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Abstract 

By using the PatVal-EU dataset we find that the most important determinant of patent 
licensing is firm size. Patent breadth, value, protection, and other factors suggested by 
the literature also have an impact, but not as important. In addition, most of these 
factors affect the willingness to license, but not whether a license actually takes place. 
We discuss why this suggests that there are transaction costs in the markets for 
technology. The issue is important because many potential licenses are not licensed 
suggesting that the markets for technology can be larger, with implied economic 
benefits.  
 
 
Keywords: Licensing, patent scope, complementary assets, firm size, markets for 
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1 Introduction 

The importance of technology licensing has long been recognized by the managerial and the 

industrial economic literature. Early studies on licensing, especially in the industrial economic 

tradition, emphasized its implications for the diffusion of technology, the duplication of research, 

and product market competition (e.g. Shephard, 1987; Rockett, 1990; Gallini, 1984). Recently, 

there has been a revived interest in this topic in the managerial and technological literature. A 

natural reason is that technology licensing has increased considerably worldwide during the 

1990s (e.g. Athreye and Cantwell, 2005) following a greater emphasis of company strategies on 

technology exchange through arms-length market transactions, strategic alliances, or cross-

licensing agreements (e.g. Grindley and Teece, 1997; Rivette and Kline, 2000; Arora et al., 

2001; Hall and Ziedonis, 2001; Arora and Merges, 2004; see also OECD, 2005, and The 

Economist, 2005).  

This paper focuses on two issues. First, there is a fairly extensive literature highlighting 

several theoretical determinants of technology licensing. Yet, because of the limited availability 

of comprehensive data, practically no study has been able to provide in a single paper a broad 

empirical assessment of the theoretical factors that affect licensing as suggested by the literature. 

Second, existing studies have not been able to disentangle the determinants of the propensity to 

license vis-à-vis the actual occurrence of a licensing event. This is important because, as we shall 

see below, there is a fair share of patents that the owner would like to license but which are not 

licensed. These technologies may be of small or no economic value. Hence, they may have no 

demand. Alternatively, there could be transaction costs or other impediments to technology 

trade. If so, the markets for technology could be larger than what we observe. Since there are 

many unused patents, this could enhance the use of technology, and produce benefits associated 

with a greater utilization of technologies that would otherwise be under-exploited.  

The PatVal-EU data (PatVal for short) enable us to achieve both goals. PatVal is 

described in detail in Giuri et al. (2005), also published in this Issue. It is based on a survey of 

the inventors of 9,017 European patents granted at the European Patent Office (EPO) between 

1993 and 1998. The inventors were located in France, Germany, Italy, the Netherlands, Spain 

and the United Kingdom. A unique feature of our survey is that it provides information about 

whether the patent was licensed or not, and if not whether the inventor thought that the applicant 

was willing to license it. This information is usually largely unavailable, especially at the scale of 

this study. Furthermore, we combine the PatVal data with additional variables at patent and firm 
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levels by drawing on other EPO and firm level datasets like Amadeus and Who Owns Whom. 

We can then perform a comprehensive analysis of the determinants of patent licensing at the 

micro level. 

We divide our analysis into two steps. We first run a probit estimation of the probability 

to license a patent where we ignore the question of the propensity to license and focus on actual 

licensed patents. This is to show some plain results without the complications of the more 

elaborate structure of our second estimation. We discuss the main theoretical propositions in the 

literature on the determinants of technology licensing, and empirically test them in the same 

regression model. We corroborate the main theories and findings of the literature about the role 

of patent protection, complementary assets and the nature of knowledge. Moreover, we provide 

new evidence. We find that licensed patents are: a) broader in scope; b) correlated with measures 

of their economic value; c) more likely when they are owned by smaller firms. Existing 

empirical studies on technology licensing rely on small samples, and focus on specific industries 

like computer, semiconductors, and chemicals (e.g. Grindley and Nickerson, 1996; Grindley and 

Teece, 1997; Hall and Ziedonis, 2001; Cesaroni, 2003; Fosfuri, 2004; Kollmer and Dowling, 

2004). The cross-sector studies by Anand and Khanna (2000) and Arora and Ceccagnoli (2006) 

are closer to the breadth of our work. However, we employ a richer set of explanatory variables.  

In our second step we estimate a Heckman-selection model. We look at the determinants 

of the choice to license a patent and, given that the applicant is willing to license, at what 

determines whether the patent is actually licensed. PatVal itself provides the motivation for this 

analysis. While about 11% of the PatVal patents are licensed, for another 7% the owner was 

willing to license but did not, which suggests that the market for patents could be almost 70% 

larger. This links to another important issue about patents, viz, that many of them are not used. 

Some of them are not used for strategic reasons (“blocking” patents, e.g. Hall and Ziedonis, 

2001). But others are not used because the owner does not have the resources, or the incentives, 

to invest in them. For example, a survey conducted by the British Technology Group (1998) 

revealed that 67% of US firms own technologies that they do not use. Similarly, Rivette and 

Kline (2000) show that large firms are repositories of unused patents.  

