3 for the 
simulated cdf of T ∗∗ . We consider two cases: 
 

1) m <0 (m=-1, T=30 years) 
 

Due to the negative drift, the maximum is early achieved. 
 
 

2) m >0 (m=+1, T=30 years) 
 

Due to the positive drift, the maximum is tardily achieved. 
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Fig. 13 Pdf approximation of T** (negative and positive drift) 
 
A.2. Computation of the cdf 

T
Vf ∗∗

.  

The approximated cdf of TV ∗∗  is given by: 
 0[ ]tt TP Sup V v≤ ≤ ≤ =  

 2

0

( )exp 1 2
at

t
v c e cP t T k t W

P
µ σ σ  

  
  

 − +∀ ≤ , − − / + ≤ , 
 

 (20) 

where a k g= −  and 0 ( )c FCF k g= / − .  
Denote: 

 0ln and ln 1P v
c c

α β   = , = − .     
 

Then, the inequality 

 2

0

( )exp 1 2
at

t
v c e ck t W

P
µ σ σ  

  
  

− +− − / + ≤  

is equivalent to: 
 2exp 1 2 1at

ta k t W eβα µ σ σ  + 
  

  
+ + − − / + ≤ + . 

Consider the following approximation:  

 1 with ln 1
1

x y ee e y e x
e

β
β β

β
+  

 
 

 
+ = + + . + 

 

Then: 
 0[ ]tt TP Sup V v≤ ≤ ≤  

 2exp 1 2 exp ln 1
1t

eP t T a k t W e at
e

β
β

βα µ σ σ    
    

    

   
∀ ≤ , + + − − / + ≤ + + .   +    

 

Denote: 

 2

0

( ) 1 2 and ( ) ln 1 ln
1

e vA v a k a B v e
e P

β
β

βµ σ α 
 
 

  
= + − − / − = + − = .  +   

 

Note that we have:  

 2

0

( ) 1 2 and ( ) lnac vA v k B v
v P

µ σ
 

= + − − / = . 
 

 

Therefore: 

 0

( ) ( )[ ]t tt T

A v B vP Sup V b P t T t W
σ σ≤ ≤

 ≤ = ∀ ≤ , + ≤ .  
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Recall (see Borodin and Salminen, 2002, p. 250) that the maximum value of the 
Brownian motion with drift ( )mW  before T  has the following cdf: 
 

 ( )
0[ ]m

tt TP Sup W y≤ ≤ ≤ =   

 21 1( ) 1
2 22 22 2

myy T y TG m y T Erfc m e Erfc m
T T

   
   , , = − − − + .
   
   

 (21) 

Consequently, we deduce: 

 
0 0

0 0

( ) ( )If [ ]

If [ ] 0

tt T

tt T

A v B vv P P Sup V v G T

v P P Sup V v
σ σ≤ ≤

≤ ≤

  > , ≤ = , , ,  
 

 < , ≤ = .

 (22) 

Denote: 

 0ln and ln 1P v
c c

α γ   = , = − .     
 

Consider the following approximation:  

 1 with ln 1
1

x y ee e y e x
e

γ
γ γ

γ
+  

 
 

 
− = − + − . − 

 

Then the inequality 

 2

0

( )exp 1 2
aT

t
v c e ck t W

P
µ σ σ  

  
  

− +− − / + ≤  

is equivalent to: 
 2exp 1 2 1 aT

ta k t W eγα µ σ σ  + 
  

  
+ + − − / + ≤ − . 

 
Thus, we deduce the same equality as previously:  
 

 0

( ) ( )[ ]t tt T

A v B vP Sup V v P t T t W
σ σ≤ ≤

 ≤ = ∀ ≤ , + ≤ .  
 

 

Consequently, we have: 

 
0 0

0 0

( ) ( )If [ ]

If [ ] 0

tt T

tt T

A v B vv P P Sup V v G T

v P P Sup V v
σ σ≤ ≤

≤ ≤

  > , ≤ = , , ,  
 

 < , ≤ = .

