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1. Introduction

In the last years, evolutionary-game theory has provided robust solutions to the problem
of selection among multiple Nash equilibria in symmetric coordination games (Samuelson,
1997). More specifically, a series of papers has suggested that, whenever the game is played
by a population of myopic agents who are repeatedly matched over time and employ best-
reply rules to update their strategies, the risk-dominant (RD) Nash equilibrium will be
almost always preferred to the Pareto-efficient (PE) one in the long-run1.

These models have been often employed to address the issue of technological adoption in
the presence of several competing standards and network externality effects (cf. e.g., Kirman,
1997). However, in such formalizations, agents typically belong to a fixed-size population
and are always able to revise the strategy they currently play. This might seem to be at odds
with many “real-world” adoption choices, where agents sequentially enter the market and
irreversibly choose one of the existing standards (Katz and Shapiro, 1986; Nelson, Peterhansl,
and Sampat, 2004).

On the contrary, irreversible adoption with sequential entry has been studied in Polya-
Urn models (Arthur et al., 1987; Dosi and Kaniovski, 1994). Yet, these models did not
explicitly address the issue of selection among equilibria (e.g., adoption shares) that can be
ranked according to risk-efficiency criteria.

To fill this gap, this note begins to explore equilibrium selection in symmetric 2 × 2
coordination games played by myopic agents where: (i) the cardinality of the population
increases over time due to a positive net entry rate; (ii) players irreversibly choose a strategy
when they enter the economy.

We employ a standard Polya-Urn framework to describe the dynamics of strategy shares.
More precisely, we assume that one agent enters the economy in any time period t = 1, 2, ...
and must irreversibly choose among the available strategies with probabilities which depend
on expected payoffs. We study the long-run behavior of the system under alternative indi-
vidual decision rules (e.g. best-replies with or without stochastic mistakes, linear or logit
probabilistic rules) and we characterize its efficiency properties.

The rest of this note is organized as follows. Section 2 describes the model. In Section
3 we investigate the long-run behavior of the system and we discuss equilibrium selection
issues. Section 4 concludes.

2. A Simple Model

Consider an economy evolving in discrete time-steps t = 0, 1, 2, .... At time t = 0, there
are N0 > 0 agents in the economy. Each agent is fully described by a binary pure strategy
(strategy, henceforth) s ∈ S = {−1, +1}. Thus, at any t, the state of the system can be
characterized by the current share xt ∈ [0, 1] of agents playing +1.

1Cf. e.g. Kandori et al. (1993) and Young (1996). This conclusion holds true also if agents always play
the game against their nearest-neighbors (Ellison, 1993) and, to some extent, if they are able to endogenously
choose their opponents in the game (cf. Jackson and Watts, 2002; Goyal and Vega-Redondo, 2003; Fagiolo,
2005).
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The dynamics runs as follows. Given some initial share x0, at any t > 0 one new agent
enters the economy and irreversibly chooses a strategy in S. This implies that the size of the
population at time t is Nt = N0 + t. The entrant then ‘plays’ a symmetric 2×2 coordination
game against all incumbent agents according to a standard stage-game payoff matrix as in
Table 1, left panel.

+1 −1
+1 a b
−1 c d

+1 −1
+1 1 0
−1 α β

Table 1: Stage-Game Payoff Matrix. Left: Original Payoffs. Right: Normalized Payoffs.

In the left panel of Table 1, a > c and b < d because the game is a coordination one. We
also assume that a > d (i.e. the Nash equilibrium (+1, +1) is Pareto efficient by construction)
and that a 6= b. In what follows, however, we shall focus on the 2-parameter stage-game
payoff matrix in the right panel of Table 1, obtained from the former – without loosing
in generality – by letting α = (c − b)/(a − b) and β = (d − b)/(a − b). Given the above
restrictions, α < 1 and 0 < β ≤ 1. For the sake of convenience, we also assume that α ≥ 0.
Notice that if β = 1 and α = 0 the game is a pure-coordination one. Moreover, if α + β = 1
the two Nash equilibria E+ = (+1, +1) and E− = (−1,−1) are risk-equivalent. Thus, if
α + β < 1, E+ is both PE and RD, while, if α + β > 1, E+ is PE but E− is RD.

