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Statistical equilibrium denotes the distribution of wealth that can be achieved
in the largest number of ways while satisfying a first moment constraint on the
rate of growth in wealth portfolios. Maximizing entropy subject to a logarithmic
constraint yields a power law distribution whose characteristic exponent depends
positively on the minimum wealth level, and inversely on the rate of growth
and the average number of changes in the composition of wealth portfolios. Put
differently, the distribution of wealth will be more unequal the faster the rate of

growth in wealth and also the higher the number of turnovers.
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1. INTRODUCTION

THE UPPER TAIL of wealth distributions displays remarkable regularity in
the functional form of a power law, typically covering the richest three to
five percent of households and sometimes accounting for over half of to-
tal wealth [Anderson (1997); Dragulescu and Yakovenko (2001); Levy and
Solomon (1997); Steindl (1987); Wolff (1987)]. Walrasian theory cannot
explain this regularity endogenously since wealth enters exogenously in the
form of endowments. Markets will not change the distribution of wealth
because exchange takes place exclusively at equilibrium prices, which en-
sures that the value of a chosen consumption bundle will equal the value of
the endowment. Economic models based on intertemporal maximization
plans of heterogeneous agents also have difficulties reproducing the ob-
served distribution of wealth.! In contrast, models from probability theory
[Champernowne (1953); Levy and Solomon (1996a); Mandelbrot (1960);
Mantegna and Stanley (2000); Reed (2001)] provide insights into why a
variable should be distributed according to a power law—but they often
lack a clear relationship to economic theory.? The purpose of this paper is
to develop an alternative probabilistic theory of wealth distribution that is
supported by economic intuition.

Wealth consists of the current value of assets a household owns minus
the current value of liabilities it services. The economic sources of wealth

are income, inheritance, and the revaluation of assets or liabilities; savings



are mediating between income and asset acquisition. The economic uses of
wealth are expressed in the composition of wealth and lead to the notion
of a household’s wealth portfolio. A complex set of market interactions
determines the value of different components in the portfolios and, thereby,
the distribution of wealth.

The underlying complexity introduces an enormous amount of informa-
tion, making it impractical to model the distribution of wealth by tracing
the fate of individual portfolios. We can, however, observe a well-defined
average growth in the whole economy that constrains the growth of indi-
vidual portfolios. Each portfolio has a characteristic return factor, corre-
sponding to a portfolio’s gross return over a given period. This cumulative
return factor can be thought of as a combination of different rates of return
accruing to the different uses of the portfolio. Under the assumption that
at some initial point in time we start out with an egalitarian distribution
of wealth, where each household enjoys the same level of wealth, it follows
that return factors and wealth levels will be proportional. Differences in
the return factors that each of the portfolios achieve are thus responsible
for differences in wealth.

The present paper takes the position that differences in return factors
are first and foremost the result of decentralized investment activity per se,
and not of individual skill and ability, nor the inheritance of a family dy-
nasty. That does not mean factors like inheritance, personal ability, lucky

streaks (or, for that matter, losing streaks) are excluded from the anal-



ysis. All such factors are part of the general environment leading to the
statistical equilibrium outcome.® To paraphrase the methodological view
underlying the field of “complexity science” —as popularized for example in
Bak (1996) or Waldrop (1992)—our model considers aggregate properties
of the economy as being caused by the very process of aggregation.

Competitive markets ensure a tendency towards a uniform rate of return
for activities with the same risk. We interpret the uniformity in the sense
that returns to wealth will be different in absolute terms while tending to
be proportional to the size of the wealth portfolio, so that the rate of return
is independent of the size of the portfolio.*

Since different activities bear different risks, however, individual port-
folios will ultimately experience different realizations of risky prospects.
The realization of a portfolio’s return factor will depend on the number of
turnovers that occur. A turnover reflects a household’s decision to change
the composition of its portfolio, by either changing the weights of existing
components or by including components previously not held.

Formally, the model builds on Jaynes’ (1978) mazimum entropy pro-
gram, and on Foley’s (1994) economic interpretation of the program as a
statistical equilibrium of markets. When the number of wealthy households
is large, combinatorial factors can lead to statistical regularities in the dis-
tribution of wealth. The wealth distribution that can be achieved in the
largest number of ways while satisfying the aggregate growth constraint is

the statistical equilibrium or mazximum entropy wealth distribution.



