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1 Introduction

We consider a “large” panel of time series and assume that it can be represented by
an approximate factor structure whereby the dynamics of each series is split in two
orthogonal components – one capturing the bulk of cross-sectional comovements and
driven by few common factors and the other being composed of poorly cross-correlated
elements. This model has been introduced by Chamberlain and Rothschild (1983) and
generalized to a dynamic framework by Forni, Hallin, Lippi, and Reichlin (2000); Forni
and Lippi (2001) and Stock and Watson (2002a,b).

As in many other papers in the literature, this paper studies the estimation of the
common factors and consistency and rates for the size of the cross-section n and the
sample size T going to infinity.

The literature has extensively studied the particular case in which the factors are
estimated by principal components (Bai, 2003; Bai and Ng, 2002; Forni, Hallin, Lippi,
and Reichlin, 2005b; Forni, Giannone, Lippi, and Reichlin, 2005a; Stock and Watson,
2002a,b). It has been shown that the latter are (n, T ) consistent estimates of a rotation
of the factors. Consistency is achieved even if principal components do not exploit
likely features of the data generating process, such as heterogeneous signal to noise
ratio (cross-sectional heteroscedasticity of the idiosyncratic component), dynamic of
the factors and dynamic in the idiosyncratic component.

The literature has also studied a number of methods to exploit those features.
Forni, Hallin, Lippi, and Reichlin (2005b) has proposed a two-step approach based on
principal components in the frequency domain to exploit, when extracting the common
factors, the cross-sectional heteroscedasticity of the idiosyncratic component and the
dynamic properties of the data; Boivin and Ng (2003) and Forni and Reichlin (2001)
have used iteratively re-weighted principal components and Boivin and Ng (2005),
D’Agostino and Giannone (2005), Stock and Watson (2005) have studied the empirical
relevance of such efficiency improvements. Finally, Giannone, Reichlin, and Sala (2004)
and Giannone, Reichlin, and Small (2005) have introduced a parametric time domain
two-step estimator involving principal components and Kalman filter to exploit both
factor dynamics and idiosyncratic heteroscedacticity.

This paper develops the parametric approach to study these potential efficiency
improvements in a unified framework.

We parameterize the dynamics of the factors as in Forni, Giannone, Lippi, and
Reichlin (2005a). The parameters of the model can then be estimated by simple least
squares by treating the principal components as if they were the true common factors.
These estimated parameters can be used to project onto the observations. We consider
three cases, each corresponding to an estimator under different forms of misspecifi-
cation: factor dynamics, idiosyncratic heteroscedacticity and idiosyncratic dynamics
(principal components); factor and idiosyncratic dynamics (reweighted principal com-
ponents); idiosyncratic dynamics only (Kalman filter).

Each projection corresponds to a different two-step estimator whereby the first step
involves the estimation of the parameters and the second step the application of the
Kalman smoother.

We prove consistency for such estimators and design an empirical exercise that
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allows to evaluate the efficiency improvement in small sample for the dynamic and the
heteroscedasticity case.

We should stress that the use of the Kalman filter, beside achieving possible effi-
ciency improvements, allows useful empirical applications. First, the treatment of un-
balanced panels, particularly interesting for forecasting current quarter GDP at dates
in which not all data included in the panel are released (see Giannone, Reichlin, and
Sala, 2004; Giannone, Reichlin, and Small, 2005). Second, “cleaning”, through the
second step, the estimate of the factors, allows a better reconstruction of the common
shocks considered in the structural factor model Giannone, Reichlin, and Sala (2004).
Finally, such parametric approach allows to easily evaluate uncertainty in the estimates
of the factors as shown in both the papers just cited.

Let us finally note that similar reasoning to that applied to this paper can be applied
to use principal components to initialize the algorithm for maximum likelihood estima-
tion. We analyze such approach in the empirical section while we study consistency of
maximum likelihood estimator in a separate paper Doz, Giannone, and Reichlin (2005).

The paper is organized as follows. Section two introduces models and assumptions.
Section three analyzes the projections under the different cases and shows, for known
parameters, how to extract the n consistent factors under different hypothesis on speci-
fication error. Section four contains the main propositions which show consistency and
(n, T ) rates for the two step estimators. Section five presents the empirical application
on both real and artificial data. Section six concludes.

2 The Models

We consider the following model:

Xt = Λ∗0Ft + ξt

where

Xt = (x1t, ..., xnt)′ is a (n× 1) stationary process

Λ∗0 = (λ∗0,ij) is the n× r matrix of factor loadings

Ft = (f1t, ..., frt)′ is a (r × 1) stationary process (common factors)

ξt = (ξ1t, ..., ξnt)′ is a (n× 1) stationary process (idiosyncratic component)

(Ft) and (ξt) are two orthogonal processes

Note that Xt,Λ∗0, ξt depend on n but, in this paper, we drop the subscript for sake
of simplicity.

The general idea of the model is that the observable variables can be decomposed in
two orthogonal unobserved processes: the common component driven by few common
shocks which captures the bulk of the covariation between the time series, and the
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idiosyncratic component which is driven by n shocks generating dynamics which is
series specific or local.

We have the following decomposition of the covariance matrix of the observables:

Σ0 = Λ∗0Φ
∗
0Λ

∗ ′
0 + Ψ0

where Ψ0 = E[ξtξ
′
t] and Φ∗0 = E[FtF

′
t ]. It is well-known that the factors are defined up

to a pre-multiplication by an invertible matrix, so that it is possible to choose Φ∗0 = Ir.
Even in this case, the factors are defined up to a pre-multiplication by an orthogonal
matrix, a point that we make more precise below.

We also have the following decomposition of the auto-covariance matrix of order h
of the observables:

Σ0(h) = Λ∗0Φ
∗
0(h)Λ∗ ′0 + Ψ0(h)

where Σ0(h) = E[xtx
′
t−h], Φ∗0(h) = E[FtF

′
t−h], and Ψ0(h) = E[ξtξ

′
t−h]

Remark 1: Bai (2003); Bai and Ng (2002) and Stock and Watson (2002a) consider
also some form of non-stationarity. Here we do not do it for simplicity. The main
arguments used in what follows still hold under the assumption of weak time dependence
of the common and the idiosyncratic component.

More precisely, we make the following set of assumptions:

(A1) For any n, (Xt) is a stationary process with zero mean and finite second order
moments.

(A2) The xit’s have uniformly bounded variance : ∃M/∀(i, t)V xit = σ0,ii ≤ M

(A3) - (Ft) and (ξt) are independent processes.

- (Ft) admits a Wold representation: Ft = C0(L)εt =
∑+∞

k=0 Ckεt−k such that:∑+∞
k=0 ‖Ck‖ < +∞, and εt admits finite moments of order four.

- For any n, (ξt) admits a Wold representation: ξt = D0(L)vt =
∑+∞

k=0 Dkvt−k

where
∑+∞

k=0 ‖Dk‖ < +∞ and vt is a strong white noise such that:
∃M/∀(i, t)Ev4

it ≤ M

Note first that (vt) and D0(L) are not nested matrices: when n increases because a
new observation is added to xt, a new observation is also added to ξt but the innovation
process and the filter D0(L) entirely change.

A convenient way to parameterize the dynamics is to further assume that the com-
mon factors following a VAR process so that (A3) can be replaced by the following
assumption (see Forni et al., 2005a, for a discussion):
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(A3’) - A VAR approximation for the factors: A∗0(L)Ft = ut where A∗0(z) 6= 0 for
|z| ≤ 1 and A∗0(0) = Ir.

- Independence between the shocks driving the factor and the idiosyncratic pro-
cesses: (u′t, v′t)′ ∼ WN(0, ∆), with ∆ a diagonal matrix.

For any n, we denote by ψ̄0 = 1
n

∑n
j=1 Eξ2

it, and in the whole paper, A∗0(L), Ψ0,
D0(L), ψ̄0 denote the true values of the parameters.

Given the size of the cross-section n, the model is identified provided that the
number of common factors (r) is small with respect to the size of the cross-section (n),
and the idiosyncratic component is orthogonal at all leads and lags, i.e. D0(L) is a
diagonal matrix (exact factor model). This version of the model is what proposed by
Engle and Watson, 1981 and estimated by them by Maximum Likelihood 1. In what
follows, we will not impose such restriction and work under the assumption of some
form of weak correlation among idiosyncratic components (approximate factor model)
as in the n large, new generation factor literature. There are different ways to impose
identifying assumptions that restrict the cross-correlation of the idiosyncratic elements
and preserve the commonality of the common component as n increases. We will assume
that the Chamberlain and Rothschild (1983)’s conditions are satisfied. More precisely,
denoting by λmin(A) and λmax(A) the smallest and the greatest eigenvalues of a matrix
A, and by ‖A‖ = (λmax(A′A))1/2, we make the two following assumptions:

(CR1) lim infn→∞ 1
nλmin(Λ∗ ′0 Λ∗0) > 0

(pervasiveness of the common component)

(CR2) ∃λ̄/
∑

h∈ZZ ‖Ψ0(h)‖ < λ̄ (limitation of cross-sectional time autocorrelation of the
idiosyncratic component)

Note that assumption (CR2) is achieved as soon as the two following assumptions are
made:

- ∃M/∀n ‖E[vtv
′
t]‖ ≤ M

- ∃M/∀n ∑+∞
k=0 ‖Dk‖ ≤ M

We also suppose, as in Forni et al. (2004), that all the eigenvalues of Λ∗ ′0 Λ∗0 diverge
at the same rate, which is equivalent to the following further assumption:

(CR3) lim supn→∞
1
nλmax(Λ∗ ′0 Λ∗0) is finite

Finally, we make the two next assumptions:

(A4) infn λmin (Ψ0) = λ > 0
1Identification conditions for the model for a fixed cross-sectional dimensions (n) are studied in

Geweke and Singleton (1980).
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(A5) Λ∗ ′0 Λ∗0 has distinct eigenvalues 2.

Remark 2: These assumptions are slightly different than those introduced by Stock
and Watson (2002a) and Bai and Ng (2002) but have a similar role. They have been
generalized for the dynamic case by Forni et al. (2000) and Forni and Lippi (2001)

As we said before, the common factors, and the factor loadings, are identified up to
a normalization. In order to give a precise statement of the consistency results in our
framework, we will use here a particular normalization. Let us define:

- D0 as the diagonal matrix whose diagonal entries are the eigenvalues of Λ∗ ′0 Λ∗0 in
decreasing order,

- Q0 as the matrix of a set of unitary eigenvectors associated with D0,

- Λ0 = Λ∗0Q0, so that Λ′0Λ0 = D0 and Λ0Λ′0 = Λ∗0Λ∗ ′0 ,

- P0 = Λ0D
−1/2
0 so that P ′

0P0 = Ir,

- Gt = Q′
0Ft.

With these new notations, the model can also be written as:

Xt = Λ0Gt + ξt (2.1)

We then have : E[GtG
′
t] = Ir, and E[GtG

′
t−h] = Φ0(h) = Q′

0Φ
∗
0(h)Q0 for any h . It

then follows that:
Σ0 = Λ∗0Λ

∗ ′
0 + Ψ0 = Λ0Λ′0 + Ψ0

and that, for any h: Σ0(h) = Λ∗0Φ∗0(h)Λ∗ ′0 + Ψ0(h) = Λ0Φ0(h)Λ′0 + Ψ0(h).

Note that, in the initial representation of the model, the matrices Λ∗0 are supposed
to be nested (when an observation is added to xt, a line is added to the matrix Λ∗0),
whereas the Λ0 matrix is entirely modified. However, as Q0 is invertible, Gt and Ft have
the same range, likewise Λ0 and Λ∗0 have the same range3. In addition, assumptions
(A1) to (A5) and (CR1) to (CR2) are satisfied if we replace Λ∗0 with Λ0, and Ft with
Gt. If also assumption (A3’) holds then Gt also has a VAR representation. Indeed, as
Q0Gt = Ft, we have: A∗0(L)Gt = ut, and Q′

0A
∗
0(L)Gt = Q′

0ut. We then can write:

A0(L)Gt = wt,

with A0(L) = Q′
0A

∗
0(L)Q0, wt = Q′

0u
∗
t , A0(z) 6= 0 for |z| ≤ 1, and A0(0) = Ir.

2This assumption is usual in this framework, and is made to avoid useless mathematical complica-
tions. However, in case of multiple eigenvalues, the results would remained unchanged.

3It is worth noticing that Q0 is uniquely defined up to a sign change of its columns and that Gt is
uniquely defined up to a sign change of its components (this will be used below). Indeed, as Λ∗ ′0 Λ∗0 is
supposed to have distinct eigenvalues, Q0 is uniquely defined up to a sign change of its columns. Then,
if ∆ is a diagonal matrix whose diagonal terms are ±1, and if Q0 is replaced by Q0∆, Λ0 is replaced
by Λ0∆ and Gt is replaced by ∆Gt.
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3 Approximating projections

We are interested in extracting the factors Gt from the observables X1, ..., XT where T
is the sample size. In particular we are interested in the following linear projection:

Gt|T = ProjΩ[Gt|Xs, s ≤ T ]

where Ω = {Λ∗, A∗(L), D(L)} denotes the triple defining the model, which can be
equivalently written as Ω = {Λ, A(L), D(L)}, if we use the new parameterization of the
model.

If the model is Gaussian, i.e. if ut and vt are normally distributed, then

ProjΩ[Gt|Xs, s ≤ T ] = EΩ[Gt|Xs, s ≤ T ]

Moreover, if the projection is taken under the true parameter values, Ω0 = {Λ0, A0(L), D0(L)},
then we have optimality in mean square sense.

