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Abstract. This paper deals with multiobjective programming problems with in-
equality, equality and set constraints involving Dini or Hadamard differentiable func-
tions. A theorem of the alternative of Tucker type is established, and from which
Kuhn-Tucker necessary conditions for local Pareto minima with positive Lagrange
multipliers associated with all the components of objective functions are derived.

1. Introduction

The key to identifying optimal solutions of constrained nonlinear op-
timization problems is the Lagrange multiplier conditions. One of the
main approaches to establishing such multiplier condition for inequality
constrained problems is based on the dual solvability characterizations
of systems involving inequalities. Farkas initially established such a dual
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characterization for nonlinear programming problems. This dual charac-
terization is popularly known as Farkas’s lemma which can also expressed
as a so-called alternative theorem. Alternative theorems have played a
crucial role in establishing necessary optimality conditions. Many works
generalized classical theorems of the alternative such as Farkas’ Theorem,
Tucker’s Theorem, Motzkin’s Theorem and applied them to derive Fritz
John and Kuhn-Tucker necessary conditions for optimality (see, e.g., [1],
[2],[4]-[7],[9]-[14], and references therein). The classical Tucker theorem
of the alternative and its generalizations play an important role in estab-
lishing Kuhn-Tucker necessary conditions for efficiency with Lagrange
multipliers associated with all the components of objective functions to
be positive. This attracts attention of mathematicians, since if a La-
grange multiplier corresponding to some component of the objective is
equal to zero, then that component has no role in the considering neces-
sary conditions.

Maeda [13] studies Fréchet differentiable multiobjective optimization
problems with only inequality constraints and gives a Kuhn-Tucker neces-
sary conditions for a Pareto minimum with positive Lagrange multipliers
corresponding to all the components of the objective under a constraint
qualification of Guignard type. Giorgi et al [4] study several constraint
qualifications which generalize the constraint qualification introduced by
Maeda [13] and the classical ones, and derive Kuhn-Tucker necessary
conditions basing on establishing an alternative theorem for a system
comprising sublinear inequalities and linear equalities. Ishizuka [6] gives
an alternative theorem for a system containing only inequalities described
by sup-functions, and derive Kuhn-Tucker necessary conditions for prop-
erly efficient solutions of multiobjective programs with inequality type
constraints. Note that the aforementioned works are considered in finite
dimensions. Recently, Luu and Nguyen[12] have developed Kuhn-Tucker
necessary conditions for efficiency of Gâteaux differentiable multiobjec-
tive optimization problems in normed spaces involving inequality, equal-
ity and set constraints with Lagrange multipliers of the objective are all
positive by proving a theorem of the alternative to a system comprising
inequality, equality and an inclusion in normed spaces.

Motivated by the works mentioned above, this paper deals with the
generalization of classical Tucker’s theorem of the alternative to a system
comprising inequalities described by sup-functions and an inclusion to-
gether with establishing Kunh-Tucker necessary conditions for efficiency
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with positive Lagrange multipliers associated with all the components
of objective functions of directionally differentiable multiobjective opti-
mization problems involving inequality, equality and set constraints in
finite dimensions.

The paper is organized as follows. After Introduction and some pre-
liminaries, Section 3 is devoted to present a theorem of the alternative
to a system comprising inequalities described by sup-functions and an
inclusion along with its consequences. From these results, section 4 gives
Kuhn-Tucker necessary conditions for efficiency with positive Lagrange
multipliers corresponding to all the components of the objective of the
considering problem.

2. Preliminaries

Let f , g and h be mappings from Rn into Rp, Rq and Rr, respectively,
and C be a nonempty subset of Rn. Assume that f , g, h can be expressed
as follows: f = (f1, . . . , fp), g = (g1, . . . , gq), h = (h1, . . . , hr), where
fk, gj, h` : Rn → R with k ∈ I = {1, . . . , p}; j ∈ J = {1, . . . , q}; ` ∈ L =
{1, . . . r}.

We consider the following multiobjective programming problem (VP):

min f(x)

s.t gj(x) ≤ 0, j ∈ J ;

hl(x) = 0, l ∈ L;

x ∈ C.

Denote by M the feasible set of (VP)

M =
{

x ∈ C : gj(x) 6 0, h`(x) = 0, j ∈ J ; ` ∈ L
}

.

