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Abstract

We consider a simple pure exchange economy with two assets, one riskless, yielding
a constant return, and one risky, paying a stochastic dividend, and we assume trading
to take place in discrete time inside an endogenous price formation setting. Traders
demand for the risky asset is expressed as a fraction of their individual wealth and is
based on future prices forecast obtained on the basis of past market history.

The general case is studied in which an arbitrary large number of heterogeneous
traders operates in the market and any smooth function which maps the infinite infor-
mation set to the present investment choice is allowed as agent’s trading behavior. A
complete characterization of equilibria is given and their stability conditions are derived.
We find that this economy can only possess isolated generic equilibria where a single
agent dominates the market and continuous manifolds of non-generic equilibria where
many agents hold finite wealth shares. We show that irrespectively of agents number
and of their behavior, all possible equilibria belong to a one dimensional “Equilibria
Market Line”. Finally we discuss the relative performances of different strategies and
the selection principle governing market dynamics.

JEL codes: G12, D83.

Keywords: Asset Pricing Model, CRRA Framework, Equilibria Market Line, Market
Selection Principle
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1 Introduction

This work analyzes a simple asset pricing model where an arbitrary number of heterogeneous
traders participate in a speculative activity. We consider a simple, pure exchange, two-asset
economy. The first asset is a riskless security, yielding a constant return on investment. This
security is chosen as the numéraire of the economy. The second asset is a risky equity, paying a
stochastic dividend. Trading takes place in discrete time and in each trading period the price
of the risky asset is fixed by imposing market clearing condition on the aggregate demand
function. Agents participation to the market is described in terms of their individual demand
for the risky asset.

We impose two restrictions on the way in which the individual demand of traders is formed.
First, we assume that the amount of risky security demanded by a trader is proportional to
his wealth. This assumption is consistent with, but not limited to, the maximization of
an expected utility function with constant relative risk aversion (CRRA). Second, since the
present work is mainly concerned with the effect of speculative behaviors and not of asymmetric
evaluation and/or knowledge of the underlying fundamental of the economy, we assume that
all traders, when making their investment choices, possess the same public information set.
This set is naturally defined to contain the past price returns and the complete characterization
of the dividend stochastic process.

While the CRRA framework seems to better fit empirical and experimental evidence (see,
for instance the discussions in Levy et al. (2000) and Campbell and Viceira (2002)) and
has characterized many among the most important contributions to the theory of economic
behavior in speculative environment, it has been partly disregarded in the “agent based”
literature. In this field the majority of early contributions consider models where agents
investment choices are independent from their wealth (for a review see LeBaron (2000) and
Hommes (2005)). In terms of expected utility theory, this amounts to consider constant
absolute risk averse (CARA) traders. In fact, the assumption of a CRRA-type behavior
does introduce noticeable practical difficulties: if prices are endogenously determined by the
investment decisions of a population of CRRA traders, the analysis of the resulting market
dynamics requires to account, along the evolution of the economy, for the present wealth of each
individual portfolio. Hence, when many different traders operate in the market, this results
in a system of substantially higher dimension and leads to a seeming increase in complexity.

Notwithstanding these difficulties, a series of recent papers (Chiarella and He, 2001, 2002;
Hens and Schenk-Hoppé, 2005; Amir et al., 2005) started to analytically explore the asymptotic
dynamics of CRRA agent based models while another group of contributions (Levy et al.,
1994, 2000; Zschischang and Lux, 2001) performed a numerical investigation of the emerging
properties. In these models the individual demand of traders is usually obtained through the
maximization of a CRRA expected utility1 based on different estimators in order to reflect
different stylized speculative behaviors, like “fundamental”, “trend chaser” or “contrarian”
attitude. However, the requirement of keeping the dimension of the resulting dynamical system
low forces the authors to limit both the set of allowed forecasting functions and the number
of strategies present in the market at the same time.

In the present paper, we extend these early investigations in two directions. First, we
analyze the aggregate dynamics and asymptotic behavior of the market when an arbitrary
large number of different traders, each with his own investment behavior, participate to the

1 They frequently use logarithmic utility function, but the generalization of their analyses and conclusions
to generic risk averse power utility is, often, trivial.

2



trading activity. Second, we do not restrict in any way the procedure used by agents in order
to build their forecast about future prices, nor the way in which agents can use this forecast
to obtain their present asset demand. In other terms, any smooth function which maps the
agent information set to the present investment choice is allowed as agent’s trading behavior.

Even if considering an arbitrary number of different agents behaviors leads us to study
dynamical systems of an arbitrary large dimension, we are able to provide a complete charac-
terization of market equilibria and a description of their stability conditions in terms of few
parameters characterizing the traders investment strategies. In particular, we find that, irre-
spectively of the number of agents operating in the market and of the structure of their demand
functions, only two types of equilibria are possible: generic equilibria, associated with isolated
fixed points, where a single agent asymptotically possesses the entire wealth of the economy
and non generic equilibria, associated with continuous manifolds of fixed points, where many
agents possess a finite shares of the total wealth. We also show, in total generality, that a sim-
ple function, the “Equilibria Market Line”, can be used to obtain a geometric characterization
of both the location of all possible equilibria and the conditions of their stability.

Our general results provide, we believe, a simple and clear description of the principles
governing the asymptotic market dynamics resulting from the competition of different trad-
ing strategies. As a direct consequence we are able to discuss the validity and limits of the
“quasi-optimal selection principle”, originally formulated in Chiarella and He (2001) for linear
demand functions, when more general traders behaviors are taken into consideration. At the
same time, we show how the possible existence of multiple, isolated, locally stable equilibria
and the ensuing local nature of traders relative performances can be interpreted as an “impos-
sibility theorem” for the construction of a dominance order relation inside the space of trading
strategies.

The present paper is organized as follows. In Section 2 we describe our simple pure-
exchange economy, presenting our assumptions and briefly discussing them. We explicitly
write the traders inter-temporal budget constraints and lay down the equations governing
the dynamics of the market. In Section 3 we present the simple case in which a single trader
operates in the market. The Equilibria Market Line is derived, and its use is shortly discussed.
The general case in which an arbitrarily large number of traders participates the trading
activity is analyzed in Section 4. Our conclusions, and the directions our work will plausibly
take in the future, are briefly mentioned in Section 5.

2 Definition of the Model

Consider a simple pure exchange economy, populated by a fixed number N of traders, where
trading activities take place in discrete time. The economy is composed by a risk-less asset
(bond) giving in each period a constant interest rate rf > 0 and a risky asset (equity) paying
a random dividend Dt at the end of each period t. Let the risk-less asset be the numéraire
of the economy, so that its price is fixed to 1. The price Pt of the risky asset is determined
at each period, on the basis of the aggregate demand, through market-clearing condition.
The resulting intertemporal budget constraint is derived below and the main hypotheses, on
the nature of the investment choices and of the fundamental process, are discussed. These
hypotheses will allow us to derive the explicit dynamical system governing the evolution of
the economy.
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2.1 Intertemporal Budget Constraint

Let Wt,n be the wealth of trader n at time t and let xt,n stands for the fraction of this
wealth invested into the risky asset. After the trading session at time t− 1, agent n possesses
xt−1,nWt−1,n/Pt−1 shares of risky asset and (1− xt−1,n)Wt−1,n shares of risk-less security. At
this moment he receives the payment of risk-less interest rf on the wealth invested in the latter
and dividends payment Dt−1 per each risky asset. Therefore, at time t the wealth of agent n,
for any notional price P , reads

Wt,n(P ) = (1− xt−1,n)Wt−1,n (1 + rf) +
xt−1,nWt−1,n

Pt−1

(P +Dt−1) (2.1)

and his individual demand for the risky asset becomes xt,nWt,n(P )/P . The actual price of the
risky asset at time t is fixed so that aggregate demand equals aggregate supply. Assuming a
constant supply of risky asset, whose quantity can then be normalized to 1, the price Pt is
defined as the solution of the equation

N∑

n=1

xt,nWt,n(Pt) = Pt . (2.2)

Once the price is fixed, the new portfolios and wealths are determined and, at the end of
period t, the dividend Dt and the risk-free interest rf are paid. At this point the trading
session at time t+ 1 can start.

The dynamics defined by (2.1) and (2.2) describes an exogenously growing economy due
to the continuous injections of new riskless assets, whose price remains, under the assumption
of totally elastic supply, unchanged. It is convenient to remove this exogenous economic
expansion from the dynamics of the model. To this purpose we introduce rescaled variables

wt,n = Wt,n/(1 + rf)
t , pt = Pt/(1 + rf)

t , et = Dt/(Pt (1 + rf)) . (2.3)

Rewriting (2.2) and (2.1) using these variables one obtains





pt =
N∑

n=1

xt,n wt,n

wt,n = wt−1,n + wt−1,n xt−1,n

(
pt
pt−1

− 1 + et−1

)
∀n ∈ {1, . . . , N} .

(2.4)

These equations give the evolution of state variables wt,n and pt over time, provided that
the stochastic process {et} is given and the set of investment shares {xt,n} is specified. Such
dynamics implies a simultaneous determination of the equilibrium price pt and of the agents’
wealths wt,n. Due to this simultaneity, the N + 1 equations in (2.4) define the state of the
system at time t only implicitly. Indeed, the N variables wt,n, defined in the second equation,
appear on the right-hand side of the first, and, at the same time, the variable pt, defined in
the first equation, appears in the right-hand side of the second. For analytical purposes, one
has to derive the explicit equations that govern the system dynamics.