In what follows, we consider other projections of Gt, associated to misspecified
models. Although not optimal, these projections also give consistent approximations

of Gt. The simplest projection is obtained under the triple ΩR1
0 =

{
Λ0, Ir,

√
ψ̄0In

}
,

that is under an approximating model according to which the common factors are
white noise with covariance Ir and the idiosyncratic components are cross-sectionally
homoscedastic white noises with variance ψ̄0. We have:

ProjΩR1
0

[Gt|Xs, s ≤ T ] = EΩR1
0

[GtX
′
t]

[
EΩR1

0
[XtX

′
t]

]−1
Xt = Λ′0

(
Λ0Λ′0 + ψ̄0In

)−1
Xt.

Simple calculations show that, when Ψ0R is an invertible matrix of order n:

(
Λ0Λ′0 + Ψ0R

)−1 = Ψ−1
0R −Ψ−1

0RΛ0

(
Λ′0Ψ

−1
0RΛ0 + Ir

)−1
Λ′0Ψ

−1
0R

and that the previous expression can also be written as:

ProjΩR1
0

[Gt|Xs, s ≤ T ] =
(
Λ′0ψ̄

−1
0 Λ0 + Ir

)−1
Λ′0ψ̄

−1
0 Xt =

(
Λ′0Λ0 + ψ̄0Ir

)−1 Λ′0Xt

which is, by assumption CR1, asymptotically equivalent to the OLS regression of Xt

on the factor loadings Λ0.

It is clear that, under conditions CR1 and CR2, such simple OLS regression provides
a consistent estimate of the unobserved common factors as the cross-section becomes
large4. In particular,

ProjΩR1
0

[Gt|Xs, s ≤ T ] m.s.−→ Gt as n →∞
4Notice that here the term consistency could be misleading since we are supposing that the param-

eters of the model are known. We will consider the case of joint estimation of parameters and factors
in the next section.
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Indeed, given the factor model representation, and the definition of Λ0, we have:

(
Λ′0Λ0 + ψ̄0Ir

)−1 Λ′0Xt =
(
D0 + ψ̄0Ir

)−1 Λ′0Xt

=
(
D0 + ψ̄0Ir

)−1 Λ′0 (Λ0Gt + ξt)
=

(
D0 + ψ̄0Ir

)−1
D0Gt +

(
D0 + ψ̄0Ir

)−1 Λ′0ξt

Under CR1, the first term converges to the unobserved common factors Gt, since(
D0 + ψ̄0Ir

)−1
D0 → Ir, as n →∞.

Moreover, the last term converges to zero in mean square since

EΩ0

[(
D0 + ψ̄0Ir

)−1 Λ′0ξtξ
′
tΛ0

(
D0 + ψ̄0Ir

)−1
]

=
(
D0 + ψ̄0Ir

)−1 Λ′0Ψ0Λ0
(
D0 + ψ̄0Ir

)−1

≤ λmax(Ψ0)
(
D0 + ψ̄0Ir

)−1
D0

(
D0 + ψ̄0Ir

)−1 → 0 as n →∞

by assumptions (CR2) and (A4).

If we denote Gt/T,R1 = ProjΩR1
0

[Gt|Xs, s ≤ T ], we then have:

Gt/T,R1 −Gt = OP

(
1√
n

)
as n →∞

Remark 3 Notice that in traditional factor models, where n is considered fixed, the
factors are indeterminate and can only be approximated with an approximation error
that depends inversely on the signal to noise variance ratio. The n large analysis shows
that under suitable conditions, the approximation error goes to zero for n large.

This simple estimator is the most efficient if Ω0 = ΩR1
0 . This is the model assumed

in the Probabilistic Principal Components framework for i.i.d. data (static). However,
if there are dynamics in the common factors (A0(L) 6= Ir) and if the idiosyncratic

components have dynamics and are not spherical (D0(L) 6=
√

ψ̄0In) we still estimate
consistently the unobserved common factors, as n →∞.

If the size of the idiosyncratic component is not the same across series, a more
efficient estimator can be obtained by exploiting such heterogeneity by giving less weight
to series with larger idiosyncratic component. Denoting Ψ0d = diag(ψ0,11, ..., ψ0,nn),
this can be done by running the projection under the triple

ΩR2
0 =

{
Λ0, Ir,Ψ

1/2
0d

}

Using the same kind of calculations as those we used in the previous case, with
Ψ0R = Ψ0d instead of Ψ0R = ψ̄0In, the following estimated factors are:

ProjΩR2
0

[Gt|Xs, s ≤ T ] = Λ′0
(
Λ0Λ′0 + Ψ0d

)−1
Xt =

(
Λ′0Ψ

−1
0d Λ0 + Ir

)−1
Λ′0Ψ

−1
0d Xt
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This estimator is thus obtained as the previous one, up to the fact that Xt and,
of course, Λ0 have been weighted, with weight given by

√
ψ0,11, ...,

√
ψ0,nn. This is

the model assumed in the traditional (exact) Factor Analysis framework for i.i.d. data
(static). It is then straightforward to obtain the same consistency result as in the
previous case. If Gt/t,R2 := ProjΩR2

0
[Gt|Xs, s ≤ T ], then:

Gt/T,R2
m.s.−→ Gt and Gt/T,R2 −Gt = OP

(
1√
n

)
as n →∞

Further efficiency improvements could be obtained by non diagonal weighting scheme,
i.e. by running the projection under the triple

{
Λ0, Ir,Ψ

1/2
0

}
. This might be empirically

relevant since, although limited asymptotically by assumption CR2, the idiosyncratic
cross-sectional correlation may affect results in finite sample. We will not consider such
projections since non diagonal weighting schemes raise identifiability problems in finite
samples. Practically, they require the estimation of too many parameters and result in
running out of degree of freedom in estimation (see next Section).

On the other hand, the estimators considered above do not take into consideration
the dynamics of the factors and the idiosyncratic component. For this reason the
factors are extracted by projecting only on contemporaneous observations. Since the
model can be written in a state space form, the projection under more general dynamic
structure can be computed using Kalman smoothing techniques.

Two particular cases in which the Kalman smoother can be used to exploit the
dynamics of the common factors are:

ΩR3
0 =

{
Λ0, A0(L),

√
ψ̄0In

}

ΩR4
0 =

{
Λ0, A0(L), Ψ1/2

0d

}

It is then possible, in this more general framework, to show the following result:

Proposition 1 Under assumptions A1, A2, A3’, A4, A5, CR1, CR2 and CR3, if
Gt/T,R := ProjΩR

0
[Gt|Xs, s ≤ T ] with R = R3 or R = R4, then:

Gt/T,R −Gt = OP

(
1√
n

)
as n →∞

Under such parametrization, the computational complexity of the Kalman smooth-
ing techniques depends mainly on the dimension of the transition equation which, under
the parameterizations above, is independent of n and depends only on the number of
the common factors.

In summary, the factors can be consistently estimated,as n become larger, by sim-
ple static projection of the observable on the factor loadings. However, efficiency im-
provements can be obtained by exploiting the cross-sectional heteroscedasticity of the
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idiosyncratic components through weighted regressions (parametrization ΩR2
0 ) and by

exploiting the dynamics of the factors through the Kalman smoother (parametrizations
ΩR3

0 , ΩR4
0 ).

Individual idiosyncratic dynamics could also be taken into account when performing
the projections. This would require to specify an autoregressive model for the idiosyn-
cratic components or a reparameterization of the model as in Quah and Sargent (1992),
to capture idiosyncratic dynamics by including lagged observable variable.

4 Estimation of the Parameters

The discussion in the previous section assumed that the parameters were known and
focused on the extraction of the factors. In this section we will consider the problem
of the estimation of the parameters as well as the resulting estimation of the factors.

The estimation of the full model is not feasible since it is not possible to fully
parameterize parsimoniously the DGP of the idiosyncratic component since in most
applications the cross-sectional items have no natural order. Moreover, models that
explicitly take into account cross-correlation are not identified in general. In addition,
the treatment of the idiosyncratic dynamics, even at the univariate level, is problematic
since it can create computational problems.

However, as we have seen above, if the factor loadings were known, the factors
could be consistently estimated, even if the projections were not computed under the
correct specification. Does robustness with respect to misspecification still hold if the
parameters are estimated?

Let us consider first the ML estimation under the approximating model ΩR1 ={
Λ, Ir,

√
ψ̄In

}
. The log-likelihood of the model is given by:

LT (Λ, Ir, ψ̄In) = −nT
2 log(2π)− T

2 log |Σ| − 1
2

∑T
t=1 X ′

tΣ
−1Xt

= −nT
2 log(2π)− T

2 (log |Σ|+ trΣ−1S)

where S = 1
T

∑T
t=1 XtX

′
t and Σ = ΛΛ′ + ψ̄In.

The model is identified under the normalization condition that Λ′Λ is a diagonal matrix,
with diagonal elements in decreasing order of magnitude. If we denote by d̂j the j-th
eigenvalue of S, in decreasing order of magnitude5, by p̂j the relative eigenvector and
write D̂ for the (r × r) diagonal matrix with diagonal elements d̂j , j = 1 . . . r, and
P̂ := (p̂1, . . . , p̂r), the associated maximum-likelihood estimates are given by6:

ˆ̄ψR1 =
1

n− r
trace(S − D̂); Λ̂R1 = P̂

(
D̂ − ˆ̄ψR1Ir

)1/2

5It is always assumed that those eigenvalues are all distinct, in order to avoid useless mathematical
complications. Under assumption A7, this will be asymptotically true, due to the fact that S converges
to Σ0

6See e.g. Lawley and Maxwell (1963) for a derivation of the first order conditions.
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Denoting by Ω̂R1 =
{

Λ̂R1, Ir,

√
ˆ̄ψ
R1

In

}
the model associated with the estimated

parameters, we get:

Ĝt/T,R1 = ProjΩ̂R1 [Gt|Xs, s ≤ T ] =
(
Λ̂′R1Λ̂R1 + ˆ̄ψR1Ir

)−1
Λ̂′R1Xt

= D̂−1
(
D̂ − ˆ̄ψR1Ir

)1/2
P̂ ′Xt

It can then be shown (see corollary below) that Ĝt/T,R1 is asymptotically equivalent
to the normalized sample principal components Ĝt = D̂−1/2P̂ ′Xt.

Hence, principal components can be seen as an asymptotic equivalent of the Maxi-
mum Likelihood estimator for the factor loadings of the approximate factor model, in
a situation in which the probability model is not correctly specified: the true model
satisfies conditions CR1 to CR3, is dynamic and approximate, while we restrict the ap-
proximating model to be static and the idiosyncratic component to be spherical. This
is what White (1982) named as Quasi Maximum Likelihood estimator. Properties of
this estimator are studied in (Doz et al., 2005)

Under our set of assumptions, it can be shown that principal components give
consistent estimators of the span of the common factors, and of associated factors
loadings, when both the cross-section and the sample size go to infinity. This result has
been shown by Forni et al. (2005a). Similar results, under alternative assumptions have
been derived Bai (2003), Bai and Ng (2002) and Stock and Watson (2002a). However,
we give our own proof of this result in appendix A.2, in order to make the paper
self-contained and to prove the following propositions of this section.

Proposition 2 If assumptions (CR1) to (CR3), (A1) to (A5) hold, then Λ0 can be
defined7 so as the following property holds:

Ĝt −Gt = OP

(
1√
n

)
+ OP

(
1√
T

)
, as n, T →∞

Consistency results can be reinterpreted as follows: “the bias arising from this
misspecification of the data generating process of the idiosyncratic component and the
dynamic properties of the factors is negligible if the cross-sectional dimension is large
enough”.

As suggested by Forni et al. 2005, the VAR coefficients A0(L) can be estimated by
OLS regression of Ĝt/T,R1, or equivalently of Ĝt, on their own past. More precisely, the
following OLS regression:

Ĝt = Â1Ĝt−1 + ... + ÂpĜt−p + ŵt

gives consistent estimates of the A0,k matrices. The following proposition states the
consistency results for the estimators of the loading and idiosyncratic matrices, as well
as for the estimated VAR coefficient matrices.

7As Λ0 is defined up to a sign change of its columns, and Gt is defined up to the sign of its
components, the consistency result holds up to a given value of these signs.
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Proposition 3 Under the same assumptions as in proposition 2, if Λ̂ = P̂ D̂1/2 is the
estimator of Λ0 associated to PCA and if Ψ̂ = S − Λ̂Λ̂′ the following properties hold:

i) For any i, j: λ̂ij − λ0,ij = OP

(
1
n

)
+ OP

(
1√
T

)

ii) For any (i, j): ψ̂ij − ψ0,ij = OP

(
1
n

)
+ OP

(
1√
T

)

iii) If Γ̂Ĝ(h) denotes the sample autocovariance of order h of the estimated principal
components: Γ̂Ĝ(h) = 1

T−h

∑T
t=h+1 ĜtĜ

′
t−h, then for any h:

Γ̂Ĝ(h)− Φ0(h) = OP

(
1
n

)
+ OP

(
1√
T

)

and the result is uniform in h ∈ ZZ

(iv) For any s = 0, ..., p: Âs −A0,s = OP

(
1
n

)
+ OP

(
1√
T

)

Corollary 1 Under the same assumptions as in proposition 2:

i) Ĝt/T,R1 −Gt = OP

(
1√
n

)
+ OP

(
1√
T

)
, as n, T →∞

ii) the properties which are stated in proposition 3 still hold if Λ̂ is replaced by Λ̂R1

and if Ψ̂ is replaced by Ψ̂R1 = S − Λ̂R1Λ̂′R1.