Since agents are myopic, expected payoffs associated to any given choice s ∈ S are given
by:

πt(s) = π(s, xt; α, β) =

{
xt

(α− β)xt + β
if
if

s = +1
s = −1

. (1)

Let us call Pr{s∗; π+1
t , π−1

t } the probability that the agent chooses s∗ ∈ S . We assume that
entrants choose s∗ ∈ S according to one of the individual decision rules in Table 22.

The dynamics can be easily formalized in terms of a Polya-Urn framework (Arthur et
al., 1984; Dosi et al., 1994). Since, under any decision rule, Pr{s∗; π+1

t , π−1
t } only depends –

through payoffs – on xt, α and β, we can define:

p(xt; α, β) = Pr{s∗; π+1
t , π−1

t }. (2)

Thus, the dynamics of xt reads:

xt+1 = xt +
p(xt; α, β)− xt

N0 + t + 1
+

η(xt; α, β)

N0 + t + 1
, (3)

where ηt is a zero-mean, dichotomous random variable such that:

Pr{η(xt; α, β) = η̃} =

{
p(xt; α, β)
1− p(xt; α, β)

if
if

η̃ = 1− p(xt; α, β)
η̃ = −p(xt; α, β)

. (4)

2Best-reply rules are studied in Blume (1995). Linear-probability and logit rules are discussed in Ander-
son, dePalme, and Thisse (1992), Blume (1993), Weisbuch, Kirman, and Herreiner (2000) and Brock and
Durlauf (2001).
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Acronym Decision Rule Pr{s∗; π+1
t , π−1

t }

DBR Deterministic Best-Reply





1
1/2
0

if
if
if

πt(s
∗) > πt(−s∗)

πt(s
∗) = πt(−s∗)

πt(s
∗) < πt(−s∗)

PBR Perturbed Best-Reply





1− ε
1/2
ε

if
if
if

πt(s
∗) > πt(−s∗)

πt(s
∗) = πt(−s∗)

πt(s
∗) < πt(−s∗)

LP Linear Probability πt(s∗)
πt(+1)+πt(−1)

NP Non-Linear (logit) Probability exp{γ·πt(s∗)}
exp{γ·πt(+1)}+exp{γ·πt(−1)}

Table 2: Individual Decision Rules. PBR: ε > 0. NP: γ > 0. Note: (i) PBR converges to a
DBR as ε ↓ 0; (ii) NP converges to a DBR as γ ↑ ∞.

As t increases, the impact of stochastic entry choices on xt becomes weaker and weaker.
Dosi et al. (1994) show that, under some mild restrictions, xt converges with probability 1 to
a stable point belonging to the zeroes of the function g(x) = p(x)−x, where x ∈ [0, 1]3. The
properties of p determine the conceivable limit points of the system. However, the dynamics
is path-dependent: if there are at least two stable points, which one is actually selected by
the process depends on both initial conditions (x0) and on the stochastic sequence of early
entrants’ decisions.

3. Long-Run Behavior and Equilibrium Selection

In this Section, we characterize the limit properties of the system under the four decision
rules in Table 2. Let us start with a DBR rule. In this case, it is easy to see that:

Proposition 1 If agents choose under a DBR rule, then:

p(xt; α, β) =





1 if xt > x∗
1
2

if xt = x∗

0 if xt < x∗
,

where x∗ = β/(1− α + β). Thus: Pr{limt→∞ xt ∈ {0, 1} } = 1.

Proof. See Appendix A.

Thus, full coordination will always emerge in the limit, but we cannot predict if it will
occur on E+ or E−. Notice, however, that the larger x∗, the smaller the set {x ∈ [0, 1] :

3See Appendix A. In general, a root x̂ ∈ (0, 1) of g(x) is stable if g(x) crosses the line y = x from above
at x̂. A similar definition applies for x̂ ∈ {0, 1}.
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p(x) > x}. Since x∗ increases with β/(1− α), the more E− is risk-dominant (i.e. the more
β > 1 − α), the larger is the set of shares for which, on average, xt+1 decreases to 0. If the
two equilibria are risk-equivalent (α + β = 1), then x∗ = 1

2
. So, if one supposes to draw

x0 from a random variable uniformly distributed over [0, 1], the value of x∗ can give us a
measure of the likelihood of the RD equilibrium in the deterministic dynamics:

E(xt+1|xt) = xt +
p(xt; α, β)− xt

N0 + t + 1
. (5)

When agents instead employ a PBR, the probability with which the currently best-
strategy is chosen becomes 1 − ε, while the currently inferior option is now selected with
probability ε. We have that:

Proposition 2 If agents choose under a PBR rule, then:

p(xt; α, β) =





1− ε if xt > x∗
1
2

if xt = x∗

ε if xt < x∗
,

where x∗ = β/(1− α + β). Thus Pr{limt→∞ xt ∈ {ε, 1− ε}} = 1.