2.2 Dynamical System for Wealth and Return

The transformation of the implicit dynamics of (2.4) into an explicit one is not possible in
general. Indeed the simultaneous determination of price and wealth in (2.4) entails some
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restriction on the possible market positions available to agents2. We derive this restriction
below, but before let us introduce a notation that will prove useful to present the dynamics
in a more compact form.

Let an be an agent specific variable, dependent or independent from time t. We denote
with

〈
a
〉
t

the wealth weighted average of this variable at time t on the population of agents,
i.e.

〈
a
〉
t

=

N∑

n=1

an ϕt,n , where ϕt,n =
wt,n
wt

and wt =

N∑

n=1

wt,n. (2.5)

The next result gives the condition for which the dynamical system implicitly defined in
(2.4) can be made explicit without violating the requirement of positiveness of prices

Proposition 2.1. From equations (2.4) it is possible to derive a map R+N → R+N that
describes the evolution of traders wealth wt,n ∀n ∈ {1, . . . , N} so that prices pt ∈ R+ ∀t
remain positive provided that

(〈
xt
〉
t
−
〈
xt xt+1

〉
t

)(〈
xt+1

〉
t
− (1− et)

〈
xt xt+1

〉
t

)
> 0 ∀t . (2.6)

If previous condition is met, the price growth rate rt+1 = pt+1/pt − 1 reads

rt+1 =

〈
xt+1 − xt

〉
t
+ et

〈
xt xt+1

〉
t〈

xt (1− xt+1)
〉
t

(2.7)

and the evolution of wealth, described by the wealth growth rates ρt+1,n = wt+1,n/wt,n − 1, is
given by

ρt+1,n = xt,n
(
rt+1 + et

)
= xt,n

〈
xt+1 − xt

〉
t
+ et

〈
xt
〉
t〈

xt (1− xt+1)
〉
t

∀n ∈ 1, . . . , N . (2.8)

Proof. See appendix A.

The explicit price dynamics can be obtained from (2.7) in a trivial way but price will be
positive only if condition (2.6) is satisfied3.

Having obtained the explicit dynamics for the evolution of price and wealth one is interested
in the asymptotic behavior of the system. In turns out that the dynamics defined by (2.7)
and (2.8) does not possess any interesting fixed point. Indeed, if the price and the wealth are
constant, one would have rt+1 = ρt+1,n = 0 for any t and n. This would imply, in periods when
a positive dividend et is paid, that xt,n = 0 for any n. That is, the only possible fixed point,
in terms of price and wealth levels, is the one in which there is no demand for the risky asset.
The cause is that the variables rescaling introduced in (2.3) removes the exogenous expansion
due to the risk-free interest rate, but not the expansion due to the dividend payment. The

2The simplest way to understand this is to consider the case of a single agent. With a little bit of algebra it
is easy to show that (2.1) and (2.2) imply that at time t the price should satisfy the equation Pt = xt (Pt+Bt),
where Bt denotes the amount of the numéraire available to the agent before trading. Therefore, a positive
price requires xt < 1. In the dynamical setting with many agents the matter is more complicated, since both
current and previous investment choices of all agents are involved in the determination of price.

3In general, it may be quite difficult to check the validity of this condition at each time step. A sufficient
condition is provided in Anufriev et al. (2004) where it is shown that if investment choices xt,n are bounded
inside the interval (0, 1), uniformly with respect to t and n, condition (2.6) is always satisfied.
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presence of this expansion suggests to look for possible asymptotic states of steady growth.
Notice, however, that if the dividend yield et depends on price, it is impossible to rewrite the
dynamics in Proposition 2.1 in terms of the sole price and wealth returns. This issue is solved
as soon as one makes the following

Assumption 1. The dividend yields et are i.i.d. random variables obtained from a common
distribution with positive support.

This assumption is common to several works in the literature, for instance Chiarella and He
(2001), so that a further reason to have this assumption introduced is to maintain comparabil-
ity with previous investigations. Under Assumption 1, direct dependence on price disappears
from (2.7) and (2.8). Consequently, the dynamics of the economy is fully specified in terms of
rt and ρt,n for n ∈ {1, . . . , N}.

2.3 Agents Investment Functions

In the present work we are mainly concerned with the effect of speculative behaviors on the
market aggregate performance. In order to eliminate effects due to asymmetric evaluation
and/or knowledge of the underlying fundamental process we model the agents’ investment
choice as depending on the sole realized price returns, assuming, for any agent, a perfect
knowledge of the dividend process. Consequently, the information set I commonly available
to traders at round t reduces to the sequence of past realized returns It−1 = {rt−1, rt−2, . . . }
and we make the following

Assumption 2. For each agent n there exists a differentiable investment function fn which
maps the present information set into his investment share:

xt,n = fn(It−1) . (2.9)

The function fn in the right-hand side of (2.9) gives a complete description of the in-
vestment decision of the n-th agent. The knowledge about the fundamental process, being
complete and time invariant, is not explicitly inserted in the information set, rather is con-
sidered embedded in the functional form of fn. Past realizations of the fundamental process
do not affect agents’ decisions, which, rather, tends to adapt to observed price fluctuations.
One can refer to this investment behavior, common in agent based literature (e.g. Brock and
Hommes (1998)), as “technical trading”, stressing the similarity with trading practices ob-
served in real markets. At the same time, Assumption 2 rules out other possible dependences
in the investment function fn, like an explicit relation of the present investment choice with
past investment choices or with investment choices of other traders.

In the majority of models discussed in the literature the investment choice described by
(2.9) is obtained as the result of two distinct steps. In the first step agent n, using a set of
estimators {gn,1, gn,2, . . . }, forms his expectation at time t about the behavior of future prices,
θn,j[rt+1] = gn,j(It−1) where θ.,j stands for some statistics of the returns distribution at time
t + 1, for instance the average return, the variance or the probability that a given return
threshold be crossed. With these expectations, using a choice function hn, possibly derived
from some optimization procedure4, he computes the fraction of the wealth invested in the

4The assumption that the demand function of any agent at time t can be written as xt,nWt,n/Pt, with xt,n
independent from his present wealth Wt,n and price level Pt, is consistent with a framework in which agents
investment decisions are obtained via expected utility maximization with a constant relative risk aversion
(CRRA) utility function. Assumption 2 is clearly violated, however, if agents are assumed constant absolute
risk aversion (CARA) expected utility maximizers.
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risky asset xt+1,n = hn(θ1, θ2, . . . ). The investment function fn defined in Assumption 2 is the
result of the composition of estimators {gn,·} and choice function hn. This interpretation is
both intuitive and common in the economic literature, but, even if perfectly compatible with
(2.9), it is not required by our framework. In our model agents are not forced to use some
specific predictors, rather they are allowed to map the past return history into the future
investment choice, with whatever smooth function they like. Moreover, function fn, as it is
written in (2.9), can be infinite dimensional. In this case, a complete dynamical system for
the return dynamics should be, generally speaking, infinite-dimensional as well. This difficulty
can be overcome in different ways. For instance, in Anufriev et al. (2004), while leaving the
choice function h generic, we confined agents to use, as forecasts functions {gn,1, gn,2, . . . },
exclusively the expected return En[rt+1] and variance Vn[rt+1] obtained from exponentially
weighted moving average (EWMA) estimates based on past realized returns. In that case the
dynamics can be described with the use of a low dimensional system, even if the information
set remains infinite. In fact, this dimensional reduction is always possible provided that the
agents forecasting procedure admits a recursive definition.

In what follows, however, we want to consider a more generic situation. We assume that
each agent n has his own, so to speak, ”memory time span” Ln, so that at each time step his
new investment choice is determined as a function of the last Ln return realizations. Apart
the requirement that it possesses first order derivatives with respect to the past price returns,
we do not restrict this function in any way. Moreover, for the following discussion, Ln must
be finite, but can be arbitrary large.

3 Single Agent Case

We start with the analysis of the very special situation in which a single agent operates on
the market. The main reason to perform this analysis rests in its relevance for the multi-agent
case. Indeed, in the setting with N heterogeneous traders each generic multi-agent equilibrium
requires, as necessary condition for stability, the stability of a suitably defined single agent
equilibrium5.

This Section starts laying down the dynamics of the single agent economy as a multidi-
mensional dynamical system of difference equations of the first order. All possible equilibria
of the system are identified and the associated characteristic polynomial, which can be used
to analyze their stability, derived.

3.1 Dynamical System

In the case of one single agent the dynamical system describing the market evolution can be
considerably simplified since the explicit evolution of wealth shares in (2.8) is not needed. As
a consequence, the whole system can be described with only L + 1 variables: one variable
represents the current investment choice xt and the other variables the L past returns.

The current return can be defined by means of the function in the right hand-side of (2.7):

R(x′, x, e) =
x′ − x+ e x′ x

(1− x′) x , (3.1)

5Another possible application of the single agent analysis is to provide a succinct description of the aggregate
properties of a system with many relatively homogeneous agents. See Anufriev et al. (2004) for a discussion.

7



where the first variable x′ denotes the current (contemporaneous with return) investment
choice, and x and e stands for the previous period investment choice and dividend yield,
respectively.

