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Abstract

In this paper, we develop a new numerical method to estimate a multivariate probit model. To
this end, we derive a new decomposition of normal multivariate integrals that has two appealing
properties. First, the decomposition may be written as the sum of normal multivariate inte-
grals, in which the highest dimension of the integrands is reduced relative to the initial problem.
Second, the domains of integration are bounded and delimited by the correlation coefficients.
Application of a Gauss-Legendre quadrature rule to the exact likelihood function of lower dimen-
sion allows for a major reduction of computing time while simultaneously obtaining consistent
and efficient estimates for both the slope and the scale parameters. A Monte Carlo study shows
that the finite sample and asymptotic properties of our method compare extremely favorably to
the maximum simulated likelihood estimator in terms of both bias and root mean squared error.
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1 Introduction

The multivariate probit is an appealing model of choice behavior because it allows a flexible correla-
tion structure for the unobservable variables. However, until now, applications have been limited be-
cause they require high dimensional numerical- or simulation-based integration, and integration (or
simulation) of the multivariate normal density over subsets of a Euclidean space is computationally
burdensome. More generally, estimation of limited dependent variables models is often hampered
by computational complexity. In particular, there is a widespread consensus in the literature that
the use of numerical integration or quadrature techniques is possible in principle but it is too time-
consuming and/or imprecise to consider in practice, except for the case of low dimensional problems.

Since the seminal work of Ashford and Sowden (1970) on multivariate probit models, numerous
attempts have been made to circumvent the curse of dimensionality in evaluating the multivariate
probabilities involved. These have been evaluated using either deterministic or Monte Carlo inte-
gration, with the latter generally being preferred as the dimension of the problem increases. On
one hand, quadrature methods have been used in models that assume special structures of the cor-
relation matrix and for which closed-form expressions are available. Here, the multiple integration
problems are typically greatly reduced (Ashford and Sowden, 1970; Sickles and Taubman, 1986;
Bock and Gibbons, 1996).1 In addition, numerical integration has been extensively studied in the
evaluation of multivariate normal probabilities with a given mean vector and variance-covariance or
correlation matrix (Tong, 1990; Kotz, Balakrishnan, and Johnson, 2000).2

On the other hand, various simulation-based methods, as suggested by Lerman and Manski (1981),
McFadden (1989), and Pakes and Pollard (1989), have been developed for discrete choice models:
the maximum simulated likelihood, the method of simulated moments, and the method of simu-
lated scores.3 Briefly speaking, these simulation-based methods are a combination of a probability
simulator, which determines the multivariate cumulative (normal) density function, and standard
estimation procedures through the optimization of the objective function.4

In this paper we propose a new procedure, which relies on a numerical integration of an exact
dimensional reduction formula of the maximum likelihood (henceforth exact maximum likelihood)
function, or the score vector.5 The key idea is to provide an exact decomposition of the cumula-
tive density function of the M -variate (standardized) normal vector encountered in the likelihood

1Quadrature methods have been used by, among others, Heckman (1981) and Butler and Moffitt (1982) in the

analysis of discrete choices panel data. Trapezoidal integration, which is a member of the Newton-Cotes formulae, has

been implemented by Heckman and Willis (1975). An alternative to quadrature methods is to implement the Laplace

approximation (De Bruijn, 1981; Tierney and Kadane, 1986). To the best of our knowledge, this method has not yet

been implemented in multivariate probit models.
2See also Miwa, Hayter, and Kuriki (2003), and Craig (2008).
3For a review, see Gourieroux and Monfort (1996), Stern (1997) and Train (2003).
4Other approaches include full Bayesian estimation (Chib and Greenberg, 1998; Lawrence et al., 2004) and GMM

estimators (Bertschek and Lechner, 1998).
5The results presented in this paper are based on the work of Huguenin (2004) who, using a different approach,

generalized and extended the results originally derived in Lazard Holly and Holly (2003).
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function of a multivariate probit model. In doing so, we obtain a sum of multivariate integrals, in
which the highest dimension of the integrands is M − 1. It is worth noting that some of our results
are in the spirit of the reduction formula for normal multivariate integrals proposed by Plackett
(1954). Despite the importance of the results derived by Plackett (1954), they have not received
the attention that they deserve. One of the advantages of our suggested procedure is that the
domains of integration are bounded and delimited by the correlation coefficients and are thus of
Lebesgue measure less than one. We therefore obtain, as a first step, an exact decomposition of
the (log-) likelihood function or the corresponding score vector. In a second step, we use a Gauss-
Legendre quadrature over bounded intervals for each term of the sum (the approximation afforded
by the Gauss-Legendre quadrature rule may be made arbitrarily precise by increasing the number
of nodes).6 Hence, the features of the exact decomposition that we suggest allow for obtaining
consistent and efficient estimates of the slope and variance-covariance parameters. Moreover, our
method is time-efficient, meaning that the computing time is by no means comparable to that of
the maximum simulated likelihood estimator, especially as the dimension of the multivariate probit
model increases.

In the sequel, the maximum simulated likelihood method (McFadden, 1989; Pakes and Pollard,
1989) is our benchmark and we compare our results with those of this approach. As is well known,
the consistency and asymptotic normality of the maximum simulated likelihood estimator require,
among others features, that the number of draws, R, grows without bound faster than the square
root of the number of observations. This, in turn, means that consistency is often obtained at the
cost of increasing the computing time, which may make such methods less attractive even with the
new developments in computer sciences. Computational cost is important per se since simulation-
based methods are also designed to reduce the computation time. If this were not an issue, one could
simulate while letting R be an arbitrarily large number. In addition, the consistency and efficiency
of the variance-covariance or correlation parameters are generally ignored in the simulation-based
literature. However, even if the accuracy of the simulator is sufficient for locating a relative max-
imum, it may not be sufficiently accurate for the calculation of the Hessian and the parameter
variance estimates (Breslaw, 1994; Lee, 1997). The higher nonlinearity characteristic of the first
order conditions with respect to the variance-covariance or correlation parameters makes the consis-
tency of the maximum simulated likelihood even more critical. In contrast, the new approach based
on numerical integration proposed in this paper dramatically reduces the computation time while
it simultaneously increases the numerical accuracy of both the slope and the variance-covariance
parameters, thereby yielding an efficient estimation of the parameters of interest.

In addition to addressing this main objective, two additional points are worth noting in this pa-
per. First, we show that our method easily extends to the panel probit model as long as the time
dimension is not too large (as it is commonly assumed in the literature).7 More generally, our
method applies to almost any estimation of limited dependent variables models that are based on
the multivariate normal distribution. In particular, multivariate probit models may be interpreted
as the reduced form of a simultaneous equations model with latent and observable variables. Sec-

6As we will see later on, the computing time increases less than linearly with the number of nodes.
7Using the same specification as in Butler and Moffitt (1992), we are not constrained by the time dimension.
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ond, we note that, up to a certain order, our method allows for the estimation of flexible correlation
matrices and to test such restrictions. This is not often the case in standard econometrics packages
(e.g., Stata).8 It is hoped that our approach to the reduction problem as well as the availability
of the associated software will allow researchers to apply our results in a large number of situations.9

The rest of the paper proceeds as follows. In Section 2, we propose two new decomposition formulae
for normal multivariate integrals and discuss their main implications. An example is provided in
the case of a trivariate normal vector. In section 3, we describe the multivariate probit model and
its main assumptions. We then apply our decomposition in order to derive the exact maximum like-
lihood function or the exact score vector, and the numerical evaluation procedure (Gauss-Legendre
quadrature) is detailed. In Section 4, we provide some Monte Carlo simulations and comment on
the merits of our approach with respect to the maximum simulated likelihood estimator. Some
concluding remarks are presented in Section 5. Proofs are provided in the appendix.

2 New Decomposition Formulae for Normal Multivariate Integrals

In this section, we describe our new decomposition formulae for normal multivariate integrals (say
of dimension M). In doing so we proceed in two steps. First, we decompose the multivariate normal
cumulative distribution function into a sum of multiple integrals in a unique way. In such integrals,
the domains of integration are bounded and delimited by the correlation coefficients and are thus of
Lebesgue measure less than one. The strength of this decomposition lies in the transformation of the
integration domain. We then show in a second step how to preserve the appeal of this decomposition
while reducing the highest dimension of the integrands to M −1 and the number of normal integrals
in the sum. Both dimensional reduction formulae are in the spirit of Plackett (1954) in a sense to
be clarified in Subsection 2.1.

Throughout this paper, we use the following notation. ΦM,Z (z | µ,Ψ) ≡ ΦM,Z (µ,Ψ) and ϕM,Z (z | µ,Ψ) ≡
ϕM,Z (µ,Ψ) denote, respectively, the cumulative density function (cdf) and probability density func-
tion (pdf) of an M -variate normal vector Z of a mean vector µ and a variance-covariance matrix.
The cdf and pdf of an M -variate normal vector Z evaluated at w are denoted, respectively, as:
ΦM,Z (w | µ,Ψ) and ϕM,Z (w | µ,Ψ). In the case of an M -variate standardized normal vector Z of
mean 0M and correlation matrix Ω evaluated at w, the cdf and pdf are denoted, respectively, as:
ΦM,Z (w | 0,Ω) ≡ ΦM,z (w,Ω) and ϕM,Z (w | 0,Ω) ≡ ϕM,Z (w,Ω).

Before going through all of the details, we consider the simple example of a bivariate probit model.
This model requires calculating the bivariate integral of a bivariate normal density function (or the
cumulative density function of a bivariate normal vector). Without loss of generality, we consider
the standardized bivariate normal density:

ϕ2,z (0,Ω) = (2π)−1 |Ω|−1/2 exp
(
−1

2
z′Ω−1z

)
8See Cappellari and Jenkins (2003).
9The Gauss codes are available upon request. See Huguenin (2008).
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where z′ = (z1, z2) and Ω is a 2 × 2 correlation matrix whose main diagonal elements equal 1 and
the symmetric off-diagonal element, ω12 = ω21, belongs to (−1, 1). The cumulative density function
is the bivariate integral:

Φ2,z (w,Ω) = Pr

[
2⋂

m=1

(zm ≤ wm)

]

=
∫ w2

−∞

∫ w1

−∞
ϕ2,z (0,Ω) dz1dz2.

Using our new decomposition of normal multivariate integrals, we show that the bivariate cumulative
density function may be rewritten as follows:

Φ2,z (w,Ω) ≡ Φ2,z (w | ω12)

= Φ (w1) Φ (w2) +
1
2π

∫ ω12

0
exp

(
−1

2
w2

1 + w2
2 − 2λ12w1w2

1− λ2
12

)
dλ12√
1− λ2

12

.

This decomposition corresponds exactly to the dimensional reduction formula of Plackett (Eq. 7
p. 353) and the expression derived in Lazard Holly and Holly (2003) for this particular case. More
generally, the appeal of this decomposition rests on the following points. First, this transformation
is exact, and no approximation has been made at this stage. Second, the highest integral to compute
is of dimension 1. Third, the domain of integration changes from a rectangular semi-infinite domain
((−∞, w2] × (−∞, w1]) to a bounded domain ([0, ω12]).10 Finally, the integration of the second
left-hand side term is with respect to the unrestricted coefficient of the correlation matrix. This
decomposition may be generalized to any M -variate integral of an M -variate normal vector so that
any cumulative density function of an M -variate normal vector may be decomposed into a sum of
multiple finite range integrals of lower dimension.

2.1 Decomposition Formulae

Before proceeding, we introduce some further notation. Let Ω̃ denote the vector of unique elements
of the normalized matrix Ω (where ωij = ρij is either the correlation coefficient or the covariance
between two random variables i and j), and n denote its dimension, n = M (M − 1) /2. We set:

Ω =
M−1⊗
i=1

M⊗
j=i+1

[0, ωij ]

dΩ̃ =
M−1∏
i=1

M∏
j=i+1

dωij

10If w is the zero vector, the previous expression simplifies to the well known formula:

Φ2,z (0 | 0, Ω) =
1

4
+

arcsin ω12

2π

where Φ (z1) = 1
2

and
R ω12
0

ϕ2,z (0, λ12) dλ12 = arcsin ω12
2π

.
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where Ω̃pq is defined as the set of correlation parameters resulting from the qth combination of Ω̃,
which contains p zero elements:

Ω̃01 = Ω̃

Ω̃11 = Ω̃|ω12=0, Ω̃12 = Ω̃|ω13=0, . . . , Ω̃1n = Ω̃|ω1n=0

· · ·

Ω̃n1 = ∅,

and Ωpq is the constrained set defined from the correlation parameters of Ω when considering only
the (n− p) non-zero elements of Ω̃pq. In this context, dΩ̃pq defines the (M − p) non-zero elements
of Ω̃pq over which we integrate. Finally, Ik

(
Ω̃pq

)
is the number of indices being equal to k, which

are present in the i and j indices of the elements ωij in Ω̃pq.

For example, in a trivariate probit model, the Ω̃pq’s correspond to the set of non-zero off-diagonal
elements of the following matrices:

Ω01 =

 1 ω12 ω13

ω12 1 ω23

ω13 ω23 1

 ,Ω31 =

 1 0 0
0 1 0
0 0 1



Ω11 =

 1 0 ω13

0 1 ω23

ω13 ω23 1

 ,Ω12 =

 1 ω12 0
ω12 1 ω23

0 ω23 1

 ,Ω13 =

 1 ω12 ω13

ω12 1 0
ω13 0 1



Ω21 =

 1 0 0
0 1 ω23

0 ω23 1

 ,Ω22 =

 1 0 ω13

0 1 0
ω13 0 1

 ,Ω23 =

 1 ω12 0
ω12 1 0
0 0 1

 .

It turns out that the Ωij , say Ω11, is defined by [0, ω13]⊗ [0, ω23], and dΩ̃11 = dω13dω23.

We now turn to the main propositions of our paper. To this end, we first need the following two
lemmas, which are well known and are stated here for completeness and notational purposes. The
first one establishes the factorization of an M -variate normal cdf. The second lemma rewrites the
partial differential matrix equation proposed by Plackett (1954), which allows for the dimensional
reduction formula of normal multivariate integrals.

Lemma 1 The cumulative density function ΦM,Z (z,Ω) may be weakly factorized as:

ΦM,Z (z,Ω) =
∫
Z1

ϕM1,Z1 (t1,Ω11)×

ΦM2,Z2

(
∆−1

22

(
z2 − Ω21Ω−1

11 t1
)
,∆−1

22

(
Ω22 − Ω21Ω−1

11 Ω12

)
∆−1

22

) M1∏
k=1

dt1k

where Z = (Z1, Z2) is a partitioning of the M -variate normal vector Z, dim (Z1) = M1, dim (Z2) =

M2, Z = Z1 ⊗Z2 is the corresponding partitioning of the integration domain, t1 = (t11, · · · , t1M1)
′,

∆22 is a diagonal matrix containing the square roots of the diagonal elements of Ω22 − Ω21Ω−1
11 Ω12,
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and Ω is partitioned with respect to Z1:

Ω =

 Ω11 Ω12

Ω′
12 Ω22

 .