Proof. See Appendix A.

Coexistence of both +1 and −1 players will always emerge in equilibrium. If the system
tends to select the PE (respectively, the RD) equilibrium, then an ε-sized ‘niche’ of agents
playing the RD, inefficient equilibrium (respectively, the PE one) will always survive. As
happens with the DBR rule, the long-run coordination outcome is entirely unpredictable.
However, the larger x∗ (i.e. the stronger risk-dominance of E−), the larger the probability
that – if one draws initial conditions at random – the deterministic dynamics in (5) will
select the RD outcome.

The parameter ε is typically interpreted as the probability that an agent makes a ‘mistake’
– with respect to the optimal available decision. This mistake occurs independently of how
large (relative) payoffs are. More generally, one might suppose that agents choose only in
probability the strategy associated to the highest payoffs (LP or NP). If agents employ a
LPR, one can prove:

Proposition 3 If agents choose under a LP rule, then:

p(xt; α, β) =
xt

(1 + α− β)xt + β
,

where α ∈ [0, 1) and β ∈ (0, 1]. Hence:

1. If α = 0 and β = 1, then ∀x ∈ [0, 1], Pr{limt→∞ xt = x} > 0.

2. If α 6= 0, let x∗∗ = 1−β
1−β+α

. Then: Pr{limt→∞ xt = x∗∗} = 1.
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Proof. See Appendix A.

Under a LP rule, and if the game is not a pure-coordination one, the long-run behavior
of the system becomes predictable: the share of agents playing +1 in the limit will converge
a.s. to x∗∗. Notice that x∗∗ > 0 unless β = 1: full coordination on the RD outcome will
never be the case unless E+ and E− are Pareto-equivalent. Full coordination on the PE
outcome will conversely emerge only if α = 0 (that is, if the ‘loss’ from miscoordination is
the same for both strategies). But what happens in terms of PE vs. RD equilibria? It is
easy to see that x∗∗ > 1

2
⇔ α + β < 1. If the two equilibria are risk-equivalent then x∗∗ = 1

2
.

Conversely, the larger α+β > 1, the smaller the fraction of agents playing +1 in equilibrium.
However, there will always exist in the limit a small ‘niche’ of players choosing the superior
strategy. Similarly, if E+ is both PE and RD and α + β < 1 approaches 0, then the system
will converge to a x∗∗ > 1

2
which grows with α + β. Unless α = 0, there will always be a

persistent niche of −1 players in equilibrium.
Suppose now that entrants choose their strategy according to a non-linear, logit proba-

bility rule. Then:

Proposition 4 If agents choose under a NP rule, then:

p(xt; α, β, γ) =
1

1 + e−γβ[ 1−α
β

xt−1+xt]
=

1

1 + e−θ[σxt−1+xt]
= p̃(xt; θ, σ), (6)

where θ = γβ > 0 and σ = 1−α
β

> 0. Therefore:

1. If α + β = 1 ⇔ σ = 1 then:

• If θ ≤ 2 then Pr{limt→∞ xt = 1
2
} = 1.

• If θ > 2 then ∃ {x(θ), x(θ)} : Pr{limt→∞ xt ∈ {x(θ), x(θ)}} = 1, where: x(θ) < 1
2
,

x(θ) > 1
2
, and, as θ ↑ ∞, x(θ) ↓ 0 and x(θ) ↑ 1.

2. If α + β 6= 1 ⇔ σ 6= 1 then numerical analyses show that:

• If θ ≤ 2 then ∃ x̂(θ, σ) : Pr{limt→∞ xt = x̂(θ, σ)} = 1. If σ < 1 ⇔ α + β > 1 then
x̂(θ, σ) < 1

2
and decreases with θ. If σ > 1 ⇔ α + β < 1 then x̂(θ, σ) > 1

2
and

x̂(θ, σ) and increases with θ. Moreover, x̂(θ, σ) ↑ 1 as σ ↑ ∞ for any θ ≤ 2.

