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Abstract

This paper applies Hamilton’s (1989) Markov-switching model of busi-
ness cycle dynamics to real GDP in Iceland for the period 1945 to 1998.
The resulting model gives a reasonable description of the data generating
process for real GDP and produces business cycles that correspond quite
well to conventional wisdom concerning the Icelandic business cycle. Al-
though the model cannot be distinguished from a simple, linear time series
model, it offers some improvements in terms of mean absolute forecast er-
rors and in forecasting business cycle turning points to the official forecasts
made by the National Economic Institute.
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1. Introduction

Modern economies undergo significant short-run variations in aggregate activity,
commonly referred to as business cycles. Understanding the causes and nature of
these fluctuations and the timing of turning points between periods of expansion
and contraction is of central importance for government and private decision mak-
ers. In this context, certain ”stylized facts” have been observed, which any model
of business cycles would need to account for. These include the observation that
a business cycle usually has a two to six year periodicity, rarely exceeding eight
years in length (Canova, 1998). Another stylized fact is that aggregate fluctua-
tions do not seem to exhibit any simple regular or cyclical pattern, with business
cycles varying in size and spacing. Thus, business cycles cannot be thought of
as combinations of deterministic cycles of different lengths. Rather the economy
seems to be perturbed by disturbances of various types and sizes at more or less
random intervals. A third important fact is that business cycle movements seem to
be asymmetric. Periods of expansion usually have a longer duration than periods
of contractions.

Standard, linear time series models will have a hard time explaining some
of these stylized facts, such as the observed asymmetry between expansions and
contractions, generating suboptimal forecasts of aggregate activity. An alternative
framework would be a non-linear time series model. One such model is Hamilton’s
(1989) Markov-switching autoregressive model, which has fostered a great deal
of interest as an empirical approach to characterizing observed business cycle
dynamics. Hamilton’s model is attractive since it can account for complicated
dynamics such as asymmetry and conditional heteroscedasticity, yet is very flexible
and simple to estimate and interpret.

In this model of business cycle fluctuations, turning points between expan-
sions and contractions are treated as structural events that are inherent in the
data generating process and are estimated jointly with other parameters of the
process. Hamilton (1989) successfully applies this model to quarterly GDP in the
US and finds that the model generates expansionary and contractionary periods
which roughly correspond to the NBER business cycle phases of expansions and
contractions. Furthermore, since the probability law governing shifts between ex-
pansions and contractions is explicitly modelled, meaningful forecasts of business
cycle turning points can be conducted within this framework.

The Markov-switching model of business cycle dynamics has been extended to
allow for transitory as well as permanent shocks to output (Lam, 1990); regime
dependence of other parameters (Hansen, 1992b); increased number of regimes
(Clements and Krolzig, 1998); and duration-dependent transition probabilities
(Filardo and Gordon, 1998). It has also proven to be a promising approach for



studying other economic phenomena. These include analyses of stock market
volatility (Hamilton and Susmel, 1994) and its relationship to the business cy-
cle (Hamilton and Lin, 1996); intrinsic bubbles and switching regimes in stock
markets (Driffill and Sola, 1998); leading indicators and economic forecasting
(Hamilton and Perez-Quiros, 1996); the relationship between output and prices
over the business cycle (Ravn and Sola, 1995); the relationship between inflation
rates and inflation uncertainty (Kim, 1993); regime switching in cointegrating re-
lations (Hall et al., 1997); the expectations hypothesis of the term structure (Sola
and Driffill; 1994); and unemployment and real interest rate persistence (Bianchi
and Zoega, 1998 and Garzia and Perron, 1996, respectively).

The Markov-switching model is used in this paper to analyse aggregate output
in Iceland for the period 1945 to 1998. Section 2 briefly discusses Markov chains.
Section 3 introduces a Markov-switching model of real GDP and Section 4 contains
the estimation results. In Section 5 the forecasting ability of the Markov-switching
specification is compared to other models. The final section concludes.

2. Markov Chains

Consider a latent, random variable s; € {1,2,...,7} (with » > 2 and finite), where
the probability that s; takes the value j depends on the past only through the
most recent value s;_;

Pr(s; =j|stc1 =t,810=Fk,..) =Pr(s; =jlsi—1 =1) =pij; 4,5=1,2,..,r
(2.1)
A process like (2.1) is called a homogenous first-order, r-state Markov chain with
transition probabilities {p;;}:j=12..,. The transition probability p;; gives the
probability that state ¢ will be followed by state j (see Hamilton, 1994). The
Markov transition probabilities satisfy

Yopy=1 Vi (2.2)
j=1

and by collecting all the transition probabilities together a r x r matrix P, called
the transition matrix, is obtained

P - Prl
P=|: I

Pir - DPrr
It is assumed that the Markov process is irreducible, so that p; < 1 for all ¢
(the states are therefore said to be non-absorbing). Furthermore, since from (2.2)
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P’t = ¢, with ¢ being a r x 1 vector of ones, it follows by construction that P has
one eigenvalue equal to unity. Therefore, the remaining eigenvalues are assumed
to lie inside the unit circle and the Markov process is said to be ergodic. The
ergodic probabilities, Pr(s; = j) = m;, can be collected into a r x 1 vector 7
satisfying Pw = 7 and ¢/ = 1. These ergodic probabilities can be interpreted
as the unconditional probabilities for each of the r different states, that is =; is
the probability of being in state j in the next period, independent of the current
state.
For example, for a two-state Markov chain

T = ( 7T1 ) — ( (1= p22)/(2 = p11 — p22) )
2 (1 =p11)/(2 = pu1 — p22)
with 7 +m = 1.

3. A Markov-Switching Model for GDP

Consider the time series of the log of real output, {y;}._,. Without loss of general-
ity, 1; can be decomposed into a trend component 73 and a residual z;, commonly
referred to as the ”cyclical” component (see, for example, Clark, 1987 and Watson,
1986)*

Y =Tt + Tt (3.1)

As Canova (1998) notes there is a fundamental disagreement on the proper-
ties of the trend component and on its relationship with the cyclical component.
The traditional approach was to specify the trend component as a deterministic
polynomial function of time, 7, = 3(t), assumed to be independent of the cyclical
component, cf. Blanchard (1981). This implies that shocks to output are only
transitory. Thus, the cyclical component could easily be extracted from the origi-
nal series using standard regression techniques. However, since the seminal paper
by Nelson and Plosser (1982), who found evidence of a stochastic trend rather
than a deterministic one in many key macroeconomic series suggesting a signifi-
cant permanent component in these series, this approach has come under strong
criticism.? Alternative definitions of the trend, different assumptions concerning
the relationship between the trend and the cycle and methods for estimating the
two components have therefore been proposed by Beveridge and Nelson (1981) and

!Typically, business cycle fluctuations are identified as the deviations of the process from
trend. See, however, Burnside (1998) for a critique.