The propositions and corollary above show that principal components are asymp-
totically equivalent to maximum likelihood estimators under a spherical assumption for
the idiosyncratic component. Moreover, they show that, with principal components,
we can estimate consistently not only the the common factor, but also the factor load-
ings, the variance of the idiosyncratic component and the VAR filter of the common
factors. The latter estimates can then be used to get a more efficient estimates of the
common factors. Let us denote by ψ̂ii and Â(L) such estimates, then we can obtain a
new estimate of the factors by computing new projections. We consider three cases:

1) Weighted Principal components

Ĝt/T,R2 = ProjΩ̂R2 [Gt|Xs, s ≤ T ]

were Ω̂R2 =
{
Λ̂, Ir, diag(ψ̂11, ..., ψ̂nn)1/2

}
. This is asymptotically equivalent to principal

components on weighted observations where the weights are the inverse of the stan-
dard deviation of the estimated idiosyncratic components. This estimator has been
considered in Forni and Reichlin (2000), Boivin and Ng (2004), Forni, Hallin, Lippi
and Reichlin (2005).
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2)Principal components and Kalman filtering with no reweighting

Ĝt/T,R3 = ProjΩ̂R3 [Gt|Xs, s ≤ T ]

were Ω̂R3 =
{

Λ̂, Â(L),
√

ˆ̄ψIn

}
. This estimator does not take into account the non-

sphericity of the idiosyncratic components, but only exploits the common factor dy-
namics.

3) Principal components and Kalman filtering with reweighting

Ĝt/T,R4 = ProjΩ̂R4 [Gt|Xs, s ≤ T ]

were Ω̂R4 =
{
Λ̂, Â(L), diag(ψ̂11, ..., ψ̂nn)1/2

}
. This projection is estimated using the

Kalman filter proposed by Giannone, Reichlin and Small (2005) and applied by Gian-
none, Reichlin and Sala, 2005. Such estimator exploits both the non-sphericity of the
idiosyncratic component and the dynamics of the common factors.

Consistency of this three new estimates of the common factors, follows from the
consistency of the principal components. First, it is straightforward to extend the proof
of Propositions 2 and 3 in order to obtain the consistency of the weighted PCA estimates
(see appendix A.3). Second the consistency of the two Kalman filter estimates stems
from the consistency of the associated unfiltered estimates, and the proofs are identical
in the Ω̂R3 and Ω̂R4 frameworks. If we denote by ΩR

0 the model under consideration,
and by Ω̂R the associated set of parameters, obtained at the first step of the estimation
procedure, so that:

- if R = R3: Ω̂R =
{

Λ̂, Â(L),
√

ˆ̄ψIn

}

- if R = R4: Ω̂R =
{
Λ̂, Â(L), diag(ψ̂0,11, ..., ψ̂0,nn)1/2

}

then, the consistency of the associated estimates can be stated in the following propo-
sition:

Proposition 4 Denote Ĝt/T,R = P̂rojΩ̂R [Gt|Xs, s ≤ T ] with R = R3 or R4.
If limsup T

n3 = O(1), the following result holds under assumptions (CR1) to (CR3),
(A1), (A2), (A3’), (A4) and (A5):

Ĝt/T,R −Gt = OP

(
1√
n

)
+ OP

(
1√
T

)
as n, T →∞
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The procedure outlined above consists in computing the common factors through
principal components. We then use the common factors to estimate the parameters.
With this set of parameters we then reestimate the common factors according to the
selected approximating model, in order to improve the efficiency of the estimates. What
if we iterate such procedure? From the new estimated factors, we can estimate a new
set of parameters which in turn can then be used to reestimate the common factors and
so on. If, at each iteration the least squares estimates of the parameters are computed
using expected sufficient statistics, then such iterative procedure is nothing that the EM
algorithm by Dempster and Rubin (1977) and introduced in small scale dynamic factor
models by Engle and Watson (1981). Quah and Sargent (1992) used such algorithm
for large cross-sections, but their approach was disregarded in subsequent literature.
The algorithm is very powerful since at each step the likelihood increases, and hence,
under regularity conditions, it converges to the Maximum Likelihood solution. For
details about the estimation with state space models see Engle and Watson (1981)
and Quah and Sargent (1992). The algorithm is feasible for large cross-sections for
two reasons. First, as stressed above, its complexity is mainly due to the number
of factors, which in our framework is independent of the size of the cross-section and
typically very small. Second, since the algorithm is initialized with consistent estimates
(Principal Component), the number of iterations required for convergence is expected
to be limited, in particular when the cross-section is large. The asymptotic properties of
quasi maximum likelihood estimates for large cross-section and under an approximate
factor structure is developed in Doz et al. (2005).

5 Empirics

In this section we run a simulation study to asses the performances of our estimator.
The model from which we simulate is standard in the literature. A similar model has
been used, for example, in Stock and Watson (2002a).

Let us define it below (in what follows, in order to have simpler notations, we drop
the zero subscript for the true value of the parameters which we had previously used
to study the consistency of the estimates).

xit =
∑r

j=1 λ∗ijfjt + ξit, i = 1, .., n, in vector notation Xt = Λ∗Ft + ξt

A(L)Ft = ut, with ut i.i.d. N (0, Ir); i, j = 1, ..., r

D(L)ξt = vt with vt i.i.d. N (0, T )

aij(L) =

{
1− ρL if i = j

0 if i 6= j

dij(L) =

{ √
αi(1− dL) if i = j

0 if i 6= j
; i, j = 1, ..., n

λ∗ij i.i.d. N (0, 1), i = 1, ..., n; j = 1, .., r

14



αi = βi
1−βi

1
T

∑T
t=1

(∑r
j=1 λ∗ijfjt

)2
with βi i.i.d. U([u, 1− u])

Tij = τ |i−j| 1
1−d2 , i, j = 1, ..., n

Notice that we allow for instantaneous cross-correlation between the idiosyncratic
elements. Since T is a Toeplitz matrix, the cross-correlation among idiosyncratic ele-
ments is limited and it is easily seen that Assumption A (ii) is satisfied. The coefficient
τ controls for the amount of cross-correlation. The exact factor model corresponds to
τ = 0.

The coefficient βi is the ratio between the variance of the idiosyncratic component,
ξit, and the variance of the common component,

∑r
j=1 λ∗ijfjt. The is also known as

the noise to signal ratio. In our simulation this ratio is uniformly distributed with an
average of 50%. If u = .5 then the standardized observations have cross-sectionally
homoscedastic idiosyncratic components.

Notice that if τ = 0, d = 0, our approximating model is well specified (with the usual
notational convention that 00 = 1)and hence the approximating model R4 is well spec-
ified. If τ = 0, d = 0, ρ = 0, we have a static exact factor model with heteroscedastic
idiosyncratic component and model R2 is correctly specified while principal compo-
nents are not the most efficient estimator. Finally, if τ = 0, d = 0, u = 1/2, we have
a spherical, static factor model on standardized variables, situation in which the ap-
proximating model R1 is correctly specified and principal components on standardized
variables provide the most efficient, maximum likelihood, estimates.

We generate the model for different sizes of the cross-section, n = 10, 25, 50, 100,
and for sample size T = 50, 100. We perform 2500 Monte-Carlo repetitions. We draw
50 times the parameters βi, i = 1, ..., n, and λ∗ij , i = 1, ..., n; j = 1, .., r. Then, for each
draw of the parameters, we generate the 50 times the shocks ut and ξt.

As stressed in the introduction, an advantage of having a parameterized model is
that it is possible to extract the common factors from panel at the end of the sample due
to the unsynchronous data releases (see Giannone et al., 2004, 2005, for an application
to real time nowcasting and forecasting output and inflation). To study the performance
of our models, for each sample size T and cross-sectional dimension n, we generate the
data under the following pattern of data availability,

xit available for t = 1, ..., T − j if i ≤ (j + 1)
n

5
that is all the variables are observed for t = 1, ..., T −4, we name this a balanced panel;
80% of the data are available at time T − 3; 60% are available at time T − 2; 40% are
available at time T − 1; 20% are available at time T .

At each repetition, the parameters Λ̂, Â(L) and ψ̂ii, i = 1, ..., n are estimated on the
balanced part of the panel, xit, i = 1, ..., n, t = 1, ..., T − 4. Data are standardized so as
to have mean zero and variance equal to one. Such standardization is typically applied
in empirical analysis since principal components are not scale invariant.
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We consider the factor extraction under the approximating models studied in the
previous section and summarized below.

Ω̂R1 =
{

Λ̂, Ir,

√
ˆ̄ψIn

}

Ω̂R2 =
{
Λ̂, Ir,diag(ψ̂11, ..., ψ̂nn)1/2

}

Ω̂R3 =
{

Λ̂, Â(L),
√

ˆ̄ψIn

}

Ω̂R4 =
{
Λ̂, Â(L), diag(ψ̂11, ..., ψ̂nn)1/2

}
.

We compute the estimates by applying the Kalman smoother using the estimated
parameters: Ĝt/T,R = P̂rojΩ̂R [Gt|Xs, s ≤ T ], for R = R1, R2, R3, R4. The pattern of
data availability can be taken into account when estimating the common factors, by
modifying the idiosyncratic variance when performing the projections:

• if xit is available, then Eξ2
it = ˆ̄ψ for the projections R1, R3 and Eξ2

it = ψ̂ii is xit

for the projections R2, R4

• if xit is not available, then Eξ2
it = ∞ is xit

The estimates of the common factor can hence be computed running the Kalman
smoother with time varying parameters (see Giannone et al., 2004, 2005).

We measure the performance of the different estimators as:

∆t,R = Trace
(
Ft − Q̂′

RĜt/T,R

) (
Ft − Q̂′

RĜt/T,R

)′

where Q̂R is the OLS coefficient from the regression of Ft on Ĝt/T,R estimated using

observations up to time T − 4, that is: Q̂R =
∑T−4

t=1 FtĜ
′
t/T,R

(∑T−4
t=1 Ĝt/T,RĜ′

t/T,R

)−1
.

This OLS regression is performed since the common factors are identified only up to
a rotation. Indeed, we know from the previous sections that Ĝt/T,R is a consistent
estimator of Gt = Q′Ft, where Q is a rotation matrix such that Q′Λ∗′ΛQ is diago-
nal, with diagonal terms in decreasing order. Thus, it can be easily checked that, as
E (FtF

′
t) = Ir, Q̂R is a consistent estimator of:

plim
(

1
T

∑T−4
t=1 FtĜ

′
t/T,R

) (
1
T

∑T−4
t=1 Ĝt/T,RĜ′

t/T,R

)−1

= plim
(

1
T

∑T−4
t=1 FtG

′
t

) (
1
T

∑T−4
t=1 GtG

′
t

)−1

= plim
(

1
T

∑T−4
t=1 FtF

′
t

)
QQ′

(
1
T

∑T−4
t=1 GtG

′
t

)−1
Q

= Q

so that Q̂′
RĜt/T,R is a consistent estimator of Ft.
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Table 1:

T=50 T=100
j n = 5 n = 10 n = 25 n = 50 n = 100 n = 5 n = 10 n = 25 n = 50 n = 100

∆j,R4: evaluation of the Kalman filter with cross-sectional heteroscedasticity
-4 0.45 0.35 0.30 0.29 0.28 0.34 0.23 0.19 0.18 0.17
-3 0.45 0.35 0.30 0.28 0.28 0.36 0.24 0.19 0.18 0.17
-2 0.47 0.36 0.30 0.28 0.27 0.37 0.26 0.20 0.18 0.17
-1 0.50 0.39 0.31 0.29 0.27 0.40 0.29 0.21 0.18 0.17
0 0.57 0.44 0.34 0.30 0.28 0.48 0.35 0.25 0.21 0.19

∆j,R4/∆j,R1: relative performances of simple Principal components
-4 0.97 0.97 0.98 0.99 0.99 0.95 0.94 0.96 0.98 0.99
-3 0.95 0.95 0.97 0.98 0.99 0.93 0.93 0.96 0.98 0.98
-2 0.92 0.93 0.97 0.98 0.99 0.90 0.91 0.95 0.97 0.98
-1 0.88 0.89 0.95 0.97 0.98 0.84 0.85 0.92 0.95 0.97
0 0.80 0.82 0.90 0.95 0.98 0.73 0.75 0.85 0.92 0.96

∆j,R4/∆j,R2: relative performances of Weighted Principal components
-4 0.98 0.98 0.99 1.00 1.00 0.96 0.98 0.99 1.00 1.00
-3 0.96 0.97 0.99 1.00 1.00 0.95 0.96 0.99 1.00 1.00
-2 0.94 0.96 0.99 1.00 1.00 0.93 0.95 0.99 1.00 1.00
-1 0.90 0.92 0.98 0.99 1.00 0.86 0.89 0.97 0.99 1.00
0 0.81 0.84 0.94 0.98 1.00 0.75 0.78 0.91 0.97 1.00

∆j,R4/∆j,R3: relative performances of the Kalman filter with cross-sectional homoscedasticity
-4 1.00 0.99 0.99 0.99 1.00 1.00 0.97 0.97 0.98 0.99
-3 0.99 0.99 0.98 0.99 0.99 1.00 0.97 0.96 0.98 0.98
-2 0.99 0.98 0.98 0.98 0.99 0.98 0.96 0.96 0.97 0.98
-1 0.98 0.98 0.98 0.98 0.99 0.97 0.96 0.96 0.96 0.97
0 0.97 0.98 0.99 0.97 0.98 0.96 0.96 0.94 0.95 0.96

We compute the distance for each repetition and then compute the averages (∆̄t,R).
Table 1 summarizes the results of the Montecarlo experiment for one common fac-

tors r = 1 and the following specification: ρ = .9, d = .5, τ = .5, u = .1.
We report the following measures of performance for the last 5 observations to

analyze how data availability affects the estimates. The Kalman filter with cross-
sectional heteroscedasticity R4 is used as a benchmark and we report ∆̄T−j,R4. The
smaller the measure, the more accurate are the estimates of the common factors. In
addition, we report ∆̄T−j,R4/∆̄T−j,R1, ∆̄T−j,R4/∆̄T−j,R2,∆̄T−j,R4/∆̄T−j,R3. A number
smaller then 1 indicates that the projection under R4 is more accurate.