If Z1 and Z2 are independent, the cumulative distribution function ΦM,Z (z,Ω) may be strictly

factorized in the M1-dimensional cumulative distribution function ΦM1,Z1 (z1,Ω11) and the M2-

dimensional cumulative distribution function ΦM2,Z2 (z2,Ω22) such that

ΦM,Z (z,Ω) = ΦM1,Z1 (z1,Ω11) ΦM2,Z2 (z2,Ω22) . �

Applying Lemma 1, it is quite straightforward to show that if M1 = 2, the factorization of the
cumulative distribution function with respect to Zi and Zj is given by:

Φ2,Z (z,Ω) =
∫ zi

−∞

∫ zj

−∞
ϕ2,Z1 (tij ,Ωij)×

ΦM−2,Z2

(
∆−1
−ij

(
z−ij − ΓijΩ−1

ij tij

)
,∆−1

−ij

(
Ω−ij − ΓijΩ−1

ij Γ′ij
)

∆−1
−ij

)
dtidtj

where tij = (ti, tj)
′, z−ij is the vector z without the elements zi and zj , Ωij is the matrix with the

ith and jth rows and columns of Ω, Γij is the covariance matrix between zij and z−ij , and ∆−ij is

a diagonal matrix whose the kth element is
√

1−ω2
ij−ω2

ki−ω2
kj+2ωijωkiωkj

1−ω2
ij

, with ωki and ωkj being the

elements of the kth row of Γij .

Following Plackett (1954), we now define the partial differential matrix equation that states the
relationship between the second order partial derivatives of the cdf (respectively pdf) of an M -
variate normal vector with respect to z = (z1, ..., zM )′ and the first order partial derivative of this
cdf (respectively pdf) with respect to the correlation or covariance matrix.11

Lemma 2 Assume that Z is an M -variate (standardized) normal vector. Then we have:

∂2

∂z∂z′
ϕM,Z(z,Ω) =

∂

∂Ω
ϕM,Z(z,Ω)

∂2

∂z∂z′
ΦM,Z(z,Ω) =

∂

∂Ω
ΦM,Z(z,Ω)

where z = (z1, ..., zM )′.

�

Proof: See Appendix 1.

To the best of our knowledge, the results of Lemma 2 and its implications for the numerical or
stochastic evaluation of normal multivariate integrals have been largely ignored in the literature,
except for a few applications. For instance, Hausman and Wise (1978, footnote 17, p. 417) use
them to estimate a conditional probit model. Breslaw (1994) develops a low variance simulator to

11This result has been known for some time when M = 2 and has been established for all M by Plackett (Eq. 3 p.

352).
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approximate multivariate normal probability integrals, which uses the derivation formulae of Plack-
ett, the line integral approach and the GHK simulator.

Taking only Lemma 2, we are now in a position to prove one of our main results of this paper—an
exact and unique decomposition of the normal cumulative distribution function, ΦM,Z (z,Ω), into a
finite-countable sum of multiple integrals with bounded domains (Proposition 1).

Proposition 1 Assume that each matrix Ωpq is positive definite, the cumulative distribution func-

tion ΦM,Z (z,Ω) may be decomposed as follows:

ΦM,Z (z,Ω) =
M∏

k=1

Φ (zk) +
n−1∑
p=0

(n
p)∑

q=1

∫
Ωpq

ξMp

(
z, Λ̃pq

)
dΛ̃pq (1)

with:

ξMp

(
z, Ω̃pq

)
=

∂n−p

M−1∏
i=1

M∏
j=i+1

∂ω̃ij

ΦM,Z

(
z, Ω̃pq

)

where ∂ω̃ij = ∂ωij if ωij 6= 0 and ∂ω̃ij = 1 otherwise, and n = M (M − 1) /2.

If ΦM,Z

(
z, Ω̃pq

)
is weakly factorizable (Lemma 1), then ξMp

(
z, Ω̃pq

)
is the derivative of the density

function ϕM,Z

(
z, Ω̃pq

)
with respect to the elements of z such that:

ξMp

(
z, Ω̃pq

)
=

∂M(M−2)−2p

M∏
k=1

∂z
Ik(eΩpq)−1

k

ϕM,Z

(
z, Ω̃pq

)
.

Otherwise, if ΦM,Z

(
z, Ω̃pq

)
is strictly factorizable as follows:

ΦM−L

(
z−{k1,...,kL}, Ω̃−{k1,...,kL},pq

) L∏
l=1

Φ (zkl
)

then ξMp

(
z, Ω̃pq

)
is the product of the L independent univariate cumulative distribution functions

and the derivative of the density function ϕM−L,Z

(
z−{k1,...,kL}, Ω̃−{k1,...,kL},pq

)
such that:

ξMp

(
z, Ω̃pq

)
=

[
L∏

l=1

Φ (zkl
)

]
∂

hP
k 6=kl

Ik(eΛpq)
i
−2p∏

k 6=kl
∂z

Ik(eΛpq)−1

k

ϕM−L

(
z−{k1,...,kL}, Ω̃−{k1,...,kL},pq

)
.

�

Proof: See Appendix 2.

While allowing for a bounded integration domain, the two limitations of Proposition 1 are that
(i) the number of elements in the decomposition is large and (ii) the highest dimension of the mul-
tiple integrals is larger than M , except for M = 2 and M = 3. Indeed, it is straightforward to show
that the total number of elements is 2n. Therefore, in a multivariate probit model of order 5, one
has to compute 1,024 elements! Moreover, the highest dimension of the multiple integrals equals n,
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the number of unique off-diagonal elements of Ω. In the situation where M is greater than or equal
to four, the highest dimension of the integral in the decomposition (Eq. 1) is higher than M . From
a practical view, we may consider multivariate probit models only up to order 3, as otherwise this
decomposition is not useful from the viewpoint of computing time.

[Insert Table 1 around here]

However, using both Lemma 1 and Lemma 2, we can reduce both the number of elements being
summed up and the highest dimension of the multivariate integrals involved. The corresponding
decomposition is given in Proposition 2.

Proposition 2 The normal cumulative distribution function ΦM (z,Ω) may be decomposed into the

sum of two terms. The first one is the product of M univariate normal cumulative distribution

functions and the second is the sum of multiple integrals with bounded domains, with the range of

each integral being of the magnitude of one of the elements of Ω. Specifically, ΦM,Z may be written

as:

ΦM,Z (z,Ω) =
M∏

k=1

Φ (zk) +
∑

r

∫
Ωr

ψMr

(
z, Λ̃r (Ω)

)
dΛ̃r (2)

where each matrix Λ̃r (Ω) is assumed to be positive definite and ψMr

(
z, Λ̃r (Ω)

)
is given by some

linear combination of the ξMp

(
z, Λ̃r (Ω)

)
defined in Proposition 1. Λ̃r (Ω) is the corresponding

matrix Λ̃pq filled with some non-zero elements ωij, and Ωr is a bounded integration domain.

The highest dimension of the multivariate integrals in the sum is (M − 1). �

Proof: See Appendix 3.

Several points are worth noticing. First, as in Proposition 1, the decomposition is exact. How-
ever, it is no more unique as is stated in the proof of Proposition 2 and illustrated in the example
below. Second, the highest dimension of the multiple integrals is M − 1 so that a bivariate (trivari-
ate) probit model is analyzed as a univariate (bivariate) integration problem. Moreover, since the
integration domains are bounded and of Lebesgue measure less than one, the numerical integration
is tremendously simplified. Third, the number of elements is also reduced considerably (Table 1).
Finally, the number of elements to evaluate may be further reduced if we impose restrictions on the
variance-covariance matrix or the correlation matrix, as is often done in the literature.12

12In order to solve the dimensionality problem of multivariate probit models, some of the literature assumes special

structures of the correlation matrix for which closed-form expressions for the probabilities are available and for which

the multiple integration problem is greatly reduced (Ashford and Sowden, 1970; Sickles and Taubman, 1986). The

correlation matrix of the multivariate probit model is generally defined in terms of a multi-factor structure (Ochi and

Prentice, 1984; Bock and Gibbons , 1996) and the multivariate normal probabilities are evaluated using a Gauss-

Hermite quadrature method. But, except under these simplifying assumptions on the correlation (covariance) matrix,

the likelihood function remains difficult to evaluate and the curse of dimensionality is still present. In contrast, here

we do not need to impose any restrictions on the correlation matrix and numerical integration is simplified by making

use of a Gauss-Legendre quadrature method.
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Using Lemma 2, Plackett (1954) also obtains a dimension reduction formula of any normal multi-
variate integral (Eq. 7 p. 353). It consists of expressing a multivariate normal probability as the
sum of an easily computed reference probability and a probability correction that may be found
as the sum of one-dimensional integrals (after recursion).13 For completeness, the corresponding
decomposition is given in Lemma 3.

Lemma 3 Assume that the reference matrix is the identity matrix. Then we have:

ΦM,Z (z,Ω) =
M∏

k=1

Φ (zk) +
∫ 1

0

∑
i<j

ωijϕ2,Zij (zij ,Σij (s))ΦM−2,Z−ij

(
z̃−ij (s) , Σ̃−ij(s)

)
ds (3)

where Σ (s) = sΩ + (1− s) IM , z̃−ij (s) = ∆−1
−ij (s)

(
z−ij − Γij (s) Σ−1

ij (s) Γ′ij (s)
)
, and

Σ̃−ij (s) = ∆−1
−ij (s)

(
Σ−ij (s)− Γij (s) Σ−1

ij (s) Γ′ij (s)
)

∆−1
−ij (s). �

Proof: See Appendix 4.

Both decompositions (Eq. 2 and 3) may be interpreted as the sum of a target probability ΦM,Z (z,Ω)

into a reference probability (the reference matrix being the identity matrix),
M∏

k=1

Φ (zk), and a proba-

bility correction term—the second term on the right-hand side. Moreover, as already noted, the two
decompositions are the same in the case of a bivariate normal integral. However, for M > 2, they
substantially differ from an estimation point of view. The Plackett-based decomposition is partic-
ularly useful when one evaluates multivariate normal probabilities with a given variance-covariance
(correlation) matrix (Gassmann, 2003). If one needs to estimate the variance-covariance matrix as
in any multivariate probit models or multivariate discrete choice models, then the effectiveness of
the recursive formula is greatly reduced relative to our new decomposition formula (Eq. 2). In par-
ticular, the Plackett-based log-likelihood function becomes much more nonlinear that the one based
on Proposition 2.14 This, in turn, implies that the optimization procedure (or the determination of
the zeroes of the score vector) leads to a higher computing time and generally a loss of precision.
All in all, the computational complexity is considerably reduced when using Proposition 2. In the
sequel, we only report Monte-Carlo results using our new decomposition (Eq. 2).15

2.2 Illustrative Example for M = 3

To conclude this section, we illustrate the application of Propositions 1 and 2 in the case of a
trivariate cumulative density function. Applying Proposition 1 leads to the following unique decom-

13Gassmann (2003) tests the numerical properties of Plackett’s method with respect to other numerical procedures

(Gassmann, Deák, and Szántai, 2002). Monte-Carlo results show that the recursive Plackett-based method competes

very favorably with the most accurate numerical methods and that it may be recommended when the problem’s

dimension does not exceed 10. A partial implementation of these formulae is also done by Drezner (1994) to calculate

trivariate normal probabilities.
14See proof of Lemma 3.
15We compared the computing time and the accuracy of estimates with both methods. Our results clearly support

the use of Proposition 2. Results are not reported in Section 4 but are available upon request.
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position:

Φ3 (z,Ω) = Φ (z1) Φ (z2) Φ (z3)

+Φ (z3)
∫ ω12

0
ϕ2 (z1, z2, λ12) dλ12

+Φ (z2)
∫ ω13

0
ϕ2 (z1, z3, λ13) dλ13

+Φ (z1)
∫ ω23

0
ϕ2 (z2, z3, λ23) dλ23

+
∫ ω12

0

∫ ω13

0

∂ϕ3 (z, λ12, λ13, 0)
∂z1

dλ12dλ13

+
∫ ω12

0

∫ ω23

0

∂ϕ3 (z, λ12, 0, λ23)
∂z2

dλ12dλ23

+
∫ ω13

0

∫ ω23

0

∂ϕ3 (z, 0, λ13, λ23)
∂z3

dλ13dλ23

+
∫ ω12

0

∫ ω13

0

∫ ω23

0

∂3ϕ3 (z,Λ)
∂z1∂z2∂z3

dλ12dλ13dλ23.

Using now Proposition 2, the last integral may be decomposed in a non-unique way as follows:∫ ω12

0

∫ ω13

0

∫ ω23

0

∂3ϕ3 (z,Λ)
∂z1∂z2∂z3

dλ12dλ13dλ23

=
∫ ω13

0

∫ ω23

0

∂ϕ3 (z, ω12, λ13, λ23)
∂z3

dλ13dλ23

−
∫ ω13

0

∫ ω23

0

∂ϕ3 (z, 0, λ13, λ23)
∂z3

dλ13dλ23

=
∫ ω12

0

∫ ω23

0

∂ϕ3 (z, λ12, ω13, λ23)
∂z2

dλ12dλ23

−
∫ ω12

0

∫ ω23

0

∂ϕ3 (z, λ12, 0, λ23)
∂z2

dλ12dλ23

=
∫ ω12

0

∫ ω13

0

∂ϕ3 (z, λ12, λ13, ω23)
∂z1

dλ12dλ13

−
∫ ω12

0

∫ ω13

0

∂ϕ3 (z, λ12, λ13, 0)
∂z1

dλ12dλ13.

Therefore, the cumulative distribution function may be written as:

Φ3 (z,Ω) = Φ (z1) Φ (z2) Φ (z3)

+Φ (z3) Ψ2 (z1, z2, ω12)

+Φ (z2) Ψ2 (z1, z3, ω13)

+Φ (z1) Ψ2 (z2, z3, ω23)

+Ψ3 (z1, z2, z3, ω12, ω13, 0)

+Ψ3 (z2, z3, z1, ω23, ω12, 0)

+Ψ3 (z3, z1, z2, ω13, ω23, ω12) .

Again this is only one of the three possible specifications due to the non-unique decomposition of
the three-dimension integral exposed above.
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3 Application to the Multivariate Probit Model

In this section, we first present for notational purpose the multivariate probit model and the under-
lying assumptions. We then derive the exact likelihood function based on Proposition 2 and explain
how the numerical evaluation may be carried out. Finally, some estimation issues are discussed.

3.1 The Model

The multivariate probit model, for observation i and equation m, is:

y∗im = x′imβm + εim (4)

yim = I (y∗im > τm)

where i = 1, · · · , N , m = 1, · · · ,M , yim equals 1 if y∗im > τm and 0 otherwise, xim is an km × 1
vector of covariates, βm ∈ Rkm is the vector of parameters, τm is the cut-off point or threshold of
the mth response variable, and εim is the error term. Without loss of generality, we assume that
τm = 0, for all m.

The data consist of N observations on (yi, xi)i=1,··· ,N where yi = (yi1, · · · , yiM )′ denotes the col-
lection of responses on all M variables, and xi = diag (x′i1, · · · , x′iM ) is a M × K matrix, where
K =

∑M
m=1 km.16 After stacking all observations, we denote y = (y′1, · · · , y′N )′, X = (x1; · · · ;xN ) ∈

MNM×K , and β = (β′1, · · · , β′M )′.
The vector of disturbances εi = (εi1, · · · , εiM )′ is M -variate normally distributed with an M ×M

symmetric positive definite covariance matrix Ωi:

Ωi =



σ2
1 ρ12σ1σ2 · · · ρ1Mσ1σM

ρ12σ1σ2
. . . . . .

...
...

. . . . . . ρM−1,MσM−1σM

ρ1Mσ1σM · · · ρM−1,MσM−1σM σ2
M


.

where all ρkl represent the correlation coefficients and thus belong to (−1; 1). Note that no specific
form is imposed on the variance-covariance matrix. We further assume that εi are i.i.d., so that
Ωi = Ω, for all i, and the variance-covariance matrix of ε = (ε′1, · · · , ε′N )′ ∈ RNM is defined by:

V (ε) ≡ Σ = IN ⊗ Ω

where IN is the identity matrix of order N .
The data on xim, m = 1, · · · ,M , are assumed throughout to be strictly exogenous, which implies
that cov(x′im, εjs) = 0 across all observations i and j and all response variables m and s. This
assumption rules out, for example, the presence of yis (s 6= m) in Eq. (4).

