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1 Introduction
The purpose of the environmental economics is to examine the relations between
the (local or entire) economy and the environment. From the early 1950s, the
Washington DC environmental and resource economics organization (called “Re-
sources for the Future”) has examined many economic problems linked to envi-
ronmental protection: regulation of water pollution illustrated for the Delaware
River system by Kneese and Bower (1968), natural resources control by Barnett
and Morse (1968), the concept of value beyond simple use introduced by Krutilla
(1967). Safirova, Hourde, Lipman, Harrington and Baglino (2006) also analyze
the regional long-term impacts (at the city level) of congestion pricing as a way
to alleviate congestion and its environmental impacts. This paper takes a long
term and general perspective ignoring the more focus issues (in particular those
related to consumer behavior with respect to the environment - see, e.g. the
discussion of de Palma and Pahaut, 1996 on this issue).
As mentioned in Kolstad (2000), many important questions arise.
How should the economy activity be regulated in order to reach specific envi-

ronmental goals? What is the right balance between the industrial production,
which is necessary for the economic development and the reduction of pollution,
which has a social value (but also to some extend, an economic value) ?
Among several such questions, several financial problems arise: How could

one evaluate the costs of pollution controls? For example, what is the fair value
of carbon emission fees? How a given firm can allocate its wealth between
production capacity (for instance, energy) and environmental investments, such
as pollution fees? Such questions are difficult to handle since they are embedded
in a risky or uncertain environment. Moreover, market are often incomplete.
We propose here a model which take into account both the benefit (or utility)

of consumption as well as the utility derived from the quality of the environment.
The quality of the environment can influence indirectly the utility of individual
consumption (for example, the enjoyment of leisure good can be reduced if the
air is polluted). However, environmental quality has also an direct effect on
individual utility (one could be concerned by the quality of the environment per
se, with respect to the future generation, etc.).
Using a standard microeconomic approach of the environment, we can con-

sider a given society of individual consumers i having preferences on both a
material good g and an environmental quality level e. In the Von Neumann and
Morgenstern framework, these preferences are represented by utility functions
Ui(g, e). The trade-off between g and e is determined by expected utility max-
imization. Based on Pareto criterion, the choice of the whole society might be
represented by a social welfare function analogous to an individual utility func-
tion. However, if the environment is not sufficiently valued by individuals who
are rather selfish materialists than biocentrists, policy makers can provide right
incentives to control environmental risks such as global warming. This problem
is due to the market failure of the public provision of non-market goods. It is
in line with the criticism of the utilitarian criterion suggested by Sagoff (1994):
Should public policy be only determined from individual preferences, without
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introducing a concept of "what is right"?
To solve such dilemma, we propose in this paper to introduce specific hedging

constraints.
At a given horizon, the environmental quality e will have to be above a mini-

mal level. The production of the material good also may satisfy such constraint:
for a developed economy, many individuals will not accept to reduce their con-
sumption beyond some level, and for developing country, natural resources for
example will have to be exploited to guarantee sufficient wealth.
The production of the material good and the control of environmental quality

can be based on investment on both financial and environmental assets. Then,
this management problem is similar to a portfolio optimization problem with or
without insurance conditions. Portfolio insurance payoff provides for a benefit
payable at maturity. It gives the investor the ability to limit downside risk while
allowing some participation in upside markets. The portfolio payoff is a function
of the value at maturity of some specified portfolio of common assets. Such
portfolio management has been introduced by Leland and Rubinstein (1976)
who considered a portfolio invested in a risky asset S, usually a financial index
such as the S&P, covered by a listed put written on it. The comparison between
main insurance methods with various criteria has been examined for example in
Black and Perold (1992), Bookstaber and Langsam (2000), Bertrand and Prigent
(2001). Most portfolio optimization models consider an investor who maximizes
the expected utility of his terminal wealth, by trading in continuous time (see
for example Cox and Huang (1989) or Cvitanic and Karatzas (1996)). The
continuous-time setup is also usually introduced to study portfolio insurance
(see for example, Grossman and Vila (1989), Basak (1995) or Grossman and
Zhou (1996)). The key assumption is that markets are complete: all portfolio
profiles at maturity can be perfectly hedged. The optimal positioning problem
has also been addressed in the partial equilibrium framework by Leland (1980)
and Brennan and Solanki (1981). The value of the portfolio is a function of the
common assets and crucially depends on the investor’s risk aversion. Following
this approach, Carr and Madan (1998) consider markets in which exist out-
of-the-money European puts and calls of all strikes. As they mentioned, this
assumption allows to examine the optimal positioning in a complete market and
is the counterpart of the assumption of continuous trading. This approximation
is justified when there is a large number of option strikes (e.g. for the S&P500,
for example).
In this paper, we analyze the optimal hedging investment among financial

and environmental assets. They are determined for two main cases. It can
be applied, for example, to model the choice of a firm which must allocate its
capital between energy investment and pollution fees. It can also be used to
model the social trade-off between material good production and environmental
investment.
In the first case, it is assumed that the two bundles can be substituted: they

are considered as purely monetary amounts. At any time, the “investor” can
buy or sell one of these assets to buy or sell the other. For example, a firm can
simultaneously trade on energy and pollution fees such as carbon emission fees.
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In the second case, the investment problem is split into two parts. The
“investor” trades on two separate funds: one fund for the production of material
good which can be for instance a purely financial investment, and the other fund
is devoted to the environmental quality. For example, a social planner may have
to choose between investment for global production and a environmental non-
market good.
In Section 2, a review of basic results about insurance portfolio optimization

is provided . In Section 3, fundamental examples are detailed. In particular, we
examine optimal portfolios for the Cobb-Douglas utility functions. Concluding
comments are presented in Section 4.

2 Optimal Insured Portfolio
In what follows, some of the main investment optimization results with hedging
constraints are recalled (see Prigent (2007) for an overview of the portfolio
optimization problems).

