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Market Design, Bidding Rules,

and Long Memory in Electricity Prices

Sandro Sapio∗

January 29, 2005

Abstract

In uniform price, sealed-bid, day-ahead electricity auctions, the
market price is set at the intersection between aggregate demand and
supply functions constructed by a market operator. Each day, just
one agent - the marginal generator - owns the market-clearing plant.
Moreover, day-ahead auctions are embedded in multi-segment sys-
tems, wherein diverse protocols coexist and change over time.

This complex environment leads to adoption of simple, adaptive
bidding rules. Specifically, such a market design enables the emergence
of two different types of routines, depending on whether the agent is
a likely marginal or inframarginal generator. However, because of the
uniform price mechanism, only the bidding behavior of the former can
be reflected into market prices.

Depending on the specific way marginal generators process past in-
formation to set their bids - ’hyperbolic’ or ’exponential’ - electricity
prices are likely to display long- or short-memory. Using an analogy
with the hyperbolic discounting - a quite robust behavioral bias in hu-
mans - a long-memory view of electricity prices can be supported. This
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insight is confirmed by spectral analysis of daily data from NordPool
and CalPX markets, in sharp contrast with most previous empirical
studies.

This paper underlines the importance of institutional settings in
determining the relationship between individual behavior and market
outcomes, and proposes an interesting mapping of bidding rules and
models of information processing into the time series properties of
market prices.

JEL Classification: C22,D00,D21,D81,G14,L94.
Keywords: Market Design, Electricity Markets, Hyperbolic Discount-
ing, Long Memory, Fractional Processes.

1 Introduction

There are many reasons to believe that the representative agent hypothe-
sis, so widely employed in traditional economic models, does not generally
hold (Stoker, 1986; Kirman, 1992). In a series of articles, Alan Kirman has
underlined that no simple direct correspondence exists between individual
and aggregate regularities (Kirman, 1999). Aggregation may add structure
and regularity to noisy individual behaviors (Hildenbrand, 1994), giving rise
to the well-behaved demand and supply functions one usually finds in eco-
nomics textbooks. However, as shown by Sonnenschein (1972) and Debreu
(1974), even if given properties happen to be satisfied at the individual level,
it may well be that the aggregate does not display them. Hence, aggregate
outcomes may not reflect individual behaviors. The structure of interactions
between agents, as shaped by the market design, is proved to be crucial in
this respect.

The impact of market design is very clear from a number of studies on
very diverse markets, from stock exchanges (Amihud and Mendelsohn, 1987;
Stoll and Whaley, 1990; Gode and Sunder, 1993; Bottazzi, Dosi and Rebesco,
2002), all the way to markets for perishable commodities. Kirman and Vi-
gnes’ (1991) analysis of the Marseille fish market shows that, due to the com-
plex network of local interactions enabled by the market design, aggregate
properties fail to reflect the behavior observed in individual transactions.

The market for electric power, in terms of non-storability, is quite similar.
Indeed, most empirical studies of electricity pools utilize econometric models
originally chosen to describe the statistical properties of perishable commod-

2



ity prices (see Schwartz, 1997). Using analytical tools (Newbery, 1998) as
well as computational ones (Mount, 2000; Bower and Bunn, 2001), compar-
isons between uniform- and discriminatory-price auctions, as well as between
different bidding protocols, have focused on the static efficiency properties
of electricity markets. Results of the cited literature prove that significant
differential effects are obtained under different market designs, holding con-
stant the assumptions about individual rationality and cognition. This is
consistent with Dosi’s (1995) argument that institutions should be taken as
the primitives in economic analysis. In the same vein, this paper stresses that
market architecture provides the conditions for a differentiation of bidding
rules, and in turn for whether the bidding behavior of a particular subset of
agents gets reflected in the dynamic properties of the market price.

The institutional design most commonly adopted in electricity markets
(bilateral, sealed-bid, uniform price auctions) is characterized by a simple
structure of interactions. The price paid (received) to buy (sell) electricity is
uniform, and set at the intersection between aggregate demand and supply
curves constructed by the market operator. Thus, the market price is set
by one agent at a time: the marginal generator. Coupled with the com-
plexity of a multi-object, multi-segment and evolving market architecture,
this justifies the emergence of different types of routines for marginal and
inframarginal plants. As an implication of the pricing mechanisms, price
dynamics is likely to reflect only the bidding rules of the former - i.e., price
might be qualitatively similar just to the bids submitted by one type of
agents. However, before believing that behind aggregate regularities there
is the bidding behavior of marginal generators, one has to find a plausible
behavioral mechanism.

Evidence from cognitive psychology on hyperbolic discounting (Loewen-
stein and Prelec, 1992; Laibson, 1997) demonstrates that agents frame infor-
mation about periods far from the present according to a hyperbolic model.
This paper conjectures that hyperbolic discounting provides a possible clue
for the interpretation of behaviors whereby a specific statistical property -
long-memory - characterizes electricity prices.

In Section 2, this argument is justified through a description of the main
features of liberalized electricity markets. In Section 3, a theoretical analysis
gives it a formal representation, and shows its equivalence to the statistical
property of long-memory. In Section 4, estimation in the spectral domain
on data from two electricity pools generally confirms the propositions of this
work. Conclusions are drawn in Section 5.
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2 Background

2.1 Market Design

Despite states of high and low economic activity follow each other in a deter-
ministic fashion - within the day, the week and the year - the corresponding
changes in the electricity market conditions are due to a large number of tech-
nological, behavioral and institutional causes, interacting in complex ways.
These engender uncertainty, affecting the nature of market outcomes. In-
deed, theoretical models of electricity auctions often incorporate uncertainty
about either demand (Green and Newbery, 1992; von der Fehr and Harbord,
1993; Green, 1996; Newbery, 1998) or marginal costs (Wolfram, 1999; Bosco
and Parisio, 2001).

Relatedly, from an institutional viewpoint two aspects are of primary
relevance: (i) complexity of the market design; (ii) the uniform price and the
merit order rules.

First, in the wholesale day-ahead market, each day 24 bilateral sealed-bid
uniform price auctions simultaneously determine the quantities to be deliv-
ered and withdrawn the day after at the corresponding hours, as well as
the related prices. Electricity day-ahead markets are equivalent to multiple
object bilateral auctions (von der Fehr and Harbord, 1993; Wolfram, 1998;
Brunekreeft, 2001; Ausubel and Cramton, 2002). As an implication, opera-
tors have to choose at the same time their strategies with respect to 24 daily
auctions.