Given these assumptions, a convenient representation of the multivariate probit model is in terms of
16For the sake of simplicity and to avoid supplementary notation, we assume that there is no common regressor(s).

Our results also apply, however, in this context, if using the same notation, xim = smzi, with zi being a row vector of

all exogenous regressors and sm being a selection matrix. See Section 4.
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latent variables y∗im. Let y∗i = (y∗i1, · · · , y∗iM )′ denote the M -vector of latent variables for observation
i. Then y∗i has the following multivariate normal distribution:

y∗i ∼ NM (xiβ,Ω)

where NM (., ) stands for the M -variate normal distribution. It turns out that y∗ = (y∗′1 , · · · , y∗′N )′ is
NM -variate normally distributed with mean being the NM×1 vector, Xβ, and variance-covariance
matrix being the NM ×NM positive definite matrix, Σ.

As in the univariate case, there is an identification problem associated with the variance-covariance
matrix of ε—the slope and covariance parameters are not likelihood identified. Since ordinal data
are invariant under monotonic transformations of y∗i (or y∗), the variance-covariance matrix Ω (and
thus Σ) may be estimated only up to scaling constants. Therefore, for identifiability purposes,
we have to restrict the variance-covariance matrix Ω to be a correlation matrix and to redefine
the vector β. Using C = diag(σ−1

11 , · · · , σ
−1
MM ), an identifiable (symmetric) positive semi-definite

correlation matrix Ω̃ is defined by Ω̃ = CΩC ′ in which the main diagonal elements equal 1 and
off-diagonal elements equal ρkl (= ρlk). The correlation matrix is thus defined by Σ̃ = In ⊗ Ω̃. A
set of identified slope parameters is thus given by β̃m = σ−1

mmβm, m = 1, · · · ,M . The parameters of

the identified model thus consist of the K parameters of β̃ =
(
β̃′1, · · · , β̃′M

)′
and the M (M − 1) /2

parameters ρ = (ρ12, · · · , ρ1M , · · · , ρM−1,M )′. This, in turn, means that the re-normalized latent
vector z∗ = (IN ⊗ C) (y∗ −Xβ) follows an M -variate standardized normal distribution with a sym-
metrical positive semi-definite correlation matrix Σ̃.

As a final remark, note that we may obtain a panel probit model by assuming that the parameter
vectors are identical across response equations, which implies that the set of explanatory variables
is common across m. In this respect, by a simple change of notation, t = m, Eq. (4) may be
interpreted as a panel probit model. In that case, normalization of all diagonal elements of the
variance-covariance matrix, Ω, is unnecessary, precisely because the slope vector is invariant across
m. Only one main diagonal element of Ω, say σ2

11, is normalized to one for identification purpose.

3.2 The Maximum Likelihood Function

Partially recycling notation, let β denote the vector of identified parameters, ci = xiβ, and Ω denote
the correlation matrix (e.g., after imposing the identifying restrictions). Under the usual regularity
conditions, which we assume to hold throughout the paper, the likelihood function is the joint
density for observed outcomes17:

L (y | X;β,Ω) =
N∏

i=1

Li (yi | xi;β,Ω) (5)

where the likelihood of observation i, Li, is given by Lemma 4. The following result is well known
in the literature and is reported here as a practical matter (see Greene, 2002).

17For a discussion of the existence and uniqueness of the maximum likelihood estimator in the case of a multivariate

probit model, see Lesaffre and Kaufmann (1992).

13



Lemma 4 The likelihood of observation i is the cumulative density function, evaluated at the vector

Wici, of an M -variate standardized normal vector with correlation matrix WiΩWi,

Li (yi | xi;β,Ω) = ΦM,Ei (Wici,WiΩWi) (6)

where Wi is a diagonal matrix whose main diagonal elements equal wim = 2yim − 1 and depend on

the sign of y∗im. �

Proof: See Appendix 5.

The full-information maximum likelihood estimates are obtained by maximizing the log-likelihood

lnL (y | X;β,Ω) =
N∑

i=1

lnΦM,Ei (Wici,WiΩWi)

with respect to β and Ω. Using the dimensional reduction formula of normal multivariate integrals
(Proposition 2), this may be rewritten as follows.

Corollary 1 The exact log-likelihood function is given by:

lnL (y | X;β,Ω) =
N∑

i=1

ln

[
M∏

m=1

Φ (wimcim) +
∑

r

∫
Ωr

ψMr

(
Wici, Λ̃r (WiΩWi)

)
dΛ̃r

]
. (7)

�

Neglecting the second term of the sum in the previous expression, one may interpret, ln
[

M∏
m=1

Φ (wimcim)
]
,

as being the exact likelihood of yi in a multivariate probit, in which we assume that the error terms
are independent across m. The correlation matrix is thus the identity matrix of order M (normaliza-
tion assumption). Consequently, if the model is correctly specified (with such an assumption), the
second right-hand side term of the likelihood of observation i may cancel each other out and thus
the probability correction term tends toward zero. In contrast, if the identity correlation matrix is
far from the target matrix, the reference probability will underestimate or overestimate the target,
placing greater emphasis on the probability correction term.

3.3 Numerical Computation and Convergence

Using Corollary 1, we can directly maximize the log-likelihood function with respect to the parame-
ters of interest. Alternatively, we can first derive the first-order conditions with respect to the slope
and correlation parameters and then apply our proposed method to obtain the exact score vector
with the two methods being equivalent.18 In both methods, we need to evaluate numerically the
finite-range multiple integrals in Proposition 2. To do so, we use a Gauss-Legendre quadrature rule
(Golub and Welsch, 1969; Davis and Rabinowitz, 1981; Press et al., 1992) over bounded intervals

18They may differ numerically, especially when the objective function is not sufficiently smooth. This may happen

when there is a large number of values near one or zero. Note also that the approximation error of the Gauss-Legendre

quadrature rule may be different.
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for each term of the sum in the exact first-order conditions or the exact log-likelihood function.19

Consequently, the exact maximum likelihood estimator is defined as follows.

Definition 1 Let Υ(m, r; ci,Ω) denote the m-node Gauss-Legendre quadrature rule of∫
Ωr
ψMr

(
Wici, Λ̃r (WiΩWi)

)
. The exact maximum likelihood estimator of θ = (β′,Ω)′ is defined by:

θ̂EML = argmax
θ∈Θ

N∑
i=1

ln

[
M∏

m=1

Φ (wimcim) +
∑

r

Υ(m, r; ci,Ω)

]
. (8)

�

Under the regularity conditions of Lesaffre and Kaufman (1992), the exact maximum likelihood esti-
mator exists and is unique. Moreover, θ̂EML converges to the true value, θ0, and it is asymptotically
normally distributed.

There is generally a nonvanishing error of the Gauss-Legendre quadrature, which depends on the
number of nodes, m, and the integrand. In particular, more nodes do not necessarily reduce the
approximation error of the quadrature as a high order of approximation does not necessarily imply
high accuracy, unless the integrand is smooth (Press et al., 1992; Stroud and Secrest, 1996). In this
case, accuracy may be evaluated by specifying error criteria as the absolute or relative difference
between an m-point and a q-point Gauss-Legendre quadrature. On the other hand, given that the
integrand is an analytic function in the interior of the parameter space of the multivariate probit
model, one can derive an upper bound on the error estimates for the Gauss-Legendre quadrature.
Indeed, using the results of Chawla, Jain (1968a, b) and Kambo (1970), error estimates are bounded
and the Gauss-Legendre quadrature converges to the true unknown integral.

3.4 Discussion

There are three remaining issues that concern, respectively, the positive definiteness of each Ωpq, the
singularity of the correlation matrix, and the number of elements in the sum to compute (e.g., the
dimension problem). On one hand, one may still impose restrictions so that the variance-covariance
matrices are positive definite.20 On the other hand, if the correlation matrix is singular (e.g., there
is equicorrelation), some linear transformation of the Z-vector exists such that the transformed
correlation matrix is non-singular.21 Therefore, the dimension of the normal cumulative density
function is reduced by the number of equicorrelated error terms, r, but it may still be expressed as in
Proposition 2. Moreover, although the reduction of the dimension of the normal cumulative density

19The standard m-point Gauss-Legendre quadrature rule over a bounded arbitrary interval, (a, b), is given by:Z b

a

f (x) dx =
b− a

2

mX
i=1

wif (yi) + Rm

where yi = b−a
2

xi + b+a
2

, the nodes xi are zeros of the Legendre polynomial Pm (x), all wi represent the corresponding

weights, wi = 2

(1−x2
i )(P ′

m(xi))
2 , and Rm is the error term, Rm = Qmf (2m) (ξ) = (b−a)2m+1(m!)4

(2m+1)(2m!)3
f (2m) (ξ) with ξ ∈ (a, b).

20For an example, see the technical report.
21Assume that the rank of Ω equals r < M . For some r ×M matrix G, eZ = GZ has a non-singular distribution

and the correlation matrix GΩG′ is non-singular.
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function leads to a (slightly) faster numerical evaluation, the decomposition in terms of correlation
parameters presents two main advantages: (i) it is continuously differentiable and (ii) the singular
multivariate normal cumulative density function may be exactly decomposed as the limiting case of
a regular probability.22 Finally, it is worth emphasizing that the curse of dimensionality may still be
an issue. The decomposition in Proposition 2 may be applied in theory to any M . However, from
a practical view, this leads to the evaluation of more and more elements in the sum (Proposition
2), which in turn increases the computation time. So far, we have estimated multivariate probit
models up to M = 6 (empirical applications in health, labor or education economics generally do
not exceed M = 4), and the computing time of our procedure outperforms the one of the maximum
simulated likelihood, while preserving the consistency and efficiency properties. We further discuss
this issue in Section 4.

4 Simulations

In this section, we report some Monte Carlo simulations.23 Sample data for our experiments are
alternatively generated by a bivariate, a trivariate, and a quadrivariate probit model. Results of our
exact maximum likelihood estimator are compared with those of the maximum simulated likelihood
estimator (henceforth MSL).

To investigate the small and large sample properties, each model is estimated using N = 1, 000 and
N = 10, 000 observations.24 All results reported below are based on 1,000 simulation repetitions,
except for the quadrivariate probit model where 500 repetitions were run due to the computation
time. For each estimator, we report (1) the mean bias and the Root Mean Squared Error (RMSE) of
the parameters of interest (e.g. the slope and scale parameters as well as their standard deviation)
and (2) the average computation time.25

Before presenting our main Monte Carlo results, one issue deserves some comment: the number
of draws (respectively nodes) per simulation for the MSL (respectively the EML) estimator. On
one hand, as is well known, an unbiased simulator of the likelihood function is neither necessary
nor sufficient for consistent maximum simulated log-likelihood estimation since the latter estimator
is obtained as a non-linear function (through optimization) of the simulator. Consequently, while
unbiased simulation of the likelihood is generally straightforward, unbiased simulation of the log-
likelihood is generally infeasible.26 In that respect, a critical issue is the selection of the number
of draws to obtain a negligible level of asymptotic efficiency loss due to simulations. In particular,

22The technical report provides an example in the case of a bivariate probit model.
23All experiments were performed on a personal computer with a Pentium P4/2.8GHz processor and 1 G of memory.

The software package was Gauss 6.0 with library Maxlik 5.0. The simulated maximum likelihood estimator was also

computed using Stata 9.2. (Cappellari and Jenkins, 2003) and Limdep 8.0—results were comparable with our Gauss

codes (Huguenin, 2008) both in terms of efficiency and computing time.
24We also conducted Monte Carlo simulations in which the number of observations equals 500. Results are qualita-

tively similar to those reported here. Results are available upon request.
25We also calculated the median bias and the Median Absolute Deviation (MAD). Results are not reported here

but are available upon request.
26For further details, see Hajivassiliou (2000) and Train (2003).
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the MSL estimator is consistent, efficient, and asymptotically equivalent to the ML estimator if
the number of draws, R, and the number of observations, N , goes to infinity and R grows without
bound faster than

√
N (i.e.,

√
N/R → 0).27 In contrast, for any (finite) R, the MSL estimator is

inconsistent, whereas, if R increases more slowly than
√
N , the MSL estimator is consistent but not

asymptotically normal.28 All in all, this means that the number of draws may increase, and thus the
computing time may become great before consistent and efficient estimates may be obtained.29 To
partially circumvent this issue, we use the standard rule of thumb, R =

√
N , as our benchmark case,

especially in large samples.30 Since the consistency and efficiency of parameters in small samples
may require a larger number of draws, we generally report evidence by setting R = 100. The case
R = 10 is also displayed in order to compare the computing time and the statistical properties of the
MSL estimator with those obtained with a larger number of draws. In all cases, we implement the
GHK smooth recursive conditional simulator due to Geweke (1991), Hajivassiliou and McFadden
(1990), and Keane (1990, 1994).31 On the other hand, we test the sensitivity of our EML estimator
by using a different number of nodes in the Gauss-Legendre quadrature rule. Results are reported
here for 6 nodes.32

4.1 Bivariate Probit Models

We consider the following structural bivariate probit model:

yik = 1I (y∗ik > 0) for k = 1, · · · , 2

where:
y∗ik = x′ikβk + uik

with xik = (1, xik,0, xik,k)
′, and:(

ui1

ui2

)
∼ N (0,Σ) , Σ =

(
1 σ12

σ12 1

)
.

The structural parameter vector is thus given by θ = (β′1, β
′
2, γ21, α21, σ12)

′, where β1 = (β1c, β10, β11)
′

and β2 = (β2c, β20, β22)
′.

27The MSL estimator is actually consistent under the weaker condition that R, N →∞.
28For further details, see Lee (1999).
29Börsch-Supan and Hajivassiliou (1993) show that the bias caused by finite R is small for moderately sized R

as long as better smoothed probability simulators are used. In that respect, Hajivassiliou (2000) proposes using a

diagnostic test to assess the simulation bias and thus choose a lower bound for the number of replications. In contrast,

Gourieroux and Monfort (1991) propose a bias-corrected estimator. Lee (1995, 1997) also considers bias correction in

panel choice regression and Markov models. The usefulness of the bias-reduction technique is, however, case dependent

and thus may not always hold.
30We also use the test proposed by Hajivasilliou (2000). However, given the number of replications, it was too

time-consuming. Some experiments suggested that the number of draws inferred by this test was larger than the one

suggested by the standard rule of thumb in the literature. Results are available upon request.
31Briefly speaking, the GHK simulator switches back and forth between computing univariate, truncated normal

probabilities conditional on previously drawn truncated normal random variables.
32Other results are available upon request.
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Table 2 reports the simulation results. Several points are worth discussing. First, as N = 1, 000, the
results are roughly comparable for both methods. With the exception of the correlation parameter,
the mean bias for each parameter of interest is almost the same. This result also holds for the
standard deviation estimate of each slope parameter. In contrast, the mean bias and the RMSE
of the correlation parameter, σ12, and its standard deviation are generally higher than those of the
slope parameters. In particular, the EML and MSL estimators of σ12 have similar properties as
long as the number of draws is significantly larger than the one implied by the MSL rule of thumb,
R =

√
N . To gain further intuition, we summarize this finding graphically. Figure 1 shows the

density function of σ12 for the EML and MSL estimators (with 5, 10, 50, 100, and 200 draws).