2The existence of a unit root in real aggregate output is an ongoing debate in the literature.
See, for example, Murray and Nelson (1998) and Diebold and Senhadji (1996).



Campbell and Mankiw (1987), who use ARIMA models where the autoregressive
process contains a unit root, Watson (1986) and Clark (1987), who use a linear
unobserved component approach where the time series is a sum of a random walk
and a stationary ARMA process, and King et al. (1991), who use a cointegration
approach to identify common stochastic trends in an equilibrium business cycle
model.?

In all the above studies, it is assumed that the growth rate of output follows a
linear stationary process, so optimal forecasts of output growth are linear functions
of their lagged values. An alternative description of the trend component in
real output has been proposed by Hamilton (1989). As in the above papers the
trend component is considered stochastic rather than deterministic and allows
for permanent effects of shock to output. However, instead of following a linear
stationary process, output growth is assumed to follow a non-linear stationary
process. In particular, Hamilton (1989) assumes that the trend component can
be written as

Ty = Te—1 T Ms, (3.2)

where ps, is the growth rate of the trend component, which is assumed to follow
a first-order, two-state ergodic Markov process

fs, = (1 = se)po + sep (3.3)

with the unobserved state variable s; taking on the values zero and one. The
transitory probabilities are given as?

Pr(s; =0|s;—1 =0) = p; Pr(s;=1|s4-1=1)=¢q (3.4)

The stochastic trend will have an expected slope of wug + (1 — 7)1, where 7 =
Pr(s; = 0), and may either be viewed as a time trend with a Markov-switching
growth rate or, alternatively, as a random walk component with a discrete shock

3See Gudmundsson et al. (2000) for an application of this approach to Icelandic data.

4The two states can be interpreted (but do not have to be) as representing ”recessions”
and ”expansions”. p is therefore the probability of continuing in a recession, while ¢ is the
probability of remaining in an expansion. 1 — p is the probability of switching from a recession
to an expansion, with 1 — g representing the switch in the opposite direction. In the specification
in (3.4), the transition probabilities are constant and do not depend on the duration or strength
of the business cycle. This is done for the sake of parsimonity. Diebold and Rudebusch (1990)
argue that this is not a bad representation of historical US data. The results in Filardo and
Gordon (1998), however, suggest that the probability of transition out of recession is increasing
in the duration of the recession.



given by pus,.> This specification of the trend in (3.2) is fundamentally different
from the trend specification used in the papers referred to above in that the trend
need only change in response to occasional, discrete events rather than changing
every period. Furthermore, when added to a linear cyclical component, z;, the
process for y; becomes non-linear for which an ARIMA representation exists, but
does not generate optimal forecasts of the future value of the series, see Hamilton
(1989).

In what follows, the cyclical component is assumed to evolve independently of
the trend component and have the following autoregressive representation

P(L)z, = & (3.5)

where L"z; = 2, ,, is the lag operator and &, ~ NID(0,0?). Tt is further assumed
that ¢(L) = 0 has one root on the unit circle, but all the others outside. Therefore
©(L) can be written as (1 — L)¢(L), where ¢(L) = 0 has all roots outside the unit
circle.®

Therefore, by taken first difference of (3.1), multiplying with ¢(L) = 1 —
S%  ¢W L and rearranging, the following model is obtained

k
(9t — ps,) = Z 925(2) (gii — ps,_;) + & (3.6)
i=1
where g; = (1 — L)y, is the growth rate of output. Equation (3.6) is the Hamilton
(1989) autoregressive model with a Markov-switching mean, sometimes called a
centered Markov-switching model.

In the Markov-switching model in (3.6), the difference between the two states
is completely captured by differences in the mean of the process. This implies that
the conditional distribution of a realization depends upon the previous k values of
the Markov process. This is equivalent to a r**!-state Markov process and makes
the model quite difficult to estimate. More recently, Hamilton (1990) suggests
an alternative Markov-switching model, where the intercept of the regression is

To is the initial value of the Markov trend. Hence, the Markov trend consists of a deterministic
trend with slope pg and a stochastic trend with an impact value of p1 — pyo.

6Since both 7; and z; have unit roots they are not individually identified. Note also that
this specification of the trend and cyclical components implies that all the shocks to output
are permanent and the business cycle asymmetry shows up in the growth rate of output. In
Lam (1990) the cyclical component is stationary, thus allowing the economy to be subject to
both permanent and transitory shocks. In this case the business cycle asymmetry shows up in
the permanent component of output. The Kalman filter estimates of an unobserved component
model from Eliasson (1998) suggest that the cyclical component indeed contains a unit root
supporting the specification used here.

5The Markov trend can be solved backwards to give 7, = 7o+ ot + (11 — o) Zz o St—j, where



allowed to switch between regimes instead of the mean of the process. This model
can be written as

k
gr = a5 + Y $Vge i+ (3.7)
i=1
Although (3.7) might seem as a minor modification of (3.6), the two models
actually have quite different dynamic behaviour. The centered Markov-switching
model in (3.6) is non-linear in some parameters even after conditioning on current
and past states. In contrast the model discussed in Hamilton (1990) is linear
after conditioning on the current state and is therefore much easier to estimate.
Furthermore, the regime dependence in the centered model is asymmetric in that
some parameters depend on the current state, while others depend on both cur-
rent and past states. In the model in Hamilton (1990), regime dependence is
treated symmetrically since all coefficients depend only on the current regime. As
discussed in Warne (1996) these models are non-nested and it is not obvious how
one should choose between them.
In the following the main attention will be on (3.7), denoted as MS(2)-AR(k),
although both models will be discussed. The Markov-switching model is also
compared to a conventional linear AR model of the form

k
g=a+) oDge i +my (3.8)
i=1
where 7, ~ IID(0,02). This seems a natural benchmark to compare with the
Markov model as (practically) all covariance stationary processes have an autore-
gressive representation, which can be written as (3.8) where the residual 7 is
white noise.