An arithmetic mean constraint in the maximum entropy program leads
to the (Gibbsian) exponential distribution.® Basically, our model estab-
lishes the power law distribution as the outcome of the maximum entropy
program under a logarithmic mean constraint. A logarithmic scale ex-
presses proportionality; the idea that intervals of proportionate extent are
responsible for the emergence of power laws dates back to Champernowne’s
(1953) model of income distribution. More recently, Levy and Solomon
(1996a) have developed a generalization of Champernowne’s Markov chain
model. They demonstrate that a power law emerges from a less restric-
tive stochastic process, only requiring it to be multiplicative—even if the
process is not stationary or if the transition probabilities of the process
change over time. Starting from a stochastic difference equation for wealth
w;(t + 1) = yw;(t), where the multiplicative factor v has an arbitrary dis-
tribution P(v) with finite support, Levy and Solomon (1996a) prove that
the ergodic distribution of w will converge to a power law.5

The key to their proof lies in the logarithmic scale of wealth, so that
the particular shape of P(y) will not influence the ergodic distribution
of wealth as a power law. Instead of assuming an arbitrary distribution of
return factors, our model treats all return factors as equally likely and then
determines the distribution of wealth that can be achieved in the largest
number of ways while meeting the aggregate growth constraint. But it
does not matter whether we assume an arbitrary distribution, or whether

we assume return factors to be equally likely and then mix them in the most



disorganized fashion: in both models, the power law distribution depends
on the logarithmic scale of wealth.

Where our model differs from theirs, however, is in the exponent that
characterizes the statistical properties of the power law distribution. As
far as the distribution of wealth is concerned, we can interpret the magni-
tude of the characteristic exponent as a measure of inequality: the greater
the exponent in absolute value, the more equal the distribution of wealth;
the closer to unity the exponent of the cumulative distribution function,
the more unequal the distribution.” Economic policy aimed at influencing
the degree of inequality would have to ask which economic forces determine
the characteristic exponent of the wealth distribution. Levy and Solomon’s
characteristic exponent depends on an exogenous lower bound of the distri-
bution. From the viewpoint of economic theory, an arbitrary lower bound
carries little in the way of relevant information. In addition to a minimum
wealth level, the statistical equilibrium exponent depends inversely on the
aggregate rate of growth in wealth portfolios, and it also depends inversely

on the average number of turnovers that occur during the period.

2. ECONOMIC FOUNDATIONS

We conceptualize the economy as a set K = {1,...,K} C N of eco-
nomic activities or investment opportunities. For all k € K, let V¥(¢)
denote the time ¢ value of economic activity &, and for all h € {1,...,n},

n < 00, let af (t) denote the position of household h in activity k, with the



interpretation that a¥(t) > 0 indicates a long position at time ¢ (k is an
asset) and af (t) < 0 a short position (k is a liability). Obviously, ak (t) = 0
allows for the absence of activity k in the portfolio of household h.

The time ¢ value of the wealth portfolio of household h, denoted wy,(¢),
follows from the household’s combination of the K different activities in
the economy

wi(t) = Y ap®)VF()  Vhe{l,...,n}.

keK

Changes in the value of a household’s portfolio are either the result of
a revaluation of economic activities, or of changes in the behavior of the
household—expressed as changes in the household’s positions. Tradition-
ally, we think of savings as the principal component determining wealth.
In proper accounting however, the sources of wealth—like savings—have
to equal the uses of wealth in value terms. Since our model conceptualizes
wealth from its uses, savings are implicitly included in the above formula-
tion.

Notice that we are not putting forward a specific theory of portfolio
choice here. Instead, our model starts from the weak assumption that we
observe two well-defined macroscopic averages. The first is the average
number of turnovers in the economy.

A turnover describes a change in the household’s position between
period ¢ and t'. Let Tp(¢,t') designate the number of elements where

af(t) # ak(t') for all k € K, that is to say Ty(t,t') gives the number



of changes in the composition of household h’s portfolio between period ¢
and t'. Hence, we define the average number of turnovers in the economy

between period ¢ and t' as

T(t,t)=n"") Tu(t,t).
h
Suppose for the moment that there is an ‘initial’ period ¢y, where the
portfolio starts out with an amount w (). The fictional device of an initial
period serves to conceptualize the value of a wealth portfolio in terms of a
return factor r(t) = w(t)/w (to). If the economy starts with an egalitarian

distribution of wealth at to, where wy, (tg) = wo for all h € {1,...,n}, then
ri(t) o< wp(t).

A formulation in terms of return factors allows us to interpret differ-
ences in wealth as differences in the returns each portfolio achieves over
the period ty to ¢t. Though returns in absolute terms will be different
they should be proportional to the size of the portfolio if the economy is
competitive. In other words, wealthier and poorer portfolios will face the
same prospective rates of return, which does not exclude the possibility
that different portfolios ultimately experience different realizations of risky
prospects.