Recall that a point x ∈ M is said to be a local Pareto minimum of (VP)
if there exists a number δ > 0 such that

F ∩M ∩B(x; δ) = ∅,
where

F = {x ∈ Rn : f(x) ≤ f(x), f(x) 6= f(x)},
and B(x; δ) denotes the open ball of radius δ around x.

Definition 2.1. a)The tangent cone (or contingent cone ) to C at x ∈ C
is the following set:

T (C; x) =
{
v ∈ Rn : ∃ vn → v, ∃ tn ↓ 0+ such that x + tnvn ∈ C, ∀n

}
.
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b)The cone of sequential linear directions (or sequential radial cone )
to C at x ∈ C is the following set:

Z(C; x) =
{
v ∈ Rn : ∃ tn ↓ 0+ such that x + tnv ∈ C, ∀n

}
.

Note that both these cones are nonempty, T (C; x) is closed and Z(C; x) ⊂
T (C; x).

Let K be a cone in Rn. The polar cone to K is

K∗ = {ξ ∈ Rn| < ξ, v >≤ 0 ∀v ∈ K}.
If K is a subspace, then K∗ is the orthogonal subspace K⊥ to K. In case
K = T (C; x), K∗ is the normal cone N(C; x) to C at x.

Definition 2.2. Let f : Rn −→ Rp and x ∈ Rn.
a) The lower Dini derivative of f at x in a direction v ∈ Rn is

Df(x; v) = lim inf
t↓0+

f(x + tv)− f(x)

t
;

b) The lower Hadamard derivative of f at x in the direction v is

df(x; v) = lim inf
t↓0+,u→v

f(x + tu)− f(x)

t
.

Replacing ”liminf” by ”limsup” in a) or b), we get the upper Dini deriv-
ative Df(x; v) and the upper Hadamard derivative df(x; v),respectively,
of f at x in the direction v. In case Df(x; v) = Df(x; v) (resp. df(x; v) =
df(x; v)), we shall denote their common value by Df(x; v)(resp. df(x; v)),
which is called the Dini derivative or directional derivative (resp. Hadamard
derivative) of f at x in the direction v. The function f is said to be Dini
differentiable or directionally differentiable (resp. Hadamard differen-
tiable) at x if its Dini derivative(resp. Hadamard derivative) exists in all
directions. Note that if df(x; v) exists, then also Df(x; v) exists and they
are equal. In case f is Fréchet differentiable at x with Fréchet derivative
∇f(x), then

Df(x; v) = df(x; v) =< ∇f(x), v > .

Definition 2.3. The Dini subdifferentiable of a Dini differentiable func-
tion f : Rn −→ R at x is

∂Df(x) = {ξ ∈ Rn| < ξ, v >≤ Df(x; v) ∀v ∈ Rn}.



On necessary conditions for efficiency in directionally differentiable optimization 5

In case the function Df(x; .) is convex, there exists the subdifferen-
tiable ∂Df(x; .)(0) of this function at v = 0 in Convex Analysis sense,
and

∂Df(x) = ∂Df(x; .)(0).

This set is nonempty, convex, compact , and

Df(x; v) = max
ξ∈∂Df(x)

〈ξ, v〉.

Note that in case Df(x; .) is convex, f was called quasidifferentiable at
x by Pschenichnyi[16].

3. Theorem of the alternative

To derive necessary conditions for efficiency with all positive Lagrange
multipliers of all the components of the objective, we establish the fol-
lowing theorem of the alternative.

Theorem 3.1. Let A1, ..., Ap,, B1, ..., Bq and C be nonempty subset of
Rn. Assume that

a) K is an arbitrary nonempty closed convex subcone of T (C; x) with
vertex at the origin;

b) For each i ∈ I, the set

∪{cl co(Ai +

p∑

k=1,k 6=i

αkAk +

q∑
j=1

βjBj) : αk ≥ 0, k 6= i, βj ≥ 0}+ K∗

is closed in Rn where cl and co denote the closure and the convex hull,
respectively.