With such definitions the dynamical system governing the evolution of the economy with
a single agent reads





xt+1 = f
(
rt,0, rt,1, . . . , rt,L−1

)

rt+1,0 = R
(
f
(
rt,0, rt,1, . . . , rt,L−1

)
, xt, et

)

rt+1,1 = rt,0
...

rt+1,L−1 = rt,L−2

, (3.2)

where rt,l stands for the price return at time t− l.
In the rest of this Section we are interested in analyzing the so-called deterministic skeleton

of this L + 1-dimensional system. That is, we substitute the yield by its mean value ē in
order to obtain the deterministic dynamical system which gives, in a sense, the ”average”
representation of the stochastic dynamics.

3.2 Determination of Equilibria

In the following analysis, in order to give a simple geometrical characterization of equilibria
of system (3.2) we will use the following

Definition 3.1. The Equilibria Market Line (EML) is the function l(r) defined according to

l(r) =
r

ē+ r
r ∈ [−1,∞) . (3.3)

Let x∗ denotes the agent’s wealth share invested in the risky asset at equilibrium and let
r∗ be the the equilibrium return. In any fixed point the realized returns are constant, so that
r0 = r1 = · · · = rL−1 = r∗. One has the following

Proposition 3.1. Let x∗ = (x∗; r∗, . . . , r∗) be a fixed point of system (3.2).

(i) The point x∗ is a feasible equilibrium, i.e. the equilibrium prices are positive, if either
x∗ < 1 or x∗ ≥ 1/(1− ē).

(ii) Equilibrium return r∗ satisfies

l(r∗) =
r∗

ē + r∗
= x∗ (3.4)

and the equilibrium investment share x∗ is defined accordingly to

x∗ = f(r∗, . . . , r∗) . (3.5)

(iii) The equilibrium growth rate of the agent’s wealth is given by

ρ∗ = x∗ (r∗ + ē) = r∗ (3.6)

and is equal to the equilibrium price growth rate r∗.
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Figure 1: Investment functions (thick lines) based on the last realized return. The equilibria are
found as intersections with the EML (thin line). Both functions have two equilibria: S1 and U1 the
non-linear, S2 and U2 the linear.

Proof. Item (i) follows directly from condition (2.6) written at equilibrium. In order to get
(3.5) one has to plug the equilibrium values of the variables in the first equation in (3.2). From
the second equation of (3.2) one has

r∗ = R(x∗, x∗, ē) = ē
x∗

1− x∗ .

Inverting this relation to obtain x∗ as a function of r∗ and using (3.5) one gets (3.4). Finally,
from (2.8) using the previous relations one has ρ∗ = x∗(r∗ + ē) = l(r∗)(r∗ + ē) = r∗.

The first item states that economically meaningful equilibria are characterized by values
of the investment share inside the intervals (−∞, 1) or [1/(1− ē),+∞). This is equivalent to
the restriction r∗ ≥ −1. The second item justifies the introduction of the Equilibria Market
Line in Definition 3.1: all equilibria of system (3.2) can be found as the intersections of the
EML with the full symmetrization of function f , i.e. with the restriction of this function to
the one dimensional subspace defined by the L− 1 equations r0 = r1 = · · · = rL. Notice that
for r∗ = −ē no bounded equilibria exist. This is a general property of the system with N
agents defined in (2.7) and (2.8). If at equilibrium the positive dividend yield were offset by a
negative price return, the wealth of each agent would be constant over time and the investment
share would increase with a rate 1− ē. Finally, the third item states that the growth rate of
the agent’s wealth coincides with the price growth rate. It is interesting that the interrelation
between the total return r∗ + ē and the investment in equilibrium x∗ is such that the total
wealth grows with a rate which does not directly dependent on the dividend yield.

As a first example of the application of Proposition 3.1 consider investment functions which
are one-dimensional functions of the sole last return (i.e. L = 1). In Fig. 1 two functions of
this type are shown (thick lines) together with the hyperbolic curve representing the EML
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defined in (3.3) (thin line). The intersections of the investment function with the EML are the
possible equilibria of the system. The ordinate of the intersection gives the value of equilibrium
investment share x∗, while the abscissa gives the equilibrium return r∗. One can distinguish
between three qualitatively different scenarios. In equilibria with r∗ ∈ [−1,−ē) the investment
in the risky asset is characterized by negative return r∗ + ē < 0. In these equilibria the agent
maintains a long position in the risky asset (x∗ > 1) so that his wealth return ρ∗ is negative.
If r∗ ∈ (−ē, 0) the capital gain on the risky asset is negative, nevertheless the gross return
r∗ + ē is positive due to the dividend yield. In these equilibria the agent maintains a short
position in the risky asset (x∗ < 0) and therefore it is again ρ∗ < 0. Equilibrium S2 for the
linear investment function in Fig. 1 is of such kind. Finally, if r∗ ∈ (0,+∞) the price return is
positive, the agent position is characterized by a fixed fraction of wealth invested in the risky
asset x∗ ∈ (0, 1) and his wealth return is positive. This is the case of equilibrium U2 of the
linear investment function and equilibria S1 and U1 of the nonlinear function6.

A second ”geometrical” example is presented in Fig. 2. The two-dimensional surface rep-
resents the investment function f(r0, r1) = |r0| (r0 + 0.4 (r0 − r1)) which depends on the two
last realized returns (i.e. L = 2). Here r0 stands for the last period return while r1 is the
return of the period before the last. The thick line on the function surface is the intersection
of the investment function with the “symmetric” plane defined by the condition r0 = r1. On
the same plane the curve relative to EML l(r) is also drawn. The intersections of these two
curves define all possible equilibria. In Fig. 2 there is one trivial equilibrium with zero re-
turn and a second equilibrium with positive price return r∗ and equilibrium investment share
x∗ = f(r∗) = |r∗| r∗.

The same analysis can be applied, unmodified, to the investment functions with higher
values of L. The bottom line of these examples and of the previous discussion is that the
agent’s memory span L is irrelevant for the question of the existence and location of equilibria:
only the restriction of the investment function f on the “symmetric” plane is relevant and, in
all cases, the equilibria are located on the one dimensional EML and can be presented in a
diagram analogous to Fig. 1.

3.3 Stability Conditions of Equilibria

As the next natural step we move to discuss the stability conditions of the equilibria that has
been identified in the previous Section. We derive the stability conditions from the analysis of
the roots of the characteristic polynomial associated with the Jacobian of system (3.2) com-
puted at equilibrium. The characteristic polynomial does, in general, depend on the behavior
of the individual investment function f in an infinitesimal neighborhood of the equilibrium
x∗. This dependence can be summarized with the help of the following

Definition 3.2. The stability polynomial P (µ) of the investment function f in x∗ is

Pf(µ) =
∂f

∂r0
µL−1 +

∂f

∂r1
µL−2 + · · ·+ ∂f

∂rL−2
µ+

∂f

∂rL−1
, (3.7)

where the derivatives of f are computed in point (r∗, . . . , r∗).

Using the previous definition the equilibrium stability conditions can be formulated in
terms of the equilibrium return r∗, and of the slope of the Equilibria Market Line in equilibrium

l′(r∗) =
ē

(ē+ r∗)2
. (3.8)

6Remember that the analysis is performed with respect to rescaled variables as defined in (2.3)
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Figure 2: Investment function based on the last two realized returns f(rt−1, rt−2) and its intersection
(thick line) with the plane rt−1 = rt−2. Equilibria are found on this plane as intersections with the
EML (thin line).

The following applies

Proposition 3.2. The fixed point x∗ = (x∗; r∗, . . . , r∗) of system (3.2) is (locally) asymptoti-
cally stable if all the roots of the polynomial

Q(µ) = µL+1 − Pf(µ)

r∗ l′(r∗)

((
1 + r∗

)
µ− 1

)
, (3.9)

are inside the unit circle.
The equilibrium x∗ is unstable if at least one of the roots of Q(µ) lies outside the unit

circle.

Proof. The condition above is a direct consequence of the characteristic polynomial of the
Jacobian matrix at equilibrium. See appendix B for a derivation.

Once investment function f is known, polynomial P (µ) and, in turn, polynomial Q(µ)
can be explicitly derived. The analysis of the roots of Q(µ) can be used to reveal the role
of the different parameters in stabilizing or destabilizing a given equilibrium. For illustrative
purposes we present here the explicit analysis in the simplest case7 in which L = 1.

3.3.1 Example: Näıve forecast.

As an example consider the agent with a memory time span of a single lag, so that his
investment function reads xt+1 = f(rt). In terms of the two-step interpretation of investment

7Results for larger classes of investment functions are presented in Anufriev et al. (2004)
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function discussed in Sec. 2.3, the agent in this example can be thought to have näıve forecast
of the form E[rt+1] = rt.

When L = 1, expression in (3.9) reduces to a second degree polynomial. The multipliers
are the roots of

µ2 − f ′(r∗)

l′(r∗) r∗

((
1 + r∗

)
µ− 1

)
= 0 .

The following can be derived from well known stability conditions for a two dimensional
system fixed point

Proposition 3.3. The fixed point x∗ = (x∗; r∗) of system (3.2) with L = 1 is (locally)
asymptotically stable if

f ′(r∗)

l′(r∗)

1

r∗
< 1 ,

f ′(r∗)

l′(r∗)
< 1 and

f ′(r∗)

l′(r∗)

2 + r∗

r∗
> −1 . (3.10)

where f ′ = df(r∗)/dr. This fixed point undertakes Neimark-Sacker, fold or flip bifurcation if
the first, the second or the third inequality in (3.10) turns to equality, respectively.