The results of our model depend on the following assumption, capturing

the idea of proportionality in returns to wealth.

Assumption 1 We express proportionality in return factors with a loga-

rithmic scale, logw(t).



At the same time, we can also interpret the logarithmic scale as incor-
porating the growth dynamics of wealth in the sense of a geometric mean.?
Let n; denote the number of households with wealth w;. The logarithmic
mean log [w (t) /wg] over the t — to periods of observation is the sum of re-

turns per average turnover T (to, t) weighted by the frequency p; (w) = n;/n

of households enjoying wealth level w;

log [w(t)/wo] log [w;(t) /wo]
Tt 2P Ty W

Let us disentangle what might look at first like a somewhat contorted
formulation of a logarithmic mean constraint by pointing out the necessary
dimensionality. A logarithmic mean by itself has no time dimension. We
could use two different time scales, one being the passage of accounting
time, the other being the passage of turnovers. The value of portfolios at
the end has to be the same, regardless of which time scale we employ. Thus
the constraint reads the sum of weighted log-returns per turnover has to
add up to the growth rate per unit time of observation. As we will argue
in Section 5, the use of two different time scales allows us to resolve the
conceptual issue of a ‘zero period’ and the absolute lapse of time.

It is important to notice that we are no longer summing over households
but over the number of theoretically possible wealth levels w;(t) for all i € N.
In order to ensure that each of the n households is assigned to some wealth

level for all i € N, we have the additional constraint that ). n; = n, or,



equivalently
> pi(w) = 1. @)
i

Except for the notion of a turnover, we are neither making assumptions
about the evolution of household behavior nor about the evaluation of eco-
nomic activities, nor about whether valuation and individual behavior are
interdependent. The growth constraint (1) reduces the enormous complex-
ity of asset valuation and individual behavior to the observation of a single
economy-wide average growth in household wealth. Hence, as it stands
so far, our model is drastically under-determined in the sense that we can
conceive of a large number of wealth distributions that are consistent with
(1) and the natural constraint (2). Which probability distribution should

we choose in the absence of any further information?

3. MAXIMUM ENTROPY WEALTH DISTRIBUTION

A feasible wealth distribution obeys (1) and (2). It will clearly remain
feasible if we interchange households that enjoy the same wealth level w;(t)
since doing so does not change the distribution. In the absence of any
further information, Laplace’s “principle of insufficient reason” prescribes
to regard each theoretically possible wealth level or return factor as equally
likely. Then the likelihood of observing any particular wealth distribution
is proportionate to the number of ways that distribution can be achieved by

permuting economically indistinguishable households, meaning households

10



that achieve the same return factor in their wealth portfolio.

The number of ways n households can be assigned to C' categories, with
n. households assigned to category c is the multiplicity of the assignment,
M[{n.}] = n!/ni!---n!---nel. Stirling’s approximation for large n im-
plies Inn! ~ —n + nlnn, which upon substitution into the logarithm of
the multiplicity yields the entropy H of a distribution, n=!In M[{n.}] ~
— 3¢ | Belnne = g [{2}]. From astatistical point of view, the rationale
behind maximizing entropy is that the distribution that can be achieved in
the largest number of ways is the most likely distribution to be observed.

For notational convenience, let L =t — tg denote the length of observa-
tion and let T' = T'(to, t) denote the number of turnovers during the period.
The mazimum entropy program maximizes entropy H [{p; (w)}] subject to
the natural constraint (2) and a finite number of moment constraints. In
our case, we are dealing with a single logarithmic constraint (4) that mea-
sures the average return r;(t) over the length of observation as the average

return per turnover

I?aic H [{pz Z pz IOg pz ) (3)
subject to
10 rz logr (t

Zpiw = 1.
i

We can think of the maximum entropy program as assigning a proba-

bility distribution based on the premise of using only information we have
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and strictly avoiding use of any additional information [Jaynes (1978); Ka-
pur and Kesavan (1992)].° If an entropy-maximizing wealth distribution
exists, it is unique because the objective function (3) is strictly concave
and the constraints define a convex set [Jaynes (1978); Foley (1994)]. The
maximum entropy program yields the proof of a similar theorem by Levy

and Solomon (1996a).

THEOREM 1 (Power laws are logarithmic Boltzmann laws). For all re-
turn factors r; (t) > 0 there exists (\*,)\;) € R? such that the optimal
solution to the mazimum entropy program under a logarithmic growth con-

straint is a power law distribution of wealth

. 7A*
i) = "0 )

where
ZOW) =) i)Y =exp (X))
i
is the partition function that normalizes the probability distribution p}(w).