2.1 The financial market and the environmental asset

Assume that the financial market is complete, arbitrage free and frictionless.
Asset values are supposed to follow continuous-time diffusion processes. Finan-
cial markets can be assumed to be complete by introducing two sources of risk.
As shown by Duffie and Huang (1985), continuous-time rebalancing allows such
assumption of dynamic market completeness.
Asset prices dynamics are defined by:

(1) Cash:
dCt

Ct
= rtdt, (1)

where the instantaneous interest rate r follows a diffusion process. For example,
rt may be an Ornstein-Uhlenbeck process given by:

drt = ar(br − rt)dt− σrdW1,t, (2)

where ar, br and σr are positive constants and W1 is a standard Brownian
motion. The market price of interest rate risk is assumed to be constant (see
Vasicek (1977)).
(2) Stock index:

dSt
St

= (rt + θS(t, St))dt+ σ1(t, St)dW1,t + σ2(t, St)dW2,t. (3)

(3) Environmental investment:

dIt
It
= (rt + θI(t, It))dt+ δ1(t, It)dW1,t + δ2(t, It)dW2,t, (4)
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where W1 and W2 are two independent standard Brownian motion. The diffu-
sion coefficients σ1, σ2, δ1, δ2 are assumed to be positive functions which satisfy
usual assumptions so that the above stochastic differential equations have one
and only one solution1. The parameter θS is the risk premium of the stock, and
θI is the risk premium of the environmental investment.

The volatility matrix
µ

σ1(t, St) σ2(t, St)
δ1(t, It) δ2(t, It)

¶
is assumed to be invertible.

Therefore, the market is complete and there exists a unique risk-neutral
probability Q associated to two market risk premia, λ and λr, with density η
with respect to the initial probability P given by:

ηt = exp

∙
−
Z t

0

(λ1,tdW1,t + λ2,tdW2,t)− 1/2
Z t

0

(λ21,t + λ22,t)dt

¸
.

The premia λ and λr are determined from the relation:

θS(t, St) = σ1(t, St)λ1,t + σ2(t, St)λ2,t,

θI(t, It) = δ1(t, It)λ1,t + δ2(t, It)λ2,t.

2.2 Optimal payoffs as functions of a benchmark

We suppose that the investor determines an optimal payoff h which is a function
defined on all possible values of the assets (C,S, I) at maturity. Since the market
is complete, this payoff can be achieved by the investor.

Remark 1 The market can be complete for example if the financial market
evolves in continuous-time and all options can be dynamically replicated by a
perfect hedging strategy. This is the previous assumption on the three assets.
It can still be complete if for example, in one period setting, European options
of all strikes are available on the market. In this setting, the inability to trade
continuously potentially induces investment in cash, asset I, asset S and all
European options with underlying I and S (if cash and environmental asset are
non stochastic, only European options on S are required). The market can be
also incomplete. In that case, the solution given in this section is only “theoret-
ical” but still interesting to know since the optimal payoff can be approximated
by investing on traded assets (in practice, the investor defines an approximation
method, which may take transaction costs or liquidity problems into account).

According to the investor’s risk aversion and horizon, the investor chooses the
weights to invest on financial and environmental assets. The resulting portfolio
value (Vt)t is self-financing. It means that the process (Vt exp(−

R t
0
rsds))t is a

Q-martingale where Q is the risk-neutral probability.
Denote by η = dQ

dP the Radon-Nikodym derivative of Q with respect to the

1See for example Jacod and Shiryaev (2003) for sufficient conditions such as Lipshitz and
linear growth.
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historical probability P. Denote also by MT the process ηT exp(−
R T
0
rsds).

Due to the no-arbitrage condition, the budget constraint corresponds to the
following relation:

V0 = EQ[VT exp(−
Z T

0

rsds)] = EP[VTMT ].

Assume that the investor wants to maximize an expected utility under the
statistical probability P. As usual, the utility U of the investor is supposed to be
increasing, concave and twice-differentiable. Suppose as in Karatzas, Lehoczky,
Sethi and Shreve (1986) that the marginal utility U 0 satisfies:

limo+U
0 = +∞ and lim+∞U 0 = 0.

Denote by J the inverse of the marginal utility U 0.

2.2.1 The non insured portfolio

This subsection is an extension of the results in Brennan and Solanki (1981)
or Carr and Madan (1997) to more general markets. It provides an overview
of results in Prigent (2006). Consider an investor who wants to maximize the
expected utility of his terminal wealth. Under the standard condition of no-
arbitrage, the assets prices are calculated under risk neutral probabilities. If
markets exist for out-of-the-money European puts and calls of all strikes, then
it implies the existence of an unique risk-neutral probability that may be iden-
tified from option prices (see Breeden and Litzenberger (1978)). Otherwise, if
there is no continuous-time trading, generally the market is incomplete and a
one particular risk-neutral probability Q is used to price the options. It is also
possible that stock prices change continuously but the market may be still dy-
namically incomplete. Again, it is assumed that one risk-neutral probability is
selected. Assume that prices are determined under such measure Q. Denote by
dQ
dP the Radon-Nikodym derivative of Q with respect to the historical probability
P. Denote by ηT the discount factor and by MT the product ηT

dQ
dP .

Due to the no-arbitrage condition, the budget constraint corresponds to the
following relation :

V0 = EQ[h(CT , ST , IT )ηT ] = EP[h(CT , ST , IT )MT ].

The investor has to solve the following optimization problem:

MaxhEP[U(h(CT , ST , IT )] under V0 = EP[h(CT , ST , IT )MT ]. (5)

To simplify the presentation of the main results, we suppose as usual that the
function h fulfils: Z

IR+3

h2(c, b, s)P(CT ,ST ,IT )(dc, ds, di) <∞ .
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It means that h ∈ L2(R+3,PXT
(dx)) where XT = (CT , ST , IT ) which is the

set of the measurable functions with squares that are integrable on R+3 with
respect to the distribution PXT (dx).

With the utility function U is associated a new functional ΦU which is defined
on the space L2(R+3,PXT (dx)) by:

For any Y ∈ L2(R+3,PXT (dx)), ΦU (Y ) = EPXT [U(Y )].

ΦU is usually called the Nemitski functional associated with U (see for ex-
ample Ekeland and Turnbull (1983) for definition and basic properties). From
the properties of the utility function U , the Nemitski functional ΦU is concave
and differentiable on L2(R+3,PXT ). Besides, the budget constraint is a linear
function of h. So there exists exactly one solution he. The function he is the
solution of ∂L

∂h = 0 where the Lagrangian L is defined by :

L(h, λ) =

Z
R+3
[U(h(x))]PXT (dx) + λ

µ
V0 −

Z
R+3

h(x)g(x)PXT (dx)

¶
.