Then the two following statements are equivalent:
i) For each i ∈ {1, . . . , p}, the system

sup
ak∈Ak

〈ak, v〉 6 0, k ∈ I; k 6= i, (3.1)

sup
ai∈Ai

〈ai, v〉 < 0, (3.2)

sup
bj∈Bj

〈bj, v〉 6 0, j ∈ J, (3.3)

v ∈ K (3.4)

has no solution v ∈ Rn.
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ii) There exist λk > 0 (k ∈ I), µj > 0 (j ∈ J) such that

0 ∈ cl co(

p∑

k=1

λkAk +

q∑
j=1

µjBj) + K∗. (3.5)

Proof. (i) ⇒ (ii): Suppose that (i) holds which means that the system
(3.1)-(3.4) has no solution. For each i = 1, ..., p, we set

Di = ∪{cl co(Ai +

p∑

k=1,k 6=i

αkAk +

q∑
j=1

βjBj) : αk ≥ 0, k 6= i, βj ≥ 0}+K∗.

Then by assumption, Di is closed. Moreover,

Di = ∪{cl(coAi+

p∑

k=1,k 6=i

αkcoAk+

q∑
j=1

βjcoBj) : αk ≥ 0, k 6= i, βj ≥ 0}+K∗.

It is easy to check that the set

∪{cl(coAi +

p∑

k=1,k 6=i

αkcoAk +

q∑
j=1

βjcoBj) : αk ≥ 0, k 6= i, βj ≥ 0}

is convex,and hence, Di is convex. We now show that 0 ∈ Di(i = 1, ..., p).
If this were not so, there would exist i0 ∈ I such that 0 /∈ Di0 . Applying

strong separation theorem for a closed convex set and a point outside
that set (see, e.g.,[15,Corollary 11.4.2]) yields the existence of a vector
v ∈ Rn\{0} and a number α0 ∈ R such that

〈ξ, v〉 < α0 < 0(∀ξ ∈ Di0),

which implies that

〈ai0 , v〉+

p∑

k=1,k 6=i0

αk〈ak, v〉+

q∑
j=1

βj〈bj, v〉+ 〈ζ, v〉 < α0 < 0 (3.6)

for all ak ∈ Ak, ai0 ∈ Ai0 , bj ∈ Bj, ζ ∈ K∗, αk ≥ 0, k ∈ I, k 6= i0, βj ≥
0, j ∈ J.

Taking αk = 0 ∀ k ∈ I, k 6= i0, βj = 0, j ∈ J, ζ = 0, we obtain that

sup
ai0
∈Ai0

〈ai0 , v〉 < 0. (3.7)

We can show that
sup

bj∈Bj

〈bj, v〉 ≤ 0 (∀j ∈ J). (3.8)
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Assume the contrary, that there exists j0 ∈ J such that

sup
bj0
∈Bj0

〈bj0 , v〉 > 0,

then, by letting βj0 be large enough, we arrive at a contradiction with
(3.6). Similarly, we also get that

sup
ak∈Ak

〈ak, v〉 ≤ 0 ∀k 6= i0. (3.9)

Let us show that v ∈ K. If this were false, there would exist ζ0 ∈ K∗

such that 〈ζ0, v〉 > 0. For αk = 0 ∀ k 6= i0, βj = 0, j ∈ J, λζ0 ∈ K∗, for λ
sufficiently large, we also get a contradiction with (3.6). Hence,

〈ζ, v〉 ≤ 0,∀ζ ∈ K∗

which leads to the following

v ∈ K∗∗ = K. (3.10)

It follows readily from (3.7)-(3.10) that the system (3.1)-(3.4) has a
solution v : a contradiction. Therefore, for each i ∈ I, 0 ∈ Di . So there

exists numbers αi
k ≥ 0, β

i

j ≥ 0 with αi
i = 1 such that, for i = 1, . . . , p,

0 ∈ cl (

p∑

k=1

αi
kcoAk +

q∑
j=1

β
i

jcoBj) + K∗

as coA+coB =co(A + B).
Summing up these inclusions, we obtain

0 ∈
p∑

i=1

cl (

p∑

k=1

αi
kco Ak +

q∑
j=1

β
i

jco Bj) + K∗

⊂ cl

p∑
i=1

(

p∑

k=1

αi
kcoAk +

q∑
j=1

β
i

jcoBj) + K∗

= cl [

p∑

k=1

p∑
i=1

αi
kcoAk +

q∑
j=1

p∑
i=1

β
i

jcoBj] + K∗,

which implies that

0 ∈ cl [

p∑

k=1

λkcoAk +

q∑
j=1

µjcoBj] + K∗,

as clA+clB ⊂cl(A + B), where λk =
∑p

k=1 αi
k > 0, , µj =

∑p
i=1 β

i

j ≥ 0.
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Observing that
∑p

k=1 λkcoAk+
∑q

j=1 µjcoBj =co (
∑p

k=1 λkAk+
∑q

j=1 µjBj)

we arrive at (3.5).
(ii) ⇒ (i):Suppose that (ii) holds. This implies that there exist λk >

0, µj > 0 (k ∈ I, j ∈ J) such that (3.5) holds. We set

E = cl co[

p∑

k=1

λkAk +

q∑
j=1

µjBj] + K∗.