• If θ > 2 then (3) admits both 1 stable root and 2 stable roots. However, if σ >
1 ⇔ α + β < 1 and θ is sufficiently large, then 2 stable roots {x(θ, σ), x(θ, σ)}
always emerge. As before, we have that x(θ, σ) < 1

2
, x(θ, σ) > 1

2
and, as θ ↑ ∞,

x(θ, σ) ↓ 0, x(θ, σ) ↑ 1.

Proof. See Appendix A.

Under a NP rule, the long-run behavior of the system is predictable if θ ≤ 2. This
happens either when the payoff of (−1,−1) is small (β small), or when entrants’ choices are
not very sensitive to current payoffs (γ small). Thus, risk-dominance of E+ is not sufficient
to guarantee predictability. However, when θ ≤ 2 coexistence always occurs and system
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efficiency – as measured by x̂(θ, σ) – increases the more E+ is RD. On the contrary, if θ > 2
and (E+, E−) are risk-equivalent, two stable roots always arise and they tend to diverge
toward 0 and 1 as θ increases. This regime also occurs when agents become very sensible
to current payoffs and E+ is RD. In such a case, coexistence on efficient (x(θ, σ) > 1

2
) or

inefficient (x(θ, σ) < 1
2
) mixes can always appear.

4. Concluding Remarks

In this note, we studied equilibrium selection in a symmetric 2×2 coordination game played
by myopic agents in a population whose size increases over time. We have shown that the
system delivers a predictable outcome only if agents employ either a linear probability rule
or they use a logit rule, but the latter is not very sensible to current payoffs.

Full coordination on the PE outcome can only occur if agents employ: (i) deterministic
best-reply rules (but the actual outcome depends here on initial conditions and chance);
or (ii) linear probability rules and the ‘loss’ from miscoordination is the same for both
strategies. In all other cases, coexistence of strategies will emerge in the long run and the
efficiency level of the equilibrium configuration will greatly vary with initial conditions, early
entrants’ choices and stage-game payoffs.
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Appendix: Proofs

To prove Propositions 1-4 above, we will make use of the following theorems from Dosi,
Ermoliev, and Kaniovski (1994). Let xt the proportion of +1 players at time t = 0, 1, 2, ...
and define the set of zeroes of the function g(x) = p(x)− x as:

B = {x ∈ [0, 1] : [ψ(x), ψ(x)] 3 0},

where ψ(x) = lim infy→x[p(y) − y], ψ(x) = lim supy−→x[p(y) − y] and y belongs to R(0, 1),
i.e. the set of rational numbers in (0, 1). Then:

Theorem 1 (Arthur et al., 1984) . The sequence {xt} converges a.s. to the set B as
t →∞.

An isolated point ξ ∈ B is called stable if for every (ε1, ε2) ∈ R2
++ small enough then

g(x)(x − ξ) < ∆(ε1, ε2) < 0, provided that ε1 ≤ |x − ξ| ≤ ε2 and x belongs to R(0, 1)
Conversely, an isolated point ξ ∈ B is called unstable if for every ε > 0 small enough, then
g(x)(x− ξ) > 0 for any x ∈ R(0, 1) ∩ [(ξ − ε, ξ) ∪ (ξ, ξ + ε)]. Thus:

Theorem 2 (Dosi et al., 1994) .

1. If ξ ∈ B is a stable point in (0, 1) and there exists (ε1, ε2) ∈ R2
++ such that p(x) > 0 for

x ∈ R(0, 1)∩(ξ−ε1, ξ) and p(x) < 1 for x ∈ R(0, 1)∩(ξ, ξ+ε2), then Pr{limt→∞ xt = ξ
} > 0 for every x0 ∈ (ξ − ε1, ξ + ε2).

2. If ξ ∈ B is an unstable point in (0, 1) and one of the following conditions hold: (a)
in a neighborhood of ξ the function p is continuous; (b) there exists ε > 0 s.t. for
x ∈ R(0, 1)∩ (ξ− ε, ξ + ε) then g(x)(x− ξ) ≥ λ|x− ξ|1+η1 and p(x)(1−p(x)) ≥ η2 > 0,
where η1 > η3(2λ + 1)−1, η1 ∈ [0, 1], λ > 0 and η3 = supx∈R(0,1)∩(ξ−ε,ξ+ε) p(x)[1− p(x)];
(c) there exists a neighborhood of ξ where for x ≤ ξ (resp. x ≥ ξ) either (a) or
(b) holds true and for x > ξ (resp. x < ξ) p(x) = 1 (resp. p(x) = 0). Then:
Pr{limt→∞ xt = ξ} = 0 for every x0.