The parameter λ is the Lagrange multiplier associated to the budget constraint.
Thus, he satisfies: U 0(he) = λg. Therefore, he = J(λg).

Proposition 2 Introduce the conditional expectation ofMT under the σ-algebra
generated by (CT , ST , IT ). Denote it by g. Assume that g is a function defined
on the set of the values of XT = (CT , ST , IT ). and g ∈ L2(R+3,PXT ).
Then, the optimization problem is reduced to:

Maxh∈L2(R+3,PXT )

Z
R+3
[U(h(x))]PXT (dx) (6)

under : V0 =
Z
R+3

h(x)g(x)PXT (dx).

We deduce that the optimal payoff he is given by:

he = J(λg), (7)

where λ is the scalar Lagrange multiplier such that

V0 =

Z
IR+3

J(λg(x))g(x)PXT (dx).

Suppose for example that there exist only cash and environmental assets.
Then, the properties of the optimal payoff h∗ as function of the benchmark I
can be analyzed. Since the utility function U is concave, the marginal utility
U 0 is decreasing, then J is also decreasing, from which we deduce:
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Corollary 3 The function h∗ is an increasing function of the environmental IT
if and only f the conditional expectation g of dQdP under the σ-algebra generated by
IT is a decreasing function of IT . More precisely: assume that g is differentiable.
From the optimality conditions, the derivative of the optimal payoff is given by:

h0(i) =

µ
− U 0(h(i))

U 00(h(i))

¶
×
µ
−g(i)

0

g(i)

¶
.

Remark 4 In most cases, g is decreasing. Introduce the tolerance of risk
To(h(i)) equal to the inverse of the absolute risk-aversion:

To(h(i)) = −
U 0(h(i))

U 00(h(i))

As it can be seen, h0(i) depends on the tolerance of risk. The design of the
optimal payoff can also be specified. Denote Y (i) = −g0(i)

g(i) . Assuming that g is
twice-differentiable, we have:

h00(i) = [X 0(h(i)) +
Y 0(i)

Y (i)2
]× [X(h(i))Y 2(i)]. (8)

Differentiating twice with respect to i, and from previous corollary, we deduce
the result. Therefore, usually, higher is the tolerance of risk, higher is h”(i).

2.2.2 The insured portfolio

This section presents a generalization of Prigent (2006) to the case of two sto-
chastic assets. We assume now that the investor wants a specific guarantee.
This one can be required to get an additional insurance against risk or to reach
a sufficiently high environmental quality level. Such guarantee can be mod-
elled by letting a function h0 defined on the possible values of the assets ST
and IT . Whatever the value of XT = (ST , IT ), the investor wants to get a
final portfolio value above the floor h0(XT ). For instance, if h0 is linear, with
h0(s, i) = (ass+ bs, aii+ bi, ), then, when the asset Y falls, the investor is sure
of getting at least b (equal to a fixed percentage of his initial investment) and if
the asset Y rises, he make profits out of the rises at a percentage a.

The general solution The optimal payoff with insurance constraints on the
terminal wealth is solution of the following problem:

MaxhEP[U(h(XT )] (9)

V0 = EP[h(XT )MT ]

h(XT ) ≥ h0(XT )
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As it can be seen, the initial investment V0 must be higher than EP[h0(XT )MT ]
if the insurance constraint must be satisfy. To solve this optimization problem,
introduce the sets

K1 = {h ∈ L2(R+3,PXT )|V0 = EP[h(XT )MT ]},

and
K2 = {h ∈ L2(R+3,PXT

)|h ≥ h0}.
The setK = K1∩K2 is a convex set of L2(R+3,PXT

). Consider the following
indicator function of K, denoted by δK and defined by:

δK(h) =

½
0 if h ∈ K,
+∞ if h /∈ K.

Since K is closed and convex, δK is lower semi-continuous and convex. Denote
by ∂δK the subdifferential of δK (see for example Ekeland and Turnbull(1983)
for definition and properties of subdifferentials)). The optimization problem is
equivalent to:

Maxh (E[U(h(XT )]− δK(h)) (10)

The optimality conditions leads to (similar proof as in Prigent (2006)):

Proposition 5 There exists a scalar λc and a function hc defined on L2(IR+3, PXT )
such that:

h∗ = J(λcg + hc), (11)

where λc is solution of :

y?, V0 =

Z ∞
0

J [yg(x) + hc(x)]g(x)f(x)dx. (12)

and hc ∈ ∂δK2(h
∗)

The optimal payoff h∗ can be determined by introducing the unconstrained
optimal payoff he associated to the modified coefficient λc (i.e. he = J(λcg) ).
λc can also be considered as a Lagrange multiplier associated to a non insured
optimal portfolio but with a modified initial wealth. When he is greater than the
hedging floor h0, then h∗ = he. Otherwise, h∗ = h0. Indeed, the optimal payoff
is given by:

h∗ =Max(h0, h
e). (13)

Generally, as mentioned previously, h0 is increasing and he also. Therefore, the
optimal payoff is an increasing function of the components of XT = (ST , IT ).

To illustrate such results in the one-dimensional case, assume for instance
that the utility function of the individual is a CRRA utility and there exist only
two assets: the cash and the environmental asset.

U(i) =
iα

α
,
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with 0 < α < 1 from which we deduce J(i) = i
1

α−1 .

Suppose that the interest rate r is constant and that the environmental asset
value (It)t follows a geometric Brownian motion. Then, (It)t is given by:

It = I0 exp
£
(µ− 1/2σ2)t+ σWt

¤
.

Introduce the following parameters:

θ =
µ− r

σ
, A = −1

2
θ2T +

θ

σ
(µ− 1

2
σ2)T, ψ = eA(I0)

θ
σ , and κ =

θ

σ
.

Recall that in this framework, the conditional expectation g of dQdP under the
σ-algebra generated by IT is given by:

g(i) = ψi−κ.