The need to guarantee system reliability has justified setting up further
segments (i.e. over-the-counter, adjustment, reserve, real-time, and deriva-
tive markets); some with sessions held in parallel, some sequentially, and
some with different rules (notably, continuous trading in over-the-counter,
derivative, and adjustment markets). 1

Furthermore, new segments have often been introduced well after the
inset of the market (for instance, derivative markets in the NordPool: see
Glachant and Finon, 2003). Agents have thus faced the need to revise their
sets of behavioral rules as new profit opportunities have appeared. It is

1An example of what this implies in terms of uncertainty is provided by Bosco and
Parisio (2001). When day-ahead market participants are allowed to trade power in other
market segments, whether and to what extent competitors actually do so affects the cost
structure of plants actually submitted in the day-ahead market. However, such information
is not public knowledge.
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then clear that participation to many market segments, with different and
changing protocols, makes the decision problem extremely complex. And in
highly complex and evolving environments, agents tend to stick to simple,
possibly adaptive decision rules, such as routines (see, among others, Nelson
and Winter, 1982; Dosi and Egidi, 1991; Dosi, Marengo and Fagiolo, 2003).

Second, the market price is set at the intersection between aggregate
demand and supply functions, built by the market operator according to the
so-called merit order. All agents admitted to inject (withdraw) power are
paid (pay) the same uniform price. Besides the highly inelastic aggregate
demand curve, supply bids are ordered from the lowest to the highest, until
total demand is satisfied.2 Furtherly, efficiency considerations require plants
with the highest quasi-fixed costs to be selected for providing the base-load,
i.e. to supply continuously their power.3 Due to this, not all generating firms
have the same probability to set the price. Actually, price is set by just one
generator at a time. Let us call ’marginal generators’ those who are most
likely to set the price, and ’inframarginal’ those who are higher in the merit
order (i.e., the most efficient ones).4

The foregoing description of the market design has provided some pre-
liminary clue as to the properties of bidding rules in electricity markets.
Specifically, it is plausible that such rules are simple, adaptive, and hetero-
geneous. The empirical evidence on prices gives complementary insights for
drawing a more complete picture.

2The elasticity of electricity demand to price is very low. There are two main reasons
for this. First, because retail electricity prices are regulated, they do not reflect the
dynamics of wholesale prices. Hence, final consumers are not directly exposed to wholesale
price signals, and their demand is only responsive to idiosyncratic changes in their needs.
Second, electricity is a necessary and pervasive good.

3Quasi-fixed costs are independent of the output level - just like fixed costs - but are
born only if the plant is switched on. Costs for bringing the plant to the minimum efficient
load belong to this category. Steam turbines, such as those using oil or coal as a fuel, are
characterized by high quasi-fixed costs. Nuclear plants are similar in this respect. At the
other end of the spectrum there are natural gas and hydroelectric plants, while combined-
cycle plants are an intermediate solution. See Checchi (2003).

4Multi-plant generators can be considered marginal if at least one of their plants is
likely to be market-clearing, due to high operating costs.
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2.2 Existing Empirical Literature: Short- vs. Long-

Memory

In the existing empirical literature, the analogy between electricity and per-
ishable commodities - both are non-storable - has made traditional econo-
metric models of commodity prices the reference point also for the analysis
of the former.5 Discrete Ornstein-Uhlenbeck and ARMA processes model
prices as short-range correlated, mean-reverting, and stationary. The spiky
behavior commonly observed is modeled through jump-diffusion processes.6

Long-memory in the first and second order correlation structure of the data is
either neglected, or empirically rejected. Mean-reversion and short-memory
have been found by many authors. Among them, Wolak (1997), Ethier and
Mount (1998), Lucia and Schwartz (2000), Mount (2000), Bystroem (2001),
Knittel and Roberts (2001), Bellini (2002), De Jong and Huisman (2002),
Escribano, Pena and Villaplana (2002), and Weron, Simonsen and Wilman
(2004).

On the other hand, some studies have shown that electricity day-ahead
price series can be described by long-memory processes. DeVany and Walls’s
(1999) finding of a zero-frequency unit root in data from Australian markets is
the first in this stream of literature. In Leon and Rubia (2001), HEGY tests
cannot reject the hypothesis that electricity prices from the Omel market
(Spain) have unit roots at the long-run frequency, as well as at frequencies
of one week, half a week, and a third of a week. After rejecting both the
I(1) and the I(0) hypotheses, through Dickey-Fuller, modified R/S analysis,
and KPSS tests, Atkins and Chen (2002) provide evidence of a fractional
differencing order at zero frequency in prices from the Canadian market of
Alberta, large enough as to imply non-stationarity. Fractional differencing
and non-stationarity are also detected by Carnero, Koopman, and Ooms
(2003) in a periodic time series framework.7 All these latter outcomes of

5See Schwartz (1997) for a survey of the empirical literature about commodity markets.
6The use of jump-diffusion models in finance has first been proposed by Press (1967),

and later by Merton (1976).
7See: HEGY tests (Hylleberg, Engle, Granger, and Yoo, 1990) generalize the traditional

Dickey-Fuller test under the null that increments of the process over, say, τ observations
form a stationary sequence. For instance, it can be used to test whether weekly electricity
price increments are stationary. Lo’s (1991) modified R/S test has I(0) as the null. The
test is based on the range of the partial sums of the process, rescaled by its variance.
The KPSS test (Kwiatowski, Phillips, Schmidt, and Shin, 1992) is similar to the R/S, but
uses the second moment. Periodic time series analysis (Franses, 1994) treats observations
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diverse testing and estimation procedures support a long-memory view of
electricity price dynamics.

2.3 Bidding Rules, Information Processing, and Time

Series Properties

Conditional on the market design commonly adopted, the empirical evidence
just described can be mapped into specific bidding rules and ways of pro-
cessing past information.

Because of the uniform price mechanism, different generators may learn
to use different routines, depending on their position in the merit order.
Specifically, inframarginal generators are mainly interested in avoiding to bid
higher than the expected marginal generator’s bid. Within this threshold,
any bidding rule is, in principle, as profitable as any other. Plausibly, it can
be soon learned that past prices have been set by just a few generators. This
is supported by some evidence on bidding behaviors. For instance, Wolfram
(1998; 1999) shows that, on average, mark-ups set by generating companies
in the England and Wales pool are increasing in their marginal cost level. If it
is known that only few generators own plants with high marginal costs, then
high-bidding generators are known to be at most those few, and are known
to bid approximately the same. Hence, inframarginal generators might take
the series of past prices as the relevant information to predict the threshold.
But in order to understand how actually such a threshold is established, one
has to investigate on the bidding rules of the marginal generators.