3. Let y0
t = Noxo/Nt and y1

t = 1+y0
t −No/Nt. If p(y0

t ) < 1 for t ≥ 0 and
∑

t≥0 p(y0
t ) < ∞

then Pr{limt→∞ xt = 0 } > 0. Also if p(y1
t ) > 0 for t ≥ 0 and

∑
t≥0[1 − p(y1

t )] < ∞
then Pr{limt→∞ xt = 1} > 0.

We are now well-equipped to prove Propositions 1-4 above.

Proof of Propositions 1-2

To obtain p(xt; α, β) in both cases, it suffices to note that πt(+1) ≥ πt(−1) if and only
xt > x∗ = β/(1− α + β). Define for ε ≥ 0 a generic BR rule as:

p(xt; α, β) =





1− ε if xt > x∗
1
2

if xt = x∗

ε if xt < x∗
.
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Of course, if ε = 0 we have a DBR, while a PBR is recovered for ε > 0. It is easy to
see that B = {ε, x∗, 1 − ε}. By applying Theorem 2, points (2-3), above one has that
the set of stable points is B∗(ε) = {ε, 1 − ε}. Therefore, Pr{limt→∞ xt ∈ B∗(ε)} = 1.
This means that: (i) under a DBR, Pr{limt→∞ xt ∈ {0, 1}} = 1; and (ii) under a PBR,
Pr{limt→∞ xt ∈ {ε, 1− ε}} = 1.

Figures 1 and 2 depict two examples of p(xt; α, β) under DBR and PBR rules.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
x

p
(
x
)

x
*

Figure 1: An example of p(xt; α, β) with DBR Rules (α = 0.3, β = 0.5, x∗ = 2/3).
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x
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Figure 2: An example of p(xt; α, β) with PBR rules (ε = 0.1, α = 0.3, β = 0.5, x∗ = 2/3).
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Proof of Proposition 3

By replacing expected payoffs (1) in:

p(xt; α, β) =
πt(+1)

πt(+1) + πt(−1)
,

one gets

p(xt; α, β) =
xt

(1 + α− β)xt + β
.

Consider first the case α = 0 and β = 1. Here, p(xt; α, β) = xt. Therefore, B = [0, 1]
and Pr{limt→∞ xt = x} > 0 for all x ∈ B. If (α, β) 6= (0, 1), it is easy to see that p
is C0 over [0, 1] and sign(∂p/∂xt) = sign(β) > 0 ∀xt ∈ [0, 1]. Since p(0; α, β) = 0 and
p(1; α, β) = (1 + α)−1 ≤ 1, then 0 ≤ p(xt; α, β) ≤ 1 for all α ∈ [0, 1) and β ∈ (0, 1].
Moveover, if the game is not a pure-coordination one (α = 0, β = 1), p is always (strictly)
concave:

∂2p/∂x2
t = − 2β(1 + α− β)

[(1 + α− β)xt + β]3
< 0 ∀xt ∈ [0, 1],

and (α, β) 6= (0, 1). Finally, notice that solving for the roots of g(xt; α, β) = p(xt; α, β)− xt,
one gets B = {0, x∗∗}, where

x∗∗(α, β) =
1− β

1− β + α
,

and 0 ≤ x∗∗(α, β) ≤ 1. We have that x∗∗(α, β) = 0 ⇔ β = 1 and x∗∗(α, β) = 1 ⇔ α = 0. By
applying Theorem 2, points (2-3), above one has that only x∗∗(α, β) is stable, as p(ε; α, β) > ε
for any small ε > 0. Thus Pr{limt→∞ xt = x∗∗(α, β)} = 1.

Figure 3 shows some examples of p(xt; α, β) under a LP rule for different values of α and
β.