[Insert Figures 1 and 2 around here]

As would be expected, the MSL estimator of σ12 has a significant bias and a large RMSE until R
grows faster than

√
N . Moreover, while a fairly high level of accuracy is obtained as R = 100, the

gain becomes marginal when the number of draws is further augmented.33 The same pattern is
observed for the standard deviation estimate of the correlation parameter (Figure 2).34 One pos-
sible explanation of this behavior is that slope parameters enter less nonlinearly in the maximum
likelihood function or the score vector. Consequently, the corresponding simulator bias is smaller
than the one for the correlation parameter. On the other hand, while the accuracy of the probability
simulator might be sufficient for locating a relative maximum, it may not be sufficiently accurate
for calculating the Hessian matrix (using finite differences or score-based methods) and thus the
parameter variance estimates.35

Second, the mean bias and the RMSE of the slope parameters are further reduced when the number
of observations increases (N = 10, 000). Regarding the correlation parameter (and its standard
deviation), we observe that the EML mean bias (RMSE) substantially decreases whereas the MSL
estimator is significantly downward biased and less efficient when the number of draws is either too
small (10 draws) or is fixed with the rule of thumb (100 draws). This suggests that small-sample
bias reduction might be achieved at the cost of increasing the number of replications, and thus the
computing time.36 Third, the average computing time (in CPU time in minutes per replication)
provides evidence that our procedure competes extremely favorably with respect to the MSL esti-
mator. Indeed, the computing time of the EML method increases less than proportionally to the
number of observations, whereas it is proportional to N (and the number of draws) in the MSL
estimator.37

33Breslaw (1994) provides evidence that beyond a certain level, the increase of computing time necessary to achieve

a desired level of accuracy may become unacceptable.
34Lee (1997) examines the class of panel discrete choice regressions and Markov models and reports that the MSL

method performs better for models with moderate serial correlation than for models with high serial correlations.

McCulloch (1997) and Jank and Booth (2003) outline that the variance-covariance matrix of a simple logit-normal

model is poorly estimated by the MSL estimator.
35The accuracy of the probability simulator may be improved by using alternative sampling methods (Sándor and

András, 2004).
36Increasing the number of draws to 200 still leads to a substantial downward mean bias and yields a larger RMSE

than the EML estimator.
37Our simulation results also show that the computing time is roughly proportional to the number of nodes.

18



[Insert Table 2 around here]

In a companion paper, we explore the robustness of our results using a simultaneous bivariate probit
equations model in which we subsequently introduce the endogenous variable yi1, the latent variable
y∗i1, and both variables in the specification of the second equation. All in all, the results available in
the technical report show that the EML estimator displays better finite sample statistical properties
than the MSL estimator for the slope and scale parameters as well as for the standard deviation
estimates.

4.2 Trivariate and Quadrivariate Probit Models

We now discuss the simulation results for both a trivariate and a quadrivariate probit model. The
general specification is given by:

yik = 1I (y∗ik > 0) for k = 1, · · · , 4

where:
y∗ik = xikβk + uik

with xik = (1, xik,0, xik,k), ui ∼ N (0,Σ). The parameter vectors are respectively defined by
(β′1, β

′
2, β

′
3, σ12, σ13, σ23)

′ and (β′1, β
′
2, β

′
3, β

′
4, σ12, σ13, σ14, σ23, σ24, σ34)

′, with βk = (βkc, βk0, βkk)
′.

Since the interpretation is quite similar, we only report the results of the trivariate (respectively
quadrivariate) probit model when N = 1, 000 (resp. N = 10, 000). Table 6 provides evidence for
the trivariate probit model when the number of draws is either 10 or 35. As in the benchmark
bivariate probit model, the two estimators are roughly similar in terms of mean bias and RMSE for
the slope parameters. In contrast, we notice that results differ markedly according to the second-
order parameters and the corresponding estimated standard deviations. More specifically, the EML
estimator has better finite sample bias properties than the MSL estimator for σ12, σ13, and σ23 and
their standard deviation estimates. In addition, the RMSE of these parameters tends to favor our
estimator relative to the MSL estimator. Increasing the number of draws only slightly improves the
consistency and efficiency properties at the expense of the computing time. Unreported simulations
(with R = 100) provide evidence that the two estimators have comparable RMSE but our estimator
still outperforms the MSL estimator in terms of mean bias. On the other hand, the number of nodes
contributes marginally to reduce the mean bias while still allowing for a computing time far less
than that of the MSL estimator. For instance, the computing time of the EML estimator with 12
nodes is similar to the one of the simulated maximum likelihood estimator, with R = 10.

[Insert Table 3 around here]

We now turn to the simulation results of a quadrivariate probit model with N = 10, 000. Table 7
confirms that the EML estimator shares the same large sample properties as the MSL estimator
(with R = 100) for the slope parameters whereas it generally outperforms it for the scale parameters
in terms of both mean bias and RMSE. At the same time, while the mean computing time per
simulation repetition is around four minutes with our method, it is nearly three hours with the
maximum simulated likelihood method! In that respect, our method is not only accurate but also
extremely time-efficient.
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[Insert Table 4 around here]

To sum up, Monte Carlo results show that the finite and large sample properties of our method are
very competitive in terms of both bias and RMSE with respect to the MSL method. These properties
were obtained with a few nodes in the Gauss-Legendre quadrature rule. In particular, augmenting
the number of nodes marginally improves the results.38 Moreover the computing time of our method
is fast and by no means comparable to the one of the simulated maximum likelihood, especially as
the dimension of the multivariate probit model increases. Finally, our method outperforms the
stated benchmark in the presence of endogenous regressors. Such situations are often encountered
in applied economics and thus deserve particular attention.

5 Conclusion

The estimation of the multivariate probit models has historically been dealt with mainly by useful
and increasingly complex limited-information techniques. Although its importance hardly needs to
be stressed, estimation by full-information approaches is seriously hindered by the obstacle of the
numerical evaluation of the multivariate normal cumulative distribution function. Several estima-
tion procedures have recently been developed using techniques based on simulations.

In contrast to limited-information or simulation-based approaches, this paper proposes a full-information
estimation procedure based on exact analytical maximum likelihood. It offers the possibility of over-
coming the difficulty of the numerical evaluation of the multiple integrals involved by using a new
decomposition of the multivariate normal cumulative distribution function that yields lesser dimen-
sion small-range finite multiple integrals. The practicality of the approach has been widely tested
with Monte Carlo simulations. The results strongly support using this approach, as it has been
demonstrated to be both highly accurate and computationally time-efficient, especially with respect
to the maximum simulated likelihood method.

In companion papers, we show how to extend our methodology to the general class of simulta-
neous equation models with latent variables and how to improve the numerical procedure of Butler
and Moffitt (1992) for panel data models.

38It is worth recalling that we use the standard Gauss-Legendre quadrature rule. However, numerical improvements

have been proposed in the literature. The sophistication of the Gauss-Legendre quadrature is in the strategic selection

of locations at which the function is to be evaluated. For instance, Babolian et al. (2005) proposes estimating numerical

values of nodes and weights so that the absolute error of the Gauss-Legendre quadrature is less than a preassigned

tolerance. We leave this issue for future research.
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Table 1: Number of elements according to Proposition 2

Dimension of the distribution 1 2 3 4 5 6

Highest dimension of the multiple integrals 0 1 2 3 4 5

Number of summed multiple integrals 1 2 7 26 111 472
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Table 2: Bivariate probit Model (benchmark)

EML MSL (10 draws) MSL (100 draws)

True values Estimates Bias RMSE Estimates Bias RMSE Estimates Bias RMSE

N = 1, 000

β1c 1 1.0221 0.0221 0.1146 1.0238 0.0238 0.1140 1.0224 0.0224 0.1144
β10 2 2.0329 0.0329 0.1488 2.0357 0.0357 0.1490 2.0333 0.0333 0.1487
β11 -1 -1.0262 -0.0262 0.1124 -1.0273 -0.0273 0.1135 -1.0261 -0.0261 0.1123
β2c -0.5 -0.5122 -0.0122 0.0764 -0.5111 -0.0111 0.0781 -0.5120 -0.0120 0.0765
β20 1 1.0158 0.0158 0.0826 1.0158 0.0158 0.0833 1.0152 0.0152 0.0827
β22 -1 -1.0147 -0.0147 0.0803 -1.0144 -0.0144 0.0810 -1.0141 -0.0141 0.0800
σ12 0.5 0.5255 0.0255 0.1655 0.3677 -0.1323 0.1936 0.5127 0.0127 0.1597

σβ1c 0.1062 0.1068 0.0006 0.0107 0.1075 0.0012 0.0108 0.1070 0.0008 0.0107
σβ10 0.1474 0.1487 0.0013 0.0197 0.1496 0.0022 0.0197 0.1489 0.0015 0.0197
σβ11 0.1122 0.1126 0.0003 0.0106 0.1132 0.0010 0.0106 0.1127 0.0004 0.0106
σβ2c 0.0792 0.0795 0.0003 0.0055 0.0798 0.0006 0.0056 0.0795 0.0004 0.0055
σβ20 0.0791 0.0789 -0.0002 0.0100 0.0791 0.0001 0.0101 0.0790 -0.0001 0.0101
σβ22 0.0727 0.0724 -0.0003 0.0099 0.0727 0.0000 0.0101 0.0725 -0.0002 0.0100
σσ12 0.1599 0.1389 -0.0210 0.0333 0.1318 -0.0281 0.0380 0.1383 -0.0216 0.0336

Computing time 0.01 0.07 0.74

N = 10, 000

β1c 1 0.9996 -0.0004 0.0338 1.0008 0.0008 0.0339 0.9998 -0.0002 0.0339
β10 2 2.0068 0.0068 0.0473 2.0092 0.0092 0.0481 2.0072 0.0072 0.0475
β11 -1 -1.0010 -0.0010 0.0355 -1.0019 -0.0019 0.0360 -1.0011 -0.0011 0.0356
β2c -0.5 -0.5014 -0.0014 0.0258 -0.5011 -0.0011 0.0261 -0.5012 -0.0012 0.0257
β20 1 1.0011 0.0011 0.0272 1.0005 0.0005 0.0271 1.0008 0.0008 0.0273
β21 -1 -1.0002 -0.0002 0.0245 -0.9995 0.0005 0.0244 -0.9998 0.0002 0.0244
σ12 0.5 0.5021 0.0021 0.0468 0.3407 -0.1593 0.1647 0.4811 -0.0189 0.0505

σβ1c 0.0325 0.0326 0.0001 0.0010 0.0327 0.0002 0.0010 0.0326 0.0001 0.0010
σβ10 0.0458 0.0460 0.0002 0.0020 0.0461 0.0003 0.0020 0.0460 0.0002 0.0020
σβ11 0.0354 0.0353 0.0000 0.0011 0.0355 0.0001 0.0011 0.0354 0.0000 0.0011
σβ2c 0.0251 0.0250 -0.0001 0.0005 0.0251 0.0000 0.0005 0.0250 0.0000 0.0005
σβ20 0.0242 0.0241 -0.0001 0.0009 0.0242 0.0000 0.0009 0.0241 -0.0001 0.0009
σβ21 0.0221 0.0220 -0.0001 0.0009 0.0220 0.0000 0.0009 0.0220 -0.0001 0.0009
σσ12 0.0477 0.0473 -0.0004 0.0026 0.0421 -0.0056 0.0099 0.0466 -0.0011 0.0027

Computing time 0.11 0.94 8.68

Note: The number of simulations is 1,000.
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Table 3: Trivariate probit model

EML MSL (10 draws) MSL (35 draws)

True values Estimates Bias RMSE Estimates Bias RMSE Estimates Bias RMSE

N = 1, 000

β1c 1 1.0069 0.0069 0.0877 1.0077 0.0077 0.0881 1.0071 0.0071 0.0880
β10 1 1.0196 0.0196 0.0718 1.0199 0.0199 0.0718 1.0199 0.0199 0.0720
β11 -1 -1.0190 -0.0190 0.0962 -1.0196 -0.0196 0.0968 -1.0193 -0.0193 0.0963
β2c -0.5 -0.5056 -0.0056 0.0770 -0.5058 -0.0058 0.0771 -0.5057 -0.0057 0.0771
β20 1 1.0300 0.0300 0.0966 1.0311 0.0311 0.0963 1.0304 0.0304 0.0966
β22 -1 -1.0250 -0.0250 0.0851 -1.0255 -0.0255 0.0845 -1.0251 -0.0251 0.0849
β3c -1 -1.0148 -0.0148 0.0773 -1.0152 -0.0152 0.0773 -1.0145 -0.0145 0.0777
β30 0.5 0.5069 0.0069 0.0367 0.5069 0.0069 0.0370 0.5068 0.0068 0.0369
β33 2 2.0353 0.0353 0.1224 2.0362 0.0362 0.1233 2.0347 0.0347 0.1232
σ12 0.2 0.2079 0.0079 0.1503 0.1223 -0.0777 0.1490 0.1915 -0.0085 0.1502
σ13 -0.3 -0.2923 0.0077 0.0844 -0.1892 0.1108 0.1331 -0.2672 0.0328 0.0905
σ23 0.1 0.0929 -0.0071 0.1218 0.0427 -0.0573 0.1002 0.0774 -0.0226 0.1160

σβ1c 0.0760 0.0764 0.0004 0.0060 0.0767 0.0007 0.0061 0.0766 0.0005 0.0060
σβ10 0.0632 0.0635 0.0003 0.0061 0.0637 0.0005 0.0061 0.0636 0.0004 0.0062
σβ11 0.0845 0.0851 0.0006 0.0055 0.0854 0.0009 0.0056 0.0852 0.0007 0.0055
σβ2c 0.0799 0.0799 0.0000 0.0047 0.0802 0.0003 0.0047 0.0800 0.0001 0.0047
σβ20 0.0787 0.0801 0.0014 0.0098 0.0805 0.0017 0.0099 0.0802 0.0015 0.0098
σβ22 0.0695 0.0701 0.0005 0.0080 0.0703 0.0008 0.0081 0.0701 0.0006 0.0080
σβ3c 0.0711 0.0718 0.0007 0.0037 0.0720 0.0009 0.0038 0.0719 0.0008 0.0037
σβ30 0.0351 0.0353 0.0002 0.0026 0.0354 0.0002 0.0027 0.0353 0.0002 0.0026
σβ33 0.1185 0.1198 0.0012 0.0063 0.1201 0.0016 0.0065 0.1199 0.0013 0.0064
σσ12 0.1416 0.1356 -0.0061 0.0148 0.1154 -0.0262 0.0294 0.1295 -0.0121 0.0186
σσ13 0.0927 0.0913 -0.0014 0.0060 0.0760 -0.0167 0.0174 0.0888 -0.0038 0.0075
σσ23 0.1194 0.1154 -0.0040 0.0088 0.0863 -0.0331 0.0340 0.1089 -0.0105 0.0135

Computing time 0.04 0.17 1.15

Note: The number of simulations is 1,000.
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Table 4: Quadrivariate Probit

EML MSL (10 draws) MSL (100 draws)