Therefore, he(i) satisfies:

he(i) = d× im with d = cψ
1

α−1 and m =
κ

1− α
> 0. (14)

Then, if there is no insurance constraint, the optimal payoff is given by:

he(i) =
V0e

rTR∞
0

g(i)
α

α−1 f(i)di
× g(i)

1
α−1 . (15)

If the insurance constraint is required then the optimal payoff must be solu-
tion of

MaxhE
∙
(h(IT ))

α

α

¸
V0 = e−rTE[h(IT )] and h(IT ) ≥ h0(IT ) (16)

Then:

Proposition 6 The optimal payoff with guarantee is given by:

h∗ = (λcg + hc)
1

α−1 , (17)

where λc is solution of:

y?, V0e
rT =

Z ∞
0

[yg(i) + hc(i)]
1

α−1 g(i)f(i)di, (18)

and hc is a negative function satisfying the property of previous corollary.
Assume as usual that h0 is increasing and continuous, then the optimal payoff
is an increasing continuous function of the benchmark at maturity.
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Corollary 7 If there is no insurance constraint, the concavity/convexity of the
optimal payoff is determined by the comparison between the risk-aversion and
the ratio κ = µ−r

σ2 which is the Sharpe ratio divided by the volatility σ.
i) he is concave if κ < 1− α.
ii) he is linear if κ = 1− α.
iii) he is convex if κ > 1− α.

Remark 8 As it can be seen, the graph of the optimal payoff changes from
concavity to convexity according to the increase of the risk-aversion of the in-
dividual. If for example, the insurance constraint is linear (h0(i) = ai + b), it
looks like the unconstrained case’s one, except when h∗ is equal to the constraint
h0.

Consider the dynamically complete case where the environmental asset value
follows the usual geometric Brownian motion. The concavity/convexity of the
optimal payoff depends on the comparison between the Sharpe type ratio µ−r

σ2

and the risk aversion (1 − α).
If κ < 1− α, h∗∗ is concave.

If κ > 1− α, h∗∗ is convex.
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Remark 9 We can also consider a restricted case: a portfolio with cash and
an environmental asset, and only a finite number of options written on it. In
that case, if the guaranteed payoff is linear, the optimal (polygonal) payoff is
still convave/convex according to the degree of risk aversion.

3 Basic examples
All the previous properties are illustrated in the following examples.
In what follows, we assume that the diffusion coefficients of the asset prices

are linear functions.
- The cash value is defined by:

dCt

Ct
= rdt, (19)

where the instantaneous riskless interest rate r is constant.
- The stock index and the environmental investment are given by:

dSt
St

= (r + θS)dt+ σ1dW1,t + σ2dW2,t. (20)

dIt
It
= (r + θI)dt+ δ1dW1,t + δ2dW2,t, (21)

where W1 and W2 are two independent standard Brownian motions, and where
σ1, σ2, δ1, δ2 are positive constants. The parameter θS is the constant risk
premium of the stock, and θI is the constant risk premium of the environmental
investment.
From Equation (30), the stock price is equal to:

St = S0 exp

∙µ
r + θS −

1

2

¡
σ21 + σ22

¢¶
t+ σ1W1,t + σ2W2,t

¸
,
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and, from Equation (21), the environmental asset has the following value:

It = I0 exp

∙µ
r + θI −

1

2

¡
δ21 + δ22

¢¶
t+ δ1W1,t + δ2W2,t

¸
.

Since the market is complete, there exists a unique risk-neutral probability
Q associated to two market risk premia, λ1 and λ2, with density η with respect
to the initial probability P given by:

ηt = exp
£
− (λ1W1,t + λW2,t)− 1/2(λ21 + λ22)t

¤
.

The premia λ1 and λ2 are determined from the relation:

θS = σ1λ1 + σ2λ2,

θI = δ1λ1 + δ2λ2.

Denote by d the determinant of the previous linear system:

d = σ1δ2 − σ2δ1.

Lemma 10 Introduce the functions At and Bt defined by:

At =

µ
r + θS −

1

2

¡
σ21 + σ22

¢¶
t,

Bt =

µ
r + θI −

1

2

¡
δ21 + δ22

¢¶
t.

Therefore, we have:

ln

∙
St
S0

¸
−At = σ1W1,t + σ2W2,t,

ln

∙
It
I0

¸
−Bt = δ1W1,t + δ2W2,t.

We deduce:

W1,t =
1

d

∙
δ2

µ
ln

∙
St
S0

¸
−At

¶
− σ2

µ
ln

∙
It
I0

¸
−Bt

¶¸
,

W2,t =
1

d

∙
−δ1

µ
ln

∙
St
S0

¸
−At

¶
+ σ1

µ
ln

∙
It
I0

¸
−Bt

¶¸
.

Thus, the process η is given by:

ηt = exp
£
− (λ1W1,t + λ2W2,t)− 1/2(λ21 + λ22)t

¤
=

∙
St
S0

¸ −λ1δ2+λ2δ1
d

∙
It
I0

¸ λ1σ2−λ2σ1
d

exp

∙
At

µ
λ1δ2 − λ2δ1

d

¶
+Bt

µ
−λ1σ2 + λ2σ1

d

¶¸
exp

£
−1/2(λ21 + λ22)t

¤
.
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3.1 Example 1 (global optimization)

Consider an investor having a utility function U defined on the amount AC,S

invested on the financial assets and on the environmental amount AI .
The investor’s utility U is supposed to be increasing, concave and twice-

differentiable with respect to its two arguments. Assume also that both marginal
utilities ∂U(.,y)

∂x and ∂U(x,.)
∂y satisfy: ∀(x, y),

limx→o+
∂U (., y)

∂x
= +∞ and limx→+∞

∂U (., y)

∂x
= 0, (22)

limy→o+
∂U (x, .)

∂y
= +∞ and limy→+∞

∂U (x, .)

∂y
= 0.

Denote by Jx(., A
I∗
T ) and Jy(A

C,S∗
T , .) the inverse of the marginal utilities

∂U(x,AI∗T )
∂x and

∂U(AC,S∗T ,y)
∂y , respectively.

Proposition 11 Under previous assumptions on the utility function and the
stock and environmental assets, the optimal portfolio solution

¡
A
C,S

T , AI
T

¢∗
sat-

isfies the two following relations:

A
C,S

T = Jx(aηT , A
I∗
T ) and A

I
T = Jy

³
AC,S∗
T , aηT

´
.

