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Abstract 

 
Private-sector involvement in the construction and operation of roads is growing around the 
world and private toll roads are seen as a useful tool in the battle against congestion. Yet 
serious concerns remain about exercise of monopoly power if private operators can set tolls 
freely. A number of theoretical studies have investigated private toll-road pricing strategies, 
and compared them with first-best and second-best public tolls. But most of the analyses 
have employed simple road networks and/or used static models that do not capture the 
temporal dimension of congestion or describe the impacts of tolling schemes that vary by 
time of day. 
 
This paper takes a fresh look at private toll road pricing using METROPOLIS: a dynamic 
traffic simulator that treats endogenously choices of transport mode, departure time and route 
at the level of individual travellers. Simulations are performed for the peak-period morning 
commute on a stylized urban road network with jobs concentrated towards the centre of the 
city. Tolling scenarios are defined in terms of what is tolled (traffic lanes, whole links, or toll 
rings) and how tolls are varied over time. 
 
Three administration regimes are compared. The first two are the standard polar cases: social 
surplus maximization by a public-sector operator, and unconstrained profit maximization by 
a private-sector operator. The third regime entails varying tolls in steps to eliminate queuing 
on the tolled links. It is a form of third-best tolling that could be implemented either by a 
public operator or by the private sector under quality-of-service regulation. 
 
Amongst the results it is found that the no-queue tolling regime performs favourably compared 
to public step tolling, and invariably better than private tolling. Another provisional finding is 
that a private operator has less incentive than does a public operator to implement time-of-day 
congestion pricing. 
 

 

JEL Classification Codes: D42, R41, R48
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INTRODUCTION 

Private-sector involvement in the construction and operation of roads is growing around the 

world. There are several reasons for this trend. First, public funding is insufficient to keep up 

with needs for building and maintaining roads. Second, the principle of user-pays is now widely 

accepted, and user charges are perceived as an important – if not essential – means of financing 

infrastructure. Third, the private sector is seen as better at identifying attractive investment 

projects, and able to build infrastructure more quickly and cheaply at lower risk. Fourth, 

commercial pressures can spur private operators to achieve lower maintenance, toll collection 

and other operating costs than the public sector. And fifth, economic theory suggests that private 

firms have an incentive to account for the congestion and other user costs borne by their 

customers.1 Indeed, private roads have been promoted by various economists since Knight 

(1924) – who criticized Pigou (1920) on the grounds that, in a competitive market, efficient 

charges would be levied on roads and there would be no role left for government.2

The merits of private roads notwithstanding they are still widely opposed. The overriding 

objection is that a private operator will exercise its monopoly power and gouge travelers. Indeed, 

in some countries availability of reasonable toll-free alternative routes (or at least good public 

transport services) is required by law as a precondition even for public toll roads. However, 

competition reduces the profitability of roads, and concession agreements sometimes include 

non-compete clauses that prohibit construction or improvement of alternatives.3  

 A number of studies have analyzed the allocative efficiency of private roads. A majority 

follow the lead of Pigou (1920) and Knight (1924) and consider a simple road network with one 

origin and one destination connected by two parallel routes. The main insights from these studies 

will be reviewed in Section 2. A few studies have adopted a simulation approach and examined 

the behaviour of private operators on larger road networks.4 However, except for the two-

 
1 See for example Spence (1975), DeVany and Saving (1980) and Mohring (1985). 
2 Other notable proponents amongst economists and engineers include Block (1979, 1983), Roth (1996), Poole 
(1996, 2003), Winston (2000) and Samuel, Poole and Holguin-Veras (2002). See also the various contributions in 
Roth (2006). 
3 The “problem” of competition from free roads can be alleviated by compensating a private operator using shadow 
tolls based on traffic counts. But this of course does not constitute road pricing in the traditional sense, let alone 
congestion pricing. 
4 See Yang and Woo (2000), Yang, Tang, Cheung and Meng (2001), Yang, Zhang and Meng (2003), Zhang and 
Levinson (2004) and Xiao, Yang and Han (2005). 
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parallel-routes studies by De Palma and Lindsey (2000, 2002) there has been no analysis of time-

of-day pricing by private operators.  

Since congestion is inherently a dynamic phenomenon, and since most roads are links on 

networks, including both dynamics and networks should be a high priority for studying 

congestion and congestion pricing. There is a growing literature on dynamic congestion pricing 

on public (i.e. social-surplus maximizing) toll roads5, but – as just noted – very little yet for 

private roads. Furthermore, although many toll roads around the world are privately operated, 

most are regulated – and many do not get congested – so that there is little practical experience to 

draw on. 

The goal of this paper is to help begin to fill the gap. An obvious priority for the analysis is to 

include not only a road network but also a satisfactory specification of trip-timing decisions in 

order to assess the impacts of tolling schemes that vary by time of day. Unfortunately, 

computation of second-best tolls on medium- and large-scale networks is computationally 

challenging even with static models (Verhoef, 2002) and with dynamic models analytical 

solutions are impossible even on relatively simple networks (De Palma, Lindsey and Quinet, 

2004). Similar difficulties arise with computation of profit-maximizing tolls. The paper therefore 

takes a simulation approach using the software METROPOLIS: a dynamic traffic simulator in 

which transport mode, departure time and route choice decisions are modeled endogenously at 

the level of individual travellers. 

The analysis is focused on two considerations: the allocative efficiency of tolling by private 

operators, and the profitability of employing time-of-day tolls vis à vis flat (time-invariant) tolls. 

Three tolling regimes are featured. The first two are the standard polar cases: social surplus 

maximization by a public-sector operator, and unconstrained profit maximization by a private-

sector operator. Hereafter, they are referred to as public tolling and private tolling. Since all the 

tolling configurations considered cover only part of the road network (see Section 3), public 

tolling is an exercise in second-best pricing in which the impacts of tolling on usage of the 

untolled infrastructure must be accounted for. In contrast, private tolling disregards network 

spillover effects except to the extent that they affect traffic volumes on the toll road(s). 

                                                 
5 For reviews see Lindsey and Verhoef (2001), Yang and Huang (2005) and Small and Verhoef (2007). 
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The third tolling regime to be considered was introduced in De Palma, Kilani and Lindsey 

(2005b) and dubbed no-queue tolling.6 It entails setting time-varying tolls to suppress queuing 

on the tolled links without reducing throughput below capacity. As discussed in De Palma, 

Kilani and Lindsey (2005b) although no-queue tolling is a third-best pricing scheme it has 

several merits. One is that no-queue tolling only requires information on traffic flows and delays 

on the tolled links, whereas the formulae for second-best tolls include information on demand 

and link capacities throughout the network (Verhoef, 2002). A second advantage is that 

eliminating queues is a well-defined and readily explained goal that is likely to be more saleable 

to politicians and the public than complicated second-best schemes. Third, though no-queue 

tolling has not been adopted as a third-best policy per se anywhere in the world, High 

Occupancy Toll (HOT) lane projects in the US7, as well as the electronic road pricing system in 

Singapore, embody similar or effectively identical goals to no-queue tolling. 8 Fourth, 

eliminating queues without compromising throughput is a visible and hence verifiable objective 

that could be delegated to a private-sector operator under a quality-of-service type contract. For 

this reason no-queue tolling is treated agnostically here rather than classifying it as “public” or 

“private”. 

The public and no-queue tolling regimes were studied in De Palma, Kilani and Lindsey 

(2005b). To achieve economies of scope this paper uses the same road network and avails itself 

of some of the simulation results in De Palma, Kilani and Lindsey (2005b). It goes further by 

adding the private tolling regime, adding a lane-tolling configuration, and exploring some of the 

earlier results in greater depth. 