Results show five main features:

1. For any j fixed, ∆̄T−j,R4 decreases as n and T increase, that is the precision of
the estimated common factors increases with the size of the cross-section n and
the sample size T .

2. For any combination of n and T , ∆̄T−j,R4 increases as j decreases, reflecting the
fact that the more numerous are the available data, the higher the precision of
the common factor estimates.

3. ∆̄T−j,R4 < ∆̄T−j,R3 < ∆̄T−j,R2 < ∆̄T−j,R1, for all n, T, j. This result indicates
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that the less miss-specified is the model used for the projection, the more accurate
are the estimated factors. This suggests that taking into account cross-sectional
heteroskedasticity and the dynamic of the common factors helps extracting the
common factor.

4. For any combination of n and T , ∆̄T−j,R4/∆̄T−j,R ( for R = R1 to R3) decreases
as j decreases. That is, the efficiency improvement is more relevant when it is
harder to extract the factors (i.e. the less numerous are the available data).

5. As n, T increase ∆̄T−j,R4/∆̄T−j,R tends to one, for all j and for R = R1 to R3;
that is the performance of the different estimators tends to become very similar.
This reflects the fact that all the estimates are consistent for large cross-sections.

Summarizing, the two steps estimator of approximate factor models works well in
finite sample. Because it models explicitly dynamics and cross-sectional heteroscedas-
ticity, it dominates principal components. Efficiency improvements are relevant when
the factor extraction is difficult, that is, when the available data are less numerous.

6 Conclusions

We have shown (n, T ) consistency and rates of common factors estimated via a two step
procedure whereby, in the first step, the parameters of a dynamic approximate factor
model are first estimated by a OLS regression of the variables on principal components
and, in the second step, given the estimated parameters, the factors are estimated by
the Kalman smoother.

This procedure allows to take into account, in the estimation of the factors, both
factor dynamics and idiosyncratic heteroskedasticity, features that are likely to be rel-
evant in the panels of data typically used in empirical applications in macroeconomics.

Our empirical analysis shows a slight improvement for n small which however dis-
appears in a panel of medium size (n = 70).

The parametric approach studied in this paper provides the theoretical justification
for two applications of factor models in large cross-sections: treatment of unbalanced
panels (Giannone, Reichlin, and Sala, 2004; Giannone, Reichlin, and Small, 2005) and
estimation of shocks in structural factor models (Giannone, Reichlin, and Sala, 2004).
The approach can also be used to evaluate estimation uncertainty around the common
factors as in the papers just cited.
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manuscript, Université Libre de Bruxelles, 2005a.

Mario Forni, Marc Hallin, Marco Lippi, and Lucrezia Reichlin. The generalized dynamic
factor model: identification and estimation. Review of Economics and Statistics, 82:
540–554, 2000.

Mario Forni, Marc Hallin, Marco Lippi, and Lucrezia Reichlin. The generalized dynamic
factor model: consistency and rates. Journal of Econometrics, 119:231–245, 2004.

Mario Forni, Marc Hallin, Marco Lippi, and Lucrezia Reichlin. The generalized dynamic
factor model: one-sided estimtion and forecasting. Journal of the American Statistical
Association, 100:830–840, 2005b.

Mario Forni and Marco Lippi. The generalized dynamic factor model: representation
theory. Econometric Theory, 17:1113–1141, 2001.

Mario Forni and Lucrezia Reichlin. Federal policies and local economies: Europe and
the us. Journal of Financial Economics, 45:109–134, 2001.

19



John F. Geweke and Kenneth J. Singleton. Maximum likelihood “confirmatory” factor
analysis of economic time series. International Economic Review, 22:37–54, 1980.

Domenico Giannone, Lucrezia Reichlin, and Luca Sala. Monetary policy in real time.
In Mark Gertler and Kenneth Rogoff, editors, NBER Macroeconomics Annual, pages
161–200. MIT Press, 2004.

Domenico Giannone, Lucrezia Reichlin, and David Small. Nowcasting gdp and inflation:
the real-time informational content of macroeconomic data releases. Finance and
Economics Discussion Series 2005-42, Board of Governors of the Federal Reserve
System (U.S.), 2005.

D. N. Lawley and A. E. Maxwell. Factor Analysis as a Statistical Method. Butterworths,
1963.

Danny Quah and Thomas J. Sargent. A dynamic index model for large cross-section. In
James Stock and Mark Watson, editors, Business Cycle, pages 161–200. Univeristy
of Chicago Press, 1992.

James. H. Stock and Mark. W. Watson. Forecasting using principal components from
a large number of predictors. Journal of the American Statistical Association, 97:
147–162, 2002a.

James. H. Stock and Mark. W. Watson. Macroeconomic forecasting using diffusion
indexes. Journal of Business and Economics Statistics, 20:147–162, 2002b.

James. H. Stock and Mark. W. Watson. An empirical comparison of methods for
forecasting using many predictors. Unpublished manuscript, 2005.

Halbert White. Maximum likelihood estimation of misspecified models. Econometrica,
50:1–25, 1982.

20



A Appendix

A.1 Consistency of Kalman Smoothing: population results

Notice first that, as stressed in Section 2, Gt has the same stochastic properties as Ft.
In particular:

∑+∞
h=−∞ ‖Φ0(h)‖ < +∞ and

∑+∞
h=−∞Φ0(h) is an invertible matrix.

Let us denote :

Gt/T,R = ProjΩR
0
[Gt|Xs, s ≤ T ] =

T∑

s=1

Ms

(
Gt, ΩR

0

)
Xs

We want to show that Gt/T,R is a consistent estimate of Gt and that this property is
true even if ΩR

0 is misspecified due to the fact that the true matrix Ψ0 is a non-diagonal
matrix and the idiosyncratic components are autocorrelated.

We use the following notations:

- P0 = D
−1/2
0 Λ0, so that P0 and Λ0 span the same subspaces and P ′

0P0 = Ir,

- XT = (X ′
1, ...X

′
T )′, GT = (G′

1, ...G
′
T )′, ZT = (ξ′1, ...ξ′T )′,

- M
(
Gt,ΩR

0

)
=

(
M1

(
Gt, ΩR

0

)
, ..., MT

(
Gt, ΩR

0

))
,

- E denotes the expectation of a random variable, under the true model Ω0,

- EΩR
0

denotes the expectation of a random variable, when ΩR
0 is the model which

is considered,

- when (Yt) is a stationary process: ΓY (h) = E(YtY
′
t−h) and ΓY,R(h) = EΩR

0
(YtY

′
t−h).

With these notations:
XT = (IT ⊗ Λ0)GT + ZT ,

M
(
Gt, ΩR

0

)
= EΩR

0
(GtX′

T )(EΩR
0
(XTX′

T ))−1,

and : Gt/T,R = M
(
Gt, ΩR

0

)
XT = EΩR

0
(GtX′

T )(EΩR
0
(XTX′

T ))−1XT .

Before proving the proposition, we finally introduce a last notation, in order to simplify

the calculations. When (Yt) is a stationary process and YT = (Y ′
1 , ...Y

′
T )′, we denote:

ΣY = E(YTY′
T ) and ΣY,R = EΩR

0
(YTY′

T )

so that we can finally write:

Gt/T,R = EΩR
0
(GtX′

T )Σ−1
X,RXT

Notice that, when R = R3 or R = R4, the DGP of (Gt) is correctly specified, so
that ΣG = ΣG,R. On the contrary, ΣZ,R is not equal to ΣZ .

Before proving the proposition, we need the following results:
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Lemma 1 Under assumptions A1, A2, A3’, A4, A5, CR1, CR2 and CR3, the follow-
ing properties hold for R = R3 and R = R4:

i) EΩR
0
(GtX′

T ) = (ΓG,R(t− 1)Λ′0, ...,ΓG,R(t− T )Λ′0) = ΣG,R(IT ⊗ Λ′0)

ii) ΣX,R = (IT ⊗ Λ0)ΣG,R(IT ⊗ Λ′0) + IT ⊗Ψ0R

where Ψ0,R3 = Γξ,R3(0) = ψ̄0In and Ψ0,R4 = Γξ,R4(0) = diag(ψ0,11, ...ψ0,nn)

iii) ΣG,R = ΣG, ‖ΣG‖ = O(1) and ‖Σ−1
G ‖ = O(1)

iv) ‖ΣZ‖ = O(1)

Proof
i) As Xt = Λ0Gt + ξt, we get: XT = (IT ⊗ Λ0)GT + ZT .

It then immediately follows from assumptions (A3) and (A4) that:

EΩR
0
(GtX′

T ) = EΩR
0
(GtG′

T )(IT ⊗ Λ′0)

where: EΩR
0
(GtG′

T )(IT ⊗ Λ′0) = (ΓG,R(t− 1)Λ′0, ...,ΓG,R(t− T )Λ′0).

ii) It also follows from assumptions (A3) and (A4) that:

ΣX,R = EΩR
0
(XTX′

T ) = (IT ⊗ Λ0)EΩR
0
(GTG′

T )(IT ⊗ Λ′0) + EΩR
0
(ZTZ′T )

= (IT ⊗ Λ0)ΣG,R(IT ⊗ Λ′0) + ΣZ,R

Further, as (ξt) is supposed to be a white noise in both ΩR3 and ΩR4 specifications, we
also have

ΣZ,R = IT ⊗ Γξ,R(0) = IT ⊗Ψ0R

iii) We have already noticed that, when R = R3 or R = R4, the model is correctly
specified for (Gt), so that ΣGR = ΣG.

For any ω ∈ [−π, +π], let us now denote by SG(ω) the spectral density matrix of
(Gt) calculated in ω. In order to show the two announced properties, it is sufficient to
show that if:

m = Minω∈[−π,+π]λmin(SG(ω)) and M = Maxω∈[−π,+π]λmax(SG(ω))

then: 2πm ≤ λmin(ΣG) and 2πM ≥ λmax(ΣG).

Indeed, as we know, from assumption (A3), that m > 0 and M < ∞, the result will
then follow from the fact that:

‖ΣG‖ = λmax(ΣG) and ‖(ΣG)−1‖ =
1

λmin(ΣG)
.

In order to show this property, we generalize to the r-dimensionnal process (Gt) the
proof which is given by Brockwell and Davis, 1987 (proposition 4.5.3) in the univariate
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case.

If x = (x′1, ...x′T )′ is a non-random vector of IRrT such that: ‖x‖2 =
∑T

t=1 ‖xt‖2 = 1,
we can write:

x′ΣGx =
∑T

t=1

∑T
τ=1 x′tΓG(t− τ)xτ =

∑T
t=1

∑T
τ=1 x′tΦ0(t− τ)xτ

We thus get:

x′ΣGx =
∑

1≤t,τ≤T

x′t

(∫ +π

−π
SG(ω)e−iω(t−τ)dω

)
xτ

=
∫ +π

−π


 ∑

1≤t,τ≤T

x′tSG(ω)xτe
−iω(t−τ)


 dω

=
∫ +π

−π


 ∑

1≤t≤T

x′te
−iωt


 SG(ω)


 ∑

1≤τ≤T

xτe
iωτ


 dω

∈

m

∫ +π

−π
‖

∑

1≤t≤T

x′te
−iωt‖2dω, M

∫ +π

−π
‖

∑

1≤t≤T

x′te
−iωt‖2dω




Now:
∫ +π

−π
‖

∑

1≤t≤T

x′te
−iωt‖2dω =

∫ +π

−π


 ∑

1≤t,τ≤T

x′te
−iωtxτe

−iωτ


 dω

=
∑

1≤t,τ≤T

∫ +π

−π
x′txτe

−iω(t−τ)dω = 2π
∑

1≤t≤T

x′txt = 2π
∑

1≤t≤T

‖xt‖2 = 2π

We thus obtain that any eigenvalue of ΣG belongs to [2πm, 2πM ], which gives the an-
nounced result.

iv) For any ω ∈ [−π, +π], let us now denote by Sξ(ω) the spectral density matrix
of (ξt) calculated in ω. If x = (x1, ...xn)′ is a non-random vector of Cn such that:
‖x‖2 = x′x̄ = 1, we have:

x′Sξ(ω)x̄ =
1
2π

∑

h∈ZZ

x′Γξ(h)eiωhx̄ =
1
2π

∑

h∈ZZ

x′Ψ0(h)eiωhx̄

so that:
|x′Sξ(ω)x̄| ≤ 1

2π

∑

h∈ZZ

|x′Ψ0(h)x̄| ≤ 1
2π

∑

h∈ZZ

‖Ψ0(h)‖

It then results from assumption (CR2) that for any n, and for any ω ∈ [−π, +π]:
λmaxSξ(ω) ≤ 1

2π λ̄ so that

Maxω∈[−π,+π]λmax(Sξ(ω)) ≤ 1
2π

λ̄

Applying the same result as in (iii), we then get:

‖Σξ,R‖ ≤ λ̄
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Proof of Proposition 1

From lemma 1 (ii), we know that: ΣX,R = (IT ⊗ Λ0)ΣG,R(IT ⊗ Λ′0) + ΣZ,R.