True values Estimates Bias RMSE Estimates Bias RMSE Estimates Bias RMSE

N = 10, 000

β1c 1 1.0019 0.0019 0.0214 1.0021 0.0021 0.0214 1.0020 0.0020 0.0214
β10 1 1.0007 0.0007 0.0187 1.0009 0.0009 0.0187 1.0007 0.0007 0.0187
β11 -1 -0.9969 0.0031 0.0274 -0.9972 0.0028 0.0274 -0.9969 0.0031 0.0275
β2c -0.5 -0.4987 0.0013 0.0263 -0.4991 0.0009 0.0256 -0.4991 0.0009 0.0258
β20 1 1.0039 0.0039 0.0295 1.0050 0.0050 0.0291 1.0045 0.0045 0.0293
β22 -1 -1.0023 -0.0023 0.0262 -1.0035 -0.0035 0.0258 -1.0028 -0.0028 0.0260
β3c -1 -0.9990 0.0010 0.0192 -0.9993 0.0007 0.0195 -0.9988 0.0012 0.0193
β30 0.5 0.5004 0.0004 0.0120 0.5005 0.0005 0.0121 0.5003 0.0003 0.0120
β33 2 2.0038 0.0038 0.0342 2.0057 0.0057 0.0346 2.0035 0.0035 0.0339
β4c 0.5 0.4996 -0.0004 0.0193 0.4990 -0.0010 0.0194 0.4992 -0.0008 0.0192
β40 1 1.0000 0.0000 0.0165 0.9978 -0.0022 0.0166 0.9990 -0.0010 0.0168
β44 -0.5 -0.5001 -0.0001 0.0223 -0.4982 0.0018 0.0226 -0.4991 0.0009 0.0226
σ12 0.25 0.2444 -0.0056 0.0459 0.1469 -0.1031 0.1096 0.2324 -0.0176 0.0462
σ13 -0.05 -0.0568 -0.0068 0.0292 -0.0321 0.0179 0.0290 -0.0517 -0.0017 0.0271
σ14 0.1 0.0978 -0.0022 0.0299 0.0687 -0.0313 0.0403 0.0945 -0.0055 0.0271
σ23 0.1 0.1029 0.0029 0.0390 0.0385 -0.0615 0.0685 0.0914 -0.0086 0.0341
σ24 -0.3 -0.2956 0.0044 0.0436 -0.1528 0.1472 0.1507 -0.2756 0.0244 0.0486
σ34 0.5 0.5035 0.0035 0.0245 0.3830 -0.1170 0.1188 0.4927 -0.0073 0.0224

σβ1c 0.0248 0.0246 -0.0001 0.0006 0.0247 -0.0001 0.0006 0.0247 -0.0001 0.0006
σβ10 0.0196 0.0196 0.0000 0.0006 0.0196 0.0000 0.0006 0.0196 0.0000 0.0006
σβ11 0.0273 0.0272 -0.0001 0.0007 0.0273 -0.0001 0.0007 0.0272 -0.0001 0.0007
σβ2c 0.0248 0.0248 0.0001 0.0006 0.0250 0.0002 0.0006 0.0249 0.0001 0.0006
σβ20 0.0240 0.0240 0.0000 0.0011 0.0241 0.0002 0.0011 0.0240 0.0001 0.0011
σβ22 0.0220 0.0221 0.0000 0.0011 0.0222 0.0002 0.0011 0.0221 0.0001 0.0010
σβ3c 0.0225 0.0226 0.0000 0.0003 0.0226 0.0001 0.0003 0.0226 0.0000 0.0003
σβ30 0.0107 0.0107 0.0000 0.0002 0.0107 0.0000 0.0002 0.0107 0.0000 0.0002
σβ33 0.0373 0.0372 0.0000 0.0006 0.0375 0.0003 0.0007 0.0373 0.0000 0.0006
σβ4c 0.0214 0.0213 -0.0001 0.0004 0.0215 0.0001 0.0003 0.0213 0.0000 0.0003
σβ40 0.0186 0.0185 -0.0001 0.0005 0.0186 0.0000 0.0005 0.0185 -0.0001 0.0005
σβ44 0.0197 0.0196 -0.0001 0.0005 0.0199 0.0002 0.0004 0.0197 0.0000 0.0004
σσ12 0.0419 0.0423 0.0004 0.0030 0.0346 -0.0073 0.0074 0.0412 -0.0007 0.0015
σσ13 0.0303 0.0302 -0.0002 0.0009 0.0245 -0.0059 0.0059 0.0298 -0.0005 0.0007
σσ14 0.0289 0.0288 0.0000 0.0011 0.0261 -0.0028 0.0028 0.0288 0.0000 0.0005
σσ23 0.0358 0.0358 0.0000 0.0011 0.0267 -0.0091 0.0091 0.0350 -0.0008 0.0011
σσ24 0.0390 0.0391 0.0001 0.0014 0.0308 -0.0082 0.0083 0.0387 -0.0004 0.0015
σσ34 0.0249 0.0247 -0.0002 0.0013 0.0232 -0.0017 0.0018 0.0247 -0.0002 0.0006

Computing time 3.35 8.81 159.17

Note: The number of simulations is 500.
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Figure 1: Density function of σ12 in the benchmark bivariate probit model
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Note: The number of observations (resp. simulations) is equal to 1,000 (resp. 1,000).

Figure 2: Density function of σσ12 in the benchmark bivariate probit model
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Appendix 1: Proof of Lemma 2

To establish Lemma 2, we write ϕM,Z as the transform of its characteristic function:

ϕM,Z(z,Ω) = (2π)−M
∫
Z

exp
(
−it′z − 1

2
t′Ωt

)
⊗ dt

where ⊗dt = dt1 × dt2 × · · · × dtM .

The first-order derivative of ϕM,Z with respect to z = (z1, · · · , zM )′ is given by:

∂

∂z
ϕM,Z(z,Ω) = − (2π)−M

∫
Z
itexp

(
−it′z − 1

2
t′Ωt

)
⊗ dt.

We next differentiate this expression with respect to z′:

∂2

∂z∂z′
ϕM,Z(z,Ω) = (2π)−M

∫
Z
i2tt′exp

(
−it′z − 1

2
t′Ωt

)
⊗ dt

= − (2π)−M
∫
Z
tt′exp

(
−it′z − 1

2
t′Ωt

)
⊗ dt.

At the same time, we have:

∂

∂Ω
ϕM,Z(z,Ω) = (2π)−M

∫
Z

∂

∂Ω
exp

(
−it′z − 1

2
t′Ωt

)
⊗ dt

= − (2π)−M
∫
Z
tt′exp

(
−it′z − 1

2
t′Ωt

)
⊗ dt

since (using the differential operator and the symmetry property of the correlation matrix):

d

[
exp

(
−it′z − 1

2
t′Ωt

)]
= exp

(
−it′z − 1

2
t′Ωt

)
d

(
−it′z − 1

2
t′Ωt

)
= −1

2
exp

(
−it′z − 1

2
t′Ωt

)
d
(
t′Ωt

)
= −1

2
exp

(
−it′z − 1

2
t′Ωt

)
d
(
Tr
(
Ωtt′

))
= −1

2
exp

(
−it′z − 1

2
t′Ωt

)
Tr
(
d
(
Ωtt′

))
= −exp

(
−it′z − 1

2
t′Ωt

)
Tr(tt′dΩ)

and thus:

∂

∂Ω
exp

(
−it′z − 1

2
t′Ωt

)
= −tt′exp

(
−it′z − 1

2
t′Ωt

)
.

This shows the first part of Lemma 2. Finally:

∂

∂Ω
ΦM,Z(z,Ω) =

∫
∂

∂Ω
ϕM,Z(z,Ω)dz =

∫
∂2

∂z∂z′
ϕM,Z(z,Ω)dz

=
∂2

∂z∂z′
ΦM,Z(z,Ω).

�
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Appendix 2: Proof of Proposition 1

Integrating over the range determined by the n elements of Ω̃, the derivative of ΦM,Z (z,Λ) with
respect to all elements of Λ̃ yields:

∫
Ω

∂n∏M−1
i=1

∏M
j=i+1 ∂λij

ΦM,Z (z,Λ) dΛ̃ =
n∑

p=0

(n
p)∑

q=1

(−1)p ΦM,Z

(
z, Ω̃pq

)
.

This may be rewritten as follows:

∫
Ω

∂n∏M−1
i=1

∏M
j=i+1 ∂λij

ΦM,Z (z,Λ) dΛ̃ = ΦM,Z (z,Ω) +
n∑

p=1

(n
p)∑

q=1

(−1)p ΦM,Z

(
z, Ω̃pq

)

or, similarly, for any ΦM,Z

(
z, Ω̃pq

)
with p = 1, . . . , n− 1:

∫
Ωpq

∂n−p∏M−1
i=1

∏M
j=i+1 ∂λ̃ij

ΦM,Z

(
z, Λ̃pq

)
dΛ̃pq = ΦM,Z

(
z, Ω̃pq

)
+

n∑
r=p+1

(n
r)∑

s=1

(−1)r−p ΦM,Z

(
z, Ω̃rs

)
.

Summing up both sides of these two equations for all p = 1, . . . , n − 1 yields, as all ΦM,Z

(
z, Ω̃pq

)
but for p = 0 and p = n cancel each other out on the right-hand side:

∫
Ω

∂n∏M−1
i=1

∏M
j=i+1 ∂λij

ΦM,Z (z,Λ) dΛ̃ +
n−1∑
p=1

(n
p)∑

q=1

∫
Ωpq

∂n−p∏M−1
i=1

∏M
j=i+1 ∂λ̃ij

ΦM,Z

(
z, Λ̃pq

)
dΛ̃pq =

ΦM,Z (z,Ω)− ΦM,Z (z, 0) .

Since ΦM,Z (z, 0) is strictly factorizable, we can write:

ΦM,Z (z,Ω) =
M∏

k=1

Φ (zk) +
∫

Ω

∂n∏M−1
i=1

∏M
j=i+1 ∂λij

ΦM,Z (z,Λ) dΛ̃

+
n−1∑
p=1

(n
p)∑

q=1

∫
Ωpq

∂n−p∏M−1
i=1

∏M
j=i+1 ∂λ̃ij

ΦM,Z

(
z, Λ̃pq

)
dΛ̃pq.

Given that:

∂n∏M−1
i=1

∏M
j=i+1 ∂λij

ΦM,Z (z,Λ) =
∂M(M−1)∏M
k=1 ∂z

M−1
k

ΦM,Z (z,Λ)

=
∂M(M−2)∏M
k=1 ∂z

M−2
k

ϕM,Z (z,Λ)

the second term of the right-hand side expression of the decomposition is given by:∫
Ω

∂n∏M−1
i=1

∏M
j=i+1 ∂λij

ΦM,Z (z,Λ) dΛ̃ =
∫

Ω

∂M(M−2)∏M
k=1 ∂z

M−2
k

ϕM,Z (z,Λ) dΛ̃.

Similarly, factorizing the cumulative distribution function, whenever at least one Ik
(
Λ̃pq

)
equals

zero, leads to two interesting cases:
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• If
∏M

k=1 Ik

(
Λ̃pq

)
6= 0,

∂n−p∏M−1
i=1

∏M
j=i+1 ∂λ̃ij

ΦM,Z

(
z, Λ̃pq

)
=

∂M(M−2)−2p∏M
k=1 ∂z

Ik(eΛpq)−1

k

ϕM,Z

(
z, Λ̃pq

)

• If Ik
(
Λ̃pq

)
= 0,

∂n−p∏M−1
i=1

∏M
j=i+1 ∂λ̃ij

ΦM,Z

(
z, Λ̃pq

)
= Φ (zk)

∂M(M−1)−2p∏M
l=1 ∂z

Il(eΛpq)
l

ΦM−1,Z−k

(
z−k, Λ̃−k,pq

)

= Φ (zk)
∂(M−1)2−2p∏M
l=1
l 6=k

∂z
Il(eΛpq)−1

l

ϕM−1,Z−k

(
z−k, Λ̃−k,pq

)

and so on if any other Ik
(
Λ̃pq

)
= 0, until all but one element of Λ̃ are zero (or p = n − 1).

More specifically, if λij = 0, ∀ {i, j} 6= {k, l} and λkl 6= 0, then Ij

(
Λ̃pq

)
= 0, ∀j 6= {k, l} and

Ik

(
Λ̃pq

)
6= 0,Il

(
Λ̃pq

)
6= 0. Therefore, we obtain the following expression:

∂n−p∏M−1
i=1

∏M
j=i+1 ∂λ̃ij

ΦM,Z

(
z, Λ̃pq

)
=

 M∏
j=1

j 6={k,l}

Φ (zj)

 ∂2

∂zk∂zl
Φ2,Zkl

(zk, zl, λkl)

= ϕ2,Zkl
(zk, zl, λkl)

M∏
j=1

j 6={k,l}

Φ (zj)

which completes the proof. The provision merely ensures that the elements in the sum are well
defined. �
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Appendix 3: Proof of Proposition 2

Starting from Proposition 1, we have:

ΦM,Z (z,Ω) =
M∏

k=1

Φ (zk) +
n−1∑
p=0

(n
p)∑

q=1

∫
Ωpq

ξMp

(
z, Λ̃pq

)
dΛ̃pq.

We must show that the second right-hand term may be simplified. For notational simplicity, we
consider the non-factorizable case:

ξMp

(
z, Λ̃pq

)
=

∂M(M−2)−2p∏M
k=1 ∂z

Ik(eΛpq)−1

k

ϕM,Z

(
z, Λ̃pq

)

where
∑M

k=1 Ik

(
Λ̃pq

)
is always an even number.

If there is any pair {i, j} with i 6= j such that Ii
(
Λ̃pq

)
> 1 and Ij

(
Λ̃pq

)
> 1, then the previous

expression may be written:

ξMp

(
z, Λ̃pq

)
=

∂M(M−2)−2p

∂z
Ii(eΛpq)−2

i ∂z
Ij(eΛpq)−2

j

∏M
k=1

k 6={i,j}
∂z

Ik(eΛpq)−1

k

[
∂2

∂zi∂zj
ϕM,Z

(
z, Λ̃pq

)]

=
∂M(M−2)−2p

∂z
Ii(eΛpq)−2

i ∂z
Ij(eΛpq)−2

j

∏M
k=1

k 6={i,j}
∂z

Ik(eΛpq)−1

k

[
∂

∂λij
ϕM,Z

(
z, Λ̃pq

)]
.

The partial integration with respect to λij is now given by:∫ ωij

0

∂

∂λij
ϕM,Z

(
z, Λ̃pq

)
dλij = ϕM,Z

(
z, Λ̃pq|λij=ωij

)
− ϕM,Z

(
z, Λ̃pq|λij=0

)
.

Thus the (n− p)-dimensional multiple integral is reduced to two (n− p− 1)-dimensional multiple
integrals.

The same procedure may be repeated until there is no such pair left, which is the case if and
only if there is only one element ∂zk, albeit elevated to some power, in the denominator of the
derivative.

This procedure may, of course, be applied to the same extent to the factorizable case. Hence,
there are three possible cases:

• If p = 0, 1, . . . ,M , then ξMp

(
z, Λ̃pq

)
may always be reduced to some multiple integrals of

dimension (M − 1) or less.

• If p = M − 1, . . . , n − 3, then only some of the ξMp

(
z, Λ̃pq

)
may be reduced to some lesser-

dimensional multiple integrals.

• If p = n− 2 or p = n− 1, then ξMp

(
z, Λ̃pq

)
cannot be reduced.

The highest-dimensional resulting non-reducible multiple integrals are those with Λ̃M−1,q contain-
ing the integrating variables {λ12, . . . , λ1M} , {λ12, λ23, . . . , λ2M} , . . . , {λ1M , . . . , λM−1,M}, and thus
there are M such (M − 1)-dimensional multiple integrals. �
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Appendix 4: Proof of Lemma 3

Using the definition of the multivariate normal cumulative distribution function, and setting Σ (s) =
sΩ + (1− s) IM for any positive definite correlation matrix Ω and with s ∈ [0, 1], we have:

ΦM,Z (z,Σ (s)) =
∫
Z
ϕM,Z (t,Σ (s))

n∏
i=1

dti

where Σ (s), with elements σij (s), is a positive definite correlation matrix.

Then, integrating the differential element dΦM,Z (z,Σ) along the line IM −Ω reverts to integrating
it over the range of s: ∫ 1

0

∂ΦM,Z (z,Σ (s))
∂s

ds = ΦM,Z (z,Ω)− ΦM,Z (z, IM )

with ΦM,Z (z, IM ) being strictly factorizable, according to Lemma 1, into ΦM,Z (z, IM ) =
∏M

k=1 Φ (zk).