If U(x, y) = xα

α
yβ

β with 0 < α < 1, 0 < β < 1 and 0 < α + β < 1, then V ∗T
is a function of asset values ST and IT given by:

V ∗T = V0 × S

−λ1δ2+λ2δ1
d(α+β−1)

T I

λ1σ2−λ2σ1
d(α+β−1)

T × f(T ),

where f(.) is a deterministic function.

Proof. We have to solve the following optimization problem:

Maxθ EP[U(AC,S
T , AI

T )] under A
C,S
T ≥ aC,ST and AI

T ≥ aIT .

The global investment value is given by:

VT = AC,S
T +AI

T .

Due to market completeness, this problem is equivalent to:

Max(AC,ST ,AIT )
EP[U(AC,S

T , AI
T )] (23)

under V0 = e−rTEQ[VT ]. (24)

1) Consider the solution
³
AC,S∗∗
T , AI∗∗

T

´
of the free problem (without terminal

constraint). This solution must satisfy:

∂U
³
AC,S∗∗
T , AI∗

T

´
∂x

= aηT =
∂U

³
AC,S∗
T , AI∗

T

´
∂y

,

14



where the Lagrangian parameter a is such that V ∗0 = e−rTEQ[V ∗T ].
Then,

³
AC,S∗
T , AI∗

T

´
is solution of the following system:

AC,S∗
T = Jx(aηT , A

I∗
T ),

AI∗
T = Jy

³
AC,S∗
T , aηT

´
.

For the special case U(x, y) = xα

α
yβ

β , we deduce:

∂U (x, y)

∂x
= xα−1

yβ

β
,
∂U (x, y)

∂y
=

xα

α
yβ−1,

and

Jx(u, y) =

µ
βu

yβ

¶ 1
α−1

, Jy(x, v) =
³αv
xα

´ 1
β−1

.

Therefore, we have:

AC,S∗
T = (aηT )

1
α+β−1 α

β
α+β−1β

1−β
α+β−1 , (25)

AI∗
T = (aηT )

1
α+β−1 α

1−α
α+β−1β

α
α+β−1 . (26)

The initial investment condition is equivalent to:

V0 = e−rTEQ
h
(aηT )

1
α+β−1

³
α

β
α+β−1β

1−β
α+β−1 + α

1−α
α+β−1β

α
α+β−1

´i
,

which implies that the Lagrangian multiplier b is given by:

a =

⎛⎜⎜⎝ V0e
rT³

α
β

α+β−1β
1−β

α+β−1 + α
1−α

α+β−1β
α

α+β−1
´
EP
∙
η
1+ 1

α+β−1
T

¸
⎞⎟⎟⎠
(α+β−1)

,

with

EP
∙
η
1+ 1

α+β−1
T

¸
= exp

"
1

2

α+ β

(α+ β − 1)2
¡
λ21 + λ22

¢
T

#
.

Therefore, the portfolio value is equal to

V ∗T = (aηT )
1

α+β−1
³
α

β
α+β−1β

1−β
α+β−1 + α

1−α
α+β−1β

α
α+β−1

´
.

Consequently,

V ∗T = V0 ×
µ
ST
S0

¶(−λ1δ2+λ2δ1d(α+β−1) )µIT
I0

¶ λ1σ2−λ2σ1
d(α+β−1)

× f(T ),

15



with

f(T ) = exp

∙
rT +AT

µ
λ1δ2 − λ2δ1
d (α+ β − 1)

¶
+BT

µ
−λ1σ2 + λ2σ1
d (α+ β − 1)

¶¸
(27)

× exp
"
−(2α+ 2β − 1) (λ

2
1 + λ22)

2 (α+ β − 1)2
T

#
.

Remark 12 Both optimal investments AC,S∗
T and AI∗

T (respectively on C,S and
I) are functions of ST and IT . This is due to the dynamic strategy which is
based on a simultaneous trade on both the financial and environmental assets.
At any time, the investor can rebalance his portfolio by transferring any amount
from one asset to the other one.

Remark 13 The optimal initial amounts are given by

AC,S∗
0 = e−rTEQ[AC,S∗

T ] = e−rT
³
α

β
α+β−1β

1−β
α+β−1

´µ
a

1
α+β−1EP[η

α+β
α+β−1
T ]

¶
,

AI∗
0 = e−rTEQ[AI∗

T ] = e−rT
³
α

1−α
α+β−1β

α
α+β−1

´µ
a

1
α+β−1EP[η

α+β
α+β−1
T ]

¶
,

with

a
1

α+β−1 =
V0e

rTEP[η
α+β

α+β−1
T ]³

α
β

α+β−1β
1−β

α+β−1 + α
1−α

α+β−1β
α

α+β−1
´
EP[η

α+β
α+β−1
T ]

,

Then, we have:

AC,S∗
0 = V0

α

α+ β
and AI∗

0 = V0
β

α+ β
. (28)

Therefore, both optimal weights AC,S∗
0 /V0 and AI∗

0 /V0 are respectively equal to
the ratios defined from the exponents of the Cobb-Douglas utility α

α+β and
β

α+β .

Additionally, the ratio AI∗
0 /AC,S∗

0 is equal to β
α .

- The ratio of the optimal amounts at maturity AC,S∗
T and AI∗

T also is equal
to β

α .

Remark 14 Assume that the utility function of the individual is only defined
on the portfolio value VT (selfish materialist). Under the previous assumptions
on the stock and environmental assets, the optimal portfolio V ∗T is solution is
given by:

V ∗T = J(bηT ),

where J is the inverse of the marginal utility and b is the Lagrangian parameter
associated to the budget condition:

V0 = e−rTEQ[V ∗T ].

16



If U(x) = xα

α with 0 < α < 1 (CRRA utility), then V ∗T is a function of asset
values ST and IT given by:

V ∗T = V0 ×
µ
ST
S0

¶ −λ1δ2+λ2δ1
d(α−1)

µ
IT
I0

¶ λ1σ2−λ2σ1
d(α−1)

× g(T ),

where g(.) is a deterministic function defined by:

g(T ) = exp

∙
rT +AT

µ
λ
1δ2 − λ2δ1
d (α− 1)

¶
+BT

µ
−λ

1σ2 + λ2σ1
d (α− 1)

¶¸
× exp

"
−1/2(2α− 1) (λ

2
1 + λ22)

(α− 1)2
T

#
.

If hedging constraints are introduced, the optimization problem is:

Max(AC,ST ,AIT )
EP[U(AC,S

T , AI
T )] (29)

under AC,S
T ≥ aC,ST and AI

T ≥ aIT ,

with

V0 = e−rTEQ[VT ] ≥ e−rTEQ[aC,ST + aIT ].