Section 2 provides a selective and analytical review of the literature on congestion pricing on 

public and private toll roads. Section 3 presents a brief  overview of the METROPOLIS software 

and explains the simulation experiments. Section 4 describes the simulation results, and Section 

5 concludes. 

                                                 
6 No-queue tolling is equivalent to the “fine toll” studied by Vickrey (1969) and Arnott et al. (1990, 1993) with the 
bottleneck model. 
7 Five HOT lane facilities are currently in operation: State Route 91 and Interstate 15 in California, Interstate 10 & 
US 290 in Houston, Texas, and Interstate 394 in Minneapolis-St. Paul. A rapidly growing number of additional 
facilities are being planned. 
8 The toll schedules in Singapore are adjusted every three months to maintain a speed range of 45 to 65 km/h on 
expressways and 20 to 30 km/h on arterial roads (Singapore Land Transport Authority, 2007). Similar rules are 
employed for the toll roads in Santiago de Chile (Commission for Integrated Transport, 2005). 
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2 RELATED LITERATURE 

Most studies that consider the allocative efficiency of second-best (public) and/or private tolling 

have employed a prototypical road network with one origin and one destination connected by 

two routes in parallel. This network will be called the two-links-in-parallel network. The 

summary here is modeled on Verhoef et al. (1996).9

Suppose that one of the two links is tolled. Call it Link T and the other (free) link Link F. Let 

 and  denote the numbers of users of the links, and TN FN ( )T TC N  and  the respective 

private user costs. Further, let 

(F FC N )

( )p N  be the inverse demand curve for trips where  

is the total number of users. Assume that any operating and maintenance costs on the links are 

independent of usage. The second-best (public) toll on Link T works out to  

T FN N N= +

      Pub T
T T

T F F F

p NC N
N C N p N N

τ
∂ ∂∂ ∂

= −
∂ ∂ ∂ + ∂ ∂ ∂

F
F

C N , (1) 

where p N∂ ∂  is the absolute slope of the inverse demand curve. The profit-maximizing 

(private) toll is10

  Pr F Fiv T
T T

T F F

C N p NC N
N C N p N

τ
∂ ∂ ∂ ∂∂

= +
∂ ∂ ∂ + ∂ ∂ TN . (2) 

Consider first Pub
Tτ  in equation (1). The first component, ( )T TC N N∂ ∂ T , corresponds to the 

Pigouvian (first-best) toll on Link T. The other component is a second-best adjustment to reflect 

that tolling Link T induces some users to shift onto Link F and exacerbate congestion there. The 

adjustment is a fraction of the first-best toll on Link F, ( )F FC N N∂ ∂ F , where the fraction is 

larger the less elastic is demand (i.e. the larger is p N∂ ∂ ) and hence the larger the proportion of 

users leaving Link T who shift onto Link F rather than forego a trip. Overall, the second-best toll 

is higher the larger the fraction of traffic that takes Link T (i.e. the shorter and faster is T relative 

to F) and the more congested is T relative to F. 

Whereas the second-best toll is below the Pigouvian toll, equation (2) shows that the private 

toll is marked up above it. The markup is higher: (a) the more congestion-prone is Link F (larger 

                                                 
9 A similar analysis was undertaken independently by Gronau (1999). 
10 Equations (1) and (2) match equations (2) and (8) in Verhoef et al. (1996).  
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FC N∂ ∂ F ) and hence the more rapidly it becomes unattractive as a substitute if traffic attempts 

to divert off Link T, (b) the less elastic is travel demand (larger p N∂ ∂ ), and (c) the more traffic 

uses Link T (higher ); i.e. the larger the number of inframarginal users on the toll road and 

hence the less elastic is the demand curve facing the toll operator. 
TN

11

In contrast, the public toll given in equation (1) is a decreasing function of factors (a) and 

(b). The gap between the public and private tolls is therefore larger the less elastic is demand and 

the larger the fraction of total road capacity that is tolled. If the gap is large enough, private 

tolling may be welfare-reducing relative to no tolls. 

In addition to tolling one of the two links, Verhoef et al. (1996) consider tolling both links. 

Under public operation this permits a first-best optimum to be reached. Under private ownership 

the operator is a monopolist, and the distortion due to exercise of monopoly power is at a 

maximum. However, congestion is relieved on the whole network so that there is no longer a 

misallocation of traffic between links. Verhoef et al. show that, depending on parameter values, 

the monopoly outcome may be preferable to having the private operator toll only one link. 

Consequently, it is not always optimal to restrict a private operator to the smallest practical 

segment of a road network. 

De Palma and Lindsey (2000, 2002) add to the Verhoef et al. (1996) model a time dimension 

by applying the Vickrey (1969) bottleneck model to each link and considering time-varying tolls. 

They show that the welfare effects of private tolling are more favourable with time-varying tolls 

since this allows differentiation between peak and off-peak usage and encourages the operator to 

attract more users during the off-peak. Nevertheless, the tradeoff between congestion relief and 

market power is still present as a determinant of how the welfare effects of tolling vary with the 

fraction of capacity that is tolled. 

Verhoef and Small (2004) extend the Verhoef et al. (1996) model in two other ways. First 

they add a third link downstream of (i.e. in series with) the two parallel links. The formula for 

the second-best toll on the upstream tolled link now includes a positive adjustment term that 

reflects the benefit of reducing congestion on the downstream link. Second, Verhoef and Small 

                                                 
11 In the limit as F FC N∂ ∂ → ∞  the operator of Link T becomes a monopolist and the markup term approaches 

Tp N N∂ ∂ . Regardless of the size of F FC N∂ ∂  the private operator sets the toll to equate marginal revenue with 
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(2004) introduce heterogeneity across travelers in values of travel time. Tolling one of the 

parallel links (or setting differentiated tolls on both) offers travelers with high values of time a 

high-quality/low-congestion alternative. This tends to raise the benefits from both public and 

private-sector tolling, although it is not obvious in general how this affects the difference in 

welfare between the regimes.12

One final result from the literature deserves mention: profitability is neither a necessary nor a 

sufficient condition for a toll road to be socially beneficial (Mills, 1995; Yang and Meng, 2000). 

Whether or not private road operation is socially beneficial depends on road network 

connectivity. If the network is well connected, then reasonable substitutes are likely to exist and 

competition will be beneficial (Roson and van den Bergh, 2000). 
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THE MODEL 

The simulation experiments in the paper were performed using METROPOLIS: a dynamic 

simulator that treats endogenously transport mode, departure time and route choice decisions of 

individual travellers. Amongst other applications METROPOLIS has been used to study second-

best and third-best tolling on medium-sized laboratory networks (De Palma, Kilani and Lindsey, 

2005a,b), simple tolling schemes on large-scale real networks (De Palma and Lindsey, 2006) and 

the welfare distributional effects of tolling (Lindsey, 2004). However, this is the first application 

of METROPOLIS to tolling for the purpose of profit-maximization. 