Proof. If for any constant ¢ > 0, r;(t) # c for all 4, the nondegenerate
constraint qualification of the optimization program is satisfied and there
exists a characteristic exponent A* and a normalizing multiplier A\j = 1+ p*
such that (p}, \*, A§) is a critical point of the associated Lagrangian. This

Lagrangian is

Llpi; A\, p] = H = A Zpi(w) logri(t) — %logr(t)] -k lsz‘(w) - 1] :

12



The first order conditions, which, given the strict concavity of H, are nec-

essary as well as sufficient to characterize the critical point, imply

p; (w) = exp (=A5) exp (=A*logr; (1)) = exp (=A5) ri(t) .

From (2) we then obtain exp (A§) = Z (\*), resulting in the power law
pi(w) = i)™ /Z (X).

Theorem 1 says that the most disorderly mixing of return factors leads
to a power law distribution of wealth. To paraphrase Foley’s (1994) metaphor
of markets as probability fields over transactions, the statistical equilib-
rium wealth distribution defines a probability field over return factors from
available combinations of investment opportunities. The most decentral-
ized investment activity of households forms the conceptual basis of the
maximum entropy distribution of wealth.

The entropy formalism “hesitates” to assign an enormously large return
factor to a portfolio because it thereby reduces the degrees of freedom in
the remaining assignments of return factors that have to meet the growth
constraint. However, statistical equilibrium does by no means exclude the
possibility of such extreme outcomes, it merely attaches a very low proba-
bility to them according to the power law distribution. While the statistical
equilibrium distribution cannot “name” a particular household in the dis-
tribution, it specifies an exact functional relationship that describes the

fate of all households above the minimum wealth level.
COROLLARY 1. The number of theoretically feasible wealth levels w;

13



does not influence the functional form of the wealth distribution.
Proof. The functional form of the first order conditions in Theorem 1

is not affected by the number of feasible wealth levels.

4. CHARACTERISTIC EXPONENT OF THE WEALTH

DISTRIBUTION IN STATISTICAL EQUILIBRIUM

Using the statistical equilibrium distribution in the growth constraint (4),

we obtain a parametric solution for A

%logr(t) = _61%5(/\) =Z\)! Zri(t)”\logri(t).

i
Since, however, the characteristic exponent of a power law carries all rel-
evant information about the statistical properties of the distribution, we
are interested in an explicit solution for A\. Thus we consider a continuum
of possible return factors r € W = [rmin, 00), where rnn designates the
minimum return factor to which the power law distribution applies. The
conceptual tool of a ‘zero period’ relates return factors and wealth levels
in a one-to-one correspondence, hence (minimum) wealth levels and (min-
imum) return factors should be understood as synonyms. We should keep
in mind, though, that wealth levels are of different dimensionality than
return factors, raising questions about empirical calibration that we take
up in Section 5.

The “cost” of gaining analytical tractability through a continuous ver-

sion of the maximum entropy program comes in the form of an additional

14



measure that will keep the continuous entropy measure invariant with re-
spect to a rescaling of variables. We provide the intuition why such a
measure would become necessary in Appendix A, where we also derive
the general conditions for the invariance of the entropy measure. More-
over, we argue why introducing the new measure does not alter our results
qualitatively.'® Hence, we continue here with the continuous analog to the
familiar discrete entropy program. Unless stated otherwise, all results are

derived under the following assumption.
Assumption 2 The power law distribution has finite mean, i.e. A > 2.

As before, we define return factors as r(t) = w(t)/w (ty) and denote
them, for notational simplicity, without the time index simply as r. The

maximum entropy program then takes the form

macH[f ()] == | 1 (r)log () dr (©
subject to
/melogrdr = Tiogr (7)
/f(r)dr = 1 (8)
w

LEMMA 1 (Continuous wealth distribution). The continuous statistical

equilibrium distribution of wealth remains a power law,

" A =1 4.
f(T)=T+17' A

min

15



Proof. From the Euler-Lagrange equation of the calculus of variations

we know that the solution to an extremal problem of the form

[ Fla. @), f @)z,

where F is a known function, corresponds to F/0f (z) — LOF/0f'(z) = 0.

The Lagrangian of the continuous maximum entropy program

L=H[f(r)] - (/Wf(r)logrdr) —u (/Wf(r)dr— 1)

does not involve f'(r), therefore our problem is analogous to the discrete

case and reduces to

af*(’l“) —f*(T)logf*(T) - A (f*(r)logr— %@) _l"f(f*('r) _1):| :0’

where, as usual, OL/0X* = 0 and OL/Ou* = 0 reproduce the constraints.
Again, let \§ = 1+ p*. Then the first order condition with respect to f*(r)
implies f*(r) = r~* exp (=\}). As before, the partition function follows
from the natural constraint (8),

o N ’riA*_’_l o0 f,'_,)‘*+1
Z0)zep()= [ rNar=To 0| = Tein

Tmin Tmin

Substitution completes the proof. 1

Lemma 1 enables us derive the central proposition of the paper, which
identifies the components that determine the characteristic exponent of the

statistical equilibrium distribution of wealth.