Note that testing the single regime model in (3.8) against the switching regime
model in (3.7), is problematic and cannot be done using the standard likelihood
ratio (LR) test framework. The reason is that under the null hypothesis of (3.8),
the transition probabilities in P are unidentified. This makes the asymptotic infor-
mation matrix singular under the null, failing the standard regularity conditions
for constructing an asymptotic valid test of the null hypothesis. However, Hansen
(1992b, 1996) has suggested a testing approach that delivers valid inference when
unidentified nuisance parameters are present under the null.” An alternative pro-
cedure recommended by Hamilton (1996) is to test for possible misspecification
of each of the models of interest. This might involve testing for serial correlation,
autoregressive conditional heteroscedasticity (ARCH) and parameter instability.

" Alternative solutions to this identification problem have been suggested by Davies (1977),
Gallant (1977) and Bianchi and Zoega (1998).



Yet another approach for comparing the Markov-switching model with a linear
AR model is to compare their forecasting ability. All these approaches are adopted
here.

4. Estimation Results

4.1. The data

The data comprises of annual Icelandic GDP data from 1945 to 1998 at 1990
prices.® The variable used is 100 times the log difference of real GDP. The original
data is obtained from Sdégulegt yfirlit hagtalna 1995, published by the National
Economic Institute, except for the period 1995 to 1998, where the data is obtained
from Hagtélur manadarins, July 1998, published by the Central Bank of Iceland.
Figure 1 plots the data, including shaded areas for periods commonly associated
with recessions.
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Figure 1. Real GDP growth 1946-1998

Table 1 gives an overview of these periods and the average growth in each
period. According to these, there have been seven recessions and eight expansions
over the period analysed here, implying a business cycle with a 7 year periodicity.
The average duration of recessions according to Table 1 is about 3.3 years and

8Since quarterly national accounts are not available for Iceland, annual data was chosen rather
than trying to construct quarterly data from the annual series. The advantage of using annual
data is that using some constructed quarterly data may produce spurious business cycles. The
disadvantage is, however, that annual data may obscure a substantial amount of the cyclical
variation in economic activity. Thus, business cycles will tend to have longer duration on
average in annual data than in quarterly data. Eliasson (1998) uses constructed quarterly data
in an unobserved component model and his results suggest that using annual data leads to a
relatively small loss of information, although the duration of expansions and contractions might
be overstated.



Table 1. Chronology of business cycle downturns

Period  Duration Average growth Description of main sources
1948-52 5 -1.08% Deteriorating terms of trade; the Korean war

1956-57 2 1.14% Rising oil prices; the Suez conflict

1960-61 2 1.53% Falling fish prices

1967-69 3 -1.52% Falling fish catches and fish prices

1974-75 2 3.10% Deteriorating terms of trade; first OPEC crisis
1982-83 2 -0.02% Falling fish catches

1988-94 7 0.43% Falling fish catches and fish prices

Sources: Magnusson and Einarsson (1985) and Sneevarr (1993).

the average duration of an expansion is 3.8 years, which may suggest asymmetric
business cycles, with expansions lasting longer than contractions. Looking at the
average growth rate in these recessionary periods it is clear that the most severe
recessions occurred in 1967-69, 1948-52, 1982-83 and 1988-94, although the last
one is probably more severe in terms of how long it lasted rather than in terms
of decline in output (although output declined by more than 3% in 1992). This
recession can in fact be viewed as two joint recessions, the former due to falling
fish prices and catches from 1988 to 1991 and the second from 1992 to 1994 due
to falling fish catches. The least severe recession is the OPEC crisis in 1974-75,
with output growth only slightly below the periods average (see Table 2).7

According to Table 1, the dominant source of shocks to the Icelandic economy
are foreign shocks that affect the demand for Icelandic export products and the
terms of trade. This is confirmed in a structural vector autoregressive analysis by
Gudmundsson et al. (2000). Only three shocks can be described as domestic real
shocks: 1967-1968, 1982-1983 and 1988. These shocks have, however, been the
most severe ones. See Gudmundsson and Einarsson (1987) for a more detailed
discussion.

Table 2 reports some descriptive statistics for real GDP growth for the period
1946-1998 and for two subperiods. Over the whole period the unconditional mean
growth is 3.9% with a standard deviation of over 4%. It is therefore evident that
there has been a substantial fluctuation in GDP growth over the whole period. In
fact, Gudmundsson et al. (2000) show that output has fluctuated more in Iceland
than in other industrial countries. They also find that the Icelandic business cycle
is more or less independent of the business cycle in other industrial countries.

Table 2 also indicates that the average growth rate has fallen over the period
and fluctuates less than in the earlier period, as in Gudmundsson et al. (2000).

9The second OPEC crisis in 1979-80, where output rose by more than 5%, does not register
as a business cycle downturn in Iceland as it coincided with a substantial increase in fish catches.

10



Table 2. Descriptive statistics

1946-1998  1946-1972  1973-1998

Mean 3.93% 4.46% 3.37%
Standard deviation 4.26% 5.20% 3.01%
Minimum -5.63% -5.63% -3.35%
Maximum 14.29% 14.29% 8.46%
Observations 53 27 26
Unit root test -2.184 -3.599 -1.906

Note: The unit root test is the Dickey and Fuller (1979) test for
a single unit root in output. The regressions include a constant,
a trend and lagged growth rates (1 lag for the period 1946-1998
and 1946-1972 but none for the period 1973-1998). The alternative
hypothesis is therefore that output is trend stationary. The critical
values are -3.497 (5%) and -4.142 (1%) and are obtained from
MacKinnon (1991).

Finally, a unit root in the autoregressive representation of the log of real output
cannot be rejected. This implies that output has a stochastic trend, thus sup-
porting the findings in Nelson and Plosser (1982). Although the statistical power
of the unit root test is notoriously low, this at least implies that shocks to output
are very persistent.