METROPOLIS has been extensively documented elsewhere13 and the description here is 

accordingly brief. METROPOLIS uses a two-stage nested logit model with a binary choice 

between automobile and public transport in the outer nest, and a continuous choice of departure 

time in the inner nest. Route choice is governed by a heuristic based on minimization of travel 

time.14

 
marginal cost. Since marginal cost is assumed to be zero, the firm operates at the point where the price elasticity of 
demand is minus one. 
12 Using an analytical model with two routes Calcott and Yao (2005) show that when travelers differ in values of 
time toll differentiation is socially efficient but may not emerge under duopolistic competition. 
13 See De Palma, Marchal and Nesterov (1997) and De Palma and Marchal (2002). 
14 METROPOLIS also permits a random utility specification of route choice, but this option was not enabled. 
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3.1 Travel demand 

The generalized cost of the automobile mode includes three components: travel time cost, 

schedule delay cost (the cost of arriving early or late), and toll payments – all of which may 

depend on departure time, t. Travel time cost is ( )A AT tα , where AT  denotes travel time by 

automobile (A) and Aα  the unit cost of time (i.e. the value of travel time savings). If the traveller 

arrives at the final destination outside the “on-time” arrival window * *,t t⎡ ⎤− Δ + Δ⎣ ⎦ , a schedule 

delay cost is incurred with a unit cost of β  for early arrival and γ  for late arrival. Finally, the 

aggregate toll paid on a trip, τ , may depend on the route taken as well as the time at which the 

toll link(s) are used. The generalized cost is therefore: 

( ) ( ) ( ) ( ) (* *0,  0,  A A A A AC t t Max t t t Max t t t t )α β γ⎡ ⎤ ⎡= Τ + − Δ − − Τ + + Τ − − Δ +⎣ ⎦ ⎣ τ⎤⎦ .        (3) 

For the public transport alternative15 the generalized cost of a trip is treated as exogenous and 

independent of time of day: 

0P P PC C Pα= + Τ ,                                                          (4) 

where PT  is travel time by public transport (P) which depends on origin and destination, Pα  is 

the unit cost of transit travel time, and  includes all other costs (fare, waiting time cost, 

access and distribution time cost, average schedule delay cost, discomfort, etc.). 

0pC

The specifications in equations (3) and (4) are generic to METROPOLIS. For the simulations 

in the paper the following parameter values are assumed to be common to all travellers16: 

Aα =$10/h, =10 mins, Δ β =$6/h, γ =$25/h, Pα =$15/h, =$10, 0pC mod eμ =$5 and deptμ =$2, 

where mod eμ  and deptμ  are the logit scale parameters for mode and automobile departure time 

choices respectively. Parameter  is assumed to be uniformly distributed in the population with 

a mean value of 8:00 AM and a standard deviation of 20 mins. (This distribution is used for all 

travellers regardless of their origins and destinations.) 

*t

To make the departure time module of METROPOLIS operational, departure times must be 

constrained to a compact and connected time interval. This interval was set at 6:00 AM - 12:00 

                                                 
15 The generic specification of the “public transport” alternative can encompass not only bus and rail modes but also 
slow modes (i.e. walking and bicycling). However, the simulations are calibrated for motorized transport; see below.  
16 The choice of parameter values is explained in De Palma, Kilani and Lindsey (2005a). 
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PM. In all the simulations that are undertaken almost all travellers elect to depart after 6:00 AM, 

and without exception all reach their destinations before 12:00 PM. 

3.2 The road network 

The road network is shown in Figure 1. It consists of four concentric ring roads spaced 4 km 

apart, and eight arterial roads that run between the city centre (point 0) and the outer ring, Ring 

4.17 Figure 2 provides a more detailed view of the inner two rings in the east-north-east octant. 

The links running clockwise and counterlockwise on all four ring roads have hourly flow 

capacities of 2,000 vehicles/h and free-flow speeds of 50 km/h. The Inbound 1 and Outbound 1 

arterial links joining Ring 1 and the centre have flow capacities of 3,000 vehicles/h and a free-

flow speed of 50 km/h. The Inbound 2, Outbound 2, and other arterial links running inwards and 

outwards between Ring 1 and Ring 4 have flow capacities of 4,000 vehicles/h and free-flow 

speeds of 70 km/h. These arterial links consist of two lanes, each with a flow capacity of 2,000 

vehicles/h. Congestion on all links is assumed to entail queuing. If the arrival rate of vehicles at a 

link exceeds its flow capacity a (vertical) queue develops.18

The public transport service is assumed to run on the road network using dedicated lanes at a 

constant speed of 40 km/h. Travel distance by public transport between any two nodes is given 

by the minimum distance path on the network. The origin-destination matrix is set up to describe 

the morning commute. Origins (residences) and destinations (workplaces) are located at zones 

that are joined to each of the 33 intersection nodes marked with solid dots in Figures 1 and 2. 

Eight thousand individuals live in each zone. The number of individuals who commute to each of 

the other 32 zones is treated as exogenous and assumed to be an exponentially decreasing 

function of the free-flow automobile travel time with an exponential decay rate of –0.07/min.19 

Jobs are concentrated towards the city centre because of its higher average accessibility. 

3.3 Simulation procedure 

Individual choices of transport mode, departure time and route are modified over time in 

METROPOLIS using a day-to-day adjustment process with exponential learning.20 While this 

                                                 
17 The numbering system for the nodes is used later to define the tolling configurations. 
18 Horizontal queuing can be implemented with METROPOLIS but it was not enabled for the simulations.  
19 This value is based on estimates for home-based work trips in Krishnamurthy and Kockelman (2003, Table 3). 
20 De Palma, Marchal and Nesterov (1997) provide details about the learning process. 
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procedure guides the system towards a stationary state, equilibrium conditions are never exactly 

reached and small-amplitude fluctuations persist indefinitely.21 Depending on the initial 

conditions specified, between 25 and 75 days (iterations) are required for the fluctuations to 

reach a stationary level. In order to identify social surplus and toll revenue with reasonable 

accuracy, simulations were run for between 150 and 500 days, and (un-weighted) averages were 

then taken over the last 75 to 450 days. To reduce computation time, the origin-destination 

matrix and the capacities of each link were reduced to 1/10 of their “actual” scale. Because travel 

times in METROPOLIS are homogeneous of degree zero with respect to vehicle inflows and link 

capacities, this scaling has little effect (other than for randomness of individual behaviour) on 

congestion delays, schedule delays or individual toll payments. When reporting the results in 

Section 4, vehicle flows, toll revenues and welfare gains are scaled back up to their “actual” 

levels. 

3.4 Tolling Schemes 

Tolling schemes are defined by three attributes: the goals of the operator (the tolling regime), 

the set of links that are tolled (the tolling configuration), and the time structure of the tolls (the 

tolling schedule). Each of these attributes is treated as exogenous within a simulation and only 

the level(s) of the toll(s) are a decision variable. As mentioned earlier, three tolling regimes are 

considered: public, private and no-queuing. In addition, four tolling configurations are studied. 

These configurations, shown in the legends of Figures 1 and 2, are: 

 

• LANE: one lane of the Inbound 2 arterial link joining node 9 on Ring 2 to node 1 on Ring 

1 (Link 9 → 1) 22, 

• LINK 2: both lanes of Link 9 → 1, 

• LINK 1: the Inbound 1 arterial link joining node 1 on Ring 1 to the city centre (Link 1 → 

0), and 

                                                 
21 The fluctuations tend to be large on networks that have only a few links, and this effectively precludes the use of 
METROPOLIS on very small networks. The fluctuations can be dampened by using large values of the departure-
time scale parameter ( deptμ ), but large values are not empirically supported and they can induce unrealistic 
behaviour. 
22 Traffic lanes have no operational significance in METROPOLIS so that it is not possible to set different tolls on 
different lanes of the same link. To circumvent this, another road network was created with two parallel links 
between node 9 and node 1, each link with a flow capacity of 2,000 vehicles/h. 
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• CORDON: a toll cordon defined by tolling the eight Inbound 1 links joining Ring 1 to the 

centre (Links 1 → 0, 2 → 0, …, 8 → 0. 

The LANE configuration resembles the High Occupancy Toll lane scheme in the US except that 

vehicle occupancy is fixed at one in the simulations and all vehicles pay tolls. The two LINK 

configurations are representative of numerous toll roads on which all lanes are tolled. And the 

CORDON toll is suggestive of the cordon schemes in Norway and the congestion pricing scheme 

tested in 2006 in Stockholm. These four configurations all entail inbound arterial links near the 

city centre. Apart from the Ring 1 circumferential links, these turn out to be the most congested 

links and consequently are logical candidates to toll for either a public or a private operator.23 

However, the configurations differ greatly in the amount of road capacity that is tolled. For 

LANE the capacity is just 2,000 vehicles/h, whereas for CORDON it is 24,000 vehicles/h. One of 

the objectives of the analysis is to assess how the relative efficiencies of the three tolling regimes 

vary with respect to “market power” defined in this way. 