By assumption, 0 ∈ E. It is obviously that E is convex.
We invoke Theorem 13.1 in [15] to deduce that

sup
ζ∈E

〈ζ, v〉 ≥ 0 ∀v.

It follows from this and Theorem 32.2 in [15] that, ∀v,
p∑

k=1

λk sup
ak∈Ak

〈ak, v〉+

q∑
j=1

µj sup
bj∈Bj

〈bj, v〉+ sup
ξ∈K∗

〈ξ, v〉 ≥ 0. (3.11)

If (i) were false, there would exists i ∈ I such that the system (3.1)-
(3.4) has a solution v0 ∈ Rn. It implies that

sup
ξ∈K∗

〈ξ, v0〉 ≤ 0, (3.12)

and
p∑

k=1

λk sup
ak∈Ak

〈ak, v0〉+
s∑

j=1

µj sup
bj∈Bj

〈bj, v0〉 < 0 . (3.13)

Combining (3.12) and (3.13) yields that
p∑

k=1

λk sup
ak∈Ak

〈ak, v0〉+

q∑
j=1

µj sup
bj∈Bj

〈bj, v0〉+ sup
ξ∈K∗

〈ξ, v0〉 < 0,

which contradicts (3.11). This completes the proof. ¤

Remark 3.2. a) If the cone T (C; x) is replaced by the cone Z(C; x),
then Theorem 3.1 is still valid.

b) Theorem 3.1 is a generalization of Proposition 2.2 in [6].

For each i = 1, ..., p, we set

Ti = ∪{cl co(Ai +

p∑

k=1,k 6=i

αkAk +

q∑
j=1

βjBj) : αk ≥ 0, k 6= i, βj ≥ 0},
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and denote by coneTi the cone generated by Ti.
In case the sets Ak and Bj are compact, we obtain the following con-

sequence of Theorem 3.1.

Corollary 3.3. Let A1, ..., Ap, B1, ..., Bq be nonempty compact subset of
Rn. Assume that K is a nonempty closed convex subcone of T (C; x) with
the vertex at the origin. Suppose, in addition, that for each i ∈ I,

0 /∈ cl co(
p∪

k=1,k 6=i
Ak ∪

q∪
j=1

Bj),

and (−coneTi)∩K∗ = {0}. Then the conclusions of Theorem 3.1 hold in
which the cl in (3.5) is superfluous.

Proof. By assumption, for each i = 1, ..., p, the set Si = (
p∪

k=1,k 6=i
Ak ∪

q∪
j=1

Bj) is compact, and hence, coSi is compact. Taking account of Propo-

sition 1.4.7 [8] we deduce that the set cone(coSi) is closed. This leads
to the set

∪{co(

p∑

k=1,k 6=i

αkAk +

q∑
j=1

βjBj) : αk ≥ 0, k 6= i, βj ≥ 0} (3.14)

is closed. On the other hand, in view of the compactness of coAk and
coBj, it follows that

cl(coAi +

p∑

k=1,k 6=i

αkcoAk +

q∑
j=1

βjcoBj) =

coAi +

p∑

k=1,k 6=i

αkcoAk +

q∑
j=1

βjcoBj. (3.15)

for all αk ≥ 0, k 6= i, βj ≥ 0. It follows readily from (3.15) that

Ti = ∪{coAi +

p∑

k=1,k 6=i

αkcoAk +

q∑
j=1

βjcoBj) : αk ≥ 0, k 6= i, βj ≥ 0}

= coAi + ∪{
p∑

k=1,k 6=i

αkcoAk +

q∑
j=1

βjcoBj) : αk ≥ 0, k 6= i, βj ≥ 0}.

This along with (3.14) yields that Ti is closed. We invoke Corollary 9.1.1
[15] to deduce that Ti + K∗ is closed (i = 1, ..., p). Applying Theorem
3.1 we obtain the desired conclusions. ¤
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4. Kuhn-Tucker necessary conditions for efficiency

From the results obtained in the previous section, we shall establish
Kuhn-Tucker necessary conditions for efficiency with Lagrange multipli-
ers associated with all the components of the objective function to be
positive.