Bidding by potentially marginal generators might be based on their own
past bidding behavior, most probably equal to past prices.8 Bids actually
taken into account should be those regarding past sessions of the market,
when demand and supply conditions were similar to the current ones (say,
the week before if there is a weekly pattern in demand). Such a backward-
looking approach involves assessing the outcomes of past actions, which in
turn requires using memory and critically evaluating past events. Memory
constraints and biases may be binding, especially if one has to remember and
make sense of what happened in a complex environment.

for each day of the week - or each month, or each season - as realizations of a different
stochastic process. In a way, this amounts to analyzing univariate series in a multivariate
framework.

8Notice that, because prices are set according to a sealed-bid auction, each generator
knows only past market prices and their own bids.
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Extensive studies in cognitive psychology have shown that, when humans
face dynamical decision-making problems, some behavioral biases emerge
(Loewenstein and Prelec, 1992). An analogous of the hyperbolic discounting
(Laibson, 1997) seems relevant here. In comparing pairs of recent bids, agents
on the electricity market (i.e., the managers responsible for bidding strate-
gies) may give the most recent one a high relative weight, while assigning to
pairs of far-off bids roughly the same weights. An hyperbolically-decaying
function models this much better than the exponential one traditionally used
in decision theory.9 Interestingly, an exponential decay corresponds to the
definition of short-memory given in stochastics, while hyperbolically-decaying
weights describe the property of long-memory.10 Hence, finding long- or
short-memory in electricity prices might signal the use of different bidding
rules by the potentially marginal generators, rooted in different perceptions
of the past.

In sum, due to the market design commonly adopted, electricity prices
are set by one generator at a time, among a small group of potentially price-
setting agents. Their bidding rules are different from those of the infra-
marginal, and the dynamics of market prices should only reflect their behav-
ioral biases. One of such biases, robustly observed in experiments - hyperbolic
discounting - may suggest a source of long-memory in electricity day-ahead
prices. Conditional on the pricing mechanism, long-memory in electricity
prices is thus a reasonable hypothesis.

3 Theoretical Analysis

3.1 A Model with Hyperbolic Bidding Rules

In most electricity auctions, the uniform price is set by the marginal genera-
tor, namely the one who owns the less efficient plant among those selected in
the merit order. However, because of uncertainty about demand and costs,
the marginal generator is not known ex-ante. One can rather assign to each

9In the literature mentioned here, hyperbolic decay is used to model discounting of
expected utility. However, one can use it also to model perception of past events. What
matters is the asymmetric treatment of pairs of recent events versus pairs of far-off ones.
On the contrary, a constant discount rate is consistent with an unbiased perception of
events that are far from the present.

10See Beran (1992) and Baillie (1996) for formal definitions of long- and short-memory.
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generator a probability to be marginal. Reasonably, such probability is close
or equal to zero for plants providing the base-load.

In general, supposem generators have positive probabilities ϕa,
∑m

a=1 ϕa =
1, for a = 1, ...,m, to set the market price. The remaining N − m are the
inframarginal. For simplicity, and without loss of generality, let us assume
m = 2. Bids bat, a = 1, 2, satisfy the following ∀t:

bat = Pt + δat (1)

where δat is the deviation of a’s bid from the actual market price. δat > 0
means that a has not been selected in the merit order, while δat < 0 indicates
that a is the second less efficient generator among the selected ones. bat = Pt

when a is marginal. Let us assume δat is an iid, zero mean and finite variance
shock.

Here, it is proposed that agents set their bids according to a backward-
looking rule, taking their own past bidding behavior into account. The fol-
lowing representation is analogous to the one that best matches discounting
by economic agents, as observed in experiments (Loewenstein and Prelec,
1992; Laibson, 1997):

bat = b̄a+dba,t−τ−
d(d− 1)

2
ba,t−2τ+...−(−1)r

d(d− 1)...(d− r + 1)

r!
ba,t−rτ+...

(2)
with b̄a > 0, and d ≥ 0. Notice that, similar to the experimental evidence,

in which expected future values are weighted hyperbolically, here past bids
are assigned hyperbolically decaying weights. That is, when choosing a bid,
generators refer to the past by weighting pairs of recent bids very differently.
On the other hand, they assign roughly the same weights to behaviors very
far in time. d tunes the asymmetry between weights of recent and remote
information. It is assumed constant across generators. d = 0 is the case of
a constant bid. The hyperbolic discounting bias might characterize agents
even if information is regularly recorded and collected: in fact, what matters
is how agents process such information.

Because of the periodic behavior of electricity demand, it can be assumed
that agents only refer to own bids submitted in past periods when market
conditions resembled the current ones. For instance, when setting bids for
a Wednesday, generators for sure take as references the past Wednesdays,
perhaps also the day before, and simply discard the information regarding
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all other days of the week. More generally, agents take only account of the
information about τ , 2τ , 3τ , ... days before, τ ∈ ℵ+.

By assumption, the price is set by either generator 1 or by 2. Hence, the
expected price at time t reads:

E(Pt) = ϕ1b1t + ϕ2b2t (3)

Plugging lagged versions of (1) into (2), and (2) into (3), after some
algebra we get

E(Pt) = P̄ + dPt−τ −
d(d− 1)

2
Pt−2τ + ...+

[

dδ̃t−τ −
d(d− 1)

2
δ̃t−2τ + ...

]

(4)

where P̄ ≡ ϕ1b̄1+ϕ2b̄2; and δ̃t ≡ ϕ1δ1t+ϕ2δ2t has mean zero and variance
σ2
δ̃
. A more compact expression for the market price process is the following:

(1− Lτ )dPt = P̄ + θ(L)δ̃t + εt (5)

where εt is iid(0, σ
2
ε ), and orthogonal to δ̃t, ∀t; θ(L) ≡ dLτ [1− (d−1)

2
Lτ+...],

and LτPt = Pt−τ . Correspondingly, the spectral density function fP (ω) reads

fP (ω) =
1

2π

[

σ2
ε + |θ(e

−iω)|2σ2
δ̃

]

k
∏

j=1

|1− e−iτω|−2d (6)

with ω ∈ [−π, π], and k ≥ 1. Such a power spectrum has k singularities
at frequencies corresponding to the roots of 1− zτ = 0. The factor gP (ω) ≡
∏k

j=1 |1− e−iτω|−2d is the long-memory component.
The short-memory component is hP (ω) ≡

1
2π
[σ2

ε + |θ(e
−iω)|2σ2

δ̃
], bounded

at all frequencies. Its behavior depends on the properties of θ(L), which
conveys, in the current price, differences between actual past prices and past
bids by potentially-marginal generators. Notice that θ(L) = 0 for d = 0;
θ(L) = Lτ for d = 1. The short-memory component has more structure
when |d| ∈ (0, 1), which sheds light on an interesting interaction with the
long-memory factor.