PropoSITION 1 (Characteristic exponent in statistical equilibrium). The

16



characteristic exponent of the statistical equilibrium distribution obeys
T -1
N = (Zlogr —log rmin> + 1. (10)

Proof. We integrate by parts and use L’Hopital’s rule to obtain

A rf.}‘*"_l 1
1 dr = 22 1 min )
/va ogrdar  —1 [ogr —|—)\*_1]

which upon substitution in (7) yields (10).

Proposition 1 identifies the three determinants of the characteristic
exponent: the average rate of growth of wealth, the average number of
turnovers, and the minimum wealth level to which the power law distri-
bution applies. One particularly nice feature of the statistical equilibrium
theory of wealth distribution is its ability to unify economic concepts like
turnover activity and average growth with the earlier result of Levy and
Solomon (1996a) on the minimum wealth level as the determinant of the
characteristic exponent. Dréagulescu and Yakovenko (2001) show that the
empirically observed wealth distribution changes its functional form at a
particular wealth level.!! Though the statistical equilibrium theory pre-
sented here concerns only the upper tail, it is noteworthy that it explicitly
allows for the dependence of the distribution on the minimum wealth level
at which the nature of the distribution changes. What exactly determines
the minimum wealth level from a theoretical point of view, however, re-
mains an open question at this point.

We are now in a position to interpret the economic implications of

17



Proposition 1, and discuss how to operationalize and calibrate the model

from data.

5. INTERPRETATION, CALIBRATION, AND SOME CASUAL

EMPIRICISM

The final step in the theoretical analysis of the distribution of wealth
has to address the issue of how to connect the entropy-derived power law
distribution to the empirically observed distribution. After all, the length
of observation L remains arbitrary in the derivation of Proposition 1 and
therefore also in (9). In order to interpret (9) as the actual distribution we

have to make one more assumption.

Assumption 3 L and T are both large but their ratio is stable.

Then we can use Lemma 1 as a good approximation to the actual distribu-
tion because the arbitrariness in L will not matter. The following remark

is a direct consequence of Assumption 3.

Remark 1. The choice of an initial period to has no influence on the

power law distribution of wealth.

Changes in the distribution of wealth are reflected through changes
in the characteristic exponent; A provides information about the degree
of inequality in the economy, with a higher A\ representing a more equal
distribution of wealth [Anderson (1997); Kirman (1987); Steindl (1987)].

Relevant policy prescriptions for lowering the degree of inequality in an

18



economy thus have to address the issue of how to increase the absolute
value of A. From Proposition 1 we can single out the ratio of turnovers
per observational period and the average (logarithmic) growth of wealth
as the economic determinants of the distribution of fortunes. In terms of

economic theory, Proposition 1 leads to two trade-offs.

Remark 2. The faster the economy grows, and the higher the average
number of turnovers in the economy, the more unequal the maximum en-

tropy distribution of wealth.

Proof. We consider the partial derivatives of the statistical equilibrium

characteristic exponent with respect to turnovers and the average rate of

growth,
oN" - _ Z1 1 ; _21
T = 71087 — 108 Tmin ogr,
ON* T -2
—— = —( =logr —10g Tmin T/L.
ologr (L & & > /

For logr,T > 0 the partial derivatives are negative. We say that the

economic problem is not well defined if T'=0 or logr = 0. 1

Regarding the trade-off between growth and wealth inequality, the last
remark carries a somewhat similar flavor to Meade’s (1964) inherent conflict
between income equality and productive efficiency in an economy. With
respect to turnover activity, the distribution of fortunes will be more un-
equal, ceteris paribus, the less institutional frictions exist in the economy’s

financial markets.
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Financial liberalization over the last three decades has considerably in-
creased investment opportunities. But the largely increased flow of capital
can also be considered as an increase in turnover activity, and casual obser-
vation would have us believe that inequality has increased since the collapse
of Bretton-Woods. But keep in mind that our notion of inequality applies
to the power law tail, and not to the relationship between the very wealthy
and the rest. To judge whether inequality within the power law tail has
indeed increased with financial liberalization, we need (rarely available)
information about the characteristic exponent. Most wealth data are re-
ported in Lorenz form but if we know the wealth share S of a top percentile

P, we can infer the characteristic exponent with the following lemma.