The stability region defined by the inequalities in (3.10) is shown in Fig. 3 in coordinates
r∗ and f ′(r∗)/l′(r∗). The second coordinate is the relative slope of the investment function
at equilibrium with respect to the slope of the Equilibrium Market Line. Notice that if the
slope of f at the equilibrium increases, the system tends to lose its stability. In particular,
the second inequality in (3.10) requires the slope of investment function to be smaller than
the slope of function l(r).

As an example let us look at the equilibria in Fig. 1. Concerning the nonlinear function,
one can immediately see that equilibrium U1 is unstable since the slope of the function is higher
than the slope of the EML. On the contrary, the slope of the investment function in S1 is very
small, so that, presumably, this equilibrium is stable. For the linear function, equilibrium U2

is clearly unstable while S2 can result stable. As can be seen from Fig. 3, if the slope of the
first function in S1 increased, this equilibrium would lose stability through a Neimark-Sacker
bifurcation. The increase of the slope of the second function in S2 would instead lead to a flip
bifurcation.

4 Economy with Many Agents

This Section extends the previous results to the case of a finite, but arbitrarily large, number
of heterogenous agents. Each agent n possesses his own investment function fn based on a
finite number Ln of past market realizations. Without loss of generality, however, we can
assume that the memory spans of the different function fn are all the same and equal to the
largest span L = max{L1, . . . LN}, so that each investment function can be thought as having
exactly L arguments

xt+1,n = fn(rt, rt−1, . . . , rt−L+1) . (4.1)

This section is organized as the previous one. It starts with the derivation of the 2N +
L− 1 dimensional stochastic dynamical system which describes the evolution of the economy
and continues with the identification of all possible equilibria of the associated deterministic
skeleton and the analysis of their stability.
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4.1 Dynamical System

If there is more than one agent on the market, the evolution of agents wealth is not decoupled
from the system and, consequently, all N equations in (2.8) are relevant for the dynamics. In
this case it is convenient to rewrite the system using the individual share of the total wealth
ϕt,n defined in (2.5). The dynamics of price in terms of these variables is provided by the
following

Lemma 4.1. Under the conditions of Proposition 2.1, the price growth rate (2.7) reads:

rt+1 =

〈
xt+1 − xt + et xt xt+1

〉
t〈

xt (1− xt+1)
〉
t

, (4.2)

while the agents’ wealth shares evolve accordingly to

ϕt+1,n = ϕt,n
1 + (rt+1 + et) xt,n

1 + (rt+1 + et)
〈
xt
〉
t

∀n ∈ {1, . . . , N} . (4.3)

Proof. See appendix C.

The first-order dynamical system associated with (4.2) and (4.3) with investment functions
xt+1,n = fn(rt, rt−1, . . . , rt−L) as in (4.1) is defined in terms of the following 2N + L − 1
independent variables

xt,n ∀n ∈ {1, . . . , N} ; ϕt,n ∀n ∈ {1, . . . , N − 1} ; rt,l ∀l ∈ {0, . . . , L− 1} , (4.4)

where rt,l denotes the price return at time t − l. Notice that only N − 1 wealth shares are

needed. Indeed, at any time step t, it is
∑N

n=1 ϕt,n = 1 so that ϕt,N = 1 −∑N−1
n=1 ϕt,n. The

dynamics of the system is provided by the following

13



Lemma 4.2. The 2N + L − 1 dynamical system defined by (4.2) and (4.3) in terms of the
variables in (4.4) reads

X :



xt+1,1 = f1

(
rt,0, . . . , rt,L−1

)
...

...
...

xt+1,N = fN
(
rt,0, . . . , rt,L−1

)

W :




ϕt+1,1 = Φ1

(
xt,1, . . . , xt,N ;ϕt,1, . . . , ϕt,N−1; et;

R
(
f1(rt,0, . . . , rt,L−1), . . . , fN(rt,0, . . . , rt,L−1);

xt,1, . . . , xt,1;ϕt,1, . . . , ϕt,N−1; et
))

...
...

...

ϕt+1,N−1 = Φt,N−1

(
xt,1, . . . , xt,N ;ϕt,1, . . . , ϕt,N−1; et;

R
(
f1(rt,0, . . . , rt,L−1), . . . , fN(rt,0, . . . , rt,L−1);

xt,1, . . . , xt,N ;ϕt,1, . . . , ϕt,N−1; et
))

(4.5)

R :




rt+1,0 = R
(
f1(rt,0, . . . , rt,L−1), . . . , fN(rt,0, . . . , rt,L−1);

xt,1, . . . , xt,N ;ϕt,1, . . . , ϕt,N−1; et

)

rt+1,1 = rt,0
...

...
...

rt+1,L−1 = rt,L−2

,

where

R
(
y1, y2, . . . , yN ; x1, x2, . . . , xN ;ϕ1, ϕ2, . . . , ϕN−1; e

)
=

=

∑N−1
n=1 ϕn

(
yn (1 + e xn)− xn

)
+
(

1−∑N−1
n=1 ϕn

) (
yN (1 + e xN)− xN

)
∑N−1

n=1 ϕn xn (1− yn) + (1−∑N−1
n=1 ϕn) xN (1− yN)

(4.6)

and

Φn
(
x1, x2, . . . , xN ;ϕ1, ϕ2, . . . , ϕN−1; e;R

)
=

= ϕn
1 + xn (R + e)

1 + (R + e)
(∑N−1

m=1 ϕm xm +
(
1−∑N−1

m=1 ϕm
)
xN

) ∀n ∈ {1, . . . , N − 1} . (4.7)

Proof. We ordered the equations to obtain three separated blocks: X, W and R. In block
X there are N equations defining the investment choices of agents. Block W contains N − 1
equations describing the evolution of the wealth shares. Finally, block R is composed by
L equations which describe the evolution of the return. In the last block equations are in
ascending order with respect to the time lag.

The set X is immediately obtained from the definition of the investment functions (4.1).
The first equation of block R is (4.2) rewritten in terms of variables (4.4) using (4.6) and
(2.5), while the remaining equations are just the result of a “lag” operation. Notice that (4.6)
reduces to (3.1) in the case of a single agent. Finally, the evolution of wealth shares described
in block W is obtained from (4.3) once the notation introduced in (2.5) is explicitly expanded.
Notice that, due to the presence of function R in the last expression, all functions Φn depend
on the same set of variables as R.
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The rest of this Section is devoted to the analysis of the deterministic skeleton of (4.5):
we replace the yield realizations {et} by their mean value ē and analyze the equilibria of the
resulting deterministic system.

4.2 Determination of Equilibria

The characterization of fixed points of system (4.5) is in many respect similar to the single
agent case discussed above. Let x∗ = (x∗1, . . . , x

∗
N ;ϕ∗1, . . . , ϕ

∗
N−1; r∗, . . . , r∗) denotes a fixed

point where r∗ is the equilibrium return8 and x∗n and ϕ∗n stay for the equilibrium value of
the investment function and the equilibrium wealth share of agent n, respectively. Let us
introduce the following

Definition 4.1. Agent n is said to “survive” in x∗ if his equilibrium wealth share is strictly
positive, ϕ∗n > 0. Agent n is said to “dominate” agent n′ in x∗ if ϕ∗n′/ϕ

∗
n = 0. An agent n

who dominates, at equilibrium, any other agent n′ 6= n is said to “dominate” the economy.

One can recognize the parallel between our definition above and the framework developed
in DeLong et al. (1991). Indeed, we adopt here the deterministic version of the concepts
of survivance and dominance used in that paper. The following statement characterizes all
possible equilibria of system (4.5).

Proposition 4.1. Let x∗ be a fixed point of the deterministic skeleton of system (4.5). Two
mutually exclusive cases are possible:

(i) Single agent survival. In x∗ only one agent survives and, therefore, dominates the
economy. Without loss of generality we can assume this agent to be agent 1 so that for
the equilibrium wealth shares one has

ϕ∗n =

{
1 if n = 1

0 if n > 1
. (4.8)

Equilibrium return r∗ is determined as the solution of

l(r∗) = f1(r∗, . . . , r∗) , (4.9)

while the equilibrium investment shares are defined according to

x∗n = fn(r∗, . . . , r∗) ∀n ∈ {1, . . . , N}. (4.10)

The wealth growth rate of the survivor at equilibrium is given by

ρ∗1 = x∗1 (r∗ + ē) = r∗ (4.11)

end is equal to the equilibrium price return.

(ii) Many agents survival. In x∗ more than one agent survives. Without loss of gener-
ality one can assume that the agents with non-zero wealth shares are the first k agents
(with k > 1) so that the equilibrium wealth shares satisfy

ϕ∗n =

{
1 if n ≤ k

0 if n > k
,

k∑

n=1

ϕ∗n = 1 . (4.12)

8Remember that return in equilibrium r∗ cannot be equal to −ē as mentioned in Section 3.2.
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The first k agents possess the same investment share x∗1�k at equilibrium

x∗1 = x∗2 = · · · = x∗k = x1�k . (4.13)

and equilibrium return r∗ must simultaneously satisfy the following set of k equations

l(r∗) = fn(r∗, . . . , r∗) = x∗1�k ∀n ∈ {1, . . . , k} . (4.14)

The equilibrium investment shares of the last N − k agents are defined according to

x∗n = fn(r∗, . . . , r∗) ∀n ∈ {k + 1, . . . , N} . (4.15)

The wealth growth rate of the survivors at equilibrium is given by

ρ∗n = x∗1�k (r∗ + ē) = r∗ , ∀n ∈ {1, . . . , k} (4.16)

end is equal to the equilibrium price return.