To put things into perspective, let us compare the above with the case in
which agents weight exponentially their past bidding; i.e.:

bat = b̄a + αba,t−τ + α2ba,t−2τ + α3ba,t−3τ ... (7)
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with |α| < 1. Then,

E(Pt) = P̄ + αPt−τ + α2Pt−2τ + ...+ [αδ̃t−τ + α2δ̃t−2τ + ...] (8)

or, more compactly, for εt iid(0, σ
2
ε), and φ(L) = 1− αLτ − (αLτ )2 − ...:

φ(L)Pt = P̄ +
αLτ

1− αLτ
δ̃t + εt (9)

with spectral density

fP (ω) =
1

2π

[

σ2
ε + |1− αe−iτω|−2|αe−iτω|2σ2

δ̃

|φ(e−iτω)|2

]

(10)

bounded at all frequencies. Hence, prices in an electricity market with
’exponential’ agents would display just short-memory, the property found by
most empirical analyses of electricity prices (see Section 2.2). It is worth
noting that exponential agents are not commonly observed in experiments.
For this reason, it is unlikely that electricity prices display just short-memory
dynamics.

The parameters defined above - d and τ - are likely to assume different
values in peak-load and in off-peak hours. The two cases are analyzed below.

Off-peak case. As shown by von der Fehr and Harbord (1993), the
off-peak (or low-demand) Nash equilibrium strategy for generators is to bid
at marginal cost; i.e., bat = cat. The intuition is that, as long as demand
is below system capacity, bidding above marginal cost engenders the risk of
not being called into operation.11 If generators play the Nash equilibrium,
and marginal cost is constant (cat = ca), then it makes sense to assume
away any behavioral bias. Putting it another way, in this case marginal
generators have no memory problems: own cost information is constant,
whether it is about very recent or very remote periods. Hence, d = 0 seems
a reasonable hypothesis for the marginal cost-bidding strategy. On the other
hand, bounded rationality implies that agents may not play the low-demand
Nash equilibrium. d > 0 would signal this.

11More specifically, an equilibrium in pure strategies only exists when demand is low
and deterministic. If demand uncertainty is assumed, then agents face a trade-off between
submitting a high bid (which increases the likelihood to become the marginal generator),
and a safer, but potentially less profitable, low bid.
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Typically, demand conditions in off-peak hours do not change significantly
from day to day. Electricity demand during the night is low regardless of the
day of the week. Thus, generators are assumed to take the day before as
reference point for their bidding strategy: τ = 1.

Finally, an interesting consequence of the d = 0 hypothesis is that in off-
peak times, the short-memory component has no structure - basically, just
an iid sequence.

All this is summarized in the following

Proposition 1. If bidding is at marginal cost, i.e. bat = ca, ∀a = 1, ...,m,
and if there is no weekly pattern in demand, then the off-peak price P

off
t is

governed by the following process:

P
off
t = P̄ + εt (11)

with spectral density function, for ω ∈ [−π, π]:

foff (ω) =
σ2
ε

2π
(12)

Proposition 1 allows to test the marginal cost bidding hypothesis: finding
d > 0 and a rich short-memory structure might signal that generators bid
above costs, although discarding other hypotheses (such as constant marginal
costs over time) might lead to the same empirical result.

Peak-load case. When demand approaches system capacity, all gener-
ators, even the less efficient ones, are very likely to be called into operation.
Because the risk of not being selected is low, bidding above marginal cost is
the rule.12 Generators are then ’free’ to set their bids, and to change them
over time. To the extent that behavioral biases emerge in such a case, d
ought to be between 0 and 1.

The existence of weekly patterns in electricity consumption suggests gen-
erators take the week before as a reference point. However, the weekly pattern

12Von der Fehr and Harbord (1993) show that, when demand is high and deterministic,
the uniform price converges to the highest admissible price, say, to the price cap imposed by
regulators. Demand uncertainty makes this conclusion only a bit milder. Wolfram (1998;
1999) derives a ’bid shading function’, mapping marginal costs into bids through a mark-
up, and empirically shows that mark-ups set by generating companies in the England and
Wales pool are increasing in their marginal cost level. The extent of market power during
the 2001 California crisis has been assessed by Joskow and Kahn (2002): it accounted for
a significant share of the total increase in prices during the crisis.
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in electricity demand does not look symmetric: dramatic changes in demand
levels are observed between Fridays and Saturdays, and between Sundays
and Mondays; less so in other days. Because market conditions change little
across most days of the week, the day before can also be considered as a
reference point for bidding. Thus, at peak-load, marginal generators might
give hyperbolically decaying weights to information from τ ′ = 1 and τ ′′ = 7
days before, with memory tuned by d′ and d′′ respectively.

Finally, some structure in the short-memory component should charac-
terize the process: θ(L) has many lags because of the fractional d, meaning
that the current price reflects many past deviations of bids by non-marginal
generators from the actual past prices. All of this leads to the following:

Proposition 2. If marginal generators use hyperbolic bidding rules, and if
they use day and week before as references, then the peak-load price P

peak
t

is governed by the following process:

(1− L)d
′

(1− L7)d
′′

P
peak
t = P̄ + θ(L)δ̃t + εt (13)

with spectral density function, for ω ∈ [−π, π]:

fpeak(ω) =
1

2π

[

σ2
ε + |θ(e

−iω)|2σ2
δ̃

]

|1−e−iω|−2(d′+d′′)
3

∏

j=1

|1−2 cos(ηj)e
−iω+e−2iω|−2d′′

(14)
and η = [2π

7
4π
7

6π
7
].

Because fpeak(ω)→∞ as ω → 0 and as ω → ηj, j = 1, 2, 3, at peak-load
one is supposed to find long-memory at long-run and weekly frequencies.
The memory associated to the long-run frequency is expected to be equal to
d′ + d′′, higher than the one related to weekly frequencies (d′′).

3.2 Generalized Fractional Processes

The processes suggested by the foregoing analysis belong to a rather general
class of stochastic time series models: generalized fractional processes.