With respect to the time variation of tolls, four tolling schedules are investigated: 

• A flat-toll schedule in which the toll is constant throughout the simulated travel period (i.e. 

6:00 AM - 12:00 PM). This schedule is considered for the public tolling and private tolling 

regimes. 

• A 30-minute step-toll schedule in which tolls are varied every half hour between 6:30 AM 

and 8:30 AM (the period during which congestion occurs), and set to zero earlier and later. 

This schedule is considered for all three tolling regimes. 

• A 30-minute step-toll schedule for no-queue tolling. 

• A 5-minute step-toll schedule for no-queue tolling. 

As noted earlier, 5-minute toll steps are selectively employed in Singapore. Six-minute steps can 

be used on Interstate 15 in San Diego, and 3-minute steps on Interstate 394 in Minneapolis. Short 

steps are therefore technologically feasible, and the respective authorities have seen fit to adopt 

them at these sites. However, 30-minute steps are more representative of practice. Furthermore, 

computation time constraints precluded optimization with METROPOLIS of 5-minute steps for 

all the tolling schemes under consideration. To provide a fairer comparison with the public and 

                                                 
23 Toll schemes were also computed for Ring 1, but the welfare gains and revenues turned out to be a small fraction 
of those derived from the CORDON toll. For this reason the results are not reported. 
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private tolling regimes the 30-minute step no-queue schedule is therefore evaluated in addition to 

the 5-minute step schedule. 

The methods used to compute public and private flat tolls and step tolls, and no-queue step 

tolls, are described in the Appendix. In computing welfare and toll revenues it is assumed that 

toll collection and other operating costs are zero.24

 

4 

                                                

SIMULATION RESULTS25 

4.1 No-tolling regime 

In the absence of tolls about 70 per cent of all trips on the network are made by automobile 

and the balance by public transport. Automobile trips average 15.0 km in length and 22 minutes 

in duration at an average speed of 40.9 km/h. The average ratio of queuing delay to free-flow 

travel time on the route taken is 0.379. Henceforth this ratio will be referred to as the congestion 

index. The evolution of the congestion indexes on the three most congested types of links are 

shown in Figure 3 over the period 6:00 AM - 9:00 AM when most trips take place.26 Congestion 

is greatest on the Inbound 1 links because these feed into the city centre where jobs are 

concentrated, and also because these links have a relatively low capacity. Congestion is less 

severe on the Inbound 2 links, and it peaks slightly earlier because these links lie upstream of the 

Inbound 1 links. Delays on the Ring 1 links exhibit an intermediate level of intensity.27

4.2 Social optimum 

As a benchmark against which to compare the tolling schemes examined in the paper it is useful 

to know the social or system optimum. As discussed in De Palma, Kilani and Lindsey (2005a) an 

approximate social optimum can be computed by levying no-queue tolls on all links of the 

 
24 The welfare analysis therefore ignores the potential advantage of private operation in achieving lower costs than 
public facilities. It also ignores the possibility that varying tolls over time imposes a cognitive burden on individuals 
when making travel decisions: a factor that militates against complex schemes (Bonsall et al., 2004). 
25 As noted earlier some of the public and no-queue simulations undertaken in De Palma, Kilani and Lindsey 
(2005b) are used in this paper. Descriptions of the results of these schemes and the no-tolling regime are adopted, 
with some changes in wording, from the earlier paper. 
26 The congestion indexes are averages for the eight inbound links each of type Inbound 1 and Inbound 2, and the 16 
links of type Ring 1. 
27 The maximum queuing delays on the Inbound 1, Inbound 2 and Ring 1 links are about 16.8 minutes, 6.0 minutes 
and 7.7 minutes respectively. 
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network. This scheme yields a daily welfare gain of about $216,000, or $54 million annually 

assuming 250 travel days per year.28  

4.3 LANE toll 

The LANE tolling configuration is of particular interest not only because it resembles the 

existing HOT lane projects in the US, but also because it corresponds most closely to the two-

links-in-parallel literature. For this reason the results are described in some detail. 

4.3.1 Flow patterns before tolling 

Vehicle inflows before imposition of any tolls on the two lanes of Link 9→1 are plotted in 

Figure 4, with the capacity of each lane marked by the thick horizontal line at 2,000 vehicles/h.29 

Both the aggregate (daily) volumes (3,730 and 3,760) and the flows during the congested period 

(approximately 6:55 AM to 8:15 AM) are very similar on the two lanes. But the toll lane is used 

more heavily than the free lane before the peak, while the free lane is used more heavily after the 

peak. These asymmetries reflect randomness in the route choice module of METROPOLIS and 

have no impact on travelers’ costs or other statistics of interest. Panel (i) of Table 1 reports the 

volume on the tolled lane (3,760 vehicles) and the average value of the congestion index (0.76). 

4.3.2 Flat tolling 

Panel (ii) of Table 1 reports the results for the public and the private flat tolling schedules. 

Public regime 

The (second-best) public flat toll is $0.28. Although this is a rather nominal amount, it 

reduces volume on the tolled lane to 74 per cent and the average congestion index to 69 per cent 

of their respective no-toll values. Figure 5 shows that, in contrast to the no-tolling regime 

(compare Figure 4), the tolled lane is not used outside the peak period and the inflows are also 

slightly reduced during the peak. The toll yields a mean annual revenue (R) of about $203,000 

and a mean annual welfare gain (G) of about $170,000. 30 The ratio of the welfare gain to 

revenue (G/R) is 0.84, which suggests that there is considerable scope to compensate travelers 

                                                 
28 For the 264,000 travelers the annual per capita gain is about $205. 
29 These and other values refer to the original network; i.e. after multiplying results for the 1/10 scale network by a 
factor of 10. 
30 Annual figures are computed on the assumption of 250 travel days per year. 
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for their higher travel costs by rebating the revenues and/or using them to expand road or public 

transport service capacity. 31

The figures for annual revenue and welfare gain are referred to as “mean” values because of 

the day-to-day fluctuations in the simulations results. To quantify the uncertainty the mean 

values are accompanied by two standard errors. The first value is a daily figure. The second (in 

brackets) is the standard deviation of the estimate, which is calculated by dividing the daily 

standard error by the number of days over which the simulation results were averaged under the 

assumption of serial independence between days. 

The welfare gain from the public flat toll is small for three reasons. First, the toll is levied on 

only one lane. The other lane remains toll-free, and raising the toll aggravates congestion on the 

free lane as in the two-links-in-parallel model reviewed in Section 2. Second, none of the other 

links on the network are tolled and tolling one link causes some traffic to divert onto other routes 

and exacerbate congestion on them. Third, the flat toll does nothing to alter departure times and 

smooth out inflows during the travel period. 

Private regime 

The profit-maximizing private flat toll works out to $1.75: over six times the public flat toll. 