Proof. From block X one immediately has (4.10) and (4.15). From block W using (4.7) and
the condition r∗ + ē 6= 0 one obtains

ϕ∗n = 0 or
∑N−1

m=1
ϕ∗m x

∗
m +

(
1−

∑N−1

m=1
ϕ∗m

)
x∗N = x∗n ∀n ∈ {1, . . . , N − 1} . (4.17)

Finally, from the first row of block R it is

r∗ = ē

∑N−1
n=1 ϕ

∗
nx
∗
n

2 +
(
1−∑N−1

n=1 ϕ
∗
n

)
x∗N

2

∑N−1
n=1 ϕ

∗
n x
∗
n (1− x∗n) +

(
1−∑N−1

n=1 ϕ
∗
n

)
x∗N (1− x∗N )

. (4.18)

The previous set of equations admits two types of solutions, depending on how many
equilibrium wealth shares are different from zero: if one or many.

To derive the first type of solutions assume (4.8). In this case (4.17) is satisfied for all
agents. From (4.18) one has x∗1 = r∗/(ē+ r∗) which together with (4.10) leads to (4.9).

To derive the second type of solutions assume (4.12). In this case, the second equality of
(4.17) must be satisfied for any n ≤ k. Since its left-hand side does not depend on n, a x∗1�k
must exist such that x∗1 = · · · = x∗k = x∗1�k. Substituting x∗n = 0 for n > k and x∗n = x∗1�k for
n ≤ k in (4.18) one gets x∗1�k = r∗/(ē + r∗). The equilibrium return r∗ is implicitly defined
combining this last relation with (4.15) for n ≤ k.

The equilibrium wealth growth rate of the survivors is immediately obtained from (2.8)
and from (4.10) or (4.15) for the single survivor and the many survivors case, respectively.

Strictly speaking, item (i) of the previous Proposition can be seen as a particular case of
item (ii). Nevertheless, the nature of the two situations is deeply different. In the first case,
when a single agent survives, Proposition 4.1 defines a precise value for each component (x∗,
ϕ∗ and r∗) of the equilibrium x∗, so that a single point is uniquely determined. In the second
case, on the contrary, there is a residual degree of freedom in the definition of the equilib-
rium: while r∗ and investment shares x∗’s are uniquely defined, the only requirement on the
equilibrium wealth shares of the surviving agents is the fulfillment of the second equality in
(4.12). Consequently, item (ii) does not define a single equilibrium point but an equilibria
hyperplane in the parameter space. The particular fixed point eventually chosen by the sys-
tem will depend on the initial conditions. In the next Section we will see that the partially
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indeterminate nature of the equilibria in the case of many survivors will have a major effect
also on their stability.

The differences among the two cases of Proposition 4.1 does not only regard the geometrical
nature of the locus of equilibria. Indeed, while in the first case no requirements are imposed on
the behavior of the investment function of the different agents, in the second type of solutions
all the investment shares x∗1, . . . , x

∗
k must at the same time be equal to a single value x∗1�k. The

equilibrium with k > 1 survivors exists only in the particular case in which the k investment
functions f1, . . . , fk satisfy this restriction. Consequently, an economy composed by N agents
having generic, so to speak “randomly defined”, investment functions, has probability zero
of displaying any equilibrium with multiple survivors. In other terms, the many survivors
equilibria are non-generic.

Both types of multi-agent equilibria derived in Proposition 4.1 are strictly related to “spe-
cial” single-agent equilibria. As in the single agent case, the growth rate of the total wealth
is equal to the equilibrium price return and is determined by the growth rate of those agents
who survive in the equilibrium. Moreover, the determination of the equilibrium return level
r∗ for the multi-agent case in (4.9) or (4.14) is identical to the case where the agent, or one of
the agents, who would survive in the multi-agent equilibrium, is present alone in the market.
An useful consequence of this fact is that the geometrical interpretation of market equilibria
presented in Section 3.2 can be extended to illustrate how equilibria with many agents are
determined. As an example consider Fig. 1 and suppose that the two investment functions
shown there belong to two agents who are simultaneously operating on the market. According
to Proposition 4.1 all possible equilibria can be found as intersections of one of the functions
with the Equilibria Market Line (c.f. (4.9) and (4.14)). In this example there are four possible
equilibria. In two of them (S1 and U1) the first agent, with non-linear investment function,
survives such that ϕ∗1 = 1 (and obviously ϕ∗2 = 0). In the other two equilibria (S2 and U2)
is the second agent, with linear investment function, who survives so that, in these points,
ϕ∗1 = 0. In each equilibrium, the intersection of the investment function of the surviving
agent with the Equilibria Market Line gives both equilibrium return r∗ and the equilibrium
investment share of the survivor. The equilibrium investment share of the other agent can
be found, accordingly to (4.15), as the intersection of his own investment function with the
vertical line passing through the equilibrium return. Since two investment functions shown
in Fig. 1 do not possess common intersections with the EML, the equilibria with more than
one survivors are impossible. Two examples of investment functions which allow for multiple
survivors equilibria are reported in Fig. 4. The common intersection of different investment
functions with the equilibria market line define the multiple survivors equilibria.

4.3 Stability Conditions of Equilibria

This Section presents two propositions relevant for the stability analysis of the equilibria
defined in Proposition 4.1. The first Proposition provides the stability region in the parameters
space for the generic case of one single survivor. The non-generic case of many survivors is
addressed in the second Proposition, where the destabilizing effect of the existence of an
entire hyperplane of equilibria is revealed. Since the proofs of these Propositions require quite
cumbersome algebraic manipulations, we provide below only their statements and refer the
reader to Appendix D for the intermediate Lemmas and the final proofs. The discussion
concerning economic interpretation of these Propositions and analysis of their consequences
for the aggregate behavior of the system are postponed to the next Section.

For the generic case of a single survivor equilibrium we have the following

17



0

1

-e- 0

In
ve

st
m

en
t S

ha
re

Return
r

f(r)

S1

U1

S2

U2

I II III

Equilibria Market Line

0

1

-e- 0

In
ve

st
m

en
t S

ha
re

Return
r

f(r)

S1

U1

S2

I II

III

Equilibria Market Line

Figure 4: Non-generic situations with 3 agents operating on the market. Left panel: In equilibria
S2 and U1 two agents survive. Right panel: In equilibrium U1 all three agents survive.

Proposition 4.2. Let x∗ be a fixed point of (4.5) associated with a single survivor equilibrium.
Without loss of generality we can assume that the survivor is the first agent, so that

ϕ∗n =

{
1 if n = 1

0 if n > 1
.

Denote with Pf1(µ) the (L−1)-dimensional stability polynomial associated with the investment
function of the first agent f1. With the above hypothesis, point x∗ is (locally) asymptotically
stable if the two following conditions are met:

1) all the roots of polynomial

Q1(µ) = µL+1 − (1 + r∗)µ− 1

r∗ l′(r∗)
Pf1(µ) , (4.19)

are inside the unit circle.
2) the equilibrium investment shares of the non-surviving agents satisfy the following re-

lations

−2− r∗ < x∗n
(
r∗ + ē

)
< r∗ , 1 < n ≤ N . (4.20)

The equilibrium x∗ is unstable if at least one of the roots of polynomial in (4.19) is outside
the unit circle or if at least one of the inequalities in (4.20) holds with the opposite (strict)
sign.

Thus, the stability condition for a generic fixed point in the multi-agent economies is
twofold. First, comparison between Q1(µ) and polynomial Q(µ) from (3.9) implies that equi-
librium should be ”self-consistent”, i.e. remain stable even if any non-surviving agent would
be removed from the economy. This is however not enough. A further requirement comes from
the two inequalities in (4.20). In particular, according to the second inequality, the wealth
growth rate of those agents who do not survive in the stable equilibrium should be strictly
less than the wealth growth rate of the survivors r∗. In those equilibria where r∗ > −ē the
surviving agent must be the most aggressive and invest a higher wealth share in the risky
asset. On the other hand, in those equilibria where r∗ < −ē the survivor has to be the least
aggressive.
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The EML “plot” can be used to obtain a geometrical illustration of the previous Propo-
sition. In Fig. 5 we draw again the two investment functions discussed in Section 3. Let us
now suppose that they are both present on the market at the same time. The region where
the additional condition (4.20) is satisfied is reported in gray. In Section 4.2 we found four
possible equilibria: S1, S2, U1 and U2. First notice that the dynamics cannot be attracted by
U1 or U2. Since these equilibria were unstable in the respective single-agent cases, they cannot
be stable when both agents are present in the market. Assume that S1 and S2 are stable
equilibria when the first and second function, respectively, are present alone in the market.
Then, from Proposition 4.2, it follows that S1 is the only stable equilibrium of the system
with two agents. Notice, indeed, that in the abscissa of S1, i.e. for the equilibrium return, the
linear investment function of the non-surviving agent passes below the investment function of
the surviving agent and belongs to the gray area. On the contrary, in the abscissa of S2, the
investment function of the non-surviving agent has greater value and does not belong to the
gray area. Consequently, this equilibrium is unstable.

Let us move now to consider the non-generic case, when k different agents survive in the
equilibrium. The following applies

Proposition 4.3. A fixed point x∗ of (4.5) belonging to a k − 1-dimensional manifold of
k-survivors equilibria defined by (4.12),(4.14) and (4.15) is never hyperbolic.