Indeed, if one approximates the short-memory component hP (ω) by a
truncated Fourier series, (13) corresponds to a generalized version of the
Fractional Exponential (FExp) model introduced by Beran (1993).
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Given a covariance-stationary sequence {xt}, the Generalized Fractional
Exponential (GFExp) model is defined by the following factorization of the
spectral density function fx(ω)

fx(ω) = gx(ω)hx(ω) (15)

with

gx(ω) =
∏k

j=1 |1− 2 cos(ηj)e
−iω + e−2iω|−dj

and

hx(ω) = exp {
∑s

h=0 ξh cos(hω)}

Notice that gx(ω) is in turn factorized in k sets of polynomials with com-
plex roots of modulus one. Such polynomials are generating functions of
Gegenbauer polynomials (see Gradshteyn and Ryzhik, 1980). The so-called
Gegenbauer frequencies ηj model the periodic fluctuations in the data. Spe-
cial cases of the GFExp model are: the FExp if k = 1; the Exponential
model (Bloomfield, 1973) if k = 1, d = 0; and the ARFIMA(0, d, 0) if k = 1,
s = 0.13

The GFExp has the following properties. Assuming that the ηjs are
distinct, the process is stationary if dj < 0.5 whenever | cos ηj| < 1 for j =
1, ..., k, and dj < 0.25 when | cos ηj| = 1. Mean-reversion holds if dj < 1 (if
dj < 0.5 when | cos ηj| = 1). Interestingly, such a process can be at the same
time mean-reverting, and non-stationary. The process is invertible if dj >
−0.5 whenever | cos ηj| < 1 for j = 1, ..., k and dj > −0.25 when | cos ηj| = 1.
Notice that, as ω → ηj, the spectral density function becomes unbounded
from above when dj > 0, and vanishes when dj < 0. The spectrum is
bounded at all other frequencies.

13The GFExp process bears a strong resemblance with the Multiple Frequency Gen-
eralized ARMA (MFGARMA) model (see Woodward, Cheng and Gray, 1998), defined
as

A(L)

k
∏

j=1

(1− 2 cos(ηj)L+ L2)dj (xt − µ) = B(L)εt (16)

where: εt an i.i.d.(0,σ
2) shock; µ is the mean;A(.) an autoregressive polynomial of or-

der p; and B(.) a q-dimensional moving average polynomial. All roots to A(z) = 0 and
B(z) = 0 are outside the unit circle. The MFGARMA model includes GARMA(p, d, η, q),
ARFIMA(p, d, q) and ARMA(p, q) models as special cases. See Gray, Zhang and Wood-
ward (1989) on GARMA processes.
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4 Empirical Evidence

4.1 Estimation

The processes just reviewed provide a natural framework to test the propo-
sitions presented in this work. As a first step, the Gegenbauer frequencies
(G-frequencies henceforth) are detected through periodogram maximization,
as usually done in the related literature. Then, various methods can be
used in order to estimate coefficients.14 Drawing on Beran (1993), a sim-
ple way is to consider natural logarithms of the spectral density function,
and estimate coefficients in the frequency domain through generalized linear
regression with logarithmic link function. The log-spectrum of the GFExp
process reads:

ln fP (ω) =
s

∑

h=0

ξh cos(hω)− 2
k

∑

j=1

dj ln(2| cosω − cos ηj|) (17)

Because the LHS of the above equation is defined on a continuous interval,
[−π, π], it needs to be estimated. The periodogram is the typical choice in
the log-periodogram regression approach (Geweke and Porter-Hudak, 1983;
Robinson, 1995). However, it is an unbiased but not consistent estimate of
the spectrum, so it has to be smoothed before taking logarithms. The aver-
aged periodogram approach is used here: periodograms are computed over
subsamples, and then averaged.15 In order to assess the robustness of results,
different lengths of the fast Fourier transform are considered (corresponding
to 150, 200, 250, 300, and 350 datapoints). Not all of the log-spectrum ordi-
nates are actually used: in order to avoid infinities, those corresponding to
the localized G-frequencies are eliminated. Finally, restrictions on coefficients
are tested through usual likelihood-based information criteria (Akaike Infor-
mation Criterion, AIC; Bayesian Information Criterion, BIC; and Hannan-
Quinn Information Criterion, HIC).

14Building on Geweke and Porter-Hudak (1983), Robinson (1995) proposes the log-
periodogram regression, based on a linear approximation of the spectrum in a neighbor-
hood of G-frequencies. Ferrara and Guegan (2001) use a two-stage procedure that allows
also estimation of short-memory coefficients. Smallwood and Beaumont (2003) prove that
consistent, unbiased and efficient estimates can be obtained if all coefficients are estimated
simultaneously by maximum likelihood, an approach already used by Chung (1996).

15As shown by Bloomfield (1973), coefficients of an exponential model are asymptotically
distributed according to a Gaussian. The averaged periodogram is shown to preserve this
important result.
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The assumption of covariance-stationarity is crucial for the spectral rep-
resentation theorem to hold. Stationarity of the process cannot be taken
for granted: it has to be tested for. One can tentatively perform the es-
timation on log-prices, and retain results only if they indicate stationarity.
Otherwise, if non-stationarity is due to stochastic trends, differenced series
should be used. Let us define the τ -days log-return by Rt ≡ (1−Lτ )Pt. The
time-domain representation is as follows:

(1− Lτ )d−1Rt = θ(L)δ̃t + εt (18)

and the log-spectrum reads:

ln fR(ω) =
s

∑

h=0

ξh cos(hω) + 2
k

∑

j=1

(dj − 1) ln(2| cosω − cos ηj|) (19)

The only difference with respect to the log-price process resides in the
fractional differencing exponent: d− 1 instead of d. Hence, one can estimate
the memory of the τ -days log-return process and then retrieve the differencing
degree of the log-price process by simply adding 1.

4.2 Data and Results

The data analyzed in this work consist of prices from two among the most
widely studied markets: the NordPool and the California Power Exchange
(CalPX). They are very different in many dimensions, including the com-
position of the supply stack, the degree of State ownership of generating
plants, participation rules, and the structural evolution.16 For this reason,
they represent a nice ’sample’ for assessing the robustness of price proper-
ties. However, they share a market design based on 24 daily bilateral uniform
price auctions.

The available time series are the following. First, NordPool day-ahead
log-prices from October 1, 2000 to November 20, 2002 (780 observations).

16There exists a vast literature on the institutional characteristics of electricity markets
and on their evolution. Discussions about the NordPool are included in the book by
Glachant and Finon (2003). Cameron and Cramton (1999), Joskow (2001), and Joskow
and Kahn (2002) analyze different aspects of the CalPX setting. More general overviews
are in Joskow (1996), Wolak and Patrick (1997), Green (2002), Holburn and Spiller (2002),
and Newbery (2002).
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Over time, NordPool has experienced major changes - institutional as well
as technological, such as the introduction of a futures market in 1995, and
the enlargement to Sweden, Finland and Denmark between 1996 and 2000.
The latter process has altered NordPool’s supply stack and, in turn, cost
structures. The period analyzed here is the ’steady state’ of NordPool’s
evolution. It can be considered homogeneous in structural terms. Moreover,
the end of sample is set just before the crisis experienced at the end of 2002,
in order to avoid spurious results.