Proposition 15 The solution of Problem (29) is given by (see Relation (13)):

AC,S∗c
T = Max

h
(aηT )

1
α+β−1 α

β
α+β−1β

1−β
α+β−1 , aC,ST

i
,

and

AI∗c
T = Max

h
(aηT )

1
α+β−1 α

1−α
α+β−1β

α
α+β−1 , aIT

i
.

Remark 16 The two previous optimal amounts are call options written on the
same underlying asset which is the product of two powers of both the financial

and environmental assets S
(−λ1δ2+λ2δ1d(α+β−1) )
T I

λ1σ2−λ2σ1
d(α+β−1)

T . The “strikes” are respec-
tively the hedge amounts aC,ST and aIT . More precisely, we have:

AC,S∗c
T = aC,ST +Max

"
S
(−λ1δ2+λ2δ1d(α+β−1) )
T I

λ1σ2−λ2σ1
d(α+β−1)

T f(T )
α

α+ β
− aC,ST , 0

#
,

and

AI∗c
T = aIT +Max

"
S
(−λ1δ2+λ2δ1d(α+β−1) )
T I

λ1σ2−λ2σ1
d(α+β−1)

T f(T )
β

α+ β
− aIT , 0

#
.

17



3.2 Example 2 (separate optimization)

Assume now that investments on the risky financial asset S and on the envi-
ronmental asset I cannot be substituted. At initial date, the investor splits his
endowment V0 into two parts: the first one is invested into a financial portfolio;
the second one is used to trade on the environmental asset.
Assets S and I are assumed to be driven by two independent Brownian

motions W1 and W2:

dSt
St

= (r + θS)dt+ σ1dW1,t. (30)

dIt
It
= (r + θI)dt+ δ2dW2,t, (31)

where σ1 and δ2 are non negative constants.
Since the two markets are complete, there exist two unique risk-neutral prob-

ability Q1 and Q2 associated to two market risk premia, eλ1 and eλ2, with density
η1 and η2 with respect to the initial probability P given by:

η1,t = exp
h
−eλ1W1,t − 1/2eλ21ti ,

η2,t = exp
h
−eλ2W2,t − 1/2eλ22ti ,

where the premia λ1 and λ2 are determined from the relation:

θS = σ1eλ1 and θI = δ2eλ2.
Denote by Ei [X(W1,W2)] the expectation with respect to the Brownian

motion Wi :

E1 [X(W1,W2)] =

Z
X(W1,W2)dW1,

E2 [X(W1,W2)] =

Z
X(W1,W2)dW2.

Denote respectively by eJx(., AI∗∗
T ) and eJy ³AC,S∗∗

T , .
´
the inverse of the ex-

pected marginal utilities E2
∙
∂U(x,AI∗∗T )

∂x

¸
and E1

∙
∂U(AC,S∗∗T ,y)

∂y

¸
.

Proposition 17 (no hedging constraint) Under previous assumptions on the
stock and environmental assets, the optimal portfolio solution is a function of
asset values S and I given by:

A
C,S∗∗
T = eJx(a1η1,T , AI∗∗

T ) and AI∗∗
T = eJy ³AC,S∗∗

T , a2η2,T

´
.
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If U(x, y) = xα

α
yβ

β with 0 < α < 1 and 0 < β < 1, then V ∗∗T is a function of
asset values ST and IT given by:

V ∗∗T = S

λ
1

σ1(1−α)

T fA1(T ) + I

λ
2

δ2(1−β)

T fA2(T ),

where f1(.) and f2(.) are two deterministic functions.

Proof. The global investment value is given by:

VT = AC,S
T +AI

T .

Due to market completeness, this problem is equivalent to:

Max(AI0,AC,ST ,AIT )
EP[U(AC,S

T , AI
T )] (32)

under (33)

AC,S
0 = e−rTEQ1 [A

C,S
T ] and AI

0 = e−rTEQ2 [AI
T ]. (34)

1) First step: For fixed initial investmentAI
0, consider the solution

³
AC,S∗∗
T , AI∗∗

T

´
of the free problem (without guarantee constraint). This solution must satisfy:

E2

⎡⎣∂U
³
AC,S∗∗
T , AI∗∗

T

´
∂x

⎤⎦ = a1η1,T ,

E1

⎡⎣∂U
³
AC,S∗∗
T , AI∗∗

T

´
∂y

⎤⎦ = a2η2,T ,

where a1 and a2 are the Lagrangian parameters associated to the two budget
constraints.
Then,

³
AC,S
T , AI

T

´∗∗
is solution of the following system:

AC,S∗∗
T = eJx(a1η1,T , AI∗∗

T ),

AI∗∗
T = eJy ³AC,S∗∗

T , a2η2,T

´
.

For the special case U(x, y) = xα

α
yβ

β , note that, by independence,

E
h
U
³
AC,S
T , AI

T

´i
= E1

⎡⎣
³
AC,S
T

´α
α

⎤⎦E2 "¡AI
T

¢β
β

#
.

Thus, the functions eJx and eJy satisfy:
eJx(u) =

⎛⎜⎜⎝ u

E2
∙
(AIT )

β

β

¸
⎞⎟⎟⎠

1
α−1

, eJy(x) =
⎛⎜⎜⎝ v

E1
∙
(AC,ST )

α

α

¸
⎞⎟⎟⎠

1
β−1

.
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Note also that, for this special case, we can separately maximize E1
∙
(AC,ST )

α

α

¸
and E2

∙
(AIT )

β

β

¸
for given initial investments (respectively V0 −AI

0 and AI
0).

Therefore, we deduce:

AC,S∗∗
T =

¡
a1η1,T

¢ 1
α−1 and AI∗∗

T =
¡
a2η2,T

¢ 1
β−1 ,

where the two Lagrangian parameters are determined from conditions:

V0 −AI
0 = e−rTEQ1

h
AC,S∗∗
T

i
and AI

0 = e−rTEQ2
£
AI∗∗
T

¤
.