The non-hyperbolic submanifold is the k − 1-dimensional hyperplane generated by the fol-
lowing eigenvectors

un =
(

0, . . . , 0︸ ︷︷ ︸
N

; 0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸
k−1

,−1, 0, . . . , 0︸ ︷︷ ︸
N−k

; 0, . . . , 0︸ ︷︷ ︸
L

)
, n ∈ {N + 1, . . . , N + k− 1}

with 1 in the n’th place, −1 in the N + k-th place and 0 elsewhere. These vectors correspond
to a change in the relative wealths of the survivors.
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Let Pfn(µ) be the stability polynomial of investment function fn. The equilibrium x∗ is
stable with respect to perturbation orthogonal to the non-hyperbolic manifold if the two following
conditions are met:

1) all the roots of polynomial

Q1�k(µ) = µL+1 − (1 + r∗)µ− 1

r∗ l′(r∗)

k∑

n=1

ϕ∗n Pfn(µ) , (4.21)

are inside the unit circle.
2) the equilibrium investment shares of the non-surviving agents satisfy to the following

relations

−2− r∗ < x∗n (r∗ + ē) < r∗ , k < n ≤ N . (4.22)

The orthogonal perturbations are unstable if at least one of the roots of polynomial in (4.21)
is outside the unit circle or if at least one of the inequalities in (4.22) holds with the opposite
(strict) sign.

The non-hyperbolic nature of the equilibria with many survivors turns out to be a direct
consequence of their non-unique specifications. The motion of the system along the k − 1
dimensional subspace consisting of the continuum of equilibria leaves the aggregate properties
of the system invariant so that all these equilibria can be considered equivalent. Proposition 4.3
also provides the stability conditions for perturbations in the hyperplane orthogonal to the non-
hyperbolic manifold formed by equivalent equilibria. The polynomial Q1�k(µ) is quite similar
to the corresponding polynomial in Proposition 4.2, except that one has to weight the stability
polynomial of the different investment functions Pfk(µ) with the weights corresponding to the
relative wealth of survivors in the equilibrium. At the same time, the constraint on the
investment shares in (4.22) is identical to the one obtained in (4.20). In particular, similar to
the case with one survivor, in those equilibria where r∗ > −ē all surviving agents must be more
aggressive than those who do not survive. In those equilibria where r∗ < −ē the investment
behaviors of survivors have to be less aggressive than the behavior of any non-surviving trader.

4.4 Market Selection and Asymptotic Dominance

In this Section, using the geometric interpretation based on EML “plot”, we try to understand
some relevant implications of Proposition 4.2 about the asymptotic behavior of the model and
its global properties. The following discussion is confined to the generic case of equilibria with
a single surviving trader.

The first implication concerns the aggregate dynamics of the economy. Let us consider a
stable many-agent equilibrium x∗. Let us suppose that r∗ is the equilibrium return in x∗ and
that the first agent is dominating. Then his wealth return is equal to ρ∗1 = r∗ and this is also the
asymptotic growth rate of the total wealth. Then, we can interpret the second requirement of
Proposition 4.2 as saying that, in the dynamical competition, those agent survives who allows
the economy to grow with the highest possible rate. Indeed, if any other agent n 6= 1 survived,
the economy would have grown with a rate x∗n (r∗ + ē), which, since x∗n < x∗1, is lower than
ρ∗1. To put the same statement in negative terms, the economy will never end up in equilibria
where its growth rate is lower than what it would be if the survivor were substituted by some
other agent. One could call this result an optimal selection principle since it clearly states the
market endogenous selection towards the best aggregate outcome.
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Notice, however, that this selection does not apply to the whole set of equilibria, but only
to the subset formed by equilibria associated with stable fixed points in the single agent case
(c.f. (4.21)). For instance, with the investment functions shown in Fig. 5, the dynamics will
never end up in U2, even if this is the equilibrium with the highest possible return. But at
least inside this restricted subset of equilibria that would be stable in the single agent case,
is the selection of market optimal? Does the market choose the equilibrium with the highest
growth rate, among all stable single-agent equilibria? If one looks at Fig. 5, the answer seems
affirmative. In that case the market prefers the stable equilibrium S2 to the unstable S1.
However, even if this ”quasi-optimal” selection may be realized for some particular set of
investment functions (like the ones in Fig. 5 and those considered in Chiarella and He (2001)),
it does not apply in general. A simple counter example is provided by a single investment
function possessing multiple stable equilibria. Consider for instance the nonlinear function in
the left panel of Fig. 6. For this investment function both SL and SH are stable. Now suppose
that an agent possessing this function competes on the market with other agents which are
more risk averse than him and always invest smaller shares of wealth in the risky asset. An
example of more risk averse behavior is provided by the linear investment function in the
same plot. In this situation, the two equilibria of the nonlinear function remain stable and
the riskier agent will ultimately dominate the market. But which equilibria will the market
select? It only depends on the initial condition. There are no guarantee that the market will
and up in SH , the highest return equilibrium. Then, the quasi-optimal selection principle in
the sense of Chiarella and He (2001) is violated.

The existence of multiple equilibria also leads to a second interesting implication of Propo-
sition 4.2, the fact that the dominance of one investment behavior on another is a local property
and, consequently, depends on the initial conditions. Consider again the investment function
in the left panel of Fig. 6 and add a second agent with constant investment function, to obtain
the situation shown in the right panel of Fig. 6. The entry of the new agent changes the
possible equilibria, which become the points S and SH . Notice, however, that in these two
equilibria different agents dominate the market. If the market before the entry of the new
agent was in SH , the first agent still remains the more aggressive, and the entry of the new
agent does not affect his dominant position. On the other hand, if the equilibrium before the
entry was SL, this equilibrium becomes unstable and the system will tend to move away from
it. The ensuing dynamic could ultimately choose the investment function of the new entrant
as the dominant one. This simple example suggests that, at least inside our framework, the
definition of a dominance order relation on the space of trading strategies is impossible.

5 Conclusion

This paper extends the analysis presented in Chiarella and He (2001) and introduces novel
results concerning the characterization and stability of equilibria in speculative pure exchange
economies with heterogeneous traders.

Let us shortly review the assumptions we made and our achievements in order to sketch
the possible future lines of research. We considered a simple analytical framework using
a minimal number of assumptions (2 assets and Walrasian price formation). We modeled
agents as speculative traders and we imposed the constraint that their participation to the
trading activity is described by an individual demand function proportional to their wealth.
Moreover, we assumed that agents form their individual demand decisions on the predictions
about future price returns obtained from the publicly available past prices history. With
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Figure 6: Left Panel: Non-linear investment function leading to multiple equilibria. SH and SL are
stable while U is unstable. A second linear investment function always lays below the first. Right
Panel: The linear investment function is raised above SL. As a result, market now possesses a new
stable equilibria, SM , while SL looses its stability. In the stable equilibria SH and SM two different
agents survive.

prescribed but arbitrary specification about the agents’ behavior, the feasible dynamics of the
economy (i.e. the dynamics for which prices stay always positive) can then be described as a
multi-dimensional dynamical system.

In such framework we started with a single agent case and presented the fixed point sta-
bility analysis of the corresponding system. Then we moved to the general framework with an
arbitrary number of agents and showed that the conditions for the existence of fixed points
and the conditions for their stability are related to the corresponding conditions in the sit-
uation with one single agent. We found that different scenarios are possible: in the generic
case, the system possesses isolated equilibria where one single trader dominates the others and
ultimately captures the entire market. Alternatively, in the non-generic case in which traders
investment functions satisfy a special set of constraints, the system can possesses a continu-
ous manifold of equilibria associated with non-hyperbolic fixed points. In these non-generic
equilibria many agents possess a finite amount of the total wealth of the economy.

The present analysis can be extended in many directions. First of all, even if we proved
that the existence of multiple equilibria is possible, the dynamics in this case remains to
be unveiled. Probably numerical methods can be effectively applied to clarify the role of
initial conditions, the determinants of the relative size of the attraction domains for different
equilibria, etc. These methods can be also used to study the dynamics in the cases when there
are no stable equilibria.

Second, one may ask what are the consequences of the optimal selection principle for a
market in which the set of strategies is not ”frozen”, but instead is evolving in time, plausibly
following some adaptive process. For instance, one can assume that agents imitate the behavior
of other traders (see e.g. Kirman (1991)) or that they update strategies according to recent
relative performances (see e.g. Brock and Hommes (1998)). In such cases, those situations
which we referred as “non-generic” above may become, instead, typical. Proposition 4.3 can
be considered only a first step in the analysis of such situations.

Third, inside our general framework, numerous different specifications of the traders strate-
gies are possible, in addition to the ones analyzed here. They range from the evaluation of the
“fundamental” value of the asset, possibly obtained from a private source of information, to a
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strategic behavior that try to keep in consideration the reaction of other market participants
to the revealed individual choices. The analysis of the consequences of the introduction of
such strategies on the optimal selection principle may, ultimately, refute the statement about
the impossibility of defining a dominance relation among strategies.