While strategic patents are unlikely to be licensed in any case, an active market for 

technology can encourage the use of “sleeping” patents (Rivette and Kline, 2000; Palomeras, 

2003). As noted earlier, these patents may not be of value, and hence have no demand. 

Alternatively, there could be transaction costs or other barriers to technology trade that prevent 

this potential market from being realized. Our analysis can shed light on this issue. By estimating 

the determinants of licensing given that the owner wants to license, we can find which factors 
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encourage or discourage actual licensing. We can then understand the nature of these 

impediments, and how and whether they can be removed. Of course, markets for technology are 

unlikely to eliminate all the unused patents, but they can contribute in reducing them. As a 

matter of fact, some assessments have suggested that there was a notable untapped market for 

technology in Europe around the end of the 1990s (Arora et al., 2001).  

To anticipate our key results we find that there is room for increasing the actual rate of 

technology licensing. We show that practically all the determinants of licensing proposed by the 

literature (protection, generality, value, etc.) affect the willingness to license. This suggests that 

the technology suppliers know the characteristics of the patents that are likely to be sold. By 

contrast, only a few of these characteristics affect the conditional probability of an actual license. 

For example, we found that proxies of the value of patents or their generality do not affect the 

conditional probability of licensing. If they did, the reasons why a licensable patent was not 

licensed could simply be that the patents were not valuable or general enough, and hence had 

limited demand. If instead, the suppliers select more valuable or general patents for licensing, the 

pool of licensable patents is less discriminatory along these characteristics. Simply put, if all the 

licensable patents are valuable or general, these factors cannot explain actual licensing. As a 

result, the determinants of the conditional probability of licensing are more subtle. The only 

extensive study that we know on this matter (Razgaitis, 2004) finds that the failure to conclude a 

licensing deal ranges from the inability to find potential licensees, to difficulties in getting 

internal approval, disagreements on conditions like geographical or exclusivity restrictions, and 

other such reasons. Divergence on licensing payments is one of these reasons, but it is not more 

important than the others. Since licensing contracts have exploded in recent years, many of these 

impediments may depend on a general inexperience with such contracts, and related lack of 

standardization in their format or other aspects. Policies aimed at removing these transaction 

costs may then expand the technology markets, and improve the rate of economic utilization of 

patents. 

This paper is organized as follows. Section 2 presents the theoretical background and the 

hypothesis to be tested. Section 3 describes the data source and applied methodology. Section 4 

reports the results from our analysis. Section 5 discusses the empirical results and concludes.  
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2 Theoretical background and hypotheses 

The theoretical and empirical literature on technology licensing has developed several 

hypotheses about the factors that affect the decision to license proprietary knowledge, and 

patents in particular.  

Strength of patent protection 

Stronger patents can encourage technology licensing because they make it more difficult for the 

licensee to invent around the patent. More generally, since licensing implies lower control on the 

diffusion of the technology, the strength of patent protection makes it more difficult for anyone 

to free ride on the right to use or produce the technology. Arora (1995) developed a theoretical 

model showing that bundling tacit know-how with codified knowledge protected by a patent 

reduces problems of opportunism and make it possible to realize contracts for the exchange of 

technologies. In his model the licensee needs the tacit knowledge to use the technology 

productively. Stronger patent protection encourages the licensor to transfer an amount of know-

how closer to the first best. In a similar vein, Gallini (2002) shows that stronger protection 

discourages the licensee to terminate the licensing contract or aggressively compete with the 

licensor on the technology market, which encourages licensing. In this case licensing can also 

mitigate the problem raised by Merges and Nelson (1990) and Scotchmer (1991) of discouraging 

further research aimed at developing potentially infringing subsequent inventions, especially 

when technologies are cumulative or science-based. 

In the empirical literature there is evidence that stronger patents reduce transaction costs 

in technology licensing contracts and favour vertical specialization (Arora, 1996; Nakamura and 

Odagiri, 2003; Arora and Merges, 2004). Anand and Khanna (2000) show that in the chemical 

sector, and especially in pharmaceuticals and biotechnology, where patent protection is more 

effective, there is a higher propensity to license than in other industries. Gans, Hsu, and Stern 

(2002) find that the presence of patents in the technology portfolio of the new firms increases the 

likelihood that they licence their technologies to an incumbent firm instead of entering into the 

final market for product. By using the CMU survey of US companies (Cohen et al., 2000), Arora 

and Ceccagnoli (2006) find that the effectiveness of patent protection, as perceived by the 

surveyed R&D managers, positively affects the propensity to license when complementary assets 

are absent or unimportant. 
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Generality of the technology 

More general technologies, i.e. with a wider spectrum of potential applications, are more likely 

to be licensed. First, a higher number of applications means greater potential demand for the 

technology as it may serve a larger number of uses. Second, this makes it more likely that some 

of the uses are distant from the applications of the patent holder, who may then be more inclined 

to license it because the licensee is in a fairly remote final market, and the potential competition 

is weaker. Moreover, from a theoretical perspective, Bresnahan and Gambardella (1998) 

developed a theoretical model in which more general-purpose technologies are associated with a 

greater vertical specialization in industry and the formation of upstream technology specialist 

firms which license the technology to several manufacturers in different industries.  