 

 
Finally, the cdf of the maximum value TV ∗∗  is (approximately) given by:  
 

 
0

0

0 for
[ ] ( ) ) forT

v P
P V v A v BvG T v P

σ σ
∗∗

, < ,
≤ =   , , > ,   

 (23) 

 
Using the definitions of coefficients A , B , and c , the cdf of TV ∗∗  is deduced.  
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Appendix B: The American case T*** 

B.1. The American option problem 
 
Denote by ( )x t,V  the following value function: 
 ( ) sup

t T

t t
F

x t E C C P P xτ τ
τ ,∈

, =  − + =  . V  

Note that we always have ( )x t x, ≥ ,V  since tτ =  t T,∈ J  and, in that case, ( )x t x, = .V   
As usual for American options6, two “regions” have to be considered:  
 

•  The continuity region: 
 ( ) [0 ] ( )t tC x t R T P t P + 

 
  

= , ∈ × , , >V  

 
•  The stopping region: 

 ( ) [0 ] ( )t tS x t R T P t P + 
 
  

= , ∈ × , , =V  

 
The first optimal stopping time tT ∗∗∗  after time t  is given by 
 

 inf [ ] ( )t u uT u t T P u P ∗∗∗  
 
  

= ∈ , , = .V  

Then: 
 { }inf [ ]t tT u t T P C∗∗∗ = ∈ , ∉ .  

B.2. Computation of the value function V  
 
To determine tT ∗∗∗ ,  we have to calculate ( )x t, .V   

Note that ( )2exp 1 2 t
t

t Wσ σ  
  
  
− / +  is a martingale with respect to the filtration t .J  

Therefore: 
 2 2exp 1 2 exp 1 2t tE W t Wτσ τ σ σ σ      

      
      

 − / + = − / + . J  
 

Moreover, since  
 2

0 exp 1 2t tP P k t Wµ σ σ  
  
  

= − − / + , 

we have: 
 t tE C C P P xτ τ − + =  =   

 ( )exp ( )t t tE C C P k t P xτ µ τ − + − − = .     
 

Consequently, we have to determine: 
 

 ( )sup exp ( )
t T

at a
t tE c e e P k t P xτ

τ
µ τ

,

− − 
 
 ∈

 − + − − = .   J
 

In particular, we have to search for the value tτ ∗  for which the maximum 
 

 ( )sup exp ( )
t T

a
tE ce x k t P xτ

τ
µ τ

,

−

∈
 − + − − = ,   J

 

is achieved. This problem is the dynamic version of the determination of T ∗ presented 
in Section 2.  
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Introduce the function t xf ,  defined by: 

 [ ]( )( ) exp witha t
t xf ce x b b kθθ θ µ− +
, = − + − = − . (24) 

 
Case 1. The asset value x  ( tP= ) is smaller than ( )( )at a b T tac

b e e− − − − . 
 
Then, the optimal time tτ ∗  corresponds to the maturity T  and  

 ( ) ( ) exp ( )at aTx t c e e x b T t− −  , = − + − − . V  

 
Case 2: The asset value x  lies between the two values ( )( )at a b T tac

b e e− − − −  and atac
b e− . 

  
Then, the optimal time tτ ∗  is equal to ( )t θ∗+ , where θ∗  is the solution of the 
following equation: 

 ( ) 0t xf
θ

θ
,∂

= .
∂

 (25) 

Then, from Equation (25), we deduce:  

 
1 ln

atace
a b bx

θ
−

∗  
= . −  

 (26) 

Therefore, knowing that tP x=  at time t , the time tτ ∗  is deterministic. Then, the value 
function ( )x t,V  is given by: 

 ( ) exp ( )taat
tx t c e e x b tτ τ

 ∗
 
 
 
 

−− ∗ , = − + − − , V  

from which, we get: 

 
( )

( )( )
b

a b a
a bat ata b acx t ce e x

a b

−
−

− 
 − −
 
 
 

− , = + . 
 

V  

 
Case 3: The asset value x  is higher than atac

b e− . 
  
Then, the optimal time tτ ∗  corresponds to the present time t , and  
 ( )x t x, = .V  
 

Consequently, from the three previous cases, we deduce: 
  

      

( )
( )

( ) ( )( )

( )( )

( ) if

( )   if

if

b
a b a

a b

at aT b T t at a b T t

at at at a b T t at

at

acc e e xe x e e
b

a b ac ac acx t ce e x e e x e
a b b b

acx x e
b

−
−

− − − − − − − −

−
− − − − − − −

−

 − + , ≤

 −  , = + , < <   

  


, ≥ .