Furthermore, the integrand of the left-hand side may be written:

∂ΦM,Z (z,Σ (s))
∂s

=
∑
i<j

∂σij (s)
∂s

∂ΦM,Z (z,Σ (s))
∂σij (s)

where the derivative of the cdf with respect to any element of Σ is given by Lemma 1 and 2, such
that:

∂ΦM,Z (z,Σ)
∂σij

= ϕ2,Zij (zij ,Σij) ΦM−2,Z−ij

(
z̃−ij (s) , Σ̃−ij (s)

)
with z̃−ij = ∆−1

−ij

(
z−ij − ΓijΣ−1

ij zij

)
and Σ̃−ij = ∆−1

−ij

(
Σ−ij − ΓijΣ−1

ij Γ′ij
)

∆−1
−ij .

Moreover, it may easily be shown further that the elements of z̃−ij and Σ̃−ij are explicitly given by:

[z̃−ij ]k =

(
1− σ2

ij

)
zk − (σik − σijσjk) zi − (σjk − σijσik) zj√(

1− σ2
ij − σ2

ik − σ2
jk + 2σijσikσjk

)(
1− σ2

ij

)
[
Σ̃−ij

]
kl

=

(
1− σ2

ij

)
σkl − (σikσil + σjkσjl) + (σijσikσjl + σijσilσjk)√(

1− σ2
ij − σ2

ik − σ2
jk + 2σijσikσjk

)(
1− σ2

ij − σ2
il − σ2

jl + 2σijσilσjl

)
[
Σ̃−ij

]
kk

= 1.

And thus we have:

ΦM,Z (z,Ω) =
M∏

k=1

Φ (zk) +
∫ 1

0

∑
i<j

ωijϕ2,Zij (zij ,Σij (s))ΦM−2,Z−ij

(
z̃−ij (s) , Σ̃−ij (s)

)
ds.

�

34



Appendix 5: Proof of Lemma 4

By definition, the likelihood of observation i is given by:

Li (yi | xi;β,Ω) = Pr (−wi1y
∗
i1 ≤ 0, . . . ,−wiMy

∗
iM ≤ 0)

= Pr (−wi1εi1 ≤ wi1ci1, . . . ,−wiM εiM ≤ wiMciM )
= ΦM,−WiEi (Wici | 0M ,Ω)

=
∫ wiM ciM

−∞
· · ·
∫ wi1ci1

−∞
ϕM,−WiEi (Wiεi,Ω)

M∏
m=1

dεim.

Since each wim takes only the values {−1, 1}, it is straightforward to show that Wi = W−1
i and

|WiΩWi| = |Ω|. Moreover, the density of an M -variate standardized normal vector −WiEi with
correlation matrix Ω may be re-written as the density of an M -variate standardized normal vector
Ei with correlation matrix WiΩWi:

ϕM,−WiEi (Wiεi,Ω) = |2πΩ|
−1
2 exp

{
−1
2

(−Wiεi)
′ Ω−1 (−Wiεit)

}
= |2π (WiΩWi)|

−1
2 exp

{
−1
2
ε′i (WiΩWi)

−1 εi

}
= ϕM,Ei (εi,WiΩWi) .

Therefore, the likelihood of observation i is given by:

Li (yi | xi;β,Ω) =
∫ wiM ciM

−∞
· · ·
∫ wi1ci1

−∞
ϕM,Ei (εi,WiΩWi)

M∏
m=1

dεim

= ΦM,Ei (Wici,WiΩWi) .

�
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Technical report

The technical report provides additional results. More specifically,
1. The decomposition of a bivariate, trivariate, and quadrivariate normal integral;

2. The decomposition of a singular multivariate probit model;

3. The derivation of the score vector using the ML and the EML estimators in the case of a
trivariate probit models;

4. Some Monte-Carlo simulations in a simultaneous bivariate probit equations model.

Applications of Proposition 2

In this section, we report the decomposition of the bivariate, trivariate, and quadrivariate normal cumulative dis-

tribution function. In particular, we discuss the positiveness conditions of the correlation matrix in the trivariate

case.39

• Bivariate Normal cumulative distribution function

In the bivariate case, the cumulative distribution function Φ2 (z, Ω) = Φ2 (z, ω12) may be decomposed, according to
Proposition 2, in the following way:

Φ2 (z, Ω) = Φ (z1)Φ (z2) +

Z ω12

0

ϕ2 (z, λ12) dλ12

= Φ(z1)Φ (z2) + Ψ2 (z1, z2, ω12) .

Interestingly, this decomposition allows to derive very easily the particular case of z being a zero vector, as Φ (0) = 1
2
:

Φ2 (0, Ω) = Φ2 (0) + Ψ2 (0, 0, ω12)

=
1

4
+

arcsin ω12

2π

=
1

2
− arccos ω12

2π

• Trivariate Normal cumulative distribution function

In the trivariate case, Proposition 2 yields:

Φ3 (z, Ω) = Φ (z1)Φ (z2)Φ (z3)

+Φ (z3)

Z ω12

0

ϕ2 (z1, z2, λ12) dλ12

+Φ (z2)

Z ω13

0

ϕ2 (z1, z3, λ13) dλ13

+Φ (z1)

Z ω23

0

ϕ2 (z2, z3, λ23) dλ23

+

Z ω12

0

Z ω13

0

∂ϕ3 (z, λ12, λ13, 0)

∂z1
dλ12dλ13

+

Z ω12

0

Z ω23

0

∂ϕ3 (z, λ12, 0, λ23)

∂z2
dλ12dλ23

+

Z ω13

0

Z ω23

0

∂ϕ3 (z, 0, λ13, λ23)

∂z3
dλ13dλ23

+

Z ω12

0

Z ω13

0

Z ω23

0

∂3ϕ3 (z, Λ)

∂z1∂z2∂z3
dλ12dλ13dλ23.

39Higher decompositions are available upon request.
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The last integral can be decomposed in a non-unique way as follows:Z ω12

0

Z ω13

0

Z ω23

0

∂3ϕ3 (z, Λ)

∂z1∂z2∂z3
dλ12dλ13dλ23

=

Z ω13

0

Z ω23

0

∂ϕ3 (z, ω12, λ13, λ23)

∂z3
dλ13dλ23

−
Z ω13

0

Z ω23

0

∂ϕ3 (z, 0, λ13, λ23)

∂z3
dλ13dλ23

=

Z ω12

0

Z ω23

0

∂ϕ3 (z, λ12, ω13, λ23)

∂z2
dλ12dλ23

−
Z ω12

0

Z ω23

0

∂ϕ3 (z, λ12, 0, λ23)

∂z2
dλ12dλ23

=

Z ω12

0

Z ω13

0

∂ϕ3 (z, λ12, λ13, ω23)

∂z1
dλ12dλ13

−
Z ω12

0

Z ω13

0

∂ϕ3 (z, λ12, λ13, 0)

∂z1
dλ12dλ13.

Therefore, the cumulative distribution function writes:

Φ3 (z, Ω) = Φ (z1)Φ (z2)Φ (z3)

+Φ (z3)Ψ2 (z1, z2, ω12)

+Φ (z2)Ψ2 (z1, z3, ω13)

+Φ (z1)Ψ2 (z2, z3, ω23)

+Ψ3 (z1, z2, z3, ω12, ω13, 0)

+Ψ3 (z2, z3, z1, ω23, ω12, 0)

+Ψ3 (z3, z1, z2, ω13, ω23, ω12) .

Note however that it is only one of the three possible specifications due to the non-unique decomposition of the
three-dimension integral exposed above. In this example, the provision concerning the positive definiteness of each
matrix in the sum is of particular relevance. Assume that ω12 = 0.2, ω13 = 0.7 and ω23 = 0.8. With the exception
of Ω11, all matrices Ωpq defined above are positive definite. This means that both

R ω13
0

R ω23
0

∂ϕ3(z,0,λ13,λ23)
∂z3

dλ13dλ23

and
R ω12
0

R ω13
0

R ω23
0

∂3ϕ3(z,Λ)
∂z1∂z2∂z3

dλ12dλ13dλ23 are not well defined at some of the boundary values of the integration do-
main. Consequently, Proposition 1 is no more applicable, but Proposition 2 still is, at least if expressed in the right
way. Indeed, the element

R ω13
0

R ω23
0

∂ϕ3(z,ω12,λ13,λ23)
∂z3

dλ13dλ23 in the above application of Proposition 2 is well defined
over the whole range of integration, as are all other elements in that sum. In other words, while the application of
Proposition 1 requires to impose the three following constraints, ω2

12 + ω2
13 < 1, ω2

12 + ω2
23 < 1, and ω2

13 + ω2
23 < 1,

Proposition 2 only requires to impose two of those. It turns out that one may choose the expression of the cumulative
distribution function by using the smallest (in absolute value) of the elements ω12, ω13, and ω23 as the one entering
as non-zero sixth argument in Ψ3.

As a final remark, if z is a zero vector, the last three terms of the previous expression equal zero and we obtain:

Φ3 (0, Ω) = Φ3 (0) + Φ (0)Ψ2 (0, 0, ω12) + Φ (0)Ψ2 (0, 0, ω13) + Φ (0)Ψ2 (0, 0, ω23)

=
1

8
+

arcsin ω12 + arcsin ω13 + arcsin ω23

4π

=
1

2
− arccos ω12 + arccos ω13 + arccos ω23

4π
.

The computation of the trivariate standardized normal probabilities is then straightforward.

• Quadrivariate Normal cumulative distribution function

In the quadrivariate case (n = 4), Proposition 1 yields a sum of 64 elements, which will not be listed here. Instead,
according to proposition 2, we can reduce this number to 26 elements. In that respect, one of these possible sums is
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given by:

Φ4 (z, ω12, ω13, ω14, ω23, ω24, ω34)

= Φ (z1)Φ (z2)Φ (z3)Φ (z4)

+Φ (z1)Φ (z2)Ψ2 (z3, z4, ω34) + Φ (z1)Φ (z3)Ψ2 (z2, z4, ω24) + Φ (z1)Φ (z4)Ψ2 (z2, z3, ω23)

+Φ (z2)Φ (z3)Ψ2 (z1, z4, ω14) + Φ (z2)Φ (z4)Ψ2 (z1, z3, ω13) + Φ (z3)Φ (z4)Ψ2 (z1, z2, ω12)

+Ψ2 (z1, z4, ω14)Ψ2 (z2, z3, ω23)

+Φ (z4) [Ψ3 (z2, z3, z1, ω23, ω12, 0) + Ψ3 (z3, z1, z2, ω13, ω23, 0) + Ψ3 (z1, z2, z3, ω12, ω13, ω23)]

+Φ (z3) [Ψ3 (z1, z2, z4, ω12, ω14, 0) + Ψ3 (z4, z1, z2, ω14, ω24, 0) + Ψ3 (z2, z4, z1, ω24, ω12, ω14)]

+Φ (z2) [Ψ3 (z4, z1, z3, ω14, ω34, 0) + Ψ3 (z1, z3, z4, ω13, ω14, 0) + Ψ3 (z3, z4, z1, ω34, ω13, ω14)]

+Φ (z1) [Ψ3 (z3, z4, z2, ω34, ω23, 0) + Ψ3 (z2, z3, z4, ω23, ω24, 0) + Ψ3 (z4, z2, z3, ω24, ω34, ω23)]

+Ψ41 (z1, z2, z3, z4, ω12, ω13, ω14, ω23, ω24, ω34)

+Ξ41 (z1, z3, z2, z4, ω13, ω12, ω14, ω23, ω34, ω24)

+Ξ42 (z1, z4, z2, z3, ω14, ω12, ω13, ω24, ω34, ω23)

+Ψ42 (z1, z2, z3, z4, ω12, ω13, ω14) + Ψ42 (z2, z3, z4, z1, ω23, ω24, ω12)

+Ψ42 (z3, z4, z1, z2, ω34, ω13, ω23) + Ψ42 (z4, z1, z2, z3, ω14, ω24, ω34)

where the functions with the same integration variables are grouped, with z′ = {z1, z3, z2, z4}:

Ξ41

`
z′, ω13, ω12, ω14, ω23, ω34, ω24

´
= Ψ41

`
z′, ω13, ω12, ω14, ω23, 0, ω24

´
+Ψ41

`
z′, ω13, 0, ω14, ω23, ω34, ω24

´
−Ψ41

`
z′, ω13, 0, ω14, ω23, 0, ω24

´
=

Z ω13

0

Z ω24

0

ˆ
ϕ4

`
z′, λ13, ω12, ω14, ω23, 0, λ24

´
+ϕ4

`
z′, λ13, 0, ω14, ω23, ω34, λ24

´
− ϕ4

`
z′, λ13, 0, ω14, ω23, 0, λ24

´˜
dλ13dλ24

and, with z′′ = {z1, z4, z2, z3}:

Ξ42

`
z′′, ω14, ω12, ω13, ω24, ω34, ω23

´
= Ψ41

`
z′′, ω14, ω12, ω13, 0, 0, ω23

´
+ Ψ41

`
z′′, ω14, ω12, 0, ω24, 0, ω23

´
+Ψ41

`
z′′, ω14, 0, ω13, 0, ω34, ω23

´
+ Ψ41

`
z′′, ω14, 0, 0, ω24, ω34, ω23

´
−Ψ41

`
z′′, ω14, ω12, 0, 0, 0, ω23

´
−Ψ41

`
z′′, ω14, 0, ω13, 0, 0, ω23

´
−Ψ41

`
z′′, ω14, 0, 0, ω24, 0, ω23

´
−Ψ41

`
z′′, ω14, 0, 0, 0, ω34, ω23

´
=

Z ω14

0

Z ω23

0

ˆ
ϕ4

`
z′′, λ14, ω12, ω13, 0, 0, λ23

´
+ ϕ4

`
z′′, λ14, ω12, 0, ω24, 0, λ23

´
+ϕ4

`
z′′, λ14, 0, ω13, 0, ω34, λ23

´
+ ϕ4

`
z′′, λ14, 0, 0, ω24, ω34, λ23

´
−ϕ4

`
z′′, λ14, ω12, 0, 0, 0, λ23

´
− ϕ4

`
z′′, λ14, 0, ω13, 0, 0, λ23

´
−ϕ4

`
z′′, λ14, 0, 0, ω24, 0, λ23

´
− ϕ4

`
z′′, λ14, 0, 0, 0, ω34, λ23

´˜
dλ14dλ23.

Here, setting the particular case of z being a zero vector is not as simple as for the dimensions 2 and 3, as only the

odd-order derivatives are then zero, and all other double and triple integrals have still to be computed.

Singular multivariate probit model

In this section, we analyze the singular case. By singularity, we mean here some equicorrelation across the error terms.
For sake of simplicity, we consider a bivariate probit model with a positive unit correlation between the error terms.
The model is given by: 

y∗i1 = ci1 + εi1

y∗i2 = ci2 + εi2(
yi1 = 1I(y∗i1>0)
yi2 = 1I(y∗i2>0)
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„
εi1

εi2

«
∼ N

»„
0
0

«
,

„
1 ω12

ω12 1

«–
with ci1 = xi1β1, ci2 = xi2β2 and ω12 = 1. It is worth noticing that ω12 = 1 implies that εi1 = εi2 = εi ∼ N (0, 1) and
thus: 

y∗i1 = ci1 + εi

y∗i2 = ci2 + εi.