APPENDIX

A Proof of Proposition 2.1

Plugging the expression for wt,n from the second equation in (2.4) into the right hand-side of the first
equation, assuming pt−1 > 0 and, consistently with (2.6), pt−1 6=

∑
xt,n xt−1,n wt−1,n, one obtains

pt =

(
1− 1

pt−1

∑
xt,n xt−1,n wt−1,n

)−1 (∑
xt,nwt−1,n + (et−1 − 1)

∑
xt,nwt−1,n xt−1,n

)
=

= pt−1

∑
xt,nwt−1,n + (et−1 − 1)

∑
xt,nwt−1,n xt−1,n∑

xt−1,nwt−1,n −
∑
xt,n xt−1,nwt−1,n

=

= pt−1

〈
xt
〉
t−1
−
〈
xt−1 xt

〉
t−1

+ et−1

〈
xt−1 xt

〉
t−1〈

xt−1

〉
t−1
−
〈
xt−1 xt

〉
t−1

,

where the second equality comes from the first equation in (2.4) rewritten for time t− 1. Condition
(2.6) is immediately obtained imposing pt > 0. Then the price return and wealth return for each
agent n at time t can be derived straightforwardly.

B Proof of Proposition 3.2

The (L+ 1)× (L+ 1) Jacobian matrix J of system (3.2) reads

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0 ∂f
∂r0

∂f
∂r1

∂f
∂r2

. . . ∂f
∂rL−2

∂f
∂rL−1

Rx Rf ∂f∂r0 Rf ∂f∂r1 Rf ∂f∂r2 . . . Rf ∂f
∂rL−2

Rf ∂f
∂rL−1

0 1 0 0 . . . 0 0
0 0 1 0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 0 0
0 0 0 0 . . . 1 0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

, (B.1)

where

Rx =
∂R(x∗, x∗)

∂x
= − 1

x∗ (1− x∗) , Rf =
∂R(x∗, x∗)

∂x′
=

1 + r∗

x∗ (1− x∗) . (B.2)

The stability condition of equilibrium are provided by the following
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Lemma B.1. The characteristic polynomial PJ(µ) of system (3.2) in the equilibrium x∗ is

PJ(µ) = (−1)L−1

(
µL+1 − (1 + r∗)µ− 1

x∗(1− x∗) Pf (µ)

)
(B.3)

where Pf (µ) denotes the stability polynomial of function f introduced in (3.7).

Proof. Consider (B.1) and introduce (L+1)× (L+1) identity matrix I. Expanding the determinant
of J − µ I by the elements of the first column and using Lemma E.1 one has

det
(
J − µ I

)
= (−µ) (−1)L−1

((
Rf

∂f

∂r0
− µ

)
µL−1 +Rf

∂f

∂r1
µL−2 + · · ·+Rf

∂f

∂rL−1

)
−

−Rx (−1)L−1

(
∂f

∂r0
µL−1 +

∂f

∂r1
µL−2 + · · ·+ ∂f

∂rL−2
µ+

∂f

∂rL−1

)
=

= (−1)L−1

(
µL+1 −

(
µRf +Rx

) L−1∑

k=0

∂f

∂rk
µL−1−k

)
,

which, using relations in (B.2) and definition of stability polynomial in (3.7) reduces to (B.3).

Using the relationship l′(r∗) = x∗(1 − x∗)/r∗ it is immediate to see that, apart from irrelevant
sign, (B.3) is identical to (3.9).

C Proof of Lemma 4.1

The expression for rt+1 in (4.2) is identical to the one given in (2.7). From (2.8) it is

wt+1,n = wt,n (1 + xt,n (rt+1 + et)) ,

and dividing both sides by the total wealth at time t+ 1 one gets

ϕt+1,n =
wt,n∑

m wt+1,m
(1 + xt,n (rt+1 + et)) =

=
wt,n∑

m wt,m + (rt+1 + et)
∑

m xt,mwt,m
(1 + xt,n (rt+1 + et)) =

=
ϕt,n

1 + (rt+1 + et)
∑

m xt,mϕt,m
(1 + xt,n (rt+1 + et)) .

D Proofs of Propositions 4.2 and 4.3

Before proving Propositions 4.2 and 4.3 we need some preliminary results. The Jacobian matrix of
the deterministic skeleton of system (4.5) is a

(
2N +L− 1

)
×
(
2N +L− 1

)
matrix. Using the block

structure introduced in Section 4.1 it is separated in nine blocks

J =

∥∥∥∥∥∥∥∥

∂X
∂X

∂X
∂W

∂X
∂R

∂W
∂X

∂W
∂W

∂W
∂R

∂R
∂X

∂R
∂W

∂R
∂R

∥∥∥∥∥∥∥∥
, (D.1)

The block ∂X/∂X is a N × N matrix containing the partial derivatives of the agents’ present
investment choices with respect to the agents’ past investment choices. According to (2.9) the
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investment choice of any agent does not explicitly depend on the investment choices in previous
period and it is

[
∂X

∂X

]

n,m

=
∂fn
∂xm

= 0 , 1 ≤ n,m ≤ N

and this block is a zero matrix.
The block ∂X/∂W is a N × (N − 1) matrix containing the partial derivatives of the agents’

investment choices with respect to the agents’ wealth shares. According to (2.9) this is a zero matrix
and

[
∂X

∂W

]

n,m

=
∂fn
∂ϕm

= 0 , 1 ≤ n ≤ N , 1 ≤ m ≤ N − 1 .

The block ∂X/∂R is a N × L matrix containing the partial derivatives of the agents’ investment
choices with respect to the past returns

[
∂X

∂R

]

n,l

=
∂fn
∂rl−1

= f
rl−1
n , 1 ≤ n ≤ N , 1 ≤ l ≤ L

The block ∂W/∂X is (N − 1)×N matrix containing the partial derivatives of the agents’ wealth
shares with respect to the agents’ investment choices. It is

[
∂W

∂X

]

n,m

=
∂ϕn
∂xm

= Φxmn + ΦRn · Rxm , 1 ≤ n ≤ N − 1 , 1 ≤ m ≤ N (D.2)

where Rxm = ∂R/∂xm, Φxmn = ∂Φn/∂xm and ΦRn = ∂Φn/∂R.
The block ∂W/∂W is a (N − 1)× (N − 1) matrix containing the partial derivatives of the agents’

wealth shares with respect to the agents’ wealth shares. It is
[
∂W

∂W

]

n,m

=
∂ϕn
∂ϕm

= Φϕmn + ΦRn ·Rϕm , 1 ≤ n,m ≤ N − 1 , (D.3)

where Φϕmn = ∂Φn/∂ϕm, Rϕm = ∂R/∂ϕm.
The block ∂W/∂R is a (N −1)×L matrix containing the partial derivatives of the agents’ wealth

share with respect to lagged returns. It is

[
∂W

∂R

]

n,l

=
∂ϕn
∂rl−1

= ΦRn ·
N∑

m=1

Rfmf
rl−1
m , 1 ≤ n ≤ N − 1 , 1 ≤ l ≤ L , (D.4)

where Rfn = ∂R/∂yn.
The block ∂R/∂X is the L × N matrix containing the partial derivatives of the lagged returns

with respect to the agents’ investment choices. Its structure is simple and reads

[
∂R

∂X

]
=

∥∥∥∥∥∥∥∥∥

Rx1 Rx2 . . . RxN

0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

∥∥∥∥∥∥∥∥∥
.

The block ∂R/∂W is the L × (N − 1) matrix containing the partial derivatives of the lagged
returns with respect to the agents’ wealth shares and reads

[
∂R

∂W

]
=

∥∥∥∥∥∥∥∥∥

Rϕ1 Rϕ2 . . . RϕN−1

0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

∥∥∥∥∥∥∥∥∥
.
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The block ∂R/∂R is the L × L matrix containing the partial derivatives of the lagged returns
with respect to themselves

[
∂R

∂R

]
=

∥∥∥∥∥∥∥∥∥∥∥

Rr0 Rr1 . . . RrL−1

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

∥∥∥∥∥∥∥∥∥∥∥

,

where

Rrl =

N∑

m=1

Rfmf rlm . (D.5)

Lemma D.1. Let x∗ be an equilibrium of system (4.5). The Jacobian matrix computed in this point
J(x∗) has the following structure
∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 f r01 . . . f
rL−2

1 f
rL−1

1
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

...
0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 f r0N . . . f

rL−2

N f
rL−1

N

Φx1
1 . . . Φxk1 0 . . . 0 Φϕ1

1 . . . Φϕk1 Φ
ϕk+1

1 . . . Φ
ϕN−1

1 0 . . . 0 0
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

...
Φx1
k . . . Φxkk 0 . . . 0 Φϕ1

k . . . Φϕkk Φ
ϕk+1

k . . . Φ
ϕN−1

k 0 . . . 0 0

0 . . . 0 0 . . . 0 0 . . . 0 Φ
ϕk+1

k+1 . . . 0 0 . . . 0 0
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

...
0 . . . 0 0 . . . 0 0 . . . 0 0 . . . Φ

ϕN−1

N−1 0 . . . 0 0

Rx1 . . . Rxk 0 . . . 0 0 . . . 0 Rϕk+1 . . . RϕN−1 Rr0 . . . RrL−2 RrL−1

0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 1 . . . 0 0
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

...
0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 1 0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

Proof. At equilibrium it is

ΦRn = ϕ∗n
x∗n − x∗1�k

1 + r∗
,

Φxmn = ϕ∗n (δn,m − ϕ∗m)
ē+ r∗

1 + r∗
,

Φϕln =
1

1 + r∗

(
δn,l
(
1 + x∗n(r∗ + ē)

)
− ϕ∗n(r∗ + ē)(x∗l − x∗N )

)
,

(D.6)

where n, l ∈ {1, . . . , N − 1}, m ∈ {1, . . . , N} and ϕ∗N = 1 −∑N−1
j=1 ϕ∗j . Then from (4.12) and (4.13)

it follows that ΦRn = 0 for any agent n and

[
∂W

∂X

]

n,m

=

{
Φxmn m,n ≤ k
0 otherwise

[
∂W

∂W

]

n,m

=

{
0 n > k , n 6= m

Φϕmn otherwise
[
∂W

∂R

]

n,m

= 0 , ∀n,m .
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At equilibrium we also have for m ∈ {1, . . . , N}:

Rxm = −ϕ∗m
1

x∗1�k (1− x∗1�k)
, Rϕm = x∗m (r∗ + ē)

x∗m − x∗1�k
x∗1�k (1− x∗1�k)

, (D.7)

so that Rxm = 0 for m > k and Rϕm = 0 for m ≤ k. The structure above immediately follows.