Using the same kind of formula as the formula we have used to calculate Σ−1
0 , it

can be easily checked that:

Σ−1
X,R = Σ−1

Z,R − Σ−1
Z,R(IT ⊗ Λ0)

(
Σ−1

G,R + (IT ⊗ Λ′0)Σ
−1
Z,R(IT ⊗ Λ0)

)−1
(IT ⊗ Λ′0)Σ

−1
Z,R

Using the fact that Σ−1
Z,R = IT ⊗Ψ−1

0,R, we then get:

(IT ⊗ Λ′0)Σ
−1
X,R = IT ⊗ Λ′0Ψ

−1
0,R − IT ⊗ Λ′0Ψ

−1
0,RΛ0(Σ−1

G,R + IT ⊗ Λ′0Ψ
−1
0,RΛ0)−1IT ⊗ Λ′0Ψ

−1
0,R

=
(
Σ−1

G,R + IT ⊗ Λ′0Ψ
−1
0,RΛ0 − IT ⊗ Λ′0Ψ

−1
0,RΛ0

)
(Σ−1

G,R + IT ⊗ Λ′0Ψ
−1
0,RΛ0)−1IT ⊗ Λ′0Ψ

−1
0,R

= Σ−1
G,R(Σ−1

G,R + IT ⊗ Λ′0Ψ
−1
0,RΛ0)−1IT ⊗ Λ′0Ψ

−1
0R

Then, as:
Gt/T,R = EΩR

0
(GtG′

T )(IT ⊗ Λ′0)Σ
−1
X,RXT

we get:

Gt/T,R = EΩR
0
(GtG′

T )Σ−1
G,R(Σ−1

G,R + IT ⊗ Λ′0Ψ
−1
0RΛ0)−1(IT ⊗ Λ′0Ψ

−1
0R)XT

Finally, if we denote by U′
t the (r × rT ) matrix defined by: U′

t = (0, ...Ir, 0...0), we
have: EΩR

0
(GtG′

T ) = EΩR
0
(U′

tGTG′
T ) = U′

tΣG,R so that:

Gt/T,R = U′
tΣG,RΣ−1

G,R(Σ−1
G,R + IT ⊗ Λ′0Ψ

−1
0RΛ0)−1(IT ⊗ Λ′0Ψ

−1
0R)XT

= U′
t(Σ

−1
G,R + IT ⊗ Λ′0Ψ

−1
0RΛ0)−1(IT ⊗ Λ′0Ψ

−1
0R)XT

Before proving the proposition, let us first recall a relation, which we use in that proof
as well as in others. If A and B are two square invertible matrices, it is possible to
write write: B−1 −A−1 = B−1(A−B)A−1, so that the relation:

(A + H)−1 = A−1 − (A + H)−1HA−1 (R)

also gives a Taylor expansion of the inversion operator at order zero when H is small
with respect to A.

Using relation (R), and denoting M0 = Λ′0Ψ
−1
0RΛ0, we then get:

Gt/T,R = U′
t

(
IT ⊗M−1

0 − (Σ−1
G,R + IT ⊗M0)−1Σ−1

G,R(IT ⊗M−1
0 )

)
(IT ⊗ Λ′0Ψ

−1
0R)XT

= U′
t(IT ⊗M−1

0 Λ′0Ψ
−1
0R)XT −U′

t(Σ
−1
G,R + IT ⊗M0)−1Σ−1

G,R(IT ⊗M−1
0 Λ′0Ψ

−1
0R)XT

= M−1
0 Λ′0Ψ

−1
0RXt −U′

t(Σ
−1
G,R + IT ⊗M0)−1Σ−1

G,R(IT ⊗M−1
0 Λ′0Ψ

−1
0R)XT
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Let us denote G1
t/T,R the first term of the previous summation. We can write:

G1
t/T,R = (Λ′0Ψ

−1
0RΛ0)−1Λ′0Ψ

−1
0RXt

= (Λ′0Ψ
−1
0RΛ0)−1Λ′0Ψ

−1
0R(Λ0Gt + ξt)

= Gt + (Λ′0Ψ
−1
0RΛ0)−1Λ′0Ψ

−1
0Rξt

with:

E[‖(Λ′0Ψ−1
0RΛ0)−1Λ′0Ψ

−1
0Rξt‖2] = E

[
tr(Λ′0Ψ

−1
0RΛ0)−1Λ′0Ψ

−1
0Rξtξ

′
tΨ

−1
0RΛ0(Λ′0Ψ

−1
0RΛ0)−1

]

= tr
(
(Λ′0Ψ

−1
0RΛ0)−1Λ′0Ψ

−1
0RΨ0Ψ−1

0RΛ0(Λ′0Ψ
−1
0RΛ0)−1

)

As Ψ−1/2
0R Ψ0Ψ

−1/2
0R ≤ λmax(Ψ0)

λmin(Ψ0R)In, we get:

(Λ′0Ψ
−1
0RΛ0)−1Λ′0Ψ

−1
0RΨ0Ψ−1

0RΛ0(Λ′0Ψ
−1
0RΛ0)−1 ≤ λmax(Ψ0)

λmin(Ψ0R)
(Λ′0Ψ

−1
0RΛ0)−1

so that: E
[
‖(Λ′0Ψ−1

0RΛ0)−1Λ′0Ψ
−1
0Rξt‖2

]
= OP

(
1
n

)
by assumptions (CR1) and (CR2).

We have thus obtained:

G1
t/T,R = Gt + OP

(
1√
n

)

Turning to the second term of the summation, it can in turn be decomposed in two
parts. Indeed, as XT = (IT ⊗ Λ0)GT + ZT , we can write:

U′
t(Σ

−1
G,R + IT ⊗M0)−1Σ−1

G,R(IT ⊗M−1
0 Λ′0Ψ

−1
0R)XT = G2

t/T,R + G3
t/T,R

with:

G2
t/T,R = U′

t(Σ
−1
G,R + IT ⊗M0)−1Σ−1

G,R(IT ⊗M−1
0 Λ′0Ψ

−1
0R)(IT ⊗ Λ0)GT

= U′
t

(
Σ−1

G,R + IT ⊗M0

)−1
Σ−1

G,R(IT ⊗ (Λ′0Ψ
−1
0RΛ0)−1Λ′0Ψ

−1
0RΛ0)GT

= U′
t

(
Σ−1

G,R + IT ⊗M0

)−1
Σ−1

G,RGT

and:
G3

t/T,R = U′
t(Σ

−1
G,R + IT ⊗M0)−1Σ−1

G,R(IT ⊗M−1
0 Λ′0Ψ

−1
0R)ZT

We can write:

E
[
‖G2

t/T,R‖2
]

= tr

[
U′

t

(
Σ−1

G,R + IT ⊗M0

)−1
Σ−1

G,RE [GTG′
T ] Σ−1

G,R

(
Σ−1

G,R + IT ⊗M0

)−1
Ut

]

As E [GTG′
T ] = ΣG = ΣG,R, we then get:

E
[
‖G2

t/T,R‖2
]

= tr

[
U′

t

(
Σ−1

G,R + IT ⊗M0

)−1
Σ−1

G,R

(
Σ−1

G,R + IT ⊗M0

)−1
Ut

]
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As Σ−1
G,R ≤ λmax(Σ−1

G,R)IrT , with λmax(Σ−1
G,R) = ‖Σ−1

G,R‖, we have:

(
Σ−1

G,R + IT ⊗M0

)−1
Σ−1

G,R

(
Σ−1

G,R + IT ⊗M0

)−1 ≤ ‖Σ−1
G,R‖

(
Σ−1

G,R + IT ⊗M0

)−2

Now: Σ−1
G,R + IT ⊗M0 ≥ IT ⊗M0 so that:

(
Σ−1

G,R + IT ⊗M0

)−1 ≤ IT ⊗M−1
0 .

We then get:

E
[
‖G2

t/T,R‖2
]
≤ ‖Σ−1

G,R‖tr
[
U′

t(IT ⊗M−2
0 )Ut

]
= ‖Σ−1

G,R‖tr
[
M−2

0

]
= O

(
1
n2

)

It then follows from assumptions (CR1) and (CR3) and from lemma 1 (iii) that:

G2
t/T,R = OP

(
1
n

)

If we use the same type of properties that we have used for the study of G2
t/T,R, we can

write:

E
[
‖G3

t/T,R‖2
]

= tr

[
U′

t(Σ
−1
G,R + IT ⊗M0)−1Σ−1

G,R(IT ⊗M−1
0 Λ′0Ψ

−1
0R)ΣZ

×(IT ⊗Ψ−1
0RΛ0M

−1
0 )Σ−1

G,R(Σ−1
G,R + IT ⊗M0)−1Ut

]

We thus get:

E
[
‖G3

t/T,R‖2
]

≤ ‖Σ−1
G,R(IT ⊗M−1

0 Λ′0Ψ
−1
0R)ΣZ(IT ⊗M−1

0 Λ′0Ψ
−1
0R)Σ−1

G,R‖tr
[
U′

t(Σ
−1
G,R + IT ⊗M0)−2Ut

]

≤ ‖Σ−1
G,R‖2‖(IT ⊗M−1

0 Λ′0Ψ
−1
0R)‖2‖ΣZ‖tr

[
U′

t(Σ
−1
G,R + IT ⊗M0)−2Ut

]

From lemma 1 (iii) and (iv) we know that ‖Σ−1
G,R‖ = O(1) and ‖ΣZ‖ = O(1).

Further, using assumptions (CR1) and (CR2), we can write, as before:

tr
[
U′

t(Σ
−1
G,R + IT ⊗M0)−2Ut

]
≤ tr

[
U′

t(IT ⊗M0)−2Ut

]
= tr(M−2

0 ) = O

(
1
n2

)

and:
‖(IT ⊗M−1

0 Λ′0Ψ
−1
0R)‖ = ‖M−1

0 Λ′0Ψ
−1
0R)‖ = O

(
1√
n

)

It then follows that: E
[
‖G3

t/T,R‖2
]

= O
(

1
n3

)
, so that:

G3
t/T,R = OP

(
1

n
√

n

)

which completes the proof of the proposition.
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A.2 Consistency of PCA

Lemma 2 Under assumptions (CR1) to (CR3), (A1) to (A5), the following properties
hold, as n, T →∞:

i) 1
n‖S − Λ0Λ′0‖ = O

(
1
n

)
+ OP

(
1√
T

)

ii) 1
n‖D̂ −D0‖ = O

(
1
n

)
+ OP

(
1√
T

)

iii) n‖D̂−1 −D−1
0 ‖ = OP

(
1
n

)
+ OP

(
1√
T

)

iv) D0D̂
−1 = Ir + Op

(
1
n

)
+ Op

(
1√
T

)

Proof

i) 1
n‖S − Λ0Λ′0‖ ≤ 1

n‖S − Σ0‖+ 1
n‖Σ0 − Λ0Λ′0‖.

As Σ0 = Λ∗0Λ∗′0 + Ψ0 = Λ0Λ′0 + Ψ0, we have by assumption (CR2) :

1
n
‖Σ0 − Λ0Λ′0‖ =

1
n
‖Ψ0‖ = O

(
1
n

)

We also have:

S =
1
T

T∑

t=1

XtX
′
t = Λ0

1
T

T∑

t=1

GtG
′
tΛ
′
0 + Λ0

1
T

T∑

t=1

Gtξ
′
t +

1
T

T∑

t=1

ξtG
′
tΛ
′
0 +

1
T

T∑

t=1

ξtξ
′
t

so that:

1
n(S − Σ0) = 1

nΛ0

(
1
T

∑T
t=1 GtG

′
t − Ir

)
Λ′0 + 1

n

(
Λ0

1
T

∑T
t=1 Gtξ

′
t + 1

T

∑T
t=1 ξtG

′
tΛ
′
0

)

+ 1
n

(
1
T

∑T
t=1 ξtξ

′
t −Ψ0

)

Then, using assumptions (A3) and (CR2) and a multivariate extension of the proof
given in the univariate case by Brockwell and Davies (1991, pp226-227), it is possible
to show that:

E

(
‖ 1
T

T∑

t=1

GtG
′
t − Ir‖2

)
= O

(
1
T

)
and E

(
‖ 1
T

T∑

t=1

ξtξ
′
t −Ψ0‖2

)
= O

(
n2

T

)

so that:

‖ 1
T

T∑

t=1

GtG
′
t − Ir‖ = OP

(
1√
T

)
and ‖ 1

T

T∑

t=1

ξtξ
′
t −Ψ0‖ = OP

(
n√
T

)

It also follows from these assumptions that: ‖ 1
T

∑T
t=1 Gtξ

′
t‖ = OP

(√
n√
T

)
. Indeed, we

can write:

‖ 1
T

T∑

t=1

Gtξ
′
t‖2 = ‖ 1

T

∑

t,s

Gtξ
′
tξsG

′
s‖ ≤ tr


 1

T

∑

t,s

Gtξ
′
tξsG

′
s



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As (Gt) and (ξt) are two independent processes, we have:

E
[
tr

(
1
T

∑
t,s Gtξ

′
tξsG

′
s

)]
= tr

(
1
T

∑
t,s E(ξ′tξs)E(GtG

′
s)

)

= 1
T 2

∑
t,s tr (Ψ0(t− s)) tr (Φ0(s− t))

≤ 1
T 2

∑
t,s |tr (Ψ0(t− s)) ||tr (Φ0(s− t)) |

≤ nr
T 2

∑
t,s ‖Ψ0(t− s)‖‖Φ0(s− t)‖

= nr
T

∑T−1
h=−T+1(1− |h|

T )‖Ψ0(h)‖‖Φ0(−h)‖
≤ nr

T

∑
h∈ZZ ‖Ψ0(h)‖‖Φ0(−h)‖

≤ nr
T Maxh∈ZZ‖Ψ0(h)‖∑

h∈ZZ ‖Φ0(h)‖

We thus obtain: E
[
‖ 1

T

∑T
t=1 Gtξ

′
t‖2

]
= OP

(
n
T

)
and the result follows.

ii) D̂ is the diagonal matrix of the r first eigenvalues of S, in decreasing order.
D0 is a diagonal matrix which is equal to Λ′0Λ0. It is then also equal to the diagonal
matrix of the r first eigenvalues of Λ0Λ′0 in decreasing order.