4.2. A simple autoregressive model

Estimating a simple AR(k) model for the period 1946 to 1998 with k = 2 gives

the following (standard errors in parenthesis)!
(202?18) + (()04113?8?)) =1 (()0 1§89 G2 (4.1)

log L = —140.4, 0, = 3.91, Fy1 = 0.01, Fypepn = 0.36, V.S = 0.53*, JS = 0.80

There is no evidence of serial correlation or ARCH effects in the residual.
There is, however, evidence of parameter instability using Hansen’s (1992a) tests
for in-sample parameter stability. This suggests that the linear AR(2) model is
misspecified and that a non-linear model, such as the Markov-switching model,
may be a more appropriate representation of the data.

The estimated AR(2) model has complex eigenvalues given by the conjugate
pair 0.23 £ 0.37¢ with modulus equal to 0.43. This implies a dynamic multiplier

10The AIC information criterion suggests a two lag model rather than a one lag model. The
AR(2) model was also chosen to correspond to the lag length of the Markov-switching model
below.

11



that follows a pattern of damped oscillation with frequency equal to 1.02. The
cycles associated with the dynamic multipliers have a period of 6.1. Thus, the
AR(2) model in (4.1) implies (for a given shock) a cycle with a 6 year periodicity.

The estimates indicate that innovations to output are very persistent, as sug-
gested by the unit root tests above. A 1% unanticipated increase in output will
increase the optimal forecast of y;,;, for h — oo by 1.36%. If output was trend
stationary the implied revision of the output forecast should be zero. These re-
sults are consistent with the results obtained by Campbell and Mankiw (1987),
and imply a dominant permanent component in output.!!

4.3. The Markov-switching AR model

The estimation of the Markov-switching AR model entails a numerical maximiza-
tion of the conditional likelihood function to obtain estimates of the autoregression
and transition probabilities. The iterative procedure used here is based on the
EM algorithm of Dempster et al. (1977), as first suggested by Hamilton (1990).
This algorithm is designed for a general class of models where the observed time
series depends on some unobservable stochastic variable — the regime variables s,
in the Markov-switching model.

Table 3 reports the maximum likelihood estimates of the parameters of MS(2)-
AR(k) with £ = 2. The model was also estimated for k¥ = 1 and on the basis of the
AIC information criteria a two lag model was chosen. As expected, the estimated
growth rate for the two states can be associated with slow and fast growth states
for the Icelandic economy. The "recessionary” regime has a mean growth rate of
0.6% (1o = ap/d(1)), but this growth rate is not significantly different from zero.
The recessionary state can therefore be said to correspond to a state of stagnation.
The ”expansionary” state, on the other hand, has a mean growth rate of 6.8%
(11 = a1 /é(1)).

The autoregressive parameters turn out to be quite small and in fact are not
significantly different from zero. This suggests that the dynamics of Icelandic
output growth are better captured by recurrent shifts between the recessionary
and expansionary regimes than by the dynamics implied by the autoregressive
representation. The quantitative importance of the Markov process can also be
seen by calculating the fraction of the total variation of output growth explained
by the Markov process. According to the estimates in Table 3 the variance of
the Markov process is 9.7 which amounts to about 54% of the total variation of
growth in real GDP.!?

1This result is found robust to models allowing richer dynamics. For example, an ARMA(1,2)
suggests a 1.63% increase in the optimal forecast.
12The variance of the Markov process is calculated as var(ps,) = (11 — po)?m(1 — 7).
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Table 3. ML estimates of MS(2)-AR(2)

Parameter Estimate Standard error
o) 0.557 0.844
aq 6.637 0.913
S 0.215 0.160
»2 -0.187 0.133
0. 2.495 0.287
p 0.704 0.136
q 0.744 0.123
T 0.464 0.137
do 3.4 1.56
dy 3.9 1.87
log L -138.4

Note: d; is the expected duration of regime 7. The
standard errors of d; are calculated using a Taylor
approximation. Thus, for a recession, var(dyg) =

f'(p)var(p), where f(p) =1/(1—p).

The estimates of the transition probabilities indicate that the probability of
remaining in a recession next year is about 70%, whereas the probability of remain-
ing in a expansion is about 74%. Thus, both regimes are found quite persistent.
Another way to see this is to calculate the expected duration of a typical recession
or expansion, which is easily obtained from the maximum likelihood estimates.
The expected duration of a recession, conditional on being in that state, is (see
Hamilton, 1989)

1
(1-p)

Thus, the expected duration of a recession is 3.4 years, whereas the expected
duration of an expansion is 3.9 years. This can be compared to the average 3.3
and 3.8 years duration from Table 1. This might imply that the business cycle is
asymmetric, with expansions having a longer expected duration than recessions,
although the estimated standard errors indicate that the implied durations are
not significantly different from each other. The maximum likelihood estimates
therefore suggest a business cycle with a 7 year periodicity, just as in Table 1.

The table also reports the ergodic probabilities. The estimates indicate that
the probability of being in the recessionary regime, m = Pr(s; = 0), is about 46%,
independent of what state the economy was in the previous period.

An important issue considered by Hamilton (1989) is the change in the infinite

do =Y mp™'(1-p) =
m=1
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horizon forecast of real output with respect to changes in the Markov state and
the autoregressive process. The permanent effect attributed to the autoregressive
component can be calculated as

. OYitn -1
hh_)rrolo e, (1)~ =1.03
Thus, a 1% unanticipated shock to output will lead to a 1% revision of output
forecasts over a long horizon. This can be compared to the estimate of 1.36%
from the linear AR(2) model.

The change in the infinite horizon forecast of real output attributed to the
Markov process can be found by comparing forecasts at time t + h as h — oo
when it is known that the economy is in a recession (s; = 0) and when it is known
that the economy is expanding (s; = 1). This is given by (see Hamilton, 1989)

hhjglo [E(ern |se = 1,1:) — E(yeqn |5 = 0, 1)) = w
where A = —(1 — p —¢q) and Z; = {gs, g1—1, -....} is the information set at time ¢.
Thus, perfect knowledge that the economy has gone into a recession is associated
with a 5% permanent drop in the infinite horizon forecast of the level of real
output. Information about the state of the economy at time ¢ therefore has a
permanent effect on the level of real GDP growth.