We set

J(x) = {j ∈ J : gj(x) = 0};
Q = {x ∈ C : fk(x) 6 fk(x), gj(x) 6 0, h`(x) = 0, k ∈ I, j ∈ J, ` ∈ L};
Qi = {x ∈ C : fk(x) 6 fk(x), gj(x) 6 0, h`(x) = 0, k ∈ I\{i}, j ∈ J, ` ∈ L}.

If for each v ∈ Z(C; x), Dhl(x; v) exists (` ∈ L), we put

CD(Q; x) = {v ∈ Z(C; x) : Dfk(x; v) 6 0, k ∈ I,

Dgj(x; v) 6 0, j ∈ J(x), Dh`(x; v) = 0, ` ∈ L}.
If for each v ∈ T (C; x), dhl(x; v) exists (` ∈ L), we put

Cd(Q; x) = {v ∈ T (C; x) : dfk(x; v) 6 0, k ∈ I,

dgj(x; v) 6 0, j ∈ J(x), dh`(x; v) = 0, ` ∈ L}.
Note that CD(Q; x) and Cd(Q; x) are cones with vertices at the origin.
We recall some results in [12] which will be employed in the sequel.

Proposition 4.1. [12]. Let x ∈ M.
a) If for each , v ∈ T (C; x), the Hadamard directional derivatives

dh1(x; v), ..., dhr(x; v)

exist, then
p⋂

i=1

T (Qi; x) ⊂ Cd(Q; x). (4.1)

b) If for each v ∈ Z(C; x), the Dini directional derivatives

Dh1(x; v), ..., Dhr(x; v)

exist, then
p⋂

i=1

Z(Qi; x) ⊂ CD(Q; x). (4.2)
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In general, the converse inclusions of (4.1) and (4.2) do not hold. As
also in [12], we introduce the following constraint qualifications of Abadie
type at x

Cd(Q; x) ⊂
p⋂

i=1

T (Qi; x), (4.3)

CD(Q; x) ⊂
p⋂

i=1

Z(Qi; x). (4.4)

If for each v ∈ Z(C; x), the Dini directional derivatives Dfk(x; v) and
Dhl(x; v) exist , we set

Li
D(f ; x) = {v ∈ Z(C; x) : Dfi(x; v) < 0,

Dfk(x; v) ≤ 0,∀k ∈ I, k 6= i}
LD(M ; x) = {v ∈ Z(C; x) : Dgj(x; v) ≤ 0, j ∈ J(x),

Dh`(x; v) = 0, ` ∈ L}.
If for each v ∈ T (C; x), the Hadamard directional derivatives dfk(x; v)

and dhl(x; v) exist , we set

Li
d(f ; x) = {v ∈ T (C; x) : dfi(x; v) < 0,

dfk(x; v) ≤ 0,∀k ∈ I, k 6= i}.
Ld(M ; x) = {v ∈ T (C; x) : dgj(x; v) ≤ 0, j ∈ J(x),

dh`(x; v) = 0, ` ∈ L},
where M indicates the feasible set of the Problem (VP).

Proposition 4.2. [12]. Let x be a local efficient solution of Problem
(VP). Assume that the functions gj (j /∈ J(x)) are continuous at x,
and for each v ∈ T (C; x) (resp.v ∈ Z(C; x) ), the Hadamard directional
derivatives dfk(x; v) and dhl(x; v) (resp. the Dini directional derivatives
Dfk(x; v) and Dhl(x; v)), k ∈ I, ` ∈ L, exist. Suppose, in addition, that
the constraint qualification (4.3) (resp. (4.4)) holds at x. Then, for each
i ∈ I,

Li
d(f ; x) ∩ Ld(M ; x) = ∅

(resp. Li
D(f ; x) ∩ LD(M ; x) = ∅).