LEMMA 2. If wealth is distributed according to a power law, then one
point (P, S) on the Lorenz curve enables us to determine the characteristic

exponent of the distribution as

_ log S -t
v (1) an

Proof. Without loss of generality, we set minimum wealth to unity and

consider the probability density function n(z) of wealth z, n(z) = cz?,

with ¢ as the appropriate normalizing constant; then P and S are defined

by the ratios

_ fa, n(z) dz —a M1 and S

= _ o en(@dr s
T [Cn(@)de

- [ an(z) dz ’
again provided Assumption 2 holds. Since empirically observed wealth is fi-

nite, this assumption is not restrictive. Given P and S, we solve the system

20



of two equations in two unknowns for A to obtain the above statement.

To avoid confusion, we recall that the characteristic exponent derived
here refers to the density and not the (inverse) distribution function, which
is usually cited in the literature. It is readily verified that the exponent of
the distribution function will be (1 —log S/log P)~".

We could calculate error bounds for A from (11) if we knew the variance
02 in the measurement error of S by simply calculating A for S + /2,
holding P constant. Alternatively, we can use the law of propagation of
errors to approximate the effect of a mismeasurement in S. The law of
propagation of errors states that, for o <« S, the extent of the error bounds

will be

o\ log S -2 o
—lo=(1- fi .
‘85‘0 (1 logP) TogPS P,S € (0,1) (12)

As the name suggests, the law of propagation of errors allows us to de-
termine how much of the measurement error in S is ‘passed through’ to
A since |0A/OS]| < 1 means a less than proportionate increase in the error
bounds of A compared to o; the opposite is true for |[OA/0S| > 1. Ta-
ble 2 reports the numerically computed solutions for the ‘critical values’ S°
where |0A/0S| = 1. We chose P based on the data in Table 1.

For a given P, equation (11) shows A as a strictly convex function of
S > P. Therefore, measurement errors will be magnified in Aif 0 < .S < S¢,

while the reverse is true if S¢ < S < 1.

21



Table 1 presents Lorenz data for different countries at different points in
time, taken from Wolff (1987, 1996), together with the characteristic expo-
nents of the distribution function (cdf) that we calculated with Lemma 2.
The results are encouraging: within the upper tail—typically the top one
to three percent of households—the functional form of a power law seems
consistent with the data. (Particularly since the deviations that occur do
so where the propagation of errors will be pronounced.) Moreover, varia-
tion across time is much more pronounced than variation across countries,
all this in spite of the fact that international wealth data are usually not
measured in the same fashion, see for example Wolff (1987), and in spite
of the rather coarse nature of wealth percentiles.

Wealth inequality was significantly higher at the beginning of the twen-
tieth century compared to the decades between World War II and the
collapse of Bretton-Woods. This would suggest (a) that our assumption of
a large but stable ratio of turnovers per observational period is essential
to a meaningful interpretation of the theoretical model, and (b) that in-
equality within the power law indeed increases with financial liberalization,
provided we agree that turnover activity was higher during the 1920’s and
after Bretton-Woods than during the ‘Golden Age.’

An important question for the calibration of the model is whether
wealth levels (or the corresponding return factors) are measured in real
or nominal terms. Does inflation matter for the degree of inequality in

statistical equilibrium?
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Remark 3. Inflation, understood as a change of scale, has no distribu-

tional consequences in statistical equilibrium.

Proof. Denote the inflation rate during the length of observation by
p > 0. Since the characteristic exponent measures inequality, we have to
establish how p affects A\* in Proposition 1. Suppose the notation there
refers to real magnitudes and we adjust return factors for inflation by mul-
tiplying them with (1 + p); then log [rmin(1 + p)] = 10g rmin + log(1 + p)

and, because all portfolios face the same inflation rate, we can also write

logr(1+p) = logr + log(1 + p). The term log(1 + p) cancels out in (10),

leaving the characteristic exponent unchanged. 1

We should clarify remark 3 by re-iterating the crucial assumptions in
our proof. First, we assumed that inflation will not affect the turnover
rate. Second, we assumed that all economic uses are subject to the same
inflation rate, thereby interpreting inflation as a change of scale that af-
fects all portfolios equally. Viewed from a different perspective, the latter
assumption ensures that the relative location of the minimum return factor
adjusts so as to exactly offset the increase in the nominal growth rate. Of
course the situation would be quite different if, for whatever reason, infla-
tion changed the ‘demarcation line’ between the two distributional regimes
disproportionately. But regardless of how we define inflation, the statistical
equilibrium model has the desirable property that mere changes of scale