=5.07
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Figure 2. Smoothed probability of a recession, Pr(s; = 0|Zy)

Figure 2 plots the smoothed probabilities of being in the recessionary state,
Pr(s; = 0|Zy), where Zp is the full information set. Again, the shaded areas de-
note the recessionary periods from Table 1.1* The figure shows that the algorithm

131t should be emphasized that the Markov-switching model does not try to ”fit” the business
cycle chronology from Table 1. Rather, the datings from Table 1 are used as a diagnostic tool to
verify that the model’s phase chronology is roughly consistent with what is generally considered
as the business cycle.
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Table 4. Business cycle datings from the MS(2)-AR(2) model

Period Duration Average growth
1948-52 5 -1.08%
1956-57 2 1.14%
1959-61 3 1.68%
1967-69 3 -1.52%
1975 1 0.64%
1982-83 2 -0.02%
1985 1 3.24%
1988-95 8 0.50%

matches the datings from Table 1 very well. The smoothed probabilities suggest
that the recession in 1960-61 actually started a year earlier, the recession starting
in 1974 only occurring in 1975, a small recession in 1985 and that the recession
ending in 1994 ends a year later. The filtered probability, Pr(s; = 0|Z;), gave
practically the same results.!*

It should be noted that the algorithm usually gives very strong signals for
identifying when the economy is in a recession. Only on four occasions was the
smoothed probability between 30 and 70%: 1956, 1960, 1982 and 1984.!° This
suggests that the filter captures the main part of the underlying pattern in the
data of dichotomous shifts between the slow and fast growth regimes.

Table 4 summarizes the business cycle datings generated by the maximum
likelihood estimates. The datings are based on the metric that given the data
set Zr, the economy is more likely to be in a recession, that is periods where
Pr(s; = 0|Zr) > 0.5 (see Hamilton, 1989). As discussed above, the datings
largely correspond to the datings in Table 1.

Finally, Figure 3 plots output growth along with the estimated mean growth
from the Markov-switching model, 15,. The figure also plots the Markov recession-
ary dates from Table 4 in shaded areas. It shows how well the shifts between the
recessionary and expansionary regimes capture the business cycle dynamics of real

14The maximum likelihood estimates gives three different types of probability measures of a
recession in period ¢, which differ in the information they condition on. The smooth probability,
Pr(s; = 0|Zr), conditions on the full sample information and is useful for business cycle dating.
The filter probability, Pr(s; = 0|Z; ), conditions on the contemporaneous information set and is
useful for evaluating the strength of the contemporaneous signal of a recession. Finally, the ex
ante probability, Pr(s; = 0]Z;—1 ), conditions on previous information and is useful for evaluating
the ability of the model to forecast business cycle turning points in real time exercises. The
correlation between the filter and smooth probabilities is 0.99 while the correlation between
these and the ex ante probability are 0.46 and 0.48, respectively.

15Thus, the algorithm might be suggesting that the recession in 1982-83 actually spans the
period 1982-85.
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output growth, supporting the claim that real output growth is well characterized
by recurrent shifts between the slow and fast growth regimes.
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Figure 3. Output and mean growth 1948-1998

4.3.1. Diagnostic tests

Table 5 reports diagnostic tests for the MS(2)-AR(2) model. First, the table re-
ports stability tests suggested by Nyblom (1989). These tests use the conditional
scores of the likelihood function where the alternative hypothesis is that the pa-
rameters follow a martingale sequence. The first test reports a constancy test
for the transition probabilities, i.e. the free parameters in P. The number of
restrictions for this test is given by r(r — 1) = 2. The second test tests whether
the intercept vector (o, )" is constant over time. The number of restrictions
tested is given by r = 2. The third test tests whether the estimated variance is
constant over time. The number of restrictions tested is 1. Finally, a constancy
test for the model in a given state is reported. The number of restrictions tested
in this case is given by k + 2 = 4.

These tests have non-standard limiting distributions, but critical values are
tabulated in Nyblom (1989). As it is not clear whether the asymptotic theory
used by Nyblom (1989) applies to Markov-switching models, these tests should
only be interpreted as being indicative. The results in Table 5 show no evidence
of instability of the estimated parameters, although there is some indication of
instability of the intercept vector at the 95% critical level but the null of constant
intercept vector is not rejected at the 99% level. This could suggest some instabil-
ity in the intercept vector, not captured by the Markov-switching intercepts. One
potential explanation, looking at Figure 3, is a decline in the high growth rate u»
in the period since the early 1970s, probably due to a productivity slowdown in
the latter half of the sample.!®

16 A three-regime Markov-switching model with ps, = (0.3,5.5,8.8) supports this claim. In
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Table 5. Diagnostic tests for MS(2)-AR(2)

Stability tests

Transition probabilities 0.148 1.074® 0.748°
Intercept vector (ag,aq)’ 0.836 1.074¢ 0.748°
Variance 0.167 0.743¢ 0.461°
Equation in state 0 0.878 1.623% 1.237°
Equation in state 1 0.845 1.623% 1.237°
Uncorrelated Markov chain
Wald test 4.548 0.033¢
F-test 4.013 0.051¢

Misspecification tests

Autocorrelation 0.620 0.651¢
ARCH 1.237 0.272¢
Higher-order Markov chain 0.160 0.958¢

Note: The stability tests are suggested by Nyblom (1989), using the conditional
scores of the likelihood function, testing for stability of the transition proba-
bilities, the intercept, the residual variance and the equation in a given state.
The test for uncorrelated Markov chain reports a Wald test and a F-version
of the test. The misspecification tests are F-approximations of the conditional
scores tests discussed in Hamilton (1996). Under the null hypothesis they are
distributed as F(m, 46), where m equals 4, 1 and 4 respectively. a, b 99%, 95%
critical values from Nyblom (1989). ¢ p-values.

The second part of Table 5 tests whether the Markov chain is uncorrelated,
i.e. the hypothesis that Pr(s; = j|s; 1 = i) = Pr(s; = j). This tests whether the
transition probabilities equal the (long-run) ergodic probabilities, i.e. whether
the probability of staying in a particular state is the same as the probability
of returning to it from all other states. An alternative way to describe these
restriction is to note that this implies that p+ ¢ = 1, i.e. the regime probabilities
follow a Bernoulli process instead of a Markov process. The table reports a Wald
test for this hypothesis and a F-approximation of the Wald test. The number of
restrictions is given by (r — 1)> = 1. The Wald test rejects at the 95% critical
level and the F'-test is close to rejecting.