It is then straightforward to obtain the likelihood of the outcomes (Lkl
i = Pr (yi1 = k, yi2 = l|xi1, xi2; β1, β2) ; k, l =

0, 1):

L00
i = Pr (εi ≤ −ci1, εi ≤ −ci2|xi1, xi2; β1, β2)

= Pr (εi ≤ min {−ci1,−ci2} |xi1, xi2; β1, β2)

=

Z min{−ci1,−ci2}

−∞
ϕ (t) dt

= Φ(min {−ci1,−ci2})

L11
i = Pr (εi > −ci1, εi > −ci2|xi1, xi2; β1, β2)

= Pr (εi > max {−ci1,−ci2} |xi1, xi2; β1, β2)

= Pr (εi > −min {ci1, ci2} |xi1, xi2; β1, β2)

=

Z min{ci1,ci2}

−∞
ϕ (t) dt

= Φ(min {ci1, ci2})

L01
i = Pr (εi ≤ −ci1, εi > −ci2|xi1, xi2; β1, β2)

= 1I(−ci1≥−ci2) Pr (−ci2 < εi ≤ −ci1|xi1, xi2; β1, β2)

= 1I(−min{−ci1,ci2}≤max{−ci1,ci2}) Pr (−min {−ci1, ci2} < εi ≤ max {−ci1, ci2} |xi1, xi2; β1, β2)

= 1I(−min{−ci1,ci2}≤max{−ci1,ci2})

Z max{−ci1,ci2}

−min{−ci1,ci2}
ϕ (t) dt

= 1I(−min{−ci1,ci2}≤max{−ci1,ci2}) [Φ (max {−ci1, ci2})− Φ (−min {−ci1, ci2})]

L10
i = Pr (εi > −ci1, εi ≤ −ci2|xi1, xi2; β1, β2)

= 1I(−ci1≤−ci2) Pr (−ci1 < εi ≤ −ci2|xi1, xi2; β1, β2)

= 1I(−min{ci1,−ci2}≤max{ci1,−ci2}) Pr (−min {ci1,−ci2} < εi ≤ max {ci1,−ci2} |xi1, xi2; β1, β2)

= 1I(−min{ci1,−ci2}≤max{ci1,−ci2})

Z max{ci1,−ci2}

−min{ci1,−ci2}
ϕ (t) dt

= 1I(−min{ci1,−ci2}≤max{ci1,−ci2}) [Φ (max {ci1,−ci2})− Φ (−min {ci1,−ci2})] .

Therefore,

Li =


Φ (min {wi1ci1, wi2ci2}) if yi1 = yi2

Ji [Φ (max {wi1ci1, wi2ci2})− Φ (−min {wi1ci1, wi2ci2})] if yi1 6= yi2

with wim = 2yim − 1 and Ji = 1I (−min {wi1ci1, wi2ci2} ≤ max {wi1ci1, wi2ci2}). Consequently, Li is not continuously
differentiable with respect to the arguments ci1 and ci2. In contrast, if one uses the decomposition in Proposition 2,
the likelihood of observation i is given by:

Li = Pr (−wi1εi ≤ wi1ci1,−wi2εi ≤ wi2ci2|xi1, xi2; β1, β2) .

Noting that

„
−wi1εi

−wi2εi

«
 N

»„
0
0

«
,

„
1 wi1wi2

wi1wi2 1

«–
yields:

Li = Φ2,Wici (wi1wi2)

= Φ (wi1ci1)Φ (wi2ci2) +

Z wi1wi2

0

ϕ2,Wici (λ) dλ

= Φ(wi1ci1)Φ (wi2ci2) + wi1wi2

Z 1

0

ϕ2,ci (λ) dλ.

We thus obtain the following definition.
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Definition 2 (Definition of singular cdf) The regular bivariate normal cumulative density function is
given by:

Φ2,z (ω) =

Z z1

−∞

Z z2

−∞
ϕ2,t (ω) dt1dt2

for ω ∈ (−1, 1), which can be exactly decomposed as:

Φ2,z (ω) = Φ (z1)Φ (z2) +

Z ω

0

ϕ2,z (λ) dλ

and the singular bivariate normal cumulative density function, for ω ∈ {−1, 1}, is given by:

Φ2,z (+1) = Pr (t ≤ z1, t ≤ z2)

=

Z
(−∞,z1]∩(−∞,z2]

ϕ (t) dt =

Z min{z1,z2}

−∞
ϕ (t) dt

= Φ(min {z1, z2})
Φ2,z (−1) = Pr (t ≤ z1,−t ≤ z2) = Pr (t ≤ z1, t ≥ −z2)

=

Z
(−∞,z1]∩[−z2,∞)

ϕ (t) dt = 1I−min{z1,z2}≤max{z1,z2}

Z max{z1,z2}

−min{z1,z2}
ϕ (t) dt

= 1I−min{z1,z2}≤max{z1,z2} [Φ (max {z1, z2})− Φ (−min {z1, z2})]

which can still be exactly decomposed as:

Φ2,z (±1) = lim
ω→±1

»
Φ (z1)Φ (z2) +

Z ω

0

ϕ2,z (λ) dλ

–
= Φ(z1)Φ (z2) +

Z ±1

0

ϕ2,z (λ) dλ.

�

For a given singular correlation matrix, this definition may be generalized to any multivariate probit model.

Derivations of the ML and EML score vector in a trivariate probit model

In this section, we show the derivations of the score vector in a trivariate probit model using both the usual maximum
likelihood estimator and our Proposition 2. Results for higher multivariate probit models are available upon request.

To simplify notations, we omit the i index. In the usual case (without Proposition 2), the likelihood of observa-
tion i is given by:

P = Φ3 (w1c1, w2c2, w3c3, w1w2ω12, w1w3ω13, w2w3ω23)

=

Z w1c1

−∞

Z w2c2

−∞

Z w3c3

−∞
ϕ3 (z1, z2, z3, w1w2ω12, w1w3ω13, w2w3ω23) dz1dz2dz3.

This may be written as:

P =

Z w1c1

−∞

Z w2c2

−∞
ϕ2 (z1, z2, ω12)Φ

 
w3

`
1− ω2

12

´
c3 − w1 (ω13 − ω12ω23) z1 − w2 (ω23 − ω12ω13) z2p

|Ω| (1− ω2
12)

!
dz1dz2dz3

=

Z w1c1

−∞

Z w3c3

−∞
ϕ2 (z1, z3, ω13)Φ

 
w2

`
1− ω2

13

´
c2 − w1 (ω12 − ω13ω23) z1 − w3 (ω23 − ω12ω13) z3p

|Ω| (1− ω2
13)

!
dz1dz2dz3

=

Z w2c2

−∞

Z w3c3

−∞
ϕ2 (z2, z3, ω23)Φ

 
w1

`
1− ω2

23

´
c1 − w2 (ω12 − ω13ω23) z2 − w3 (ω13 − ω12ω23) z3p

|Ω| (1− ω2
23)

!
dz1dz2dz3

or equivalently as:

P =

Z w1c1

−∞
ϕ (z1)Φ2

 
w2

c2 − w1ω12z1p
1− ω2

12

, w3
c3 − w1ω13z1p

1− ω2
13

, w2w3
ω23 − ω12ω13p

(1− ω2
12) (1− ω2

13)

!
dz1

=

Z w2c2

−∞
ϕ (z2)Φ2

 
w3

c3 − w2ω23z2p
1− ω2

23

, w1
c1 − w2ω12z2p

1− ω2
12

, w3w1
ω13 − ω23ω12p

(1− ω2
23) (1− ω2

12)

!
dz2

=

Z w3c3

−∞
ϕ (z3)Φ2

 
w1

c1 − w3ω13z3p
1− ω2

13

, w2
c2 − w3ω23z3p

1− ω2
23

, w1w2
ω12 − ω13ω23p

(1− ω2
13) (1− ω2

23)

!
dz3.
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It is straightforward to show that:

∂

∂c1
P = w1ϕ (c1)Φ2

 
w2

c2 − ω12c1p
1− ω2

12

, w3
c3 − ω13c1p

1− ω2
13

, w2w3
ω23 − ω12ω13p

(1− ω2
12) (1− ω2

13)

!
∂

∂c2
P = w2ϕ (c2)Φ2

 
w3

c3 − ω23c2p
1− ω2

23

, w1
c1 − ω12c2p

1− ω2
12

, w3w1
ω13 − ω23ω12p

(1− ω2
23) (1− ω2

12)

!
∂

∂c3
P = w3ϕ (c3)Φ2

 
w1

c1 − ω13c3p
1− ω2

13

, w2
c2 − ω23c3p

1− ω2
23

, w1w2
ω12 − ω13ω23p

(1− ω2
13) (1− ω2

23)

!
∂

∂ω12
P = w1w2ϕ2 (c1, c2, ω12)Φ

 
w3

`
1− ω2

12

´
c3 − (ω13 − ω12ω23) c1 − (ω23 − ω12ω13) c2p

|Ω| (1− ω2
12)

!
∂

∂ω13
P = w1w3ϕ2 (c1, c3, ω13)Φ

 
w2

`
1− ω2

13

´
c2 − (ω12 − ω13ω23) c1 − (ω23 − ω12ω13) c3p

|Ω| (1− ω2
13)

!
∂

∂ω23
P = w2w3ϕ2 (c2, c3, ω23)Φ

 
w1

`
1− ω2

23

´
c1 − (ω12 − ω13ω23) c2 − (ω13 − ω12ω23) c3p

|Ω| (1− ω2
23)

!
.

Expressions of the second order partial derivatives follow.

We now turn to the decomposition in Proposition 2. As explained in the first section of the technical report, the

likelihood of observation i may be written as:

P = Φ3 (w1c1, w2c2, w3c3, w1w2ω12, w1w3ω13, w2w3ω23)

= Φ (w1c1)Φ (w2c2)Φ (w3c3)

+w1w2Φ (w3c3)Ψ2 (c1, c2, ω12)

+w1w3Φ (w2c2)Ψ2 (c1, c3, ω13)

+w2w3Φ (w1c1)Ψ2 (c2, c3, ω23)

+w1w2w3Ψ3 (c3, c1, c2, ω13, ω23, 0)

+w1w2w3Ψ3 (c2, c3, c1, ω23, ω12, 0)

+w1w2w3Ψ3 (c1, c2, c3, ω12, ω13, ω23)

where:

Ψ2 (c1, c2, ω12) =

Z ω12

0

ϕ2 (c1, c2, λ12) dλ12

Ψ2 (c1, c3, ω13) =

Z ω13

0

ϕ2 (c1, c3, λ13) dλ13

Ψ2 (c2, c3, ω23) =

Z ω23

0

ϕ2 (c2, c3, λ23) dλ23

with:

Ψ3 (c3, c1, c2, ω13, ω23, 0) =

Z ω13

0

Z ω23

0

−c3 + λ13c1 + λ23c2

1− λ2
13 − λ2

23

ϕ3 (c3, c1, c2, λ13, λ23, 0) dλ13dλ23

Ψ3 (c2, c3, c1, ω23, ω12, 0) =

Z ω23

0

Z ω12

0

−c2 + λ23c3 + λ12c1

1− λ2
23 − λ2

12

ϕ3 (c2, c3, c1, λ23, λ12, 0) dλ23dλ12

Ψ3 (c1, c2, c3, ω12, ω13, ω23) =

Z ω12

0

Z ω13

0

−
`
1− ω2

23

´
c1 + (λ12 − λ13ω23) c2 + (λ13 − λ12ω23) c3

1− λ2
12 − λ2

13 − ω2
23 + 2λ12λ13ω23

·ϕ3 (c1, c2, c3, λ12, λ13, ω23) dλ12dλ13.

It is then straightforward to show that the first-order partial derivatives are as follows:
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∂

∂c1
P = w1ϕ (c1)Φ (w2c2)Φ (w3c3)

+w1w2Φ (w3c3)
∂

∂c1
Ψ2 (c1, c2, ω12)

+w1w3Φ (w2c2)
∂

∂c1
Ψ2 (c1, c3, ω13)

+w1w2w3ϕ (c1)Ψ2 (c2, c3, ω23)

+w1w2w3
∂

∂c1
Ψ3 (c3, c1, c2, ω13, ω23, 0)

+w1w2w3
∂

∂c1
Ψ3 (c2, c3, c1, ω23, ω12, 0)

+w1w2w3
∂

∂c1
Ψ3 (c1, c2, c3, ω12, ω13, ω23)

∂

∂c2
P = w2ϕ (c2)Φ (w1c1)Φ (w3c3)

+w1w2Φ (w3c3)
∂

∂c2
Ψ2 (c1, c2, ω12)

+w1w2w3ϕ (c2)Ψ2 (c1, c3, ω13)

+w2w3Φ (w1c1)
∂

∂c2
Ψ2 (c2, c3, ω23)

+w1w2w3
∂

∂c2
Ψ3 (c3, c1, c2, ω13, ω23, 0)

+w1w2w3
∂

∂c2
Ψ3 (c2, c3, c1, ω23, ω12, 0)

+w1w2w3
∂

∂c2
Ψ3 (c1, c2, c3, ω12, ω13, ω23)

∂

∂c3
P = w3ϕ (c3)Φ (w1c1)Φ (w2c2)

+w1w2w3ϕ (c3)Ψ2 (c1, c2, ω12)

+w1w3Φ (w2c2)
∂

∂c3
Ψ2 (c1, c3, ω13)

+w2w3Φ (w1c1)
∂

∂c3
Ψ2 (c2, c3, ω23)

+w1w2w3
∂

∂c3
Ψ3 (c3, c1, c2, ω13, ω23, 0)

+w1w2w3
∂

∂c3
Ψ3 (c2, c3, c1, ω23, ω12, 0)

+w1w2w3
∂

∂c3
Ψ3 (c1, c2, c3, ω12, ω13, ω23)

∂

∂ω12
P = w1w2Φ (w3c3)

∂

∂ω12
Ψ2 (c1, c2, ω12)

+w1w2w3
∂

∂ω12
Ψ3 (c2, c3, c1, ω23, ω12, 0)

+w1w2w3
∂

∂ω12
Ψ3 (c1, c2, c3, ω12, ω13, ω23)

∂

∂ω13
P = w1w3Φ (w2c2)

∂

∂ω13
Ψ2 (c1, c3, ω13)

+w1w2w3
∂

∂ω13
Ψ3 (c3, c1, c2, ω13, ω23, 0)

+w1w2w3
∂

∂ω13
Ψ3 (c1, c2, c3, ω12, ω13, ω23)

42



∂

∂ω23
P = w2w3Φ (w1c1)

∂

∂ω23
Ψ2 (c2, c3, ω23)

+w1w2w3
∂

∂ω23
Ψ3 (c3, c1, c2, ω13, ω23, 0)

+w1w2w3
∂

∂ω23
Ψ3 (c2, c3, c1, ω23, ω12, 0)

+w1w2w3
∂

∂ω23
Ψ3 (c1, c2, c3, ω12, ω13, ω23)

where

∂

∂c1
Ψ3 (c3, c1, c2, ω13, ω23, 0) =

Z ω23

0

Z ω13

0

∂

∂λ13
ϕ3 (c3, c1, c2, λ13, λ23, 0) dλ13dλ23

=

Z ω23

0

ϕ3 (c3, c1, c2, ω13, λ23, 0) dλ23

∂

∂c2
Ψ3 (c3, c1, c2, ω13, ω23, 0) =

Z ω13

0

Z ω23

0

∂

∂λ23
ϕ3 (c3, c1, c2, λ13, λ23, 0) dλ23dλ13

=

Z ω13

0

ϕ3 (c3, c1, c2, λ13, ω23, 0) dλ13

∂

∂c3
Ψ3 (c3, c1, c2, ω13, ω23, 0) =

Z ω13

0

Z ω23

0

ˆ
(c3 − λ13c1 − λ23c2)