Second, CalPX day-ahead log-prices from July 6, 1998, to May 31, 2000
(696 observations).17 Actually, the market started on April 1, 1998, and it
continued operating until January 31, 2001. A problem with missing values
leads to discarding roughly the first three months of observations. The last
month of price observations is discarded, because it reflects the intervention
of the California Department of Water Resources as buyer of electricity, after
insolvency of the Investor Owned Utilities (see Joskow, 2001). Also in this
case, the time series is cut just before the inset of the crisis.18

Because of intradaily patterns, time series recorded at different hours of
the day may display different dynamics. Specifically, significant differences
are supposed to exist between prices in peak-load and off-peak hours. Here,
we consider as off-peak prices those recorded at hours when mean demand
(and in turn mean prices) has been the lowest. Similarly, hours when prices
have been the highest on average are referred to as peak-load hours. For the
markets at hand, the selected off-peak hours are 5 am (for NordPool) and 4
am (for CalPX). Peak-load hours are 9 am (NordPool) and 5 pm (CalPX).
These can be considered as representative of broader sets of hours. Prices in
hours from 1 am to 6 am resemble the chosen off-peak series, and prices in
the remaining hours are similar to the peak-load series.

NordPool and CalPX normalized log-price series are shown in Figure
1. Weekly patterns are clearer in peak-load series than off-peak. Summary

17Sample sizes are not very large, for an analysis of long-memory behavior. One of
the implications is that stochastic yearly seasonality cannot be detected in the spectral
domain: one should have at least 6-7 years of daily observations (Granger, 1964). For
the NordPool, the whole sample information (3993 obs.) could have been used. However,
structural and institutional change has been quite radical. A trade-off exists between
having a larger sample and satisfying the assumption of a stable data generating process.

18The CalPX and NordPool observations being discarded here have been used in Cavallo,
Sapio and Termini (2003) for an analysis of how different aspects of the market design
determine different properties of crises.
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Figure 1: Plots of NordPool and CalPX day-ahead log-prices, normalized by
the mean. Top-left: NordPool, 5 am. Top-right: NordPool, 9 am. Bottom-
left: CalPX, 4 am. Bottom-right: CalPX, 5 pm.

statistics are displayed in Table 1 (Appendix). As often found in the empirical
literature on electricity markets, log-prices have fat-tailed and asymmetric
densities. The relative standard deviation is highest in the CalPX.

Tables 3 to 6 in the Appendix display estimates of the GFExp model on
log-prices, for off-peak and peak-load hours in both markets, and for various
lengths of the fast Fourier transform. t-values and likelihood information cri-
teria are also reported. In both markets, off-peak prices are characterized by
just one G-frequency (the 0 frequency), while 4 G-frequencies are detected
in peak-load series (long-run, one week, half a week, one third of a week).
Estimates indicate that day-ahead log-prices are non-stationary in both mar-
kets, for off-peak as well as peak-load hours. Notice, indeed, that off-peak
fractional differencing coefficients are between 0.25 and 0.30; in peak-load
hours, they tend to be well beyond 0.25 at zero frequency, and sometimes
above 0.50 at the weekly ones. Taking account of the detected number of
G-frequencies, all of this suggests considering differenced series, i.e. daily log-
returns for off-peak, and weekly log-returns for peak-load hours. For these
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series, summary statistics are reported in Table 2, while results are in Tables
7 to 10. In Fig. 2, fitted log-spectra are superimposed to empirical ones. The
implied fractional differencing coefficients are defined as the estimated frac-
tional coefficients on log-returns, plus one. Because estimated differencing
coefficients are always negative, the following description refers to stationary
processes, as desired.

The main intuitions behind this paper are confirmed. First, long-memory
holds generally across hours and across markets. The implied fractional dif-
ferencing coefficients are indeed positive and significant for all series. As
to magnitudes, off-peak prices have an implied zero-frequency fractional dif-
ferencing coefficient of about 0.70 in the NordPool, and 0.80 in the CalPX
markets, slightly lower than those in peak-load series (closer to 1). Weekly
frequencies display less memory, even though occasionally, as in the NordPool
case, the corresponding implied coefficients are greater or equal than 0.50.
More memory at the long-run frequency is consistent with marginal gen-
erators bidding according to two different references: day before and week
before. In sum, log-prices are long-memory and non-stationary in both mar-
kets, and almost always mean reverting.

Second, results are more similar across markets than across hours. Simi-
lar dynamics might be governing electricity prices in both markets, because
demand patterns are alike and, less trivially, because market design and in-
dividual behaviors interact in similar ways. It is important to stress here
that the basic design of electricity auctions (24 daily uniform price auctions)
is common to the markets at hand. In both, the institutional design allows
behavioral characteristics of one type of generators to be reflected in the
dynamics of prices more than anything else. Hence, if behavioral biases -
such as hyperbolic discounting - are typical of the human nature as such,
similarity of results across markets is not surprising.

Third, off-peak fractional differencing coefficients are significantly greater
than 0 in both markets. Given the historical accounts, one of the crucial hy-
potheses of Proposition 1 - constant marginal costs over time - seems realistic
at least for the CalPX: in that market, almost no investments in new gen-
erating capacity were accomplished during the period analyzed (see Joskow,
2001). No dramatic changes occurred in the supply structure. As an impli-
cation, generators might not have played the low-demand Nash equilibrium.
This can be taken as preliminary evidence that bidding above marginal cost
occurs even off-peak.

Fourth and last, there is not very much structure in the short-memory
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Figure 2: Empirical and fitted log-spectra of NordPool and CalPX day-
ahead log-returns. Top-left: NordPool, 5 am, daily log-returns. Top-right:
NordPool, 9 am, weekly log-returns. Bottom-left: CalPX, 4 am, daily log-
returns. Bottom-right: CalPX, 5 pm, weekly log-returns. Length of the fast
Fourier transform: 350 datapoints.

components. In NordPool off-peak prices, all coefficients but one in the short-
memory polynomial have been restricted to zero, except in one case. Some
more structure exists in the peak-load CalPX log-price process. A quite
parsimonious representation can be given to the short-memory component
of all series.