The $1.75 toll reduces traffic on the tolled lane to 35 per cent of the no-toll level and practically 

eliminates congestion. Indeed, the tolled lane remains well below capacity most of the time 

(Figure 6) 32 whereas inflow onto the free lane peaks at more than twice its capacity. The private 

toll raises nearly three times the revenue as does the public toll, but it results in a slight welfare 

loss relative to no tolling.33

Most of these results are consistent with the two-links-in-parallel literature: the private toll 

can be much higher than the public toll, revenue can also be much higher, and the private toll can 

lead to a welfare loss. The one exception is the result that congestion is eliminated under private 

tolling. While this it not incompatible with the generic two-links-in-parallel model, it is 

                                                 
31 However, the welfare gain is very small in absolute terms (just 0.3 per cent of the welfare gain in the social 
optimum) and after deducting the costs of toll infrastructure and collection the net benefit might well be negative. 
32 At 7:20 AM the congestion index is positive (0.025) although inflow is only 1,680 vehicles/h. This is possible 
because the inflow statistic is a five-minute average, and a spike in inflow above capacity during the interval causes 
a momentary queue to develop. 
33 According to the standard errors the welfare loss is statistically insignificant. 
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precluded by the usual assumption that congestion delay occurs at any positive level of flow.34 In 

contrast, with pure queuing congestion as assumed in the simulations here there is no delay as 

long as the inflow rate remains below capacity. If so, the private operator does not actually 

employ “congestion” pricing.35

4.3.3 Step tolling 

As explained earlier, step tolls were set in 30-minute intervals between 6:30 AM and 8:30 

AM, and set to zero earlier and later. The results are reported in Panel (iii) of Table 1. 

Public regime 

The public step toll ($0.20, $1.21, $0.45, $0.40) exceeds the public flat toll of $0.28 except 

on the first step. When the toll changes, inflows respond as expected (Figure 7) with decreases at 

6:30 and 7:00 when the toll rises, and an increase at 7:30 when it drops. Yet despite these 

fluctuations the step toll is much more effective than the flat toll at relieving congestion even 

though it supports a higher traffic volume. Moreover, the step toll yields a welfare gain more 

than three times as large. The superior performance of step tolling vis à vis flat tolling is 

consistent with analytical studies of peak-load pricing using the bottleneck model (e.g. Braid, 

1996; Arnott et al., 1993). 

Private regime 

The private step toll ($0.90, $2.60, $1.40, $2.00) is more than double the public step toll in 

each half-hour interval, and consequently it reduces inflows and total volume by much more 

(compare Figure 8 with Figure 7). Several aspects of the private step toll are unexpected. First, 

rather than having a single peak the toll rises in the final half-hour period. Second, it delivers 

only a modest increase in revenue relative to the flat toll even though demand is highly-peaked. 

And third, it generates not only a welfare loss, but a loss that is substantially greater than the loss 

from the flat toll.36 These results contrast not only with the public flat and step tolls, but also the 

findings of De Palma and Lindsey (2000) using a two-links-in-parallel network. 

                                                 
34 In particular this is a property of the linear speed-flow curve used by Verhoef et al. (1996) and a number of other 
studies. However, empirical studies have found that on high-design freeways free-flow speeds can be maintained 
over a wide range of flows. 
35 In terms of equation (2) the Pigouvian component of the private toll is zero, and the toll constitutes a pure markup. 
36 Despite an extensive search effort, the profit-maximizing step toll could not be identified very precisely. To check 
whether the large welfare loss from the step toll was due either to faulty optimization or the vagaries of a single 
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4.3.4 No-queue tolling 

Since no-queue tolling is designed to support a quality-of-service standard on the tolled 

infrastructure without regard for its effects elsewhere on the network, no-queue tolling is 

intrinsically welfare-inferior to a second-best tolling scheme that has the same temporal 

structure. However, the variant of the no-queue scheme with 5-minute steps has a finer time 

resolution than does the public (30-minute) step toll. Consequently, the welfare ranking of the 5-

minute no-queue toll and the second-best toll is ambiguous a priori. 

Panel (iv) of Table 1 shows that the 30-minute step no-queue toll serves its function 

reasonably well, reducing queuing delay by over 70 per cent with only a 20 per cent reduction in 

volume.37 The 5-minute step no-queue toll performs even better in terms of traffic volume, 

congestion relief and welfare gain, and it also yields slightly more revenue. (Nevertheless, the 

inflow rate for the 5-minute toll fluctuates rather more than with the 30-minute toll; cf. Figure 10 

vs. Figure 9.) Furthermore, the 5-minute step variant actually yields a higher welfare gain than 

does the public step toll, thereby demonstrating the advantages of a fine time resolution for 

congestion pricing. In light of the successful implementation in California and Singapore of 

tolling in short time steps, the 5-minute scheme would appear to be a superior choice – at least 

on the basis of the specific simulations done here. 

A potential drawback of the no-queue toll as far as private operation is that it generates much 

less revenue than do either the private flat or step tolls. Thus, if no-queue tolling were to be 

implemented as a private-sector venture under quality-of-service regulation, close monitoring of 

toll levels might be required to assure compliance by the operator. 

4.3.5 Summary 

Before proceeding to the other three tolling configurations, three results from the LANE toll 

simulations deserve repeating. The first – which is familiar from the two-links-in-parallel 

literature – is that private tolling can lead to a welfare loss relative to no tolling. Second, no-

queue tolling can perform respectably relative to public step tolling, and may therefore warrant 

                                                                                                                                                             
simulation, the step toll schedules that yielded the next five highest revenue levels were examined. (The steps on 
these schedules differ from the selected optimal schedule by $0.25 on average.) In each case the welfare loss was 
even larger than for the optimal toll. Furthermore, with two of the five schedules the toll from 8:00 AM to 8:30 AM 
exceeded the toll from 7:30 AM to 8:00 AM. 
37 The 30-minute step toll works out to ($0.33, $1.13, $0.43, $0.00). Except for the first step, it is somewhat lower 
than the public step toll. 
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consideration as a way to harness private-sector toll roads under quality-of-service regulations. 

The third result, which though relatively obvious has drawn little attention in the literature38, is 

that a private operator may find it profitable to operate roads at below capacity even during peak 

periods.39 If so, there would be no benefit (at least with pure queuing congestion) to expanding 

the capacity of the tolled lane. However, expanding capacity of the free lane would still be 

beneficial. This presents an interesting contrast to the well-known lesson popularized by Downs 

(1962) that the potential benefits from building or expanding a toll-free facility may be 

undermined by latent demand. 

4.4 LINK 2 toll 

In the LINK 2 scheme both lanes of the Inbound 2 link (Link 9→1) are tolled rather than just 

one lane as for the LANE toll. The results are reported in Table 2 using the same format as for 

Table 1. The daily volume and congestion index statistics again pertain to the tolled 

infrastructure – which in this case is the whole link.40 Discussion focuses on similarities and 

differences in results between the LINK 2 and LANE toll schemes. 

4.4.1 Flat tolling 

The public flat toll of $0.35 is a little higher than the $0.28 LANE toll. And it yields about 

triple the welfare gain – consistent with studies using the two-links-in-parallel network that the 

gains from public tolling increase more than proportionally with the fraction of capacity that is 

tolled.41 The contrast with the LANE scheme is greater for the private flat toll, which is more 

than twice as large ($4.00 vs. $1.75) and yields over four times the revenue. However, the flat 

toll creates a much greater welfare loss than does the flat LANE toll. Thus, the advantage of the 

LINK 2 toll in supporting an even split of traffic between the two lanes is outweighed by the 

greater exercise of market power by the private operator. 

                                                 
38 One exception is Verhoef and Small (2004) who find that a private operator eliminates most of the congestion 
delay on the link(s) that it tolls. Their model features a travel time function with a fourth-power dependence on flow, 
so that congestion delays are quite low unless volumes are a large fraction of capacity. 
39 In contrast, the goal of no-queue tolling is to maintain flows at capacity. 
40 The daily volume reported in Table 2 for the no-tolling regime differs slightly from the aggregate volume reported 
in Figure 4 for the tolled lane and free lane together. The discrepancy arises because (as noted in Section 3.4) the 
LANE toll simulations were performed using an augmented road network. Initial conditions in METROPOLIS differ 
between networks, and this can lead to slightly different results. 
41 The degree of “increasing returns” is expected to be smaller on the network here because congestion remains 
unpriced on other routes. 
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4.4.2 Step tolling 

Similar to the LANE tolling scheme, the public step toll yields several times the welfare gain 

from the flat toll. And again the private step toll effectively eliminates congestion while yielding 

only a moderately higher revenue for the private operator. However, the private step toll now 

yields a welfare gain so that this time the beneficial route split effect outweighs the market power 

effect. 