2 −
`
1− λ2

13 − λ2
23

´˜
· 1

(1− λ2
13 − λ2

23)
2 ϕ3 (c3, c1, c2, λ13, λ23, 0) dλ13dλ23

∂

∂ω13
Ψ3 (c3, c1, c2, ω13, ω23, 0) =

Z ω23

0

−c3 + ω13c1 + λ23c2

1− ω2
13 − λ2

23

ϕ3 (c3, c1, c2, ω13, λ23, 0) dλ23

∂

∂ω23
Ψ3 (c3, c1, c2, ω13, ω23, 0) =

Z ω13

0

−c3 + λ13c1 + ω23c2

1− λ2
13 − ω2

23

ϕ3 (c3, c1, c2, λ13, ω23, 0) dλ13

∂

∂c1
Ψ3 (c2, c3, c1, ω23, ω12, 0) =

Z ω23

0

Z ω12

0

∂

∂λ12
ϕ3 (c2, c3, c1, λ23, λ12, 0) dλ12dλ23

=

Z ω23

0

ϕ3 (c2, c3, c1, λ23, ω12, 0) dλ23

∂

∂c2
Ψ3 (c2, c3, c1, ω23, ω12, 0) =

Z ω23

0

Z ω12

0

ˆ
(c2 − λ23c3 − λ12c1)

2 −
`
1− λ2

23 − λ2
12

´˜
· 1

(1− λ2
23 − λ2

12)
2 ϕ3 (c2, c3, c1, λ23, λ12, 0) dλ23dλ12

∂

∂c3
Ψ3 (c2, c3, c1, ω23, ω12, 0) =

Z ω12

0

Z ω23

0

∂

∂λ23
ϕ3 (c2, c3, c1, λ23, λ12, 0) dλ23dλ12

=

Z ω12

0

ϕ3 (c2, c3, c1, ω23, λ12, 0) dλ12

∂

∂ω12
Ψ3 (c2, c3, c1, ω23, ω12, 0) =

Z ω23

0

−c2 + λ23c3 + ω12c1

1− λ2
23 − ω2

12

ϕ3 (c2, c3, c1, λ23, ω12, 0) dλ23

∂

∂ω23
Ψ3 (c2, c3, c1, ω23, ω12, 0) =

Z ω12

0

−c2 + ω23c3 + λ12c1

1− ω2
23 − λ2

12

ϕ3 (c2, c3, c1, ω23, λ12, 0) dλ12
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∂

∂c1
Ψ3 (c1, c2, c3, ω12, ω13, ω23) =

Z ω12

0

Z ω13

0

nˆ`
1− ω2

23

´
c1 − (λ12 − λ13ω23) c2 − (λ13 − λ12ω23) c3

˜2
−
`
1− ω2

23

´ `
1− λ2

12 − λ2
13 − ω2

23 + 2λ12λ13ω23

´¯
· 1

(1− λ2
12 − λ2

13 − ω2
23 + 2λ12λ13ω23)

2 ϕ3 (c1, c2, c3, λ12, λ13, ω23) dλ12dλ13

∂

∂c2
Ψ3 (c1, c2, c3, ω12, ω13, ω23) =

Z ω13

0

Z ω12

0

∂

∂λ12
ϕ3 (c1, c2, c3, λ12, λ13, ω23) dλ12dλ13

=

Z ω13

0

ϕ3 (c1, c2, c3, ω12, λ13, ω23) dλ13

∂

∂c3
Ψ3 (c1, c2, c3, ω12, ω13, ω23) =

Z ω12

0

Z ω13

0

∂

∂λ13
ϕ3 (c1, c2, c3, λ12, λ13, ω23) dλ13dλ12

=

Z ω12

0

ϕ3 (c1, c2, c3, λ12, ω13, ω23) dλ12

∂

∂ω12
Ψ3 (c1, c2, c3, ω12, ω13, ω23) =

Z ω13

0

−
`
1− ω2

23

´
c1 + (ω12 − λ13ω23) c2 + (λ13 − ω12ω23) c3

1− ω2
12 − λ2

13 − ω2
23 + 2ω12λ13ω23

·ϕ3 (c1, c2, c3, ω12, λ13, ω23) dλ13

∂

∂ω13
Ψ3 (c1, c2, c3, ω12, ω13, ω23) =

Z ω12

0

−
`
1− ω2

23

´
c1 + (λ12 − ω13ω23) c2 + (ω13 − λ12ω23) c3

1− λ2
12 − ω2

13 − ω2
23 + 2λ12ω13ω23

·ϕ3 (c1, c2, c3, λ12, ω13, ω23) dλ12

∂

∂ω23
Ψ3 (c1, c2, c3, ω12, ω13, ω23) =

Z ω12

0

Z ω13

0

∂2

∂c2∂λ13
ϕ3 (c1, c2, c3, λ12, λ13, ω23) dλ12dλ13

=

Z ω12

0

−
`
1− ω2

13

´
c2 + (λ12 − ω13ω23) c1 + (ω23 − λ12ω13) c3

1− λ2
12 − ω2

13 − ω2
23 + 2λ12ω13ω23

·ϕ3 (c1, c2, c3, λ12, ω13, ω23) dλ12

=

Z ω12

0

Z ω13

0

∂2

∂c3∂λ12
ϕ3 (c1, c2, c3, λ12, λ13, ω23) dλ12dλ13

=

Z ω13

0

−
`
1− ω2

12

´
c3 + (λ13 − ω12ω23) c1 + (ω23 − ω12λ13) c2

1− ω2
12 − λ2

13 − ω2
23 + 2ω12λ13ω23

·ϕ3 (c1, c2, c3, ω12, λ13, ω23) dλ13.

Additional Monte-Carlo evidence

We consider the following class of models

yi1 = 1I (y∗i1 > 0)

yi2 = 1I (y∗i2 > 0)

where:

y∗i1 = x′i1β1 + ui1 (11)

y∗i2 = x′i2β2 + yi1γ21 + y∗i1α21 + ui2 (12)

xi1 =
`

1 xi1,0 xi1,1

´′
xi2 =

`
1 xi2,0 xi2,2

´′
and: „

ui1

ui2

«
∼ N (0, Σ) , Σ =

„
1 σ12

σ12 1

«
Three models are studied by imposing some restrictions in the second equation: M1) α21 = 0, (M2) γ21 = 0, and
(M3) γ21 6= 0 and α21 6= 0.
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Table 1: Bivariate probit Model (M1)

EML MSL (10 draws) MSL (100 draws)

True values Estimates Bias RMSE Estimates Bias RMSE Estimates Bias RMSE

N = 1, 000

β1c 1 1.0112 0.0112 0.0716 1.0117 0.0117 0.0721 1.0116 0.0116 0.0719
β11 -0.5 -0.5046 -0.0046 0.0329 -0.5058 -0.0058 0.0331 -0.5052 -0.0052 0.0331
β2c -2 -2.0367 -0.0367 0.2132 -1.9291 0.0709 0.2179 -2.0109 -0.0109 0.2093
β22 1 1.0093 0.0093 0.0648 1.0208 0.0208 0.0683 1.0120 0.0120 0.0654
γ21 1 1.0403 0.0403 0.2363 0.8747 -0.1253 0.2486 1.0000 0.0000 0.2251
σ12 -0.4 -0.4179 -0.0179 0.1757 -0.2294 0.1706 0.2252 -0.3735 0.0265 0.1709

σβ1c 0.0674 0.0677 0.0003 0.0045 0.0679 0.0005 0.0045 0.0678 0.0004 0.0045
σβ11 0.0312 0.0314 0.0002 0.0027 0.0314 0.0002 0.0027 0.0314 0.0002 0.0027
σβ2c 0.2004 0.1956 -0.0049 0.0223 0.1917 -0.0087 0.0193 0.1944 -0.0060 0.0222
σβ22 0.0664 0.0660 -0.0005 0.0076 0.0655 -0.0009 0.0077 0.0659 -0.0005 0.0077
σγ21 0.2260 0.2179 -0.0082 0.0256 0.2011 -0.0249 0.0292 0.2137 -0.0123 0.0259
σσ12 0.1740 0.1572 -0.0168 0.0340 0.1275 -0.0465 0.0494 0.1517 -0.0223 0.0349

Computing time 0.01 0.04 0.27

N = 10, 000

β1c 1 0.9978 -0.0022 0.0208 0.9985 -0.0015 0.0207 0.9979 -0.0021 0.0207
β11 -0.5 -0.4997 0.0003 0.0096 -0.5010 -0.0010 0.0095 -0.5000 0.0000 0.0096
β2c -2 -2.0040 -0.0040 0.0696 -1.8859 0.1141 0.1315 -1.9926 0.0074 0.0696
β22 1 1.0012 0.0012 0.0206 1.0105 0.0105 0.0228 1.0023 0.0023 0.0206
γ21 1 1.0050 0.0050 0.0787 0.8308 -0.1692 0.1825 0.9876 -0.0124 0.0783
σ12 -0.4 -0.4004 -0.0004 0.0565 -0.2128 0.1872 0.1916 -0.3822 0.0178 0.0575

σβ1c 0.0211 0.0211 0.0000 0.0004 0.0211 0.0000 0.0004 0.0211 0.0000 0.0004
σβ11 0.0100 0.0100 0.0000 0.0002 0.0100 0.0000 0.0002 0.0100 0.0000 0.0002
σβ2c 0.0639 0.0640 0.0000 0.0024 0.0624 -0.0016 0.0025 0.0638 -0.0001 0.0023
σβ22 0.0206 0.0206 0.0000 0.0008 0.0205 -0.0001 0.0008 0.0206 0.0000 0.0008
σγ21 0.0714 0.0713 -0.0001 0.0027 0.0650 -0.0064 0.0066 0.0707 -0.0007 0.0027
σσ12 0.0523 0.0518 -0.0005 0.0031 0.0406 -0.0117 0.0118 0.0510 -0.0013 0.0033

Computing time 0.10 0.47 9.36

Note: The number of simulations is 1,000.

45



Table 2: Bivariate probit Model (M2)

EML MSL (10 draws) MSL (100 draws)

True values Estimates Bias RMSE Estimates Bias RMSE Estimates Bias RMSE

N = 1, 000

β1c 1 1.0042 0.0042 0.0629 1.0049 0.0049 0.0631 1.0044 0.0044 0.0629
β11 -0.5 -0.5046 -0.0046 0.0336 -0.5048 -0.0048 0.0338 -0.5047 -0.0047 0.0337
β2c -2 -2.0227 -0.0227 0.1625 -1.8654 0.1346 0.1927 -1.8284 0.1716 0.2171
β22 1 1.0105 0.0105 0.0646 0.9317 -0.0683 0.0910 0.9141 -0.0859 0.1043
α21 0.2 0.2032 0.0032 0.0498 0.1863 -0.0137 0.0439 0.1825 -0.0175 0.0434
σ12 -0.6 -0.6036 -0.0036 0.1007 -0.4819 0.1181 0.1471 -0.5795 0.0205 0.1011

σβ1c 0.0667 0.0665 -0.0002 0.0036 0.0667 0.0000 0.0037 0.0666 -0.0001 0.0036
σβ11 0.0319 0.0319 0.0000 0.0027 0.0320 0.0001 0.0027 0.0319 0.0000 0.0027
σβ2c 0.1594 0.1596 0.0002 0.0159 0.1480 -0.0114 0.0182 0.1445 -0.0149 0.0204
σβ22 0.0631 0.0633 0.0001 0.0070 0.0586 -0.0045 0.0079 0.0574 -0.0058 0.0086
σα21 0.0502 0.0498 -0.0004 0.0050 0.0461 -0.0041 0.0057 0.0451 -0.0051 0.0064
σσ12 0.1130 0.1074 -0.0055 0.0134 0.1013 -0.0117 0.0156 0.1069 -0.0061 0.0142

Computing time 0.01 0.04 0.25

N = 10, 000

β1c 1 0.9996 -0.0004 0.0212 1.0002 0.0002 0.0212 0.9997 -0.0003 0.0212
β11 -0.5 -0.5002 -0.0002 0.0103 -0.5004 -0.0004 0.0103 -0.5002 -0.0002 0.0103
β2c -2 -1.9964 0.0036 0.0508 -1.8459 0.1541 0.1600 -1.8060 0.1940 0.1983
β22 1 1.0005 0.0005 0.0208 0.9251 -0.0749 0.0774 0.9052 -0.0948 0.0967
α21 0.2 0.1990 -0.0010 0.0161 0.1836 -0.0164 0.0214 0.1799 -0.0201 0.0241
σ12 -0.6 -0.6016 -0.0016 0.0305 -0.4830 0.1170 0.1206 -0.5930 0.0070 0.0308

σβ1c 0.0212 0.0212 0.0000 0.0004 0.0212 0.0000 0.0004 0.0212 0.0000 0.0004
σβ11 0.0098 0.0098 0.0000 0.0003 0.0099 0.0000 0.0003 0.0098 0.0000 0.0003
σβ2c 0.0495 0.0494 -0.0002 0.0017 0.0458 -0.0037 0.0040 0.0447 -0.0048 0.0051
σβ22 0.0202 0.0202 0.0000 0.0008 0.0187 -0.0014 0.0016 0.0183 -0.0019 0.0020
σα21 0.0161 0.0161 -0.0001 0.0005 0.0149 -0.0012 0.0013 0.0145 -0.0016 0.0016
σσ12 0.0352 0.0349 -0.0003 0.0014 0.0325 -0.0027 0.0030 0.0347 -0.0004 0.0014

Computing time 0.10 0.48 10.00

Note: The number of simulations is 1,000.
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Table 3: Bivariate probit Model (M3)

EML MSL (10 draws) MSL (100 draws)

True values Estimates Bias RMSE Estimates Bias RMSE Estimates Bias RMSE

N = 10, 000

β1c 1 1.0015 0.0015 0.0249 1.0023 0.0023 0.0249 1.0019 0.0019 0.0249
β11 -2 -2.0005 -0.0005 0.0431 -2.0023 -0.0023 0.0430 -2.0012 -0.0012 0.0431
β2c -1 -0.9897 0.0103 0.0944 -0.7165 0.2835 0.2932 -0.8719 0.1281 0.1539
β22 2 2.0085 0.0085 0.0672 1.9094 -0.0906 0.1073 1.8269 -0.1731 0.1824
γ21 0.5 0.4718 -0.0282 0.1774 0.0060 -0.4940 0.5107 0.3737 -0.1263 0.2076
α21 0.2 0.2059 0.0059 0.0398 0.2666 0.0666 0.0738 0.1959 -0.0041 0.0355
σ12 -0.6 -0.5901 0.0099 0.0672 -0.3845 0.2155 0.2208 -0.5639 0.0361 0.0769

σβ1c 0.0250 0.0251 0.0000 0.0007 0.0251 0.0001 0.0007 0.0251 0.0000 0.0007
σβ11 0.0412 0.0413 0.0000 0.0014 0.0413 0.0001 0.0014 0.0413 0.0000 0.0014
σβ2c 0.1006 0.0996 -0.0010 0.0121 0.0790 -0.0216 0.0220 0.0902 -0.0104 0.0150
σβ22 0.0635 0.0631 -0.0004 0.0041 0.0556 -0.0078 0.0085 0.0566 -0.0069 0.0077
σγ21 0.1921 0.1888 -0.0033 0.0272 0.1317 -0.0604 0.0610 0.1694 -0.0227 0.0328
σα21 0.0400 0.0393 -0.0007 0.0045 0.0299 -0.0101 0.0103 0.0352 -0.0048 0.0061
σσ12 0.0775 0.0765 -0.0010 0.0134 0.0567 -0.0208 0.0214 0.0765 -0.0010 0.0131

Computing time 0.11 0.50 9.88

Note: The number of simulations is 1,000.
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Figure 1: Density function of α21 in the bivariate probit model (M4)
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Figure 2: Density function of σα21 in the bivariate probit model (M4)
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Figure 3: Density function of γ21 in the bivariate probit model (M4)
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Figure 4: Density function of σγ21 in the bivariate probit model (M4)
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