Finally, Table 5 reports three misspecification tests for the Markov-switching
model suggested by Hamilton (1996). These tests are based on the conditional

this model, the contractionary phase remains largelly unchanged from the two-regime model,
whereas the expansionary phase is split into two phases: one high growth and one extreme
growth regime, with the extreme growth regime occurring in 1953-55, 1958 and 1962-66. The
high growth regime coincides with the expansionary regime in all the latter expansionary periods
from the MS(2)-AR(2) model.
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scores of the likelihood function and are F-approximations proposed by Newey
(1985), Tauchen (1985) and White (1987) as suggested by Hamilton’s (1996)
Monte Carlo results. The first test tests for first-order autocorrelation in the
residual and imposes 72 = 4 restrictions on the model. The second tests for
first-order ARCH effects in the residual and imposes 1 restriction on the model.
Finally, the Markov test tests the specification of the first-order Markov chain,
that is whether Pr(s, = j|s;.1 =j) = Pr(s; = j|si-1 =74,5—2 =j). This test
imposes 2r = 4 restrictions on the model. In no cases do the test statistics reject
the null hypothesis of a correctly specified model.

4.3.2. Alternative Markov-switching models

Table 6 reports estimation of alternative specifications of the Markov-switching
model. Model 1 is the centered Markov-switching model in (3.6). As seen in the
table this alternative specification of the Markov-switching model gives almost
identical results to the previous model. The reason is that the autoregressive
parameters are quite small and almost sum to zero, implying that o, ~ ps,. The
centered model, however, suggests that the expected duration of an expansionary
phase is over 5 years, which might seem implausibly long.!” It would be possible
to use formal non-nested LR tests, such as in Vuong (1989), to try to distinguish
between the two models, but as evident from the log-likelihood such tests would
almost surely be non-significant.

The Markov-switching model in Table 3 implies that the regime process s; is
positively serially correlated, i.e. an expansionary state is likely to be followed
by another expansionary state, and vice versa. Model 2 in Table 6, however,
restricts the Markov-process to be serially uncorrelated so that the probability
of being in a given regime is independent of the previous state. From Table 4
these restrictions seem to be rejected but only marginally. This model is also of
interest as this is the simple switching model suggested by Hansen (1992b). The
parameter estimates are very similar to the estimates in Table 3, except that the
regimes are less persistent. Comparing the log-likelihood with the one obtained in
Table 3 suggests that the Markov-switching model in Table 3 is somewhat superior
in describing the data to the simple switching model. A LR test for the restriction
p+q =1 gives x*(1) = 3.6 with a p-value of 0.058, rejecting the simple switching
model at the 6% critical level.

Further generalizations of the Markov-switching model are also possible. Table
6 reports a Markov-switching model where the intercept and the autoregressive

17"The main reason for this result is that the centered Markov model assigns relatively low
probability to the recession in 1975, about 40%. Thus, according to this model there is quite
a high probability of an expansion prevailing for the period 1970 to 1982, generating this high
expected duration of the expansionary state.
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Table 6. Alternative Markov-switching models

Model 1 Model 2 Model 3 Model 4
Parameter Est. Std. err. Est. Std. err. Est. Std. err. Est. Std. err.
Lo Or Qg 0.171 1.084 0.524 1.222  0.595 0.920 0.824 1.294

fi1 O ovp 6.532 0.781  5.882 1.601  6.934 0.971  5.787 2.055
0.377 0.233  0.443 0.160  0.270 0.207  0.623 0.149

)

2 -0.250 0.185 -0.247 0.172 -0.215 0.175 -0.337 0.150

) - - - —  0.160 0.204 - -

@ - - - —  -0.165 0.177 - -
o0 2.565 0.283  2.711 0.342 2473 0.291  2.854 0.358
e — - — - —~ ~ 3.338 0.379
P 0.711 0.145  0.525 0.179  0.707  0.130  0.403 0.452
q 0.807 0.101  0.475 0.179  0.730 0.136  0.000 0.390
log L -138.5 -140.2 -138.2 -139.0

parameters are allowed to switch between states (Model 3). This could capture the
notion that shocks to output are more persistent in recessions than in expansions.
There is, however, very little improvement in terms of the log-likelihood (a LR
test gives x*(2) = 0.4 (p = 0.82)) and the estimated autoregressive parameters
are very similar across regimes. Other parameters are unchanged.

Finally, Table 6 reports a Markov switching model that allows the intercept
and variance of the innovation process e, to switch between states (Model 4),
capturing the notion that recessions coincide with greater uncertainty and thus
greater fluctuations in output. This model actually leads to a deterioration of the
log-likelihood and the standard errors are larger. There were also some problems
with the algorithm encountered, with the final estimates somewhat sensitive to
the initial values chosen, with numerical underflow occurring for many starting
values.'® Comparing the estimated variances between states also suggests that the
difference in the variances between states is hardly significant, but this should be
interpreted with care given the numerical problems encountered with this model.

Overall, these results, and the misspecification tests above, suggest that the
MS(2)-AR(2) model is a reasonably good approximation of the underlying data
generating process for real output in the period analysed here.

13This was the only model specification which was found sensitive to the choice of initial
values.
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Table 7. Standardized LR statistics for MS(2)-AR(2) model

Bandwidth parameter
LR test M=0 M=1 M =2 M =3 M =4

1.648 p=075 p=0745 p=0681 p=0672 p=0.656

Note: See Hansen (1996) for details on the bandwidth parameter. The results
were obtained using Bruce Hansen’s Gauss code markovp.prg with the ”Grid
3” option of Hansen (1996) and using 1,000 Monte Carlo replications.

4.3.3. Testing the Markov-switching model against a single-regime model

This sections compares the two-regime Markov-switching model against the single-
regime, autoregressive model in (4.1). The testing procedure suggested by Hansen
(1992b, 1996) is used. Hansen suggested a non-standard procedure for testing the
null of a single-regime model against a two-regime Markov-switching model that
avoids the identification problem which arises using the standard LR test frame-
work, as discussed above. The procedure suggested by Hansen delivers a bound
on the asymptotic distribution of the standardized LR test, and may therefore be
quite conservative, i.e. tending to be under-sized in practice and of low power.!?
The tests should therefore only be considered as suggestive for the sample size
used here.