Further, if we denote by λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A) the ordered eigenvalues of a
symmetric matrix A, we can write, from Weyl theorem, that for any j = 1, ...r :

|λj(S)− λj(Λ0Λ′0)| ≤ ‖S − Λ0Λ′0‖

(see for instance, Horn and Johnson (1990) p.181). The result then immediately follows
from (i).

iii) By assumptions (CR1) and (CR3), we know that 1
nD0 = O(1) and that

(
1
nD0

)−1
=

O(1). It then results from (ii) that the eigenvalues of 1
nD̂ and of

(
1
nD̂

)−1
are OP (1),

so that 1
nD̂ = OP (1) and

(
1
nD̂

)−1
= OP (1). The result the follows from (ii) and from

the decomposition:

n
(
D̂−1 −D−1

0

)
=

(
1
n

D̂

)−1 1
n

(
D̂ −D0

) (
1
n

D0

)−1

= OP

(
1
n

)
+ OP

(
1√
T

)

iv) D0D̂
−1 = Ir + D0

n

[(
D̂
n

)−1 −
(

D0
n

)−1
]
.

The result then follows from (iii) and assumption CR3.

Lemma 3 Let us denote Â = P̂ ′P0, with Â = (âij)1≤i,j≤r.

The following properties hold:

i) âij = OP

(
1
n

)
+ OP

(
1√
T

)
for i 6= j

ii) â2
ii = 1 + OP

(
1
n

)
+ OP

(
1√
T

)
for i = 1, ...r
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Proof

i) As SP̂ = P̂ D̂ we have P̂ = SP̂ D̂−1 and:

P̂ ′P0 = D̂−1P̂ ′SP0 = D̂−1P̂ ′ (S − Λ0Λ′0
)
P0 + D̂−1P̂ ′Λ0Λ′0P0

As Λ0 = P0D
1/2
0 , and P ′

0P0 = Ir, we have: Λ0Λ′0P0 = P0D0. We then get:

P̂ ′P0 =

(
D̂

n

)−1

P̂ ′
(

S − Λ0Λ′0
n

)
P0 +

(
D̂

n

)−1

P̂ ′P0

(
D0

n

)

As we saw in lemma 1, assumptions (CR1) and (CR3) imply that D0
n and

(
D0
n

)−1
are

O(1) and that D̂
n and

(
D̂
n

)−1
are OP (1). As P̂ ′P̂ = Ir and P ′

0P0 = Ir, it follows that

P̂ ′P0 = OP (1). Thus, lemma 1 (i) and (iii) imply that:

P̂ ′P0 = OP

(
1
n

)
+ OP

(
1√
T

)
+

(
D0

n

)−1

P̂ ′P0

(
D0

n

)
.

or equivalently that:

Â = D−1
0 ÂD0 + OP

(
1
n

)
+ OP

(
1√
T

)
.

For any i and j the previous relation states that:

âij =
d0,jj

d0,ii
âij + OP

(
1
n

)
+ OP

(
1√
T

)

For i 6= j, we assume, from assumption (A7), that d0,jj 6= d0,ii. We then obtain:

âij = OP

(
1
n

)
+ OP

(
1√
T

)
for i 6= j.

ii) To study the asymptotic behavior of âii, let us now use the relation

D̂ = P̂ ′SP̂

which implies, together with lemma 1 (i), that:

D̂

n
= P̂ ′S

n
P̂ = P̂ ′Λ0Λ′0

n
P̂ + OP

(
1
n

)
+ OP

(
1√
T

)

or, equivalently, that:

D̂

n
= P̂ ′P0

D0

n
P ′

0P̂ + OP

(
1
n

)
+ OP

(
1√
T

)

It then follows from lemma 1 (ii) that:

D0

n
= P̂ ′P0

D0

n
P ′

0P̂ + OP

(
1
n

)
+ OP

(
1√
T

)
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or equivalently that:

D0

n
= Â

D0

n
Â′ + OP

(
1
n

)
+ OP

(
1√
T

)

Thus, for i = 1, ...r:

d0,ii

n
=

r∑

k=1

d0,kk

n
â2

ik + OP

(
1
n

)
+ OP

(
1√
T

)

and:
d0,ii

n

(
1− â2

ii

)
=

∑

k 6=i

d0,kk

n
â2

ik + OP

(
1
n

)
+ OP

(
1√
T

)

From result (i), we know that âik = OP

(
1
n

)
+ OP

(
1√
T

)
for i 6= k. As D0

n = OP (1), it
then follows that:

â2
ii = 1 + OP

(
1
n

)
+ OP

(
1√
T

)
for i = 1, ...r

Lemma 4 Under assumptions (CR1) to (CR3), (A1) to (A5), P0 and P̂ can be defined
so as the following properties hold, as n, T →∞:

(i) P̂ ′P0 = Ir + OP

(
1
n

)
+ OP

(
1√
T

)

(ii) ‖P̂ − P0‖2 = OP

(
1
n

)
+ OP

(
1√
T

)

(iii) τ ′in(Λ̂− Λ0) = OP

(
1
n

)
+ OP

(
1√
T

)
, i = 1, ..., n

where τin the ith denotes the ith vector of the canonical basis in IRn.

Proof
i) We have seen before that P0 is uniquely defined up to a sign change of each of its

columns, and that this implies that Gt is uniquely defined for any t up to a sign change
of each of its components. As P̂ is also defined up to a sign change of its columns, it
is thus possible to suppose that P0 and P̂ are chosen such that the diagonal terms of
Â = P̂ ′P0 are positive. In such a case, lemma 2 (ii) implies that:

âii = 1 + OP

(
1
n

)
+ OP

(
1√
T

)
for i = 1, ...r

We then obtain from lemma 2 (i) that: P̂ ′P0 = Ir + OP

(
1
n

)
+ OP

(
1√
T

)
.

ii) Let x ∈ IRn a non-random vector such that ‖x‖ = 1. As P̂ ′P̂ = Ir and P ′
0P0 = Ir

we have:
x′(P̂ − P0)′(P̂ − P0)x = x′(2Ir − P̂ ′P0 − P ′

0P̂ )x
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It then follows from (i) that x′(P̂ − P0)′(P̂ − P0)x = OP

(
1
n

)
+ OP

(
1√
T

)
. As this is

true for any x ∈ IRn, it then follows that

‖P̂ − P0‖2 = OP

(
1
n

)
+ OP

(
1√
T

)

iii) We have P̂ = SP̂ D̂−1 and Σ0 = P0D0P
′
0 + Ψ0, so that

τ ′in(Λ̂− Λ0) = τ ′in(P̂ D̂1/2 − P0D
1/2
0 )

= τ ′in(SP̂ D̂−1/2 − P0D
1/2
0 )

= τ ′in
(
(S − Σ0)P̂ D̂−1/2 + (P0D0P

′
0 + Ψ0)P̂ D̂−1/2 − P0D

1/2
0

)

= τ ′in(S − Σ0)P̂ D̂−1/2 + τ ′inΨ0P̂ D̂−1/2 + τ ′inP0D0

(
P ′

0P̂ −D
−1/2
0 D̂1/2

)
D̂−1/2

In order to study the first term, let us first notice that: ‖τ ′in(S−Σ0)‖ =
(∑n

j=1(sij − σ0,ij)2
)1/2

.

Using the same arguments as in the proof of Lemma 2 (i), we have

E‖τ ′in(S − Σ0)‖2 ≤
n∑

j=1

E(sij − σ0,ij)2 = O

(
n

T

)

so that τ ′in(S − Σ0) = OP

(√
n√
T

)
.

As P̂ ′P̂ = Ir, we know that P̂ = OP (1). Then, using D̂−1/2 = OP

(
1√
n

)
, it follows

that:
τ ′in(S − Σ0)P̂ D̂−1/2 = OP

(
1√
T

)
.

Turning to the second term, we have: ‖τ ′inΨ0‖ ≤ ‖Ψ0‖ = O(1), by assumption
(CR2). As P̂ = OP (1) and D̂−1/2 = OP

(
1√
n

)
, we get:

τ ′inΨ0P̂ D̂−1/2 = OP

(
1√
n

)

Finally, τ ′inP0D0

(
P ′

0P̂ −D
−1/2
0 D̂1/2

)
D̂−1/2 = τ ′inΛ0D

1/2
0

(
P ′

0P̂ −D
−1/2
0 D̂1/2

)
D̂−1/2.

As V xit = ‖τ ′inΛ0‖2 + ψ0,ii, it follows from assumption (A2) that τ ′inΛ0 = O(1).

Further,
(
P ′

0P̂ −D
−1/2
0 D̂1/2

)
= OP

(
1√
n

)
+ OP

(
1√
T

)
by lemma 2(iv) and lemma

4 (i). As D̂−1/2 = OP

(
1√
n

)
and D

1/2
0 = O (

√
n), it then follows that:

τ ′inP0D0

(
P ′

0P̂ −D
−1/2
0 D̂1/2

)
D̂−1/2 = OP

(
1√
n

)
+ OP

(
1√
T

)

which completes the proof.
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Proof of proposition 2

We can write:

Ĝt −Gt = D̂−1/2P̂ ′Xt −Gt

= D̂−1/2P̂ ′ (Λ0Gt + ξt)−Gt

=
(
D̂−1/2P̂ ′P0D

1/2
0 − Ir

)
Gt + ξt

= D̂−1/2
(
P̂ ′P0 − D̂1/2D

−1/2
0

)
D

1/2
0 Gt + D̂−1/2P̂ ′ξt

Lemma 2 (iv) and lemma 4 (i) give: P̂ ′P0 − D̂1/2D
−1/2
0 = OP

(
1√
n

)
+ OP

(
1√
T

)
.

Then, applying lemma 2 (iv) a second time, and using the fact that Gt = OP (1),
we get:

D̂−1/2
(
P̂ ′P0 − D̂1/2D

−1/2
0

)
D

1/2
0 Gt = OP

(
1√
n

)
+ OP

(
1√
T

)
.

In order to study D̂−1/2P̂ ′ξt, let us first decompose ξt as: ξt = P0P
′
0ξt + P0⊥P ′

0⊥ξt

where P0⊥ is a (n × (n − r)) matrix whose columns form an orthonormal basis of the
orthogonal space of P0. We then obtain:

D̂−1/2P̂ ′ξt = D̂−1/2P̂ ′P0P
′
0ξt + D̂−1/2P̂ ′P0⊥P ′

0⊥ξt.

First, let us notice that P ′
0ξt = OP (1) and that P ′

0⊥ξt = OP (
√

n) .
Indeed, we can write:

E
(‖P ′

0ξt‖
)2 = E

(
ξ′tP0P

′
0ξt

)
= E

(
tr

(
P ′

0ξtξ
′
tP0

))
= tr

(
P ′

0Ψ0P0
) ≤ rλ1 (Ψ0) = O(1)

and E
(‖P ′

0⊥ξt‖
)2 = E

(
tr

(
P ′

0⊥ξtξ
′
tP0⊥

))
= tr

(
P ′

0⊥Ψ0P0⊥
) ≤ (n− r)λ1 (Ψ0) = O(n).

As lemma 2 (iii) implies that: D̂−1 = OP ( 1
n), we then get from lemma 4 (i) that:

D̂−1/2P̂ ′P0P
′
0ξt = OP

(
1√
n

)
.

In order to study the second term, let us first show that:

P̂ ′P0⊥ = OP

(
1
n

)
+ OP

(
1√
T

)

Indeed, if we use: P̂ = SP̂ D̂−1, we can write:

P̂ ′P0⊥ = D̂−1P̂ ′SP0⊥

As P0 and Λ0 have the same range, P ′
0⊥Λ0 = 0, so that we also have:

P̂ ′P0⊥ = D̂−1P̂ ′(S − Λ0Λ′0)P0⊥
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We then get:

P̂ ′P0⊥ =

(
D̂

n

)−1

P̂ ′S − Λ0Λ′0
n

P0⊥.

As P ′
0⊥P0⊥ = In−r, we have: P0⊥ = O(1). It then follows from lemma 2 (i) and (ii)

that:
P̂ ′P0⊥ = OP

(
1
n

)
+ OP

(
1√
T

)

Then, as D̂−1/2 = OP

(
1√
n

)
, and P ′

0⊥ξt = OP (
√

n), it follows that:

D̂−1/2P̂ ′P0⊥P ′
0⊥ξt = OP

(
1
n

)
+ OP

(
1√
T

)

which completes the proof of the proposition.
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Proof of Proposition 3
i) Since λ̂ij − λ0,ij = τ ′in

(
Λ̂− Λ0

)
τjn, the result is an immediate consequence of

Lemma 4 (iii).

ii) As Ψ̂ = S − Λ̂Λ̂′, and as Ψ0 = Σ0 − Λ0Λ′0, the result follows from (i), and from
the fact that for any (i, j): sij − σ0,ij = OP

(
1
n

)
+ OP

(
1√
T

)
.

iii) Consider the sample autocovariance of the estimated principal components

Γ̂Ĝ(h) =
1

T − h

T∑

t=h+1

ĜtĜ
′
t−h = D̂−1/2P̂ ′S(h)P̂ D̂−1/2

with S(h) = 1
T−h

∑T
t=h+1 XtX

′
t−h.

For any h, we can decompose Γ̂Ĝ(h) as:

Γ̂Ĝ(h) = D̂−1/2P̂ ′Λ0Φ0(h)Λ′0P̂ D̂−1/2 + D̂−1/2P̂ ′ (S(h)− Λ0Φ0(h)Λ′0
)
P̂ D̂−1/2

First, we can write:

D̂−1/2P̂ ′Λ0Φ0(h)Λ′0P̂ D̂−1/2 = D̂−1/2P̂ ′P0D
1/2
0 Φ0(h)D1/2

0 P ′
0P̂ D̂−1/2

It then follows from lemma 2 (iv), lemma 4 (i), and the fact that Φ0(h) = O(1) that:

D̂−1/2P̂ ′Λ0Φ0(h)Λ′0P̂ D̂−1/2 = Φ0(h) + OP

(
1
n

)
+ OP

(
1√
T

)

Then, under assumption (A3) and (CR2), it is possible to extend what has been done
in Lemma 2(i) for h = 0, and to show that: 1

n‖S(h)−Λ0Φ0(h)Λ′0‖ = OP

(
1
n

)
+OP

(
1√
T

)
.