Scientific nature of the technology 

Teece (1986) suggested that the tacit or codified nature of knowledge can affect the licensing 

decision. Codified knowledge is easier to imitate, but it is also easier to transfer because it can be 

articulated more clearly. This is because a good deal of the knowledge required to use the 

technology can be summarized in written forms, or in algorithms or designs. Scientific 

knowledge is typically more codified, which makes the transfer of science-based technologies 

easier. By contrast, technologies that are largely based on tacit knowledge require much more 

than the blueprints to use them effectively (Arora and Gambardella, 1994). Since it is codified, 

scientific knowledge also makes it easier to protect the patent because it is clearer what the 

object of the protection is. Technologies based on tacit knowledge are instead subject to more 

ambiguities about what is protected. Both easier transfer and more effective protection then 

make patents that rely on scientific bases more likely to be licensed, while making technologies 

based on tacit sources less likely.  

Economic value of the technology  

Licensed patents have a higher economic value. Since the licensee buys the license at a price, he 

needs to obtain a discounted stream of rents from the patent higher than the price paid. Many 

patents are worth nothing. They produce a zero or even negative stream of profits if an attempt is 

made to exploit them economically. These patents, and particularly the patents in the left tail of 

the value distribution of patents, will then not meet any demand in the market. To put it more 

broadly, they are less likely to be licensed than those in the right tail. Clearly, not all valuable 

patents will be licensed. But a licensed patent is in any case picked from a subset of better 

patents. Moreover, valuable patents induce a higher demand. If there are more potential buyers, 

the supplier enjoys a higher bargaining power, which raises the price of the license. More 
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generally, the seller can benefit from a higher share of the gains from trade, which encourages 

the sale of the patent.  

 To be sure, the foregoing argument assumes that information about the value of the 

patent is fairly transparent. If there is significant asymmetric information between the buyer and 

the seller a classical “lemon” problem may arise. The buyer knows that the sellers would only 

sell lemons, and therefore would only buy at low prices. In this case the market for patents would 

be small and populated by low value patents. However, it is unlikely that today’s markets for 

patents are characterized by significant asymmetric information. The patents disclose a good deal 

of information, which is even more pronounced with the availability of on-line information and 

the ease with which patents can be searched for and retrieved. Moreover, the buyers in this 

market are technologically knowledgeable firms, often large ones. As a result, “lemon” problems 

are unlikely, and the licensed patents are on average economically valuable technologies. At any 

rate, our empirical analysis enables us to test whether licensed patents are more or less valuable, 

thereby assessing these competing views. 

Firm size and complementary assets 

The large firms are less likely to license their technologies. There are two related reasons. The 

first one has to do with size per se. Arora and Fosfuri (2003) develop a model showing that firms 

license a technology when the “revenue effect” deriving from the licensing fees is higher than 

the “rent dissipation effect” represented by the loss of firm profits due to the increased 

competition in the product market after licensing. Many factors influence either one of the two 

effects. For instance, other things being equal, stronger patent protection favours licensing 

because it makes it harder to imitate the innovation. This raises the revenue effect because the 

buyer can hardly reproduce the technology, and the seller is more confident that he can remain a 

monopolist in the technology market. Similarly, the rent dissipation is smaller if the licensee is in 

a distant market – e.g. because the technology is broad and the licensee is in a different final 

sector, or he is in a distant geographical market in which the licensor does not operate.  

Arora and Fosfuri then show that if the licensor has a small market share, the rent 

dissipation effect is smaller because there is a lower loss from creating another competitor after 

licensing. To see this, consider the extreme case in which the licensor has no market share. In 

this case there is no rent dissipation because the licensee would not take any market share from 

the licensor. By contrast, if the licensor is a monopolist, there is no incentive to license. This is 

because the monopolist can only extract as much as the duopoly profits from the licensee, and 

the sum of the duopoly profits from the license (revenue effect) plus the duopoly profits obtained 
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in the market after licensing is always lower than the monopoly profits that the firm earns 

without licensing. In general, they show that the larger the market share of the licensor the higher 

the loss in profits due to the creation of another competitor from the license. As a result, larger 

firms, which have higher market shares, license less because they have more to lose from 

licensing.  

The second reason is that large firms are integrated, and typically own the 

complementary assets for innovation. Moreover, they can obtain capital more cheaply either 

because they have internal funds or because market power or other factors facilitate their access 

to the financial market. Thus, they can buy complementary assets quickly and more cheaply if 

necessary. This makes integration of the technology in their downstream business operations less 

costly. Teece (1986) provides an articulated discussion of the role of complementary assets in 

reducing the propensity to license. Arora and Ceccagnoli (2006) also discuss this point and they 

verify it empirically.  

Conversely, the smaller firms, especially start-ups and younger firms in technology-based 

businesses, are more likely to license since they may miss co-specialised assets for innovation. 

For these reasons they may enter the market by supplying their technologies or by forming 

coalitions with established firms (Teece, 1986; Kollmer and Dowling, 2004). In addition, 

especially in recent years