will have no effect on the characteristic exponent.
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So far we argued in a rough-and-ready manner that the qualitative
features of the model are supported empirically or, at any rate, do not suffer
from obvious empirical contradictions. To judge the quantitative abilities
of the statistical equilibrium model, we would have to check whether the
equality in (10) holds empirically. That will only be possible if we have
data for all variables in Proposition 1: the characteristic exponent, the
average rate of growth of wealth (within the power law tail, not over the
entire population), the minimum return factor, and the average number
of turnovers. At least in principle the first three should be observable,
whereas privacy issues render observation of turnovers extremely unlikely.
If we cannot test the quantitative accuracy of our model directly because we
do not observe turnovers, and assuming that we do have in fact information
about the other three variables, we should ask which turnover activity our
model implies.

Closer inspection reveals that such an endeavor is everything but trivial.
Our conceptual device of an initial period with egalitarian distribution of
wealth has been very helpful in arguing why return factors can be consid-
ered as wealth levels, and the assumption of a stable turnover rate allowed
us to interpret the phenomenological characteristic exponent as our theoret-
ical A. Like the dimensionless exponent, the growth rate is a dimensionless
ratio (per unit of observation) and so is the minimum return factor. Em-
pirically, however, we do not observe the minimum return factor but the

minimum wealth level in currency terms. The simplest, least satisfactory,
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and most ad hoc way around this would be to assume a particular mini-
mum return factor, say, unity, in which case rnn vanishes altogether from
equation (10). A much sounder solution is available if we know either the
arithmetic mean return factor (r) or any (100k)th quantile ry, of the power
law. Given the characteristic exponent, we can use the definitions of (r)
or 1, to determine that rp;, equals (r)(1 — 1/(A = 1)) or r(1 — k)Y/A=1.
Unfortunately, we have no reason to believe that (r) or rj, are any easier to
observe than rmin. Yet another possibility—if we can trace the identity of
a subset of wealthy agents in the power law tail—would be to proxy rmin

with the smallest observed return factor among the subset.!?

6. CONCLUSION

A power law is—in a powerful combinatorial sense—the most likely
distribution in a system where the logarithmic mean is the only relevant
constraint.

In contrast to the ergodic approach of Levy and Solomon (1996a), our
statistical equilibrium model of wealth distribution determines the char-
acteristic exponent not only from a lower bound but also from two other
variables that are economically more relevant: the average rate of growth
and the average number of changes in the composition of wealth portfolios.
Statistical equilibrium predicts trade-offs between the two variables on one
side and distributional equality on the other. The higher the rate of growth

and the more turnovers occur, the more unequal the power law distribution
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of wealth.

The present model opens several venues for further research. On a
theoretical level, we would certainly like to extend our model into a ‘unified’
theory that applies to the entire wealth distribution, and not just to the
power law tail. The most intriguing question remains what determines the
location of the minimum wealth level that separates the power law regime
from the left part of the distribution, for example the exponential regime
that Dragulescu and Yakovenko (2001) observe in the UK. It would also be
desirable to embed wealth and income taxation in the entropy model.

Empirically, the next step should be to calculate implied turnover rates
from sources that provide named wealth data for the power law tail of the

wealth distribution, or at least for a subset of it.
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NOTES

!Quadrini and Rios-Rull (1997) provide a survey of the literature.

2See Brock (1999) and Gabaix (1999) for critical assessments.

3Though individual determinants of a household’s fortune cannot be
separately identified in our model, all such factors are at least in principle

included in the characteristic return factor.

4Wolff (1996, 2000) documents systematic differences in return factors
between the rich and the rest. We justify the assumption of uniform rates
of return by pointing out that we are only concerned with the upper tail
of the wealth distribution, where households display similar compositions

of their portfolios, primarily investing in financial assets and real estate.

SKapur and Kesavan (1992) present numerous applications of the max-
imum entropy program under different constraints taken from the natural
and social sciences. Foley (1994) provides an economic example where
the Gibbsian exponential distribution (of commodity prices) arises from
an arithmetic mean constraint (such that excess demand for commodities

equals zero).

6The ratios of the midpoints of Champernowne’s intervals are rates of

return, very similar to Levy and Solomon’s multiplicative factor +.
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If the characteristic exponent is less or equal to unity, the power law
distribution has infinite mean. Correspondingly, the density function loses

its first moment if the characteristic exponent is smaller or equal to two.

8The logarithmic mean is equivalent to a weighted geometric mean

where we interpret the weights as probabilities.

9Tt is easily verified that maximizing entropy H subject to the natural
constraint results in the uniform distribution—a modern formulation of the

principle of insufficient reason.