We have:

a1 =

Ã ¡
V0 −AI

0

¢
erT

exp(12
α

(α−1)2T )

!α−1

and a2 =

Ã
AI
0e

rT

exp(12
β

(β−1)2T )

!β−1

Introduce the functions eAt and eBt defined by:

eAt =

µ
r + θS −

1

2
σ21

¶
t,

eBt =

µ
r + θI −

1

2
δ22

¶
t.

Therefore, we have:

ln

∙
St
S0

¸
− eAt = σ1W1,t,

ln

∙
It
I0

¸
− eBt = δ2W2,t.

We deduce:

W1,t =
1

σ1

µ
ln

∙
St
S0

¸
− eAt

¶
,

W2,t =
1

δ2

µ
ln

∙
It
I0

¸
− eBt

¶
.

Thus, the process η1 and η2 are given by:

η1,t = exp
h
−eλ1W1,t − 1/2eλ21ti = ∙StS0

¸ −λ1
σ1

exp

" eAt

eλ1
σ1
− 1/2eλ21t

#
,

η2,t = exp
h
−eλ2W2,t − 1/2eλ22ti = ∙ ItI0

¸ −λ2
δ2

exp

" eBt

eλ2
δ2
− 1/2eλ22t

#
.
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These relations imply:

AC,S∗∗
T =

∙
St
S0

¸ λ1
σ1(1−α)

fA1
(T ) and AI∗∗

T =

∙
It
I0

¸ λ2
δ2(1−β)

fA2
(T ),(35)

with

fA1(T ) = a
1

α−1
1 exp

"
(α− 1)

Ã eAt

eλ1
σ1
− 1/2eλ21t

!#
, (36)

fA2(T ) = a
1

β−1
2 exp

"
(β − 1)

ÃeBt

eλ2
δ2
− 1/2eλ22t

!#
. (37)

Therefore, V ∗∗T is a function of the asset values ST and IT which is given by:

V ∗∗T = AC,S∗∗
T +AI∗∗

T ,

= S

λ
1

σ1(1−α)

T fA1(T ) + I

λ
2

δ2(1−β)

T fA2(T ),

2) Second step: we must choose AI
0 such that EP[U(A

C,S
T , AI

T )
∗∗] is maximal.

Since we have

AC,S∗∗
T =

¡
a1η1,T

¢ 1
α−1 and AI∗∗

T =
¡
a2η2,T

¢ 1
β−1 ,

we deduce that the indirect utility function is equal to:

E
h
U
³
AC,S
T , AI

T

´∗∗i
= a

α
α−1
1 a

β
β−1
2 E1

⎡⎣η α
α−1
1,T

α

⎤⎦E2
⎡⎣η β

β−1
2,T

β

⎤⎦ .
Since E1

"
η

α
α−1
1,T

α

#
and E2

"
η

β
β−1
2,T

β

#
are positive and do not depend on AI

0, we

have to maximize a
α

α−1
1 a

β
β−1
2 with respect to AI

0.
Note that:

a
α

α−1
1 =

⎛⎝ ¡
V0 −AI

0

¢
erT

exp
³
1
2

α
(α−1)2T

´
⎞⎠α

and a
β

β−1
2 =

⎛⎝ AI
0e

rT

exp
³
1
2

β
(β−1)2T

´
⎞⎠β

.

Thus, the optimization problem is equivalent to the maximization of the func-
tion

¡
V0 −AI

0

¢
fα
¡
AI
0

¢β
. Then, the optimal solution

¡
V0 −AI

0, A
I
0

¢∗∗
is given

by:

AC,S∗∗
0 =

¡
V0 −AI

0

¢∗∗
=

α

α+ β
V0 and AI∗∗

0 =
β

α+ β
V0. (38)
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Remark 18 - For the Cobb-Douglas utility function, both optimal initial weights
AC,S∗∗
0 /V0 and AI∗∗

0 /V0 are respectively equal to the ratios A
C,S∗
0 /V0 and AI∗

0 /V0
of Example 1.
- However, contrary to Example 1, the ratio of the optimal amounts at ma-

turity AC,S∗∗
T and AI∗∗

T is no longer constant. It is a random variable involving
a ratio of powers of financial and environmental asset values.

Remark 19 The optimal portfolio value is an increasing function of both asset
values ST and IT . It is the sum of two power functions with exponents respec-
tively equal to θS

(σ1)
2

1
(1−α) and

θI
(δ2)

2
1

(1−β) . Thus, the concavity/convexity with
respect to these values is determined from the comparison of the Sharpe type
ratios θS

(σ1)
2 and θI

(δ2)
2 with the relative risk aversions (1− α) and (1− β) .

Remark 20 Examine Example 1 when the correlation between the financial and
the environmental assets is equal to 0. We have σ2 = 0 and δ1 = 0.
The optimal solution is given by:

V ∗∗T = V0 ×
µ
ST
S0

¶ λ1
σ1(1−α−β)

µ
IT
I0

¶ λ2
δ2(1−α−β)

f(T ),

where f(.) is the deterministic function defined in (27):

f(T ) = exp

∙
rT +AT

µ
−λ

1

σ1(1− α− β)

¶
+BT

µ
−λ2

δ2(1− α− β)

¶¸
× exp

∙
− (1/2) (2α+ 2β − 1)(λ

2
1 + λ22)

(α+ β − 1)2 T

¸
.

Note that λ1 = eλ1 and λ
2
= eλ2. We also have AT = eAT and BT = eBT .

Therefore, V ∗∗T is a product of powers of ST and IT contrary to the separate
case where it is a weighted sum of powers of these two variables.
This difference is due to the constraint in Example 2 where arbitrage between

the financial and the environmental assets is forbidden. Due to this restriction,
the indirect utility function EP[U(AC,S

T , AI
T )
∗∗] (second case) is smaller than

EP[U(AC,S
T , AI

T )
∗] (first case).