Indeed, if we decompose S(h) as:

S(h) =
1

T − h


Λ0

T∑

t=h+1

GtG
′
t−hΛ′0 + Λ0

T∑

t=h+1

Gtξ
′
t−h +

T∑

t=h+1

ξtG
′
t−hΛ′0 +

T∑

t=h+1

ξtξ
′
t−h




we get:

1
n(S(h)− Λ0Φ0(h)Λ′0) = 1

nΛ0

(
1

T−h

∑T
t=h+1 GtG

′
t−h − Φ0(h)

)
Λ′0

+ 1
n

(
Λ0

1
T−h

∑T
t=h+1 Gtξ

′
t−h + 1

T−h

∑T
t=h+1 ξtG

′
t−hΛ′0

)

+ 1
n

(
1

T−h

∑T
t=h+1 ξtξ

′
t−h −Ψ0(h)

)
+ 1

nΨ0(h)

Then, using assumptions (A3) and (CR2) and a multivariate extension of the proof
given in the univariate case by Brockwell and Davies (1991, pp226-227), it is possible,
as in lemma 2 (i), to show that:

. E
(
‖ 1

T−h

∑T
t=h+1 GtG

′
t−h − Φ0(h)‖2

)
= O

(
1
T

)
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. E
(
‖ 1

T−h

∑T
t=h+1 ξtξ

′
t−h −Ψ0(h)‖2

)
= O

(
n2

T

)

so that:

. ‖ 1
T−h

∑T
t=h+1 GtG

′
t−h − Φ0(h)‖ = OP

(
1√
T

)

. ‖ 1
T−h

∑T
t=h+1 ξtξ

′
t−h −Ψ0(h)‖ = OP

(
n√
T

)

Using the and the same kind of arguments as we have used in lemma 2 (i), it then also
follows that:

‖ 1
T − h

T∑

t=h+1

Gtξ
′
t−h‖ = OP

(√
n√
T

)

From assumptions ((CR1), we also have: ‖Λ0‖ = O
(

1√
n

)
and ‖Ψ0(h)‖ = O (1), so

that:
1
n
‖S(h)− Λ0Φ0(h)Λ′0‖ = OP

(
1
n

)
+ OP

(
1√
T

)

Finally, as D̂−1/2P̂ ′ (S(h)− Λ0Φ0(h)Λ′0) P̂ D̂−1/2 = ( D̂
n )−1/2P̂ ′ S(h)−Λ0Φ0(h)Λ′0

n P̂ ( D̂
n )−1/2,

and D̂
n = OP (1), it follows that

D̂−1/2P̂ ′ (S(h)− Λ0Φ0(h)Λ′0
)
P̂ D̂−1/2 = OP

(
1
n

)
+ OP

(
1√
T

)

iv) Let us first recall that any VAR(p) model can be written in a VAR(1) form.
More precisely, if we denote: G

(p)
t = (G′

t, G
′
t−1, . . . , G

′
t−p+1)

′, we can write:

G
(p)
t = A

(p)
0 G

(p)
t−1 + w

(p)
t

with A
(p)
0 =




A01 A02 . . . A0p

Ir 0 . . . 0
...

...
...

0 0 . . . Ir




and w
(p)
t = (w′t, 0, . . . , 0)′.

If we denote Φ(p)
0 = EΩ0

[
G

(p)
t G

(p)′
t

]
and Φ(p)

1 = EΩ0

[
G

(p)
t G

(p)′
t−1

]
, so that:

Φ(p)
0 =




Ir Φ0(1) . . . Φ0(p− 1)
Φ′0(1) Ir . . . Φ0(p− 2)

...
...

...
Φ′0(p− 1) Φ′0(p− 2) . . . Ir




Φ(p)
1 =




Φ0(1) Φ0(2) . . . Φ0(p)
Φ′0(1) Ir . . . Φ0(p− 1)

...
...

...
Φ′0(p− 2) Φ′0(p− 3) . . . Φ0(1)




we have:
A

(p)
0 = Φ(p)

1 (Φ(p)
0 )−1
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We can define Φ̂(p)
0 and Φ̂(p)

1 having respectively the same form as Φ(p)
0 and Φ(p)

1 , with
Φ0,k replaced by Γ̂Ĝ(k) for any value of k. Then, we also have:

Â(p) = Φ̂(p)
1 (Φ̂(p)

0 )−1

where: Â(p) =




Â1 Â2 . . . Âp

Ir 0 . . . 0
...

...
...

0 0 . . . Ir




.

It thus follows from (iii) that:

‖Φ(p)
0 − Φ̂(p)

0 ‖ = OP

(
1
n

)
+ OP

(
1√
T

)
and ‖Φ(p)

1 − Φ̂(p)
1 ‖ = OP

(
1
n

)
+ OP

(
1√
T

)

We have: ‖A(p)
0 − Â(p)‖ ≤ ‖Φ(p)

1 − Φ̂(p)
1 ‖‖(Φ(p)

0 )−1‖ + ‖Φ̂(p)
1 ‖‖(Φ(p)

0 )−1 − (Φ̂(p)
0 )−1‖. If

we apply to the last term the relation (R) which has been introduced in the proof of
proposition 1, we then get:

‖A(p)
0 − Â(p)‖ = OP

(
1
n

)
+ OP

(
1√
T

)

It then follows that: ‖A0s − Âs‖ = OP

(
1
n

)
+ OP

(
1√
T

)
for any s.

Proof of Corollary 1
i) As ˆ̄ψR1 = 1

n−r trace(S − D̂) = 1
n−r trace

(
S − Λ̂Λ̂′

)
, it follows from proposition 2

(ii) that:

ˆ̄ψR1 =
1

n− r

n∑

i=1

ψ̂ii =
1

n− r

n∑

i=1

(
ψ0,ii + OP

(
1
n

)
+ OP

(
1√
T

))
= OP (1)

The result then immediately follows from the fact that D̂ = OP (n) and:

Ĝt/T,R1 = D̂−1
(
D̂ − ˆ̄ψR1Ir

)1/2
P̂ ′Xt = D̂−1

(
D̂ − ˆ̄ψR1Ir

)1/2
D̂1/2Ĝt

ii) As Λ̂R1 = P̂
(
D̂ − ˆ̄ψR1Ir

)1/2
= Λ̂D̂−1/2

(
D̂ − ˆ̄ψR1Ir

)1/2
, it then follows from (i)

that Λ̂R1 is asymptotically equivalent to Λ̂, and that all the properties which have been
obtained for Λ̂ are also true for Λ̂R1.

A.3 Consistency of weighted PCA (Ω̂R2 framework)

From Proposition 1 (iii) we know that, for any i:

ψ̂ii = ψ0,ii + OP

(
1
n

)
+ OP

(
1√
T

)
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so that λ+OP

(
1
n

)
+OP

(
1√
T

)
< ψ̂ii < λ+OP

(
1
n

)
+OP

(
1√
T

)
. Equivalently, if d and

d are two given numbers such that: 0 < d < λ and λ < d < ∞,

dIn < Ψ̂d < dIn

for any n and T , where Ψ̂d := diag(ψ̂11, ..., ψ̂nn).

ProjΩ̂R2 [Gt|Xs, s ≤ T ] =
(
Λ̂′Ψ̂−1

d Λ̂ + Φ̂−1
)−1

Λ̂′Ψ̂−1
d Xt

This estimates of the common factors are proportional to PCA on the weighted
data. More precisely, if we denote by:

- Xw
t = Ψ̂−1/2

d Xt the vector of weighted data

- Sw = 1
T

∑T
t=1 Xw

t Xw′
t the associated empirical variance-covariance matrix

- Λw
0 = Ψ̂−1/2

d Λ0

- Ψw
0 = Ψ̂−1/2

d Ψ0Ψ̂
−1/2
d

- Σw
0 = Λw

0 Λw′
0 + Ψw

0

it is straightforward to extend the previous proofs to this new case. Actually, as:
dIn < Ψ̂d < dIn, we get, for any symmetric matrix M :

1√
d
M < Ψ̂−1/2

d MΨ̂−1/2
d <

1√
d
M

Thus, the assumptions which have been made for the initial matrices Σ0,Λ0 and Ψ0

are all still valid for the matrices Σw
0 , Λw

0 and Ψw
0 . In the same way, the assumptions

which have been made for the initial data Xt are still valid for Xw
t .

A.4 Consistency of Kalman Filtering: (Ω̂R3 and Ω̂R4 framework)

Lemma 5

i) (P̂ − P0)′Ψ−1
0RP0 = OP

(
1
n

)
+ OP

(
1√
T

)

ii) P̂ ′Ψ̂−1
R P̂ − P ′

0Ψ
−1
0RP0 = OP

(
1
n

)
+ OP

(
1√
T

)

iii) ‖P̂ ′Ψ̂−1
R − P ′

0Ψ
−1
0R‖ = OP

(
1
n

)
+ OP

(
1√
T

)

iv) ‖(P̂ ′Ψ̂−1
R P̂ )−1P̂ ′Ψ̂−1

R − (P ′
0Ψ

−1
0RP0)−1P ′

0Ψ
−1
0R‖ = OP

(
1
n

)
+ OP

(
1√
T

)

v) 1
n‖Λ̂′Ψ̂−1

R Λ̂− Λ′0Ψ
−1
0RΛ0‖ = OP

(
1
n

)
+ OP

(
1√
T

)
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vi) ‖(Λ̂′Ψ̂−1
R Λ̂)−1Λ̂′Ψ̂−1

R − (Λ′0Ψ
−1
0RΛ0)−1Λ′0Ψ

−1
0R‖ = OP

(
1

n
√

n

)
+ OP

(
1√

n
√

T

)

Proof

i) Defining P0⊥ as we did in the proof of proposition 2, we can write:

(P̂ − P0)′Ψ−1
0RP0 = (P̂ − P0)′(P0P

′
0 + P0⊥P ′

0⊥)Ψ−1
0RP0

= P̂ ′P0P
′
0Ψ

−1
0RP0 − P ′

0Ψ
−1
0RP0 + P̂ ′P0⊥P ′

0⊥Ψ−1
0RP0

We have seen before (see proof of proposition 2) that:

‖P̂ ′P0⊥‖ = OP

(
1
n

)
+ OP

(
1√
T

)

As P ′
0Ψ

−1
0RP0 and P ′

0⊥Ψ−1
0RP0 are O(1), the result then follows from lemma 4 (i).

ii) P̂ ′Ψ̂−1
R P̂ − P ′

0Ψ
−1
0RP0 = P̂ ′(Ψ̂−1

R −Ψ−1
0R)P̂ + P̂ ′Ψ−1

0RP̂ − P ′
0Ψ

−1
0RP0.

As ‖P̂ ′(Ψ̂−1
R −Ψ−1

0R)P̂‖ ≤ ‖P̂‖2‖Ψ̂−1
R −Ψ−1

0R‖ = ‖Ψ̂−1
R −Ψ−1

0R‖,
and as ‖Ψ̂−1

R −Ψ−1
0R‖ = Max1≤i≤n|ψ̂−1

ii − ψ−1
0ii |, it follows from proposition 3 (ii) that

‖P̂ ′(Ψ̂−1
R −Ψ−1

0R)P̂‖ = OP

(
1
n

)
+ OP

(
1√
T

)

Further:

‖P̂ ′Ψ−1
0RP̂ − P ′

0Ψ
−1
0RP0‖ = ‖(P̂ − P0)′Ψ−1

0RP0 + P ′
0Ψ

−1
0R(P̂ − P0) + (P̂ − P0)′Ψ−1

0R(P̂ − P0)‖
≤ 2‖(P̂ − P0)′Ψ−1

0RP0‖+ ‖Ψ−1
0R‖‖P̂ − P0‖2

It then follows from lemma 4 (ii), assumption (CR2), and lemma 5 (i) that

‖P̂ ′Ψ−1
0RP̂ − P ′

0Ψ
−1
0RP0‖ = OP

(
1
n

)
+ OP

(
1√
T

)

so that (ii) follows.

iii) In the same way: ‖P̂ ′Ψ̂−1
R − P ′

0Ψ
−1
0R‖ ≤ ‖P̂ ′(Ψ̂−1

R −Ψ−1
0R)‖+ ‖(P̂ − P0)′Ψ−1

0R‖ with:

‖P̂ ′(Ψ̂−1
R −Ψ−1

0R)‖ ≤ ‖Ψ̂−1
R −Ψ−1

0R‖ = OP

(
1
n

)
+ OP

(
1√
T

)

and:
‖(P̂ − P0)′Ψ−1

0R‖ = ‖(P̂ − P0)′(P0P
′
0 + P0⊥P ′

0⊥)Ψ−1
0R‖

≤ ‖(P̂ ′P0 − Ir)P ′
0Ψ

−1
0R‖+ ‖P̂ ′P0⊥P ′

0⊥Ψ−1
0R‖

≤ ‖P̂ ′P0 − Ir‖‖P ′
0Ψ

−1
0R‖+ ‖P̂ ′P0⊥‖‖P ′

0⊥Ψ−1
0R‖

= OP

(
1
n

)
+ OP

(
1√
T

)
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iv)As ‖Ψ−1
0 ‖ = O(1) by asssumption (A4), we know from proposition 3 (ii) that

‖Ψ̂−1
R ‖ = OP (1) so that (P̂ ′Ψ̂−1

R P̂ )−1 = OP (1). We then can write:

‖(P̂ ′Ψ̂−1
R P̂ )−1P̂ ′Ψ̂−1

R − (P ′
0Ψ

−1
0RP0)−1P ′

0Ψ
−1
R ‖

= ‖(P̂ ′Ψ̂−1
R P̂ )−1(P̂ ′Ψ̂−1

R − P ′
0Ψ

−1
R )

+((P̂ ′Ψ̂−1
R P̂ )−1 − P ′

0Ψ
−1
R P0)−1)P ′

0Ψ
−1
R ‖

= ‖(P̂ ′Ψ̂−1
R P̂ )−1(P̂ ′Ψ̂−1

R − P ′
0Ψ

−1
R )

+(P̂ ′Ψ̂−1
R P̂ )−1[P ′

0Ψ
−1
R P0 − P̂ ′Ψ̂−1

R P̂ ](P ′
0Ψ

−1
R P0)−1P ′

0Ψ
−1
R ‖

≤ ‖(P̂ ′Ψ̂−1
R P̂ )−1‖‖(P̂ ′Ψ̂−1

R − P ′
0Ψ

−1
R )‖

+‖(P̂ ′Ψ̂−1
R P̂ )−1‖‖P ′

0Ψ
−1
R P0 − P̂ ′Ψ̂−1

R P̂‖‖(P ′
0Ψ

−1
R P0)−1‖‖P ′

0Ψ
−1
R ‖

The result then follows from (ii) and (iii).

v) 1
n Λ̂′Ψ̂−1

R Λ̂ = 1
nD̂1/2P̂ ′Ψ̂−1

R P̂ D̂1/2 = 1
nD̂1/2D

−1/2
0 D

1/2
0 P̂ ′Ψ̂−1

R P̂D
1/2
0 D

−1/2
0 D̂1/2.