Table 7 reports the p-values of the standardized LR test of a linear AR(2)
model against the MS(2)-AR(2). The results suggest that the null hypothesis of
a single regime AR(2) model cannot be rejected and are not found sensitive to
the choice of bandwidth parameter. Thus, despite the evidence of non-stability
of the AR(2) model, the data is not able to discriminate between the AR(2) and
MS(2)-AR(2) models on the basis of the standardized LR test statistic. This is in
line with results found on other data sets, cf. Hansen (1992b, 1996) and Clements
and Krolzig (1998) for US data.

However, the inability of the linear AR(2) model to characterize some im-
portant aspects of the business cycle, such as the observed asymmetry between
expansions and contractions in real GDP, suggests that the Markov-switching
model may still be important. For forecasting purposes, the Markov-switching
model may be better equipped for discerning business cycle turning points, since
the linear AR model does not take into account the forecastable asymmetries in
the business cycle. It is therefore important to evaluate the models on the basis

198ee, for example Clements and Krolzig (1998). Hansen, in fact, argues that this is not the
case, based on Monte Carlo calculations of the finite sample size and power of the standardized
LR test.
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of their forecasting performance.

5. Forecasting

This final section compares the forecasting ability of the Markov-switching model
with the simple, linear AR alternative. The forecasting comparison is based on
mean-square error (MSFE) and mean-absolute error (M AFE) loss functions, using
both in-sample and out-of-sample forecasts. It has been argued that forecast per-
formance comparison based on measures such as M SFE of first moment forecasts
may fail to discriminate between linear and non-linear models even if the non-
linear model is the true data generating process, see e.g. Clements and Smith
(1998). The results in Lam (1990), Hamilton and Perez-Quiros (1996), Clements
and Krolzig (1998) and Clements and Smith (1998) show that, in general, no clear
distinction can be made between linear autoregressive models and non-linear mod-
els, such as the Markov-switching model and the self-exciting threshold autore-
gressive (SETAR) model of Tong (1983), when the forecast comparison is based
on MSFE loss functions.

An alternative procedure for comparing these models could therefore be based
on qualitative, direction-of-change statistics.?’ Two such measures of the models’
ability to forecast the state of the business cycle are used. The first is to compare
the Markov-switching model to a naive forecast that predicts a constant probabil-
ity of a recession every year, as suggested by Hamilton and Perez-Quiros (1996)
and Hamilton and Lin (1996). The second is to use the confusion rate suggested
by Swanson and White (1995), which counts the number years the models predict
the direction of output changes in the wrong direction.

5.1. Forecasts using Markov-switching models

In MS(2)-AR(k) models the conditional expectations, E(g:+n|Z:), is given by

k
Githlt = Qgpnlr + Z ¢(Z)§t+hﬂ'\t (5.1)
i=1
with initial values giin¢ = gi4n for h < 0. The predicted mean is given as the
weighted average of the means from the recessionary and expansionary regimes,
where the weights are the probabilities of being in a given regime conditional on
the sample information set Z;

20Clements and Smith (1998) use complete forecast densities to compare linear and non-linear
models.
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1
Qe = Zaj Pr(sien = j|Z1) (5.2)

=0
The predicted regime probabilities are given by
1
Pr(sisn =Jj|T) =Y Pr(sipn = jlse =) Pr(sy =i |Z;)
=0

with the transition probabilities (see Hamilton, 1994)

(1—q)+\"(1-p)

Pr(3t+h = 0 ’31‘ = 0) =

1—-A
1—p)+ N (1—
Pr(8t+h — 1|8t — 1) — ( p)l _)\( q)
1—q)— M\(1—
Pr(8t+h — 0|8t — 1) — ( Q)l _)\( q)
1—p)— A (1 -
Pr(3t+h — 1’St — 0) — ( p)l _)\( p)

where A = —(1 — p — q) < 1, as before.

Thus, the optimal predictor of the Markov-switching model is linear in the
last k observations and the last regime inference, but there exists no purely linear
representation of the optimal predictor in the information set, see Clements and
Krolzig (1998). Note, however, that the optimal forecasting rule becomes linear
in the limit as the regimes become completely unpredictable. Thus, the transition
probabilities converge to the unconditional ergodic probabilities

hlim Pr(siyn =0]s: =0) =Pr(sypn =0) =7
Hence, the long-run forecast for the Markov chain will be independent of the
current state.

5.2. In-sample forecast comparison

In this case the models are estimated for the full sample and in-sample forecasts
for the period 1950 to 1998 conducted. Three forecasting horizons are used: 1
year, 2 years and 5 years. Table 8 reports the root-mean-square error (RMSE)
and mean-absolute error M AFE for these three forecasting horizons.

From the table it is evident that the Markov-switching model has smaller
RMSEs for short and long forecasting horizons but the linear model for the
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Table 8. In-sample forecast comparison 1950-1998

RMSE MAE
Models h=1 h=2 h=5 h=1 h=2 h=25
Markov-switching model 3.68 3.94 4.11 2.89 3.24 3.34
Linear model 3.78 3.91 4.19 3.07 3.28 3.41
Turning point predictions
Naive foreacast Markov model Linear model
TP test 0.25 0.21 —
CR test — 0.20 0.20

Note: The TP test is the turning point test suggested by Hamilton and Perez-
Quiros (1996) and Hamilton and Lin (1996). The CR test is the confusion rate
test suggested by Swanson and White (1995).

medium term. However, the Markov-switching model generates smaller M AFE's
for all horizons. However, given the relatively small difference between the fore-
cast loss functions and the fact that the Markov-switching model uses three more
parameters than the linear AR model, it becomes clear that the differences be-
tween the forecast loss functions are not statistically significant, consistent with
the in-sample comparison using the likelihood principle above. These findings are
consistent with the findings in papers such as Clements and Krolzig (1998), who
find that linear AR models are a relatively robust forecasting device, even when
the data are generated from non-linear models.