To derive Kuhn-Tucker necessary conditions for efficiency of Problem
(V P ), we introduce the following assumption.
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Assumption 4.3. The functions fk , gj and hl are Dini directionally
differentiable at x ∈ Rn, and there are cl ∈ Rn and the families Fk,Gj of
nonempty sets of Rn (k ∈ I, j ∈ J(x), ` ∈ L) such that

Dfk(x; v) = inf sup
Fk∈Fk,zk∈Fk

〈zk, v〉,∀v ∈ Rn, k ∈ I, (4.5)

Dgj(x; v) = inf sup
Gj∈Gj ,zj∈Gj

〈zj, v〉, ∀v ∈ Rn, j ∈ J(x), (4.6)

Dhl(x; v) = 〈cl, v〉, ` ∈ L. (4.7)

Note that assumptions (4.5) and (4.6) were employed by Ishizuka
[6]. The class of functions directionally differentiable whose directional
derivatives have representations (4.5), (4.6) is rather wide, which con-
tains all quasidifferentiable functions in the sense of Pschnichyi [16],
Demyanov-Rubinov [3] and Ishizuka [5].

We are now in a position to formulate a Kuhn-Tucker necessary con-
dition for efficiency of Problem (VP).

Theorem 4.4. Let x be a local efficient solution of Problem (VP). Let
fk, gj, hl (k ∈ I; j ∈ J(x); ` ∈ L) be Hadamard directionally differentiable
(resp. Dini directionally differentiable) at x . Let K be an arbitrary
nonempty closed convex subcone of T (C; x) (resp. Z(C; x)) with vertex
at the origin and the functions gj (j /∈ J(x)) continuous at x. Assume
that for each i ∈ I, the following set is closed

∪{cl co(Fi +

p∑

k=1,k 6=i

αkFk +
∑

j∈J(x)

βjGj) : αk ≥ 0, k 6= i, βj ≥ 0}

+lin{cl : l ∈ L}+ K∗.

Suppose, furthermore, that the constraint qualification (4.4) (resp (4.3))
and Assumption 4.3 are fulfilled. Then, there exist λk > 0, µj > 0, ν` ∈ R
(k ∈ I; j ∈ J ; ` ∈ L) and F̃k ∈ Fk, G̃j ∈ Gj (k ∈ I; j ∈ J ; ` ∈ L) such
that

0 ∈ cl co(

p∑

k=1

λkF̃k +

q∑
j=1

µjG̃j) +
r∑

l=1

vlcl, αk + K∗, (4.8)

µjgj(x) = 0,∀j ∈ J. (4.9)

Proof. We have only to prove this theorem in case fk, gj and hl are
Hadamard differentiable. In case fk, gj and hl are Dini differentiable,
the proof is analogous.
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Taking account of Proposition 4.2, we get that for each i ∈ I,the
following system has no solution v ∈ Rn :

dfk(x, v) ≤ 0, k ∈ I\{i},
dfi(x, v) < 0,

dgj(x, v) ≤ 0, j ∈ J(x),

dhl(x, v) = 0, l ∈ L,

v ∈ K.

Since dfk(x, v), dgj(x, v) and dhl(x, v) exist, it follows that Dfk(x, v), Dgj(x, v)
and Dhl(x, v) also exist and they are equal. Hence, the following system
has no solution solution v ∈ Rn :

Dfk(x, v) < 0, k ∈ I, (4.10)

Dgj(x, v) < 0, j ∈ J(x), (4.11)

Dhl(x, v) = 0, l ∈ L, (4.12)

v ∈ K. (4.13)

By Assumption 4.3, the inequalities (4.10)-(4.12) imply that there exist

F̃k ∈ Fk, G̃j ∈ Gj and cl ∈ Rn(k ∈ I; j ∈ J(x); ` ∈ L) such that

sup
zk∈F̃k

〈zk, v〉 < 0, k ∈ I,

sup
zj∈G̃j

〈zk, v〉 < 0, j ∈ J(x),

〈cl, v〉 = 0, ` ∈ L.

The last equalities can be rewritten as follows

〈cl, v〉 ≤ 0, 〈−cl, v〉 ≤ 0, ` ∈ L. (4.14)

It is obvious that

∪{cl co(Fi+

p∑

k=1,k 6=i

αkFk+
∑

j∈J(x)

βjGj) : αk ≥ 0, k 6= i, βj ≥ 0}+lin{cl : l ∈ L} =

∪{cl co(Fi+

p∑

k=1,k 6=i

αkFk+
∑

j∈J(x)

βjGj+
r∑

l=1

γlcl) : αk ≥ 0, k 6= i, βj ≥ 0, γl ∈ R}.