Summarizing, long-memory in day-ahead electricity log-prices is a prop-
erty of off-peak as well as peak-load time series in two markets (NordPool
and CalPX). Because price dynamics across markets is similar, conditional
on the hour of the day, a possible explanation is that long-memory reflects
the hyperbolic information processing of the generator who, enabled by the
market mechanism, time by time turns out to set the price. Off-peak and
peak-load price dynamics differ considerably, but fractional differencing pro-
vides evidence against marginal cost bidding in both states of the market.
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5 Conclusions

In this paper, it has been shown that long-memory in day-ahead electricity
prices is grounded on the bidding rules used by a specific type of agents,
the marginal generators. One can conjecture that, because of the market
design, two different types of routines emerge for marginal and inframarginal
agents. These rules are supposed to be simple and adaptive, due to the
complexity of a multi-segment, evolving market system. The uniform price
and the merit order rules imply that only bidding by marginal generators
is likely to affect market price dynamics. Relatedly, what actually seems to
discriminate between long- and short-memory characterizations is the specific
model according to which past information is processed by the price-setting
agents. Estimation in the spectral domain, using data from the NordPool
and CalPX markets, supports a long-memory view of electricity prices, and
points at hyperbolic information processing as a plausible mechanism behind
the bidding behavior of marginal generators.

Hence, within the stream of a growing related literature, this paper
confirms the importance of institutional settings in shaping behaviors and,
through them, market outcomes. Furthermore, it sheds light on an interest-
ing mapping of bidding rules and ways of processing past information into
the time series properties of market prices.

It is not clear whether, and to what extent, other market architectures
would give rise to the same patterns. Pay-as-bid, sealed-bid auctions would
eliminate the clear dichotomy between different types of routines: infra-
marginal generators would have much less degrees of freedom in their bidding.
Open auctions would introduce wider interaction opportunities. This would
be even more true of continuous trading: local interaction patterns and a mul-
tiplicity of local prices, unrelated to congestion issues, would emerge. Epi-
demics of opinion, such as those formalized by Scharfstein and Stein (1990)
and Kirman (1991; 1993), are supposed to lead to a divergence between in-
dividual bidding and aggregate price properties, in contrast with the market
dynamics analyzed here.
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mkt n.obs mean std.dev. c.v. skewness kurtosis

NordPool, 5am 780 4.9401 0.3200 0.0648 -0.7089 4.4176
CalPX, 4am 696 2.8217 0.5161 0.1829 -3.2356 28.6198

NordPool, 9am 780 5.1903 0.3355 0.0646 1.9343 13.1808
CalPX, 5pm 696 3.5336 0.4821 0.1364 1.3770 6.7565

Table 1: Summary statistics, NordPool and CalPX daily day-ahead log-
prices, for off-peak and peak-load hours.

mkt n.obs mean std.dev. c.v. skewness kurtosis

NordPool, 5 am, daily log-returns 773 0.0086 0.2974 34.5226 -0.0962 25.1162
CalPX, 4 am, daily log-returns 689 0.0415 0.5978 14.3901 2.5034 20.1644

NordPool, 9 am, weekly log-returns 773 0.0014 0.2742 192.4018 0.1773 29.7922
CalPX, 5 pm, weekly log-returns 689 0.0025 0.3790 148.8238 -1.6925 45.8107

Table 2: Summary statistics, NordPool and CalPX day-ahead log-returns,
for off-peak and peak-load hours.

par 150 200 250 300 350

d1 0.3298 0.3074 0.2697 0.2414 0.2412

17.8597 11.7290 10.3338 10.0907 11.1100

ξ0 -5.5468 -3.8549 -3.5151 -3.5710 -3.7855

-90.1136 -42.6767 -38.8267 -42.8070 -49.8129
ξ4 0.3763 - - - -

4.2545 - - - -
ξ7 0.3255 - - - -

3.6844 - - - -

AIC -82.1410 110.5014 185.2604 226.7999 252.1477
BIC -70.2616 117.1279 192.2383 234.1534 259.8173
HIC -77.4737 113.1465 188.0103 229.6939 255.1583

Table 3: Estimates of the GFExp model on NordPool day-ahead log-prices,
off-peak hour (5 am), different lengths of the fast Fourier transform. Point
estimates are in bold figures when 95 percent significant (t-values are reported
below them).
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par 150 200 250 300 350

d1 0.3297 0.1801 0.2748 0.2619 0.2667

15.5128 3.9433 12.9526 15.6621 17.8129

ξ0 -3.3218 -2.8811 -1.9832 -1.7761 -1.9044

-45.8989 -30.8009 -29.4565 -33.3091 -39.7462
ξ1 - 0.5257 - - -

- 2.3654 - - -
ξ2 - - -0.5651 -0.5832 -0.5724

- - -5.4671 -7.1202 -7.7750
ξ7 - - 0.4671 0.4674 0.4314

- - 4.8437 6.1247 6.2965

AIC -34.1581 126.0920 36.6831 -43.4168 -72.5205
BIC -28.1637 136.0020 50.6718 -28.6825 -57.1579
HIC -31.7697 130.0300 42.2159 -37.6016 -66.4758

Table 4: Estimates of the GFExp model on CalPX day-ahead log-prices,
off-peak hour (4 am), different lengths of the fast Fourier transform. Point
estimates are in bold figures when 95 percent significant (t-values are reported
below them).

par 150 200 250 300 350

d1 0.4372 0.4189 0.4331 0.4445 0.4561

8.8137 7.3735 8.8659 9.3451 10.3702
d2 0.4539 0.3912 0.3775 0.3492 0.4276

5.3141 3.8385 4.3579 4.0776 5.5621
d3 0.6506 0.5983 0.5991 0.5372 0.5688

7.3096 6.0336 6.7622 6.3303 7.2170
d4 0.4182 0.3630 0.3635 0.3758 0.4131

5.0620 3.6901 4.3899 4.5620 5.4780

ξ0 -2.7500 -3.0916 -3.6544 -4.1865 -4.4732

-34.9027 -33.1647 -45.0661 -52.4675 -60.5060
ξ7 -0.8563 -0.7380 -0.7522 -0.6806 -0.7384

-4.5543 -3.3430 -3.9326 -3.6226 -4.2594

AIC -4.4563 127.2123 132.7797 203.2132 236.1812
BIC 13.1940 146.8505 153.6636 225.2325 259.1549
HIC 2.3758 134.9064 140.9798 211.8538 245.1781