4.4.3 No-queue tolling 

The results for no-queue tolling shown in panel (iv) and (v) of Table 2 are similar to those for 

the LANE tolling scheme. No-queue tolling performs particularly well at eliminating queuing, 

although the welfare gain from the 5-minute variant falls slightly short of the gain from public 

step tolling. 

4.5 LINK 1 toll 

The LINK 1 toll is imposed on Link 1→0, which feeds into the city centre and lies 

downstream of the link that is tolled in the LINK 2 scheme. The results are reported in Table 3. 

4.5.1 Flat tolling 

The public toll ($0.13) is relatively trivial and it delivers only a small fraction of the (already 

modest) benefits from the LINK 2 flat toll. One reason for the difference is that although the 

Inbound 1 link is more congested than the upstream Inbound 2 link, it carries fewer vehicles. 

Another reason is that traffic can divert from the Inbound 1 link more easily than from the 

Inbound 2 link because the Ring 1 links joining the Inbound 1 links are shorter than the Ring 2 

links that join the Inbound 2 links. 

Given these considerations, it comes as a surprise that the private LINK 1  flat toll is nearly as 

large as the LINK 2 flat toll. Less surprising is that the welfare impacts of the large toll are 

strongly adverse, with the welfare loss amounting to some 43 per cent of the revenue. 
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4.5.2 Step tolling 

The impacts of public and private step tolling are similar in magnitude to those for the LINK 

2 scheme. Again, step tolling provides only a small increase in revenue for the private operator, 

but it yields a much larger welfare gain for the public operator.42

4.5.3 No-queue tolling 

The no-queue tolling schemes perform particularly well. Indeed, the 5-minute step variant 

yields a considerably higher welfare gain than does the public 30-minute step toll, thereby 

making it a strong candidate for regulated private operation.43 Further investigation is required to 

determine why no-queue tolling is so effective on the downstream link.44

4.6 CORDON Toll 

The CORDON toll is levied on the eight Inbound 1 links that lead into the city centre. The 

results are reported in Table 4. 

4.6.1 Flat tolling 

The CORDON scheme provides two surprises with flat tolling. One is that the public flat toll 

of $3.21 is such a large multiple (nearly 25) of the flat toll in the LINK 1 scheme.45 The flat toll 

is much larger because, when all eight Inbound 1 links are tolled, there is no problem of traffic 

diversion onto neighbouring parallel links.46 Traffic flowing into the centre is reduced by about a 

third, and the welfare gain is more than forty times bigger than the gain from the LINK 1 scheme. 

Thus, public flat tolling exhibits strongly increasing returns with respect to the amount of road 

capacity that is tolled. 

                                                 
42 Unexpectedly, the private step toll is lower in every half-hour interval than the private flat toll. Further 
simulations would be required to determine whether this anomaly is due to inexact optimization. 
43 It is anomalous that the 30-minute variant also yields a slightly larger gain than the public (30-minute) step toll, 
although the difference is within the margin of error. 
44 A similar result is reported in Kuwahara (1990) who shows, using a two-links-in-series network with bottleneck 
queuing congestion, that levying a continuously time-varying toll on the downstream link can eliminate queuing on 
both the downstream and the upstream link provided the number of users of the upstream link is not too large. 
45 The annual welfare gain exhibits a double peak when plotted against the toll, with a small peak of about $1.9 
million at a toll of $0.40, and the larger peak of about $3.2 million at a toll of $3.21. By contrast, revenue rises 
smoothly throughout the same range. 
46 Traffic does divert onto Ring Road 1, and the congestion index on the Ring 1 links increases as the CORDON toll 
is progressively raised. 
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The second surprise is that the private flat toll of $4.34 is not much larger than the flat toll for 

LINK 1, and indeed not all that much larger than the public toll. As a result, the private toll yields 

a substantial welfare gain that approaches 50 per cent of the public gain. Granting the private 

operator monopoly power over the city centre therefore does not have the drastic consequences 

that one might expect. Hence, in contrast to the results of the flat LINK 2 scheme, the advantages 

of supporting an even route split of traffic outweigh the greater market power of the private 

operator. 

4.6.2 Step tolling 

The step tolling results are more in line with those of the other three tolling configurations. 

The welfare gain from public tolling rises greatly relative to the gain from flat tolling, whereas 

revenues for the private operator rise only modestly. 

4.6.3 No-queue tolling 

The two no-queue tolling schedules perform almost identically to those of the LINK 1 

configuration: the proportional impacts on traffic volumes and congestion are almost identical, 

while the welfare gain and revenue are scaled up by about a factor of eight. Thus, no-queue 

tolling exhibits approximately constant returns with respect to the scale of the tolled 

infrastructure. 
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CONCLUSIONS 

This paper undertook a comparison of public and private tolling on a congested road network. 

Some of the results bear out previous research. One is that unregulated private tolls are higher, 

and possibly much higher, than public tolls. Another result, which complements that in De 

Palma, Kilani and Lindsey (2005b), is that the no-queue tolling regime performs favourably 

compared to public step tolling. And in every toll-road configuration no-queue tolling does much 

better than private tolling.47 A few results are unexpected. One surprise is how badly step tolling 

performs with the LANE tolling schedule under private management. Another surprise is how 

 
47 Of course this does not imply that no-queue tolling would also perform better than private tolling under alternative 
forms of regulations. The design of such schemes could emerge as an important practical issue in the future. 
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well flat tolling performs with the CORDON tolling scheme under private management despite 

the market power that the private operator wields with this scheme. 

As the review in Section 2 of the two-links-in-parallel network makes clear, allocative 

inefficiency from private roads stem not from a lack of incentive on the private operator’s part to 

alleviate congestion but rather from exercise of market power. The degree of market power 

depends on the elasticity of traffic demand. Estimates of toll elasticities on existing toll roads 

differ widely. In absolute value toll elasticities have been found to vary positively with the length 

of the tolled section, positively with the availability and average speeds of parallel toll-free 

alternatives, negatively with the percentage of heavy trucks on alternatives, and to be lower in 

tourist areas (Matas and Raymond, 2003). In the METROPOLIS model the volume of traffic on 

a link can respond to an increase in the toll in three ways: by shifting mode (to public transport), 

by shifting route (to one that does not include the link), and by shifting departure time (to a time 

when the toll is lower if a time-varying toll is employed). Unfortunately, due to the fluctuations 

in METROPOLIS it is difficult to compute the toll elasticity accurately on a single link – let 

alone to partition it into these three components. 

The final result of note is that for all tolling configurations the additional welfare gained 

under public tolling from step tolling rather than flat tolling exceeds – both absolutely and 

proportionally – the additional revenue gained under private tolling. To the extent that an extra 

dollar of social surplus and an extra dollar of revenue provide commensurable incentives to the 

respective operators, this suggests that step tolling may be less likely on private than public 

roads. One explanation for why time variation of tolls might be less rewarding to a private 

operator is that private roads are less congested because of the higher toll levels. However, in 

addition to the level of demand the elasticity of demand also varies by time of day, and this 

provides another incentive for a private operator (but not a public operator) to price discriminate 

intertemporally. This is one of several questions raised by the simulations that warrant further 

investigation. 