Consequently, apply Theorem 3.1 to the system comprising (4.10),(4.11),(4.13),(4.14)
and deduce that there exist λk > 0, µj > 0 ,γ+

` ≥ 0, γ−` ≥ 0 (k ∈ I; j ∈
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J(x); ` ∈ L) such that

0 ∈ cl co(

p∑

k=1

λkF̃k +
∑

j∈J(x)

µjG̃j +
r∑

l=1

(γ+
` cl + γ−` (−cl))) + K∗.

By setting γ` = γ+
` − γ−` , ` ∈ L, one has

0 ∈ cl co(

p∑

k=1

λkF̃k +
∑

j∈J(x)

µjG̃j) +
r∑

l=1

γ`cl + K∗. (4.15)

By taking µj = 0 for j /∈ J(x),we get (4.9). Then, (4.15) implies that
(4.8) holds, which completes the proof. ¤

In case directional derivatives are convex in directional variable, we
get the following theorem.

Theorem 4.5. Let x be a local efficient solution of Problem (VP). Let
fk, gj, hl (k ∈ I; j ∈ J ; ` ∈ L) be Hadamard directionally differentiable
(resp. Dini directionally differentiable) at x, where dfk(x, .) and dgj(x, .)
(resp. Dfk(x, .), Dgj(x, .)) are convex, (k ∈ I; j ∈ J(x)) and dhl(x, .)
(resp. Dhl(x, .)), l ∈ L, be linear, which is given by dhl(x, .) = 〈cl, v〉
(resp.Dhl(x; v) = 〈cl, v〉), ` ∈ L. Let K be an arbitrary nonempty closed
convex subcone of T (C; x) (resp. Z(C; x)) with vertex at the origin and
the functions gj (j /∈ J(x)) continuous at x. Assume that for each i ∈ I,
the following set is closed

Li = coneco(
p∪

k=1,k 6=i
∂Dfk(x)) + coneco( ∪

j∈J(x)
∂Dgj(x))

+lin{cl : l ∈ L}+ K∗.

Suppose also that the constraint qualification (4.4) (resp (4.3)) is fulfilled.
Then, there exist λk > 0, µj > 0 ,ν` ∈ R (k ∈ I; j ∈ J ; ` ∈ L) such that

0 ∈
p∑

k=1

λk∂Dfk(x) +

q∑
j=1

µj∂Dgj(x) +
r∑

l=1

vlcl + K∗ (4.16)

µjgj(x) = 0, j ∈ J. (4.17)

Proof. As in the proof of Theorem 4.4, we have only to prove this the-
orem in case fk, gj, hl (k ∈ I; j ∈ J ; ` ∈ L) be Hadamard directionally
differentiable, while the remainder is similarly proved.

Since dfk(x, v), dgj(x, v) and dhl(x, v) exist, Dfk(x, v), Dgj(x, v) and
Dhl(x, v) also exist and they are equal. In view of the convexity of
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Dfk(x, .) and Dgj(x, .), the Dini subdifferentials ∂Dfk(x) and ∂Dgj(x)
are nonempty, convex , compact, and

Dfk(x, v) = max
ξ∈∂Dfk(x)

〈ξ, v〉, k ∈ I,

Dgj(x, v) = max
ξ∈∂Dgj(x)

〈ξ, v〉, j ∈ J(x).

By assumption, Li is closed, i ∈ I,and hence, ∂Dfi(x) + Li is also closed,
which means that for each i ∈ I, the set

∪{cl (∂Dfi(x) +

p∑

k=1,k 6=i

αk∂Dfk(x) +
∑

j∈J(x)

βj∂Dgj(x)) : αk ≥ 0, k 6= i, βj ≥ 0}

+lin{cl : l ∈ L}+ K∗

is closed. According to Theorem 4.4 , there exist λk > 0, µj > 0 ,ν` ∈ R
(k ∈ I; j ∈ J ; ` ∈ L) such that (4.17) holds, and

0 ∈ cl co (

p∑

k=1

λk∂Dfk(x) +

q∑
j=1

µj∂Dgj(x)) +
r∑

l=1

vlcl + K∗. (4.18)

Since the set
p∑

k=1

λk∂Dfk(x) +

q∑
j=1

µj∂Dgj(x)

is closed convex, (4.18) implies (4.16). ¤

Remark 4.6. In case C = Rn and h1, ..., hr are Fréchet differentiable,
from Theorem 4.5 above we obtain Theorem 4.3 [4] as a special case.
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