10The simplest—maybe most elegant—argument why we do not have to
introduce the measure is that we derive the distribution of return factors:
measuring wealth in, say, euro instead of dollars does not affect the scale

of return factors.

1 According to Drégulescu and Yakovenko (2001), the wealth distribu-
tion changes from an exponential shape to a power law for the top five

percent of households in the UK.

2In a forthcoming paper, co-authored with Carolina Castaldi, we do
exactly that by calibrating the statistical equilibrium model from seven
consecutive years of the Forbes 400 list, a named subset of the four hundred

wealthiest US individuals.
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TABLE 1
Characteristic exponent A calculated from Lorenz curve pairs (P, S) with
Lemma 2. Data are taken from Wolff (1996) and the papers collected in
Wolfl (1987); different data sources are indicated by horizontal lines.

Country  Year Top households P Wealth share S A (cdf)

US 1983 0.01 0.340 1.306
US 1989 0.01 0.390 1.257
Sweden 1920 0.0001 0.090 1.354
Sweden 1920 0.001 0.240 1.260
Sweden 1920 0.01 0.500 1.177
Sweden 1975 0.001 0.060 1.687
Sweden 1975 0.002 0.080 1.685
Sweden 1975 0.005 0.125 1.646
Sweden 1975 0.01 0.170 1.625
Sweden 1975 0.02 0.240 1.574
Sweden 1983 0.001 0.080 1.576
Sweden 1983 0.002 0.100 1.589
Sweden 1983 0.005 0.145 1.573
Sweden 1983 0.01 0.195 1.55
Sweden 1983 0.02 0.260 1.525
UK 1923 0.01 0.610 1.120
UK 1923 0.05 0.820 1.071
UK 1929 0.01 0.560 1.144
UK 1929 0.05 0.790 1.085
UK 1975 0.01 0.240 1.449
UK 1975 0.05 0.440 1.378
UK 1980 0.01 0.230 1.469
UK 1980 0.05 0.430 1.392
France 1977 0.01 0.190 1.564
France 1977 0.05 0.450 1.363
France 1986 0.01 0.260 1.413
France 1986 0.05 0.430 1.392
Germany 1973 0.01 0.280 1.382
Belgium 1969 0.01 0.280 1.382
Denmark 1973 0.01 0.250 1.431
Sweden 1975 0.01 0.160 1.661
Canada 1970 0.01 0.196 1.548
US 1972 0.01 0.250 1.431
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TABLE 2
Critical values for the propagation of errors.

P .0001 .001 .002  .005 .01 .03 .05
5S¢ 67 232 261 310 359 466 534
A(edf) 1.241 1.267 1.275 1.283 1.286 1.278 1.265
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APPENDIX A

CONTINUOUS MEASURE OF ENTROPY

The following heuristic motivation for the use of H(f) as a continuous
entropy measure can be found in Kapur and Kesavan (1992). Let the points
x; form an equally spaced partition of A = [a,b] where o0 = a and z, = b

b

such that Az; = ¢; — 2,1 = = h. The discrete probability p; can be

approximated by f(z;)Az; in the sense that

Q

=D pilnp ~ - Zf(xz-)Ax,- In (f(2:)Az;)

—Zf z;)Az;In f(z;) Zf x;)Az; In Ax;

—foz In f(z;)Az; — lnhZf ;) Az;

_/abf(x)mf(x)dx—lnh/abf(x)dw

—/bf(:c) In f(z)dz — Inh.

Q

The term —Inh causes some difficulty since —Ilnh — oo as h — 0. How-
ever, if we consider the difference between the entropy of f(x) and the
entropy of another density function g(z) corresponding to the probability
distribution ¢; for ¢ = 1,...,n then the term cancels out. In this sense
H (f) represents a measure not of absolute but of relative uncertainty (rel-
ative to any other distribution). Of course, this is not a rigorous but merely
a heuristic justification for the use of H(f) as a measure of entropy. Instead

of h, Jaynes (1978) considers the limiting density of discrete points in h
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and arrives at
f(=z)
H™(f) = — In 2 g
(N =-[s@mia,
where m(z) is proportional to the limiting density of points in h. As Jaynes
points out, under a change of variables the functions f(z) and m(z) trans-
form in the same way so that H™(f) will be invariant. The probability

density function under a constraint on the logarithmic mean obeys

__am(x)
flz)=¢z AZ(A)'

This implies that the functional form of a power law will be preserved if
the measure m(z) obeys a power law itself. Since the measure should be
finite over its support, it must be of the generic form m(z) = z~(+¢) for all
€ > 0. Intuitively, such a measure would provide a proportionally spaced

rather than an equally spaced partition of points on the support.
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