The analysis in this paper could fruitfully be extended in various directions. One obvious one 

is to competition between private operators.48 While competition between private toll-road 

                                                 
48 For the CORDON tolling scheme a competitive regime was investigated in which each of the eight Inbound 1 
links was controlled by a different private operator. An iterative procedure was adopted to solve for the Nash 
equilibrium. The computations proved to be time-consuming, and despite the assumption that a symmetric 
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operators does not seem to have emerged anywhere in the world as yet, the possibility is gaining 

increasing interest. Moreover, there do not appear to be any fundamental technological or 

institutional reasons why – as is the case for most commodities – road services could not be 

provided by competitive markets (Roth, 2006). 
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8 APPENDIX: COMPUTATION OF TOLLS 

Simple procedures for optimizing public flat and public step tolls that are useable with 

METROPOLIS were developed in De Palma, Kilani and Lindsey (2005a), and a procedure for 

solving no-queue tolling was developed for use in Lindsey (2004) and De Palma, Kilani and 

Lindsey (2005b). The procedures for optimizing public tolls are transferable without substantive 

change to private tolls. The text in the Appendix is adapted with some additions and changes in 

wording from De Palma, Kilani and Lindsey (2005b, Section 2.4). 

8.1 Flat tolls 

To compute second-best flat tolls several initial simulations with different toll values were 

run, and a quadratic or spline function was then fitted to the set of (τ, G) pairs, where τ denotes 

the flat toll and G the welfare gain. Further simulations were performed using tolls at, or close to, 

the highest point of the fitted function until little change to either the function or the fitted 

optimal (welfare-maximizing) toll occurred between successive simulations. For computing 

profit-maximizing (=revenue-maximizing) tolls the same procedure was used with revenues used 

in place of the welfare gain. 

8.2 Step tolls 

The step tolls are levied during the two-hour period 6:30-8:30. As a first step in computing 

the second-best optimal step toll, a peak toll, 1τ , was set during the period 7:00-8:00, and a 

shoulder toll, 2τ , during the two half-hour periods 6:30-7:00 and 8:00-8:30. An initial set of 

simulations with trial values of 1τ  and 2τ  was performed. A quadratic function of the form 

2 2
0 1 1 1 1 2 2 2 2 12 1G G a b a b c 2τ τ τ τ τ= + + + + + τ  was then fitted to the set of ( 1τ , 2τ ,G) triplets.49 Further 

simulations were undertaken until a global maximum of the fitted function was found, and little 

change to either the function or the optimal tolls occurred on successive simulations. 

As a second step the 6:30-8:30 interval was divided into four half-hour intervals, and 

simulations with alternative values of the four 30-minute tolls, ( )1 2 3 4, , ,τ τ τ τ , were performed 

                                                 
49  The welfare gain should be zero when both tolls are zero, but due to oscillations in the simulations this was not 
precisely the case and the constant  was added to the regression equation to improve goodness-of-fit. 0G
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using the optimal values for the peak and shoulder tolls as a starting point. A quadratic function 

of the form ( )4 2
0 12 1 2 23 2 3 34 3 41 j j j jj

G G a b c c cτ τ τ τ τ τ τ
=

= + + + + +∑ τ  was fitted to the 

( )1 2 3 4, , , ,Gτ τ τ τ  quintuplets, and a global maximum of the fitted function was identified using 

the same procedure as for the peak and off-peak tolls.50 To compute profit-maximizing tolls the 

same procedure was used with revenues again used in place of the welfare gain. 

8.3 No-queue tolls 

For the LANE and the two LINK toll configurations a single road link is tolled. For the 

CORDON configurations multiple links of the same type are tolled but the toll is constrained to 

be the same on all eight links. Thus, for each configuration only a single toll was computed for 

every 5-minute time interval. The procedure for no-queue tolling involves a tâtonnement-like 

iterative adjustment of the toll according to the formula: 

                                          1 max

max

0,  
i

i i t
t t A Free

Occ OccMax tt
Occ

τ τ λ α+ ⎡ ⎤−
= + ⋅ ⋅⎢ ⎥

⎣ ⎦
, (5) 

where  is the free-flow travel time on the link,  is the occupancy (i.e. number of 

vehicles) on the link in time-of-day interval t on the last day of simulation i,  is the 

maximum occupancy of the link above which queuing occurs (

Freett i
tOcc

maxOcc

max Free iOcc tt s=  where  is the 

flow capacity of the link), and  is an adjustment factor. 

is

(0,1λ ∈ )

Equation (5) stipulates that the toll for interval t is raised for simulation i+1 if the occupancy 

on simulation i  exceeded capacity (i.e. a queue was present), and lowered if occupancy was less 

than capacity. Since negative tolls cannot be levied with METROPOLIS, a minimum toll of zero 

is imposed in equation (5).51 As an initial condition, zero tolls were set on the first iteration. 

Simulations were run with 1λ =  until a reduction in social surplus occurred. A second set of 

iterations was then conducted with 0.5λ =  and continued until social surplus fell again. For the 

LANE configuration, iterations were also run with 0.25λ = in an effort to improve accuracy. 

                                                 
50  To reduce computation time interaction terms in the quadratic function were included only for adjacent 30-minute 
time intervals for which intertemporal substitution by travellers is expected to be significant. 
51 Second-best tolling may call for negative tolls on relatively under-utilized links (Braid, 1996; De Palma, Lindsey 
and Quinet, 2004). 
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TABLE 1. Impacts of LANE tolling 

 

Daily volume Congestion [frac. 
of free-flow time]

3,760 0.76

Tolling 
regime

Tolls Annual revenue  
(R)  [$1000]

Annual surplus 
gain (G)  [$1000] G/R Daily volume   

[% of no toll]
Congestion       

[% of no toll]

Public $0.28 203 ± 7(1) 170 ± 428(38) 0.84 74% 69%
Private $1.75 583 ± 35(3) -30 ± 460(40) -0.05 35% 0.01%

Tolling 
regime

Tolls Annual revenue  
(R)  [$1000]

Annual surplus 
gain (G)  [$1000] G/R

Daily volume   
[% of no toll]

Congestion       
[% of no toll]

Public
$0.20, $1.21, 
$0.45, $0.40 378 ± 23(1) 570 ± 455(23) 1.51 82% 20%

Private
$0.90, $2.60, 
$1.40, $2.00 688 ± 41(2) -277 ± 500(23) -0.40 46% 3%

Tolling 
regime

Mean tolls Annual revenue  
(R)  [$1000]

Annual surplus 
gain (G)  [$1000] G/R

Daily volume   
[% of no toll]

Congestion       
[% of no toll]

No-queue $0.47 365 ± 18(1) 460 ± 478(23) 1.26 80% 27%

Tolling 
regime

Mean tolls Annual revenue  
(R)  [$1000]

Annual surplus 
gain (G)  [$1000] G/R

Daily volume   
[% of no toll]

Congestion       
[% of no toll]

No-queue $0.45 380 ± 15(1) 698 ± 400(20) 1.84 93% 19%

(iv) No-queue tolling (30 min. steps)

(i) No tolling

(v) No-queue tolling (5 min. steps)

(ii) Flat tolling

(iii) Step tolling (30 min. steps)

 
Source: Authors’ calculations 
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TABLE 2. Impacts of LINK 2 tolling 

 

Daily volume Congestion [frac. 
of free-flow time]

7,610 0.83

Tolling 
regime

Tolls Annual revenue  
(R)  [$1000]

Annual surplus 
gain (G)  [$1000] G/R Daily volume   

[% of no toll]
Congestion       

[% of no toll]
Public $0.35 590 ± 10(1) 530 ± 375(33) 0.90 87% 48%
Private $4.00 2388 ± 108(10) -413 ± 343(30) -0.17 31% 0.01%

Tolling 
regime

Tolls Annual revenue  
(R)  [$1000]

Annual surplus 
gain (G)  [$1000] G/R

Daily volume   
[% of no toll]

Congestion       
[% of no toll]