V
 (27) 
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Figure 14 illustrates the function value ( )x t,V  (for 2t T= /  and parameter values of 
the basic numerical example). Note that 65 5atac

b e− . )  
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65

70

 
Fig. 14 Value function V  

 
Finally, the American optimal time T ∗∗∗  is determined by: 
 
 inf [0 ] ( )t tT t T P t P ∗∗∗  

 
  

= ∈ , , = .V  

Therefore, we can check that ( )t tP t P, =V  if and only if 0 ( )
( )
FCF k g t

t kP eµ
− −

−≥ .  Thus, we 
have:  

 ( )0inf [0 ]
( )

k g t
t

FCFT t T P e
k µ

 
 ∗∗∗ − − 
 
 
  

= ∈ , ≥ .
−

 

Using standard results about the first time ( )m
yT  at which a Brownian motion with drift 

( )mW  reaches a given level y , we can derive the pdf and cdf of T ∗∗∗ . Indeed, the 
condition 0 ( )

( )
FCF k g t

t kP eµ
− −

−≥  is equivalent to  

 

2 ( )0
0

2 0

0

0

0

exp 1 2
( )

1 2 ln
( )

11 2 ln
( )

k g t
t

t

t

FCFP k t W e
k

FCFg t W
P k

FCFg t W
P k

µ σ σ
µ

µ σ σ
µ

µ σ
σ σ µ

  − − 
  
  

 
 
 

− − / + ≥ ,
−

 
− − / + ≥ , − 

 − − / + ≥ .   −   

 

 

Setting 1 2gm µ
σ σ−= − /  and 0

0

1
( )ln FCF

P ky σ µ−
 = ,   the cdf of the random yT  is given by:  

 
- For the case 0

0 ( ) 1FCF
P k µ− ≤ ,  we have:  

0T ∗∗∗ = .  
 
- For the case 0

0 ( ) 1FCF
P k µ− > ,  we have: 

1 ( )yP T t G m y t ≤ = − , , .   
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Thus, since ( )m
yP T t P T t∗∗∗   ≤ = ≤     for any t T< , we deduce 

 

2

( ) ( ) ( )

2

1 1
2 22 2 2 2

and

0

1 11
2 22 22 2
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   
   = − − − + .
   
   

 

 
B.4. Computation of the optimal value 

T
V ∗∗∗   

 
At time T ∗∗∗ ,  we have 0 ( )

( )
FCF k g T
kT

P eµ
∗∗∗

∗∗∗
− −

−= if T T∗∗∗ < . Thus, the portfolio value 
T

V ∗∗∗  
is given by: 
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 and  (28) 
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B.5. Computation of the cdf 

T
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We have: 
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Therefore,  
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( ) if ( )

T
P V v T T P T g v T T

g v T
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∗∗∗
∗∗∗ ∗∗∗ ∗∗∗

∗∗∗
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 (29) 

 
But ( ) 0P T g v∗∗∗ ≤ =  , if ( ) 0g v < , that is if 0 1FCF g

k g kv µ
µ

−
− − > + .    

 

ii) Computation of 
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T

P V v T T∗∗∗
∗∗∗ ≤ ∩ = =   

 

( ) 20
0

( )

0

1 exp 1 2
( )

sup

k g T
T

m
s

s T

FCF e P k T W v
k gP

W y

µ σ σ   − −  
         

≤ ≤

 − + − − / + ≤ − . 
∩ ≤ 

 

 

 
Recall that, for a geometric Brownian with drift ( )mW , the joint distribution of its 
maximum on [0 ]T,  and its value at time T  is given by (see Borodin and Salminen 
(2002), p. 251),  
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finally we get: 
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Consequently, for 0 ( )1FCF k g T
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> − , we have:  
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Then,  
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Note also that we always have: 
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Consequently, the cdf of 
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V ∗∗∗  is defined by:  
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Notes 
1. These optimization problems are specific to real estate investments and differ from 
standard financial portfolio management problems (see Karatzas and Shreve, 2001, or 
Prigent, 2007). First, the asset is not liquid (not divisible). Second, the control variable 
is the time to sell and not the usual financial portfolio weights (see Oksendal 2007, for 
a related problem about optimal time to invest in a project with an infinite horizon). 
 

2. This assumption allows explicit solutions for the probability distributions of the 
optimal times to sell and of the optimal portfolio values. The introduction of 
stochastic rates would lead to only simulated solutions.  
 

3. The two other cases g kµ < <  and k gµ < <  could be analyzed in the same way. 
 

4. This is the continuous-time version of the solution of Baroni et al. (2007b). 
 

5. We can also examine how the solution depends on the index value 0P . For 
example, proportional transaction costs imply a reduction of 0P . For instance, for the 
case 2, a tax of 5% leads to an optimal time to sell T ∗ equal to 17.39 years, instead of 
16.11 years when there is no transaction cost. With a 10% tax, the solution becomes 
18.74 years. This is in line with the empirical results showing that high transaction 
costs imply longer holding periods (see for example Collet et al., 2003).  
 

6. See Elliott and Kopp (1999, p. 193). 
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