The result then follows from lemma 2 (iv), lemma 5 (ii), and the fact that D0 = OP

(
1
n

)
.

vi) We can write:

(Λ̂′Ψ̂−1
R Λ̂)−1Λ̂′Ψ̂−1

R − (Λ′0Ψ
−1
0RΛ0)−1Λ′0Ψ

−1
0R

= D̂−1/2(P̂ ′Ψ̂−1
R P̂ )−1P̂ ′Ψ̂−1

R −D
−1/2
0 (P ′

0Ψ
−1
0RP0)−1P ′

0Ψ
−1
0R

= D̂−1/2
(
(P̂ ′Ψ̂−1

R P̂ )−1P̂ ′Ψ̂−1
R − D̂1/2D

−1/2
0 (P ′

0Ψ
−1
0RP0)−1P ′

0Ψ
−1
0R

)

Lemma 6
Denote Σ̂Ĝ,R is then the empirical counterpart ΣG,R, so that Σ̂Ĝ,R is the (rT, rT ) matrix

whose general (s, t) block entry is Γ̂Ĝ(s− t). The following properties hold:

i) ‖Σ̂Ĝ,R − ΣG,R‖ = OP

(
1
n

)
+ OP

(
1√
T

)

ii) ‖Σ̂Ĝ,R‖ = OP (1) and ‖Σ̂−1

Ĝ,R
‖ = OP (1)

iii) ‖Σ̂−1

Ĝ,R
− Σ−1

G,R‖ = OP

(
1
n

)
+ OP

(
1√
T

)

Proof

(i) If x = (x′1, ...x′T )′ is a non-random vector of IRrT such that: ‖x‖2 =
∑T

t=1 ‖xt‖2 = 1,
we can write:

x′(Σ̂Ĝ,R − ΣG,R)x =
T∑

t=1

T∑

τ=1

x′t
(
Γ̂Ĝ(t− τ)− ΓG(t− τ)

)
xτ

so that:

x′(Σ̂Ĝ,R − ΣG,R)x ≤ ∑T
t=1

∑T
τ=1 ‖xt‖‖Γ̂Ĝ(t− τ)− ΓG(t− τ)‖‖xτ‖

≤ ∑T
t=1

∑T
τ=1 ‖xt‖‖Γ̂Ĝ(t− τ)− ΓG(t− τ)‖‖xτ‖

≤ Max|h|≤(T−1)‖Γ̂Ĝ(h)− ΓG(h)‖∑T
t=1

∑T
τ=1 ‖xt‖‖xτ‖

≤ Max|h|≤(T−1)‖Γ̂Ĝ(h)− ΓG(h)‖∑T
t=1 ‖xt‖2

= Max|h|≤(T−1)‖Γ̂Ĝ(h)− ΓG(h)‖
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The result then follows from proposition 3 (iii).

(ii) Follows directly from (i) and lemma 1 (iii).

(iii) Applying relation (R) as in the proof of proposition 1, we get:

‖Σ̂−1

Ĝ,R
− Σ−1

G,R‖ ≤ ‖Σ̂−1

Ĝ,R
‖‖Σ̂Ĝ,R − ΣG,R‖‖Σ−1

G,R‖

The result the follows from (i) and (ii).

Proof of proposition 4

As Gt/t,R = ProjΩR [Gt|Xt] and Ĝt/t,R = ProjΩ̂R [Gt|Xt], they are obtained through
the same formulas so that, by construction:

Ĝt/T,R = U′
t(Σ̂

−1

Ĝ,R
+ IT ⊗ Λ̂′Ψ̂−1

R Λ̂)−1(IT ⊗ Λ̂′Ψ̂−1
R )XT

Using relation (R) as in the proof of proposition 1 (Taylor expansion at order 0),
we obtain the same kind of decomposition for Ĝt/T,R as the one we have used to study
Gt/T,R. Thus, if we denote M̂ = Λ̂′Ψ̂−1

R Λ̂, we can write: Ĝt/T,R = Ĝ1
t/T,R − Ĝ2

t/T,R −
Ĝ3

t/T,R, with:

Ĝ1
t/T,R = U′

t

(
IT ⊗ M̂−1

) (
IT ⊗ Λ̂′Ψ̂−1

R

)
XT = M̂−1Λ̂′Ψ̂−1

R Xt

Ĝ2
t/T,R = U′

t

(
Σ̂−1

Ĝ,R
+ IT ⊗ M̂

)−1
Σ̂−1

Ĝ,R

(
IT ⊗ M̂−1Λ̂′Ψ̂−1

R

)
(IT ⊗ Λ0)GT

Ĝ3
t/T,R = U′

t

(
Σ̂−1

Ĝ,R
+ IT ⊗ M̂

)−1
Σ̂−1

Ĝ,R

(
IT ⊗ M̂−1Λ̂′Ψ̂−1

R

)
ZT

Let us study separately these three terms.

If we compare the first term with G1
t/T,R, we get:

Ĝ1
t/T,R −G1

t/T,R =
((

Λ̂′Ψ̂−1
R Λ̂

)−1
Λ̂′Ψ̂−1

R −
(
Λ′0Ψ

−1
0RΛ0

)−1
Λ′0Ψ

−1
0R

)
Xt

with

‖
((

Λ̂′Ψ̂−1
R Λ̂

)−1
Λ̂′Ψ̂−1

R −
(
Λ′0Ψ

−1
0RΛ0

)−1
Λ′0Ψ

−1
0R

)
Xt‖

≤ ‖
(
Λ̂′Ψ̂−1

R Λ̂
)−1

Λ̂′Ψ̂−1
R −

(
Λ′0Ψ

−1
0RΛ0

)−1
Λ′0Ψ

−1
0R‖‖Xt‖

As Xt = OP (
√

n), it then follows from lemma 5 (v) that:

Ĝ1
t/T,R −G1

t/T,R = OP (
1
n

) + OP (
1√
T

)
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Finally, as G1
t/T,R = Gt + OP ( 1√

n
), we get:

Ĝ1
t/T,R = Gt + OP (

1√
n

) + OP (
1√
T

)

In the same way, we can write:

Ĝ2
t/T,R −G2

t/T,R = U′
t

(
Σ̂−1

Ĝ,R
+ IT ⊗ M̂

)−1
Σ̂−1

Ĝ,R

(
IT ⊗ M̂−1Λ̂′Ψ̂−1

R

)
(IT ⊗ Λ0)GT

−U′
t

(
Σ−1

G,R + IT ⊗M0

)−1
Σ−1

G,R

(
IT ⊗M−1

0 Λ′0Ψ
−1
0R

)
(IT ⊗ Λ0)GT

and:

Ĝ3
t/T,R −G3

t/T,R = U′
t

(
Σ̂−1

Ĝ,R
+ IT ⊗ M̂

)−1
Σ̂−1

Ĝ,R

(
IT ⊗ M̂−1Λ̂′Ψ̂−1

R

)
ZT

−U′
t

(
Σ−1

G,R + IT ⊗M0

)−1
Σ−1

G,R

(
IT ⊗M−1

0 Λ′0Ψ
−1
0R

)
ZT

so that: Ĝ2
t/T,R −G2

t/T,R = U′
tĤ (IT ⊗ Λ0)GT and Ĝ3

t/T,R −G3
t/T,R = U′

tĤZT with:

Ĥ = (Σ̂−1

Ĝ,R
+IT⊗M̂)−1Σ̂−1

Ĝ,R
(IT⊗M̂−1Λ̂′Ψ̂−1

R )−(Σ−1
G,R+IT⊗M0)−1Σ−1

G,R(IT⊗M−1
0 Λ′0Ψ

−1
0R)

We can also decompose Ĥ as: Ĥ = Ĥ1 + Ĥ2 + Ĥ3 with:

Ĥ1 = (Σ̂−1

Ĝ,R
+ IT ⊗ M̂)−1Σ̂−1

Ĝ,R

(
IT ⊗ (M̂−1Λ̂′Ψ̂−1

R −M−1
0 Λ′0Ψ

−1
0R)

)

Ĥ2 = (Σ̂−1

Ĝ,R
+ IT ⊗ M̂)−1(Σ̂−1

Ĝ,R
− Σ−1

G,R)(IT ⊗M−1
0 Λ′0Ψ

−1
0R)

Ĥ3 =
(
(Σ̂−1

Ĝ,R
+ IT ⊗ M̂)−1 − (Σ−1

G,R + IT ⊗M0)−1
)

Σ−1
G,R(IT ⊗M−1

0 Λ′0Ψ
−1
0R)

We then get:

‖Ĥ1‖ ≤ ‖(Σ̂−1

Ĝ,R
+ IT ⊗ M̂)−1‖‖Σ̂−1

Ĝ,R
‖‖IT ⊗ (M̂−1Λ̂′Ψ̂−1

R −M−1
0 Λ′0Ψ

−1
0R)‖

≤ ‖IT ⊗ M̂−1‖‖Σ̂−1

Ĝ,R
‖‖IT ⊗ (M̂−1Λ̂′Ψ̂−1

R −M−1
0 Λ′0Ψ

−1
0R)‖

= ‖M̂−1‖‖Σ̂−1

Ĝ,R
‖‖M̂−1Λ̂′Ψ̂−1

R −M−1
0 Λ′0Ψ

−1
0R‖

‖Ĥ2‖ ≤ ‖(Σ̂−1

Ĝ,R
+ IT ⊗ M̂)−1‖‖Σ̂−1

Ĝ,R
− Σ−1

G,R‖‖IT ⊗M−1
0 Λ′0Ψ

−1
0R‖

≤ ‖M̂−1‖‖Σ̂−1

Ĝ,R
− Σ−1

G,R‖‖M−1
0 Λ′0Ψ

−1
0R‖

‖Ĥ3‖ ≤ ‖(Σ̂−1

Ĝ,R
+ IT ⊗ M̂)−1 − (Σ−1

G,R + IT ⊗M0)−1‖‖Σ−1
G,R‖‖IT ⊗M−1

0 Λ′0Ψ
−1
0R‖

≤ ‖(Σ̂−1

Ĝ,R
+ IT ⊗ M̂)−1‖‖Σ̂−1

Ĝ,R
+ IT ⊗ M̂ − Σ−1

G,R − IT ⊗M0‖
×‖(Σ−1

G,R + IT ⊗M0)−1‖‖Σ−1
G,R‖‖M−1

0 Λ′0Ψ
−1
0R‖

≤ ‖M̂−1‖
[
‖Σ̂−1

Ĝ,R
− Σ−1

G,R‖+ ‖M̂ −M0‖
]
‖M−1

0 ‖‖Σ−1
G,R‖‖M−1

0 Λ′0Ψ
−1
0R‖

From lemma 5 (v), we get: M̂−1 = OP

(
1
n

)
. Thus, applying lemma 5 (v) and (vi),

and lemma 6, we get that:

‖Ĥi‖ = OP

(
1

n2
√

n

)
+ OP

(
1

n
√

nT

)
for i = 1 to 3
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so that ‖Ĥ‖ = OP

(
1

n2
√

n

)
+ OP

(
1

n
√

nT

)
.

As E (‖GT ‖)2 = E
(∑T

t=1 ‖Gt‖2
)

= rT , we have: ‖GT ‖ = OP

(√
T

)
so that:

‖Ĝ2
t/T,R −G2

t/T,R‖ ≤ ‖Ut‖‖Ĥ‖‖IT ⊗ Λ0‖‖GT ‖ = OP

(√
T

n2

)
+ OP

(
1
n

)

Similarly, E (‖ZT ‖)2 = E
(∑T

t=1 ‖ξt‖2
)

= Ttr(Ψ0) = O(nT ), so that:

‖Ĝ3
t/T,R −G3

t/T,R‖ ≤ ‖Ut‖‖Ĥ‖‖ZT ‖ = OP

(√
T

n2

)
+ OP

(
1
n

)

Finally, as we know, from the proof of proposition 1 that:

G2
t/T,R = OP

(
1
n

)
and G3

t/T,R = OP

(
1

n
√

n

)

we get: Ĝ2
t/T,R + Ĝ3

t/T,R = OP

(√
T

n2

)
+ OP

(
1
n

)
, so that:

Ĝt/T,R = Gt + OP

(
1√
n

)
+ OP

(
1√
T

)
+ OP

(√
T

n2

)

If limsup T√
n

3 = O(1), we then get:

Ĝt/T,R = Gt + OP

(
1√
n

)
+ OP

(
1√
T

)
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