When hedging constraints are introduced, we have to solve the following
optimization problem:

Max(AI0,AC,ST ,AIT )
EP[U(AC,S

T , AI
T )] (39)

under AC,S
T ≥ aC,ST and AI

T ≥ aIT ,

and (40)

AC,S
0 = e−rTEQ1 [A

C,S
T ] ≥ e−rTEQ1 [a

C,S
T ], (41)

AI
0 = e−rTEQ2 [AI

T ] ≥ e−rTEQ2 [aIT ]. (42)

Using results such as Relation (13) and Relation (35), we deduce:

22



Proposition 21 The solution of Problem (39) is given by:

AC,S∗∗c
T = Max

⎡⎣∙St
S0

¸ λ
1

σ1(1−α)

fA1(T ), a
C,S
T

⎤⎦ ,

and

AI∗∗c
T = Max

⎡⎣∙ It
I0

¸ λ
2

δ2(1−β)

fA2(T ), a
I
T

⎤⎦ ,
where a1 and a2 are Lagrangian parameters associated to budget constraints,
taking account of hedging constraints.

Remark 22 The optimal solutions are call options with "strikes" aC,ST and aIT
since we have:

AC,S∗∗c
T = aC,ST +Max

⎡⎣∙St
S0

¸ λ
1

σ1(1−α)

fA1
(T )− aC,ST , 0

⎤⎦ ,
and

AI∗∗c
T = aIT +Max

⎡⎣∙ It
I0

¸ λ2
δ2(1−β)

fA2(T )− aIT , 0

⎤⎦ .
For constant guaranteed amounts aC,ST and aIT , they are usual call power

options, respectively written on the financial and environmental assets.

To illustrate the previous results, consider the case of non correlated financial
and environmental assets. This excludes, for example, climate changes insofar
they are a consequence of economic activity.
For the global optimization, the optimal amounts respectively invested on

the financial and environmental assets are given by:

AC,S∗
T = V0 ×

µ
α

α+ β

¶
×
∙
ST
S0

¸ λ1
σ1(1−α−β)

∙
IT
I0

¸ λ2
δ2(1−α−β)

fA(T ),

(43)

AI∗
T = V0 ×

µ
β

α+ β

¶
×
∙
ST
S0

¸ λ1
σ1(1−α−β)

∙
IT
I0

¸ λ2
δ2(1−α−β)

fA(T ),

(44)

with fA(T ) = exp

"
rT +

µ
1

α+ β − 1

¶Ã eAT

Ãeλ1
σ1

!
+ eBT

Ãeλ2
δ2

!!#

× exp
"
− (1/2) (2α+ 2β − 1) (

eλ21 + eλ22)
(α+ β − 1)2

T

#
.
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For the separate optimization, they are given by:

AC,S∗∗
T = V0 ×

µ
α

α+ β

¶
×
∙
ST
S0

¸ λ
1

σ1(1−α)

fA1
(T ) (45)

and

AI∗∗
T = V0 ×

µ
β

α+ β

¶
×
∙
IT
I0

¸ λ2
δ2(1−β)

fA2
(T ), (46)

with

fA1(T ) = exp

"
rT + eAT

eλ1
σ1 (α− 1)

− 1/2(2α− 1)
eλ21

(α− 1)2
T

#
,

fA2
(T ) = exp

"
rT + eBT

eλ2
δ2 (β − 1)

− 1/2(2β − 1)
eλ22

(β − 1)2
T

#
.

As seen in Relations (43,44) and (45,46), the powers of financial and environ-

mental assets λ
1

σ1(1−α−β) and
λ2

δ2(1−α−β) for the global optimization are higher

than those for the separate optimization λ1
σ1(1−α) and

λ2
δ2(1−β) , since we have

1
(1−α) <

1
(1−α−β) and

1
(1−β) <

1
(1−α−β) .

This implies that the first solution is more sensitive to both asset fluctuations
around their initial values S0 and I0. For high asset returns, the optimal amounts
AC,S∗
T and AI∗

T (global optimization) are higher than the corresponding ones,
AC,S∗∗
T and AI∗∗

T for the separate optimization. For small asset returns, it is
the converse. Such results hold when same hedging constraints are introduced
for both optimization constraints such as predetermined constant amounts at a
given horizon.

Consider a numerical base case with the following parameter values:

V0 = 100, C0 = 1, S0 = 10, I0 = 10, r = 2%, θS = 5%, θI = 2%,

σ1 = 20%, δ2 = 20%.

Note that these values are standard for financial markets, and, for the envi-
ronmental asset, they correspond for example to emission fees.
We also assume that the parameters of the Cobb-Douglas utility function

are given by:
α = 0.3 and β = 0.1

They satisfy the two conditions: 0 < α < 1, 0 < β < 1, α+ β < 1. Since β 6= 0,
the individual is sensitive to environmental risk. However, α = 3β, which means
that the individual is more sensitive to the purely financial asset.
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We illustrate the comparison for asset variations of +/− 10% .
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10

10.5

11

60

70

80

9

9.5

10

10.5

11

Optimal AC,S (separate)

9

9.5

10

10.5

11 9

9.5

10

10.5

11

24

25

26

9

9.5

10

10.5

11

Optimal AI (separate)

9
9.5

10

10.5

11 9

9.5

10

10.5

11

80

100

120

9
9.5

10

10.5

11

Whole investment (global)

9

9.5

10

10.5

11 9

9.5

10

10.5

11

80
90

100
110

9

9.5

10

10.5

11

Whole investment (separate)

25



4 Conclusion
Using the expected utility theory, the optimal investment under financial and
environmental hedging constraints have been determined for a large class of
models. In particular, the results suggest that environmental derivative assets
have to be introduced in order to maximize the expected utility of individuals.
The optimal solution clearly depends on the risk aversion and on the hedging
condition. The optimal portfolio is determined for quite general utility functions
and insurance constraints. It has been also illustrated with the Cobb-Douglas
utility functions. The concavity/convexity of the investment profile is deter-
mined from the level of risk aversion and from asset performances, for example
a Sharpe type ratio. In this example, we have assumed the case of non corre-
lated financial and environmental assets. The set-up that we have developed
could allow to take such (important) correlation into account, and consider the
choice of economic development in conjunction with a choice of the current and
future quality of the environment.
As a matter of fact, the hedging constraints envisaged on the terminal in-

vested amounts are quite general and can be applied to a large variety of prac-
tical cases. This will be a topic for future research.
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