An alternative evaluation criteria for forecasting performance is to compare
the models’ ability to predict business cycle turning points, which is conceptu-
ally separate concern from minimizing the MSE or the M AE of a forecast, see
Hamilton and Perez-Quiros (1996). Table 8 reports two measures of turning point
prediction accuracy. The first test is the turning point test suggested by Hamil-
ton and Perez-Quiros (1996) and Hamilton and Lin (1996), TP. They suggest
using ex post dating of business cycle downturns, such as those from Table 1, to
determine the turning points. This test compares turning point predictions from
the Markov-switching model to a naive forecast which always predicts a constant
probability of business cycle downturns. To calculate this naive forecast, a dummy
variable D, is constructed. D; equals unity when the economy was in a recession
according to Table 1 and zero otherwise. The average value of D; is 0.45, implying
that the economy is in a recession 45% of the time, according to the business cycle
datings in Table 1. The naive forecast would therefore be that this reflects the
constant probability that the economy will be in a recession next year, regardless
of current economic conditions. This forecast can be evaluated on the basis of its
average squared deviations from the ex post values from Table 1
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T
TP =T""Y (D, — D)?

t=1

where D = 0.45. In contrast, the Markov-switching model provides an ex ante
forecast of this magnitude in the form of a conditional probability that the unob-
served variable s; will take on the value zero conditional on Z; 1, Pr(s; =01|Z; 7).

As seen from the table the value for T'P for this forecast turns out to be 0.21,
whereas the value for the naive forecast is 0.25. This amounts to (= 1—0.21/0.25)
16% improvement over the naive forecast. It is also interesting to note that
the ability to predict turning points increases substantially when the additional
information from Z; ; to Z; is included. In that case the Markov-switching model
gives a 56% improvement over the naive forecast. Although this is not a forecast
strictly speaking, this gives an idea of how valuable the additional information
from t — 1 to t is for evaluating business cycle turning points.

An alternative measure of turning points prediction ability is the confusion
rate (C'R) measure suggested by Swanson and White (1985). This simply amounts
to taking the ratio of periods in which the Markov-switching and linear models
forecasted the direction of output growth in the wrong direction to the total
number of forecast periods. As seen from the table, both models predict output
changes in the wrong direction 20% of the time. Hence, the models are equally
” confused” 2!

5.3. Out-of-sample forecast comparison

In-sample forecasting comparison can be misleading as an indication of out-of-
sample forecasting ability, since information is utilized that would not be available
for actual out-of-sample forecasts. It is therefore also important to compare the
models out-of-sample forecasting ability.

Due to relatively few observations the out-of-sample forecasting comparison
is only conducted for the period 1991 to 1998. Although this leaves only eigth
observations for comparing the forecasts, and therefore makes the results less
reliable, this should give some indications for the out-of-sample forecasting ability
of the Markov-switching model.

Table 9 compares one-year ahead forecasts from the Markov-switching model
to forecasts from the simple AR(2) model for the periods 1991 to 1998 and 1993
to 1998, based on a series of rolling regression windows. The table also includes

21Swanson and White (1985) calculate the probability that the confusion rates of different
forecasts is statistically significant using the hypergeometric distribution. This is not done here
since the confusion rates of the two forecasts evaluated here are practically the same.
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Table 9. One-year ahead out-of-sample forecasts

1991 — 1998 1993 — 1998
Models Bias RMSE MAFE Bias RMSE MAFE
MS(2)-AR(2) model  0.97 2.67 1.88 -0.04 1.59 1.17
AR(2) model 1.23 2.94 2.10 0.12 1.71 1.28
NEI model -1.41 2.56 2.02 -2.22 2.86 2.35
Confusion rate Confusion rate
MS(2)-AR(2) model 0.13 0.00
AR(2) model 0.13 0.00
NEI model 0.25 0.33

one-year ahead forecasts from the National Economic Institute (NEI) macroecono-
metric model, published annually in their macroeconomic outlook Pjodhagsdcatiun.

The Markov-switching model has the smallest bias of all the three models and
smaller RMSE and MAE than the linear AR model in all cases. Compared
to the NEI model, the Markov-switching model does reasonably well. Its bias
is smaller and it has a smaller loss based on a M AFE loss function. Based on
a MSE loss function, however, the NEI model does better. This is due to the
failure of both autoregressive models to predict the large downturn in 1992. This
is apparent when comparing the forecasts from the period 1993 to 1998, where
the Markov-switching model is found to perform best on all accounts.

Analysing the ability of the Markov-switching model to predict out-of-sample
turning points implies that the Markov-switching model gives a 20% improvement
over the naive forecast, with D = 0.50 and T'P = 0.25 for the naive forecast and
TP = 0.20 for the Markov-switching model. Finally, the NEI forecasts have a
larger confusion rate in both periods.

Overall, the in- and out-of-sample forecasting comparison suggests that al-
though the Markov-switching model has marginally smaller forecast errors than
the linear autoregressive model, there is little to choose between these two models
on statistical grounds. Compared to the out-of-sample forecasts made by the Na-
tional Economic Institute, however, the Markov-swithching model seems to offer
some improvements, both in terms of mean absolute error and in terms of fore-
casting business cycle turning points. The Markov-switching model is also able
to improve on turning point predictions made by a naive forecast that always
predicts a constant probability of business cycle downturns.
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6. Conclusions

This paper models the business cycle dynamics of real GDP in Iceland as sto-
chastic, discrete shifts in the long-run trend of output, added to conventional
autoregressive dynamics, using the Markov-switching model of Hamilton (1989).
The estimation results suggest that the Icelandic business cycle is better cap-
tured by recurrent shifts between recessionary and expansionary regimes than by
the dynamics implied by an autoregressive representation. The model generates
business cycles that correspond quite well to conventional wisdom concerning the
Icelandic business cycle, with expected duration of typical expansions and reces-
sions equal to 3.9 and 3.4 years, respectively. The shifts between the expansionary
and contractionary regimes account for more than half of the observed variation
in output growth and the results indicate that perfect knowledge of a move from
an expansion to a recession is associated with a 5% drop in the long-run forecast
level of real GDP.

Comparing the Markov-switching model to a conventional linear, autoregres-
sive model reveals that the Markov-switching model cannot be distinguished from
the linear counterpart, based on the likelihood principle or in-sample forecasting
ability. Furthermore, based on out-of-sample forecasting comparison, there seems
little to choose between them, although the Markov-switching model has mar-
ginally smaller forecast errors. Compared to the forecasts made by the National
Economic Institute, however, the Markov-switching model offers some improve-
ments in terms of mean absolute error and in terms of predicting business cycle
turning points. The Markov-switching model therefore seems to be a useful frame-
work for describing Icelandic business cycle dynamics, and may be a valuable tool
for forecasting aggregate output.
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