Table 5: Estimates of the GFExp model on NordPool day-ahead log-prices,
peak-load hour (9 am), different lengths of the fast Fourier transform. Point
estimates are in bold figures when 95 percent significant (t-values are reported
below them).
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par 150 200 250 300 350

d1 0.2197 0.4170 0.3970 0.3435 0.3724

4.0384 8.8626 6.8583 6.4454 8.6494
d2 0.3874 0.3907 0.5474 0.5270 0.4900

5.0071 4.6301 6.1218 6.4876 7.6561
d3 0.2307 0.2154 0.3927 0.3320 0.3506

2.8126 2.6232 3.7921 3.6984 4.7639
d4 0.1187 0.3691 0.2616 0.1633 0.1809

1.9196 4.5315 2.8589 1.9040 2.6244

ξ0 -2.9362 -3.7407 -3.8930 -3.6440 -3.4292

-54.2124 -48.4571 -47.0407 -48.3601 -55.9925
ξ2 0.7396 - - - -

4.4696 - - - -
ξ3 0.3702 - - - -

2.1773 - - - -
ξ4 0.3742 - - - -

2.7582 - - - -
ξ7 -0.3442 - - - -

-2.6535 - - - -

AIC -116.6194 48.3656 144.1826 169.4194 103.9262
BIC -90.5368 68.0038 168.4887 195.0602 130.6876
HIC -106.7640 56.0598 153.6909 179.4517 114.3813

Table 6: Estimates of the GFExp model on CalPX day-ahead log-prices,
peak-load hour (5 pm), different lengths of the fast Fourier transform. Point
estimates are in bold figures when 95 percent significant (t-values are reported
below them).
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par 150 200 250 300 350

d1 − 1 -0.3308 -0.3168 -0.2957 -0.2810 -0.3083

-12.2900 -10.7305 -11.6472 -11.3805 -2.5542

ξ0 -2.7995 -3.1315 -3.6837 -4.2150 -4.4901

-30.5416 -30.7794 -41.8345 -48.9620 -57.0933
ξ2 - - - - -0.2441

- - - - -10.0038

AIC 38.6214 160.2343 171.1082 245.8786 277.3973
BIC 44.6158 166.8607 178.1350 253.2728 288.9366
HIC 41.0097 162.8793 173.9071 248.8133 281.9482

Table 7: Estimates of the GFExp model on NordPool day-ahead daily log-
returns, off-peak hour (5 am), different lengths of the fast Fourier transform.
Point estimates are in bold figures when 95 percent significant (t-values are
reported below them).

par 150 200 250 300 350

d1 − 1 -0.1719 -0.2067 -0.2214 -0.2354 -0.2317

-8.0524 -7.7361 -10.3297 -13.8004 -15.4988

ξ0 -3.3279 -2.8413 -1.9773 -1.7762 -1.9044

-45.7709 -30.8512 -29.0721 -32.6619 -39.8055
ξ2 - - -0.5726 -0.5900 -0.5739

- - -5.4830 -7.0630 -7.8066
ξ7 - - 0.4706 0.4716 0.4324

- - 4.8310 6.0602 6.3193

AIC -32.7344 118.6035 41.8467 -31.4501 -73.5519
BIC -26.7400 125.2299 55.8354 -16.7158 -58.1894
HIC -30.3461 121.2486 47.3795 -25.6349 -67.5073

Table 8: Estimates of the GFExp model on CalPX day-ahead daily log-
returns, off-peak hour (4 am), different lengths of the fast Fourier transform.
Point estimates are in bold figures when 95 percent significant (t-values are
reported below them).
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par 150 200 250 300 350

d1 − 1 -0.2250 -0.2449 -0.1427 -0.0399 -0.0511
-3.4997 -3.3937 -2.3354 -0.8434 -1.1630

d2 − 1 -0.8321 -0.9044 -0.7599 -0.6498 -0.6441

-8.4067 -7.8336 -7.8009 -7.6220 -8.3921
d3 − 1 -0.5013 -0.4375 -0.4008 -0.4532 -0.4797

-5.5852 -4.4068 -4.5882 -5.3630 -6.0958
d4 − 1 -0.6030 -0.5383 -0.5053 -0.6053 -0.6270

-6.2803 -4.6436 -5.3289 -7.3803 -8.3285

ξ0 -2.8593 -3.1899 -3.7137 -4.2317 -4.5149

-36.0326 -34.3147 -46.5626 -53.2656 -61.1689
ξ1 1.1084 1.7102 1.1062 - -

2.3166 3.0132 2.3489 - -
ξ7 -0.6586 -0.5803 -0.7172 -0.6845 -0.6781

-3.4638 -2.6315 -3.8018 -3.6590 -3.9180

AIC -1.1728 127.1084 125.3840 200.5579 235.0438
BIC 19.3187 149.9475 149.6901 222.5772 258.0175
HIC 6.6975 136.0128 134.8923 209.1985 244.0406

Table 9: Estimates of the GFExp model on NordPool day-ahead weekly log-
returns, peak-load hour (9 am), different lengths of the fast Fourier transform.
Point estimates are in bold figures when 95 percent significant (t-values are
reported below them).
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par 150 200 250 300 350

d1 − 1 -0.2755 -0.0838 -0.1548 -0.2090 -0.1854

-4.8640 -1.7610 -2.2378 -3.3798 -4.3222
d2 − 1 -0.5149 -0.5913 -0.6317 -0.7393 -0.7018

-6.3916 -6.9302 -5.9884 -7.7629 -11.0037
d3 − 1 -0.7632 -0.7613 -0.7314 -0.8113 -0.8460

-8.9383 -9.1692 -8.3502 -10.3723 -11.5378
d4 − 1 -0.7901 -0.5994 -0.4328 -0.5781 -0.9703

-12.2739 -7.2776 -4.1435 -5.8192 -14.1275

ξ0 -2.9571 -3.7780 -3.8779 -3.6344 -3.4612

-52.4462 -48.4043 -48.6208 -49.9430 -56.7198
ξ1 - - 1.6337 1.6845 -

- - 2.6651 2.9558 -
ξ2 0.6711 - - - 0.5298

3.8958 - - - 2.8915
ξ3 0.4763 - - - -

2.6906 - - - -
ξ4 0.4623 - - - -

3.2735 - - - -
ξ6 - - 0.3652 0.4449 -

- - 2.4691 3.2686 -
ξ7 -0.4484 -0.5092 -0.4263 -0.4145 -0.3104

-3.3201 -2.7548 -2.2562 -2.4143 -2.1677

AIC -104.2275 48.1723 126.4058 149.2925 101.3573
BIC -78.1449 71.0114 154.1167 178.5406 128.1187
HIC -94.3722 57.0767 137.2050 160.7023 111.8124

Table 10: Estimates of the GFExp model on CalPX day-ahead weekly log-
returns, peak-load hour (5 pm), different lengths of the fast Fourier trans-
form. Point estimates are in bold figures when 95 percent significant (t-values
are reported below them).
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