0.0
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0.4
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1.0
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α=0.0 β=0.1
α=0.9 β=0.7

Figure 3: An example of p(xt; α, β) with LP rules for different values of α and β.
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Proof of Proposition 4

By replacing expected payoffs (1) in:

p(xt; α, β) =
exp{γ · πt(+1)}

exp{γ · πt(+1)}+ exp{γ · πt(−1)} ,

one gets

p(xt; α, β) =
1

1 + e−γβ[ 1−α
β

xt−1+xt]
,

and, defining θ = γβ > 0 and σ = 1−α
β

> 0, the more useful two-parameter function:

p̃(xt; θ, σ) =
1

1 + e−θ[σxt−1+xt]
.

Being a logistic function, we know that p̃ ∈ C0 and ∂p̃/∂xt > 0 ∀xt ∈ [0, 1]. Moreover,
p̃(0; θ, σ) = (1 + eθ)−1 < 1

2
and p̃(1; θ, σ) = (1 + e−σθ)−1 > 1

2
. Thus, 0 < p̃(xt; θ, σ) < 1

∀xt ∈ [0, 1] and for all (θ, σ) ∈ R2
++. Notice also that p̃ is convex for all xt ≤ (1 + σ)−1 =

β/(1 − α + β) = x∗ and concave for xt ≥ x∗. Hence, at xt = x∗, ∂2p̃/∂x2
t = 0 for all

(θ, σ) ∈ R2
++.

Consider first the case α + β = 1 ⇔ σ = 1. Here, p̃(x∗; θ, σ) = x∗ = 1
2
, so that B 3 1

2
.

However, 1
2

does not need to be the unique root for g̃(xt; θ, 1) = p̃(xt; θ, 1)− xt = 0. In fact,
it is easy to see that 1

2
is the unique root for g̃(xt; θ, 1) = 0 if and only if ∂p̃/∂xt|xt=

1
2
≤ 1 ⇔

θ ≤ 2. In this case, 1
2

is stable because p̃ is C0 and crosses 1
2

from above. Conversely, if
θ > 2, g̃(xt; θ, σ) = 0 will admit two more roots (other than 1

2
), say {x(θ), x(θ)}, where it

must be that x(θ) < 1
2

and x(θ) > 1
2
. Thus, 1

2
becomes unstable, while x(θ) and x(θ) are

both stable for the same argument. Some examples of p̃(0; θ, 1) for different values of θ are
shown in Figure 4, while Figure 5 plots the roots of g̃(xt; θ, 1) = 0 against θ: notice how, as θ
increases, x(θ) ↓ 0 and x(θ) ↑ 1. Hence, Theorem 2 applies and the first point of Proposition
4 is proved.

Consider now the case α+β 6= 1 ⇔ σ 6= 1. Numerical analyses show the existence of two
parameter regions, one where the dynamics of the system admits only one stable root, and
another one where two stable roots exist, see Figure 6.

Notice that when θ ≤ 2, similarly to the σ = 1 case, the system admits only one root
x̂(θ, σ) for all σ > 0. Moreover, as Figure 7 shows, if σ < 1 then x̂(θ, σ) < 1

2
and decreases

as θ increases. Conversely, if σ > 1, then x̂(θ, σ) > 1
2

and x̂(θ, σ) ↑ 1 as θ ↑ ∞. Finally,
x̂(θ, σ) ↑ 1 as σ ↑ ∞ for any θ ≤ 2, cf. Figure 8.

If θ > 2, Figure 6 shows that the process admits both 1 stable root and 2 stable roots.
However, if σ > 1 and θ is sufficiently large, then 2 stable roots {x(θ, σ), x(θ, σ)} always

emerge. As Figure 9 indicates, in this region x(θ, σ) < 1
2
, x(θ, σ) > 1

2
. Finally, as θ ↑ ∞,

x(θ, σ) ↓ 0, x(θ, σ) ↑ 1. Once again, by applying Theorem 2, the second point of Proposition
4 follows.
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Figure 4: NP rules. The case σ = 1. The function p̃(xt; θ, 1) for different values of θ.

Figure 5: NP rules. The case σ = 1. Roots of p̃(xt; θ, 1)− xt = 0 as a function of θ.
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Figure 6: NP rules. The case σ 6= 1. Stable roots vs. σ and θ.
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Figure 7: NP rules. The case σ 6= 1, θ ≤ 2. The single stable root as a function of θ for
different values of σ.
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Figure 8: NP rules. The case σ 6= 1, θ ≤ 2. The single stable root as a function of σ for
different values of θ.

Figure 9: NP rules. The case σ > 1. The two stable roots vs. θ ≥ 5.
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