Lemma D.2. The characteristic polynomial PJ of the matrix J(x∗) can be reduced to the following
form

PJ(µ) = (−1)N+L µN−1 (1− µ)k−1
N∏

j=k+1

(
1 + x∗j (r∗ + ē)

1 + r∗
− µ

)


µL+1 − (1 + r∗)µ− 1

x∗1�k(1− x∗1�k)

k∑

j=1

ϕ∗j Pfj (µ)


 (D.8)

where Pfn is the stability polynomial associated to the n-th investment function as defined in (3.7).

Proof. The following proof is constructive: we will identify in succession the factors appearing in
(D.8). At each step, a set of eigenvalues is found and the problem is reduced to the analysis of the
residual matrix obtained removing the rows and columns associated with the relative eigenspace. In
this way the dimension of the analyzed matrix is progressively reduced.

Consider the Jacobian matrix in Lemma D.1. The last N − k columns of the left blocks contain
only zero entries so that the matrix possesses eigenvalue 0 with (at least) multiplicity N−k. Moreover,
in each of the last N − 1− k rows in the central blocks the only non-zero entries are on the diagonal.
Consequently, Φ

ϕj
j for k + 1 ≤ j ≤ N − 1 are eigenvalues of the matrix, with multiplicity (at least)

one. A first contribution to the characteristic polynomial is then determined as

(−µ)N−k
N−1∏

j=k+1

(Φ
ϕj
j − µ) = (−µ)N−k

N−1∏

j=k+1

(
1 + x∗j(r

∗ + ē)

1 + r∗
− µ

)
(D.9)

where we used (D.6) to compute Φ
ϕj
j at equilibrium.

In order to find the remaining part of the characteristic polynomial we eliminate the rows and
column associated to the previous eigenvalues to obtain

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0 . . . 0 0 . . . 0 f r01 . . . f
rL−2

1 f
rL−1

1
...

. . .
...

...
. . .

...
...

. . .
...

...
0 . . . 0 0 . . . 0 f r0k . . . f

rL−2

k f
rL−1

k

Φx1
1 . . . Φxk1 Φϕ1

1 . . . Φϕk1 0 . . . 0 0
...

. . .
...

...
. . .

...
...

. . .
...

...
Φx1
k . . . Φxkk Φϕ1

k . . . Φϕkk 0 . . . 0 0

Rx1 . . . Rxk 0 . . . 0 Rr0 . . . RrL−2 RrL−1

0 . . . 0 0 . . . 0 1 . . . 0 0
...

. . .
...

...
. . .

...
...

. . .
...

...
0 . . . 0 0 . . . 0 0 . . . 1 0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

(D.10)

Consider the “central” block: since it has only zeros above and below, it is a “diagonal” block and
its eigenvalues are at the same time eigenvalues of the whole matrix. To compute these eigenvalues,
notice that from (D.6) it is

Φϕmn =

{
1 + ϕ∗n v if n ≤ k and n = m

ϕ∗n v if n,m ≤ k and n 6= m
, where v = −

(
x∗1�k − x∗N

) ē+ r∗

1 + r∗
.
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so that the central block can be rewritten as

‖I1 + vϕ . . . Ik + vϕ‖

where Ij is the j-th column vector of the k× k identity matrix, and ϕ = (ϕ∗1, . . . , ϕ
∗
k)t is the column

vector of equilibrium market shares. Using the multilinear property of the determinant one has

|(1− µ)I1 + vϕ . . . (1− µ)Ik + vϕ| =

(1 − µ)k |I1 . . . Ik|+ (1 − µ)k−1 v

k∑

j=1

|I1 . . . Ij−1 ϕ Ij+1 . . . Ik|

where zero determinant terms containing more than one ϕ column has been discarded. The first
contribution on the right hand side is the identity matrix, while the matrices in the summation are
identity matrices with one column replaced by ϕ. Then the previous expression reduces to

(1−µ)k +(1−µ)k−1v

k∑

j=1

ϕ∗j = (1−µ)k−1(1−µ+v) = (1−µ)k−1

(
1 + x∗N (r∗ + ē)

1 + r∗
− µ

)
. (D.11)

Having identified the eigenstructure of the central block we can eliminate it so that the final factor of
the characteristic polynomial can be found from the computation of the determinant of the matrix

M(k, L− 1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−µ . . . 0 f r01 . . . f
rL−2

1 f
rL−1

1
...

. . .
...

...
. . .

...
...

0 . . . −µ f r0k . . . f
rL−2

k f
rL−1

k

Rx1 . . . Rxk Rr0 − µ . . . RrL−2 RrL−1

0 . . . 0 1 . . . 0 0
...

. . .
...

...
. . .

...
...

0 . . . 0 0 . . . 1 −µ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

We compute this determinant in a recursive way. Consider the expansion by the determinant of the
minors of the elements of the first column. The minor of the first element −µ is a matrix with a
structure similar to M(k, L− 1). This is the final matrix obtained if the first agents were not among
the survivors. Let us denote its determinant with M(k − 1, L− 1). The minor associated with Rx1

has a left upper block with k− 1 entries equal to −µ below the main diagonal. This block generates
a contribution µk−1 to the determinant and once its columns and rows are eliminated, one remains
with a matrix of the type in (E.1). Applying Lemma E.1 one then has

M(k, L− 1) = (−µ)M(k − 1, L− 1) + (−1)kRx1µk−1 (−1)L−1 Pf1(µ) ,

where Pf1 is the stability polynomial associated with the first investment function. Applying recur-
sively the relation above, the dimension of the determinant is progressively reduced. At the end one
remains with the lower right block of the original matrix, which is again a matrix similar to (E.1).
Applying once more Lemma E.1 one has for M(k, L− 1) the following

(−1)L−1+k µk−1
k∑

j=1

Rxj Pfj (µ) + (−1)L−1+k µk



L−1∑

j=0

RrjµL−1−j − µL

 .

Using (D.7) for Rxj in equilibrium, using (D.5) for Rrj and also computing at equilibrium:

Rfn = ϕ∗n
1 + r∗

x∗1�k (1− x∗1�k)
,
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we can simplify the last expression and get

(−1)L−1+k µk−1


 (1 + r∗)µ− 1

x∗1�k(1− x∗1�k)

k∑

j=1

ϕ∗j Pfj (µ)− µL+1


 . (D.12)

Finally, the product of (D.9), (D.11) and (D.12) gives (D.8).

Using the characteristic polynomial of the Jacobian matrix it is straightforward to derive the
equilibrium stability conditions mentioned in Section 4.3.

Case of one survivor: Proof of Proposition 4.2

If k = 1 the characteristic polynomial (D.8) reduces to

PJ(µ) = (−1)N+L µN−1
N∏

j=2

(
1 + x∗j (r∗ + ē)

1 + r∗
− µ

) (
µL+1 − (1 + r∗)µ− 1

x∗1(1− x∗1)
Pf1(µ)

)
.

¿From the expression of the derivative of the EML at equilibrium l ′(r∗) one can see that last factor
corresponds to the polynomial Q1 in (4.19). The conditions in (4.20) are derived from the requirement

∣∣∣∣
1 + x∗j (r∗ + ē)

1 + r∗

∣∣∣∣ < 1 j > 1 ,

and the Proposition is proved.

Case of many survivors: Proof of Proposition 4.3

In the case of k > 1 survivors the characteristic polynomial in (D.8) possesses a unit root with
multiplicity k − 1. Consequently, the fixed point is non-hyperbolic. The eigenspace associated to
eigenvector 1 is a subspace of the central block in (D.10). One can see by direct computation that
the k− 1 linearly independent vectors un defined in the Proposition form a base of this space. Since
this space does not depend on system parameters, it is immediate to realize that it does constitute
not only the tangent space to the non-hyperbolic manifold, but the manifold itself. The polynomial
Q1�k(µ) in (4.21) is the last factor in (D.8) while conditions (4.22) are obtained by imposing

∣∣∣∣
1 + x∗j (r∗ + ē)

1 + r∗

∣∣∣∣ < 1 j > k + 1 .

E Determinant of auxiliary matrix

The following is useful for the stability analysis of the different systems considered in this paper

Lemma E.1.
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 x2 x3 . . . xn−1 xn
1 −µ 0 . . . 0 0
0 1 −µ . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . −µ 0
0 0 0 . . . 1 −µ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)n−1
n∑

k=1

xk µ
n−k , (E.1)
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Proof. Consider this determinant as a sum of elements from the first row multiplied on the cor-
responding minor. The minor of element xk is a block-diagonal matrix consisting of two blocks.
The upper-left block is an upper-diagonal matrix with 1’s on the diagonal. The lower-right block
is a lower-diagonal matrix with −µ’s on the diagonal. The determinant of this minor is equal to
(−µ)n−1−k and the relation above immediately follows.
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