Public
$0.35, $2.40, 
$0.75, $0.40 1243 ± 33(3) 1775 ± 458(40) 1.43 83% 18%

Private
$1.80, $4.30, 
$4.40, $8.00 2868 ± 243(23) 563 ± 670(60) 0.20 44% 0.12%

Tolling 
regime

Mean tolls Annual revenue  
(R)  [$1000]

Annual surplus 
gain (G)  [$1000] G/R

Daily volume   
[% of no toll]

Congestion       
[% of no toll]

No-queue $0.42 728 ± 18(3) 1293 ± 395(35) 1.78 92% 20%

Tolling 
regime

Mean tolls Annual revenue  
(R)  [$1000]

Annual surplus 
gain (G)  [$1000] G/R

Daily volume   
[% of no toll]

Congestion       
[% of no toll]

No-queue $0.74 910 ± 18(3) 1690 ± 438(40) 1.86 95% 7%

(v) No-queue tolling (5 min. steps)

(i) No tolling

(ii) Flat tolling

(iii) Step tolling (30 min. steps)

(iv) No-queue tolling (30 min. steps)

 
Sources: Public tolling and no-queue tolling regimes: De Palma, Kilani and Lindsey (2005b); Private 

tolling regime: Authors’ calculations 
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TABLE 3. Impacts of LINK 1 tolling 

 

Daily volume Congestion [frac. 
of free-flow time]

5,680 1.86

Tolling 
regime

Tolls Annual revenue  
(R)  [$1000]

Annual surplus 
gain (G)  [$1000] G/R Daily volume   

[% of no toll]
Congestion       

[% of no toll]

Public $0.13 180 ± 2(1) 78 ± 363(20) 0.43 96% 98%
Private $3.95 2435 ± 113(5) -1045 ± 388(18) -0.43 43% 0.00%

Tolling 
regime

Tolls Annual revenue  
(R)  [$1000]

Annual surplus 
gain (G)  [$1000] G/R

Daily volume   
[% of no toll]

Congestion       
[% of no toll]

Public
$0.21, $2.86, 
$3.70, $1.00 2155 ± 58(5) 1670 ± 428(38) 0.77 88% 5%

Private
$0.92, $3.59, 
$3.71, $2.99 2745 ± 120(10) 693 ± 338(30) 0.25 62% 1%

Tolling 
regime

Mean tolls Annual revenue  
(R)  [$1000]

Annual surplus 
gain (G)  [$1000] G/R

Daily volume   
[% of no toll]

Congestion       
[% of no toll]

No-queue $1.52 1925 ± 48(5) 1693 ± 403(35) 0.88 94% 12%

Tolling 
regime

Mean tolls Annual revenue  
(R)  [$1000]

Annual surplus 
gain (G)  [$1000] G/R

Daily volume   
[% of no toll]

Congestion       
[% of no toll]

No-queue $1.73 2540 ± 83(8) 2480 ± 493(45) 0.98 95% 11%

(v) No-queue tolling (5 min. steps)

(i) No tolling

(ii) Flat tolling

(iii) Step tolling (30 min. steps)

(iv) No-queue tolling (30 min. steps)

 
Sources: Public tolling and no-queue tolling regimes: De Palma, Kilani and Lindsey (2005b); Private 

tolling regime: Authors’ calculations 
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TABLE 4. Impacts of CORDON tolling 

 

Daily volume Congestion [frac. 
of free-flow time]

45,900 1.84

Tolling 
regime

Tolls Annual revenue   
(R)  [$1000]

Annual surplus 
gain (G)  [$1000] G/R Daily volume   

[% of no toll]
Congestion       

[% of no toll]
Public $3.21 24,055 ± 243(23) 3223 ± 328(30) 0.13 66% 24%
Private $4.34 27,588 ±408(38) 1458 ± 473(43) 0.05 55% 3%

Tolling 
regime

Tolls Annual revenue   
(R)  [$1000]

Annual surplus 
gain (G)  [$1000] G/R

Daily volume   
[% of no toll]

Congestion       
[% of no toll]

Public
$0.10, $3.53, 
$3.48, $0.39 20,165 ± 380(45) 16,390 ± 1263(145) 0.81 98% 39%

Private
$2.50, $5.60, 
$4.66, $8.50 30,688±1135(103) 3628 ± 1625(145) 0.12 64% 3%

Tolling 
regime

Mean tolls Annual revenue   
(R)  [$1000]

Annual surplus 
gain (G)  [$1000] G/R

Daily volume   
[% of no toll]

Congestion       
[% of no toll]

No-queue $1.80 17,865 ± 143(18) 13,155 ± 685(80) 0.74 94% 13%

Tolling 
regime

Mean tolls Annual revenue   
(R)  [$1000]

Annual surplus 
gain (G)  [$1000] G/R

Daily volume   
[% of no toll]

Congestion       
[% of no toll]

No-queue $1.95 22,163 ± 428(50) 17,943 ±880(103) 0.81 95% 12%

(ii) Flat tolling

(iii) Step tolling (30 min. steps)

(iv) No-queue tolling (30 min. steps)

(i) No tolling

(v) No-queue tolling (5 min. steps)

 
Sources: Public tolling and no-queue tolling regimes: De Palma, Kilani and Lindsey (2005b); Private 

tolling regime: Authors’ calculations 
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FIGURE 1. The Road Network 
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FIGURE 2.   Segment of the Road Network  
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FIGURE 3. Congestion Indices in No-tolling Regime 
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FIGURE 4. Link inflows, No-tolling Regime 

 

Link 9-1 inflows: No-tolling regime
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FIGURE 5. Link inflows, Public flat toll 

 

Link 9-1 inflows, Public flat toll
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FIGURE 6. Link inflows, Private flat toll 

 

Link 9-1 inflows, Private flat toll
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FIGURE 7. Link inflows, Public step toll 
 

Link 9-1 inflows, Public step toll
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FIGURE 8. Link inflows, Private step toll 
 

Link 9-1 inflows: Private step toll
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FIGURE 9. Link inflows, 30-minute no-queue toll 

 

Link 9-1 inflows: 30-minute step no-queue toll
Volumes: Free lane 3,940, Toll lane 3,010
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FIGURE 10. Link inflows, 5-minute no-queue toll 

 

Link 9-1 inflows: 5-minute step no-queue toll
Volumes: Free lane 4,020, Toll lane 3,480

0

500

1000

1500

2000

2500

3000

3500

6:00 6:30 7:00 7:30 8:00 8:30 9:00

Ve
hi

cl
es

/h
ou

r

Free lane
Toll lane
Capacity

 

 


	1 INTRODUCTION 
	2 RELATED LITERATURE 
	3 THE MODEL 
	3.1 Travel demand 
	3.2 The road network 
	3.3 Simulation procedure 
	3.4 Tolling Schemes 
	4 SIMULATION RESULTS  
	4.1 No-tolling regime 
	4.2 Social optimum 
	4.3 LANE toll 
	4.3.1 Flow patterns before tolling 
	4.3.2 Flat tolling 
	Public regime 
	Private regime 

	4.3.3 Step tolling 
	Public regime 
	Private regime 

	4.3.4 No-queue tolling 
	4.3.5 Summary 

	4.4 LINK 2 toll 
	4.4.1 Flat tolling 
	4.4.2 Step tolling 
	4.4.3 No-queue tolling 

	4.5 LINK 1 toll 
	4.5.1 Flat tolling 
	4.5.2 Step tolling 
	4.5.3 No-queue tolling 

	4.6 CORDON Toll 
	4.6.1 Flat tolling 
	4.6.2 Step tolling 
	4.6.3 No-queue tolling 


	5 CONCLUSIONS 
	6 ACKNOWLEDGMENTS 
	7  REFERENCES 
	8  APPENDIX: COMPUTATION OF TOLLS 
	8.1 Flat tolls 
	8.2 Step tolls 
	8.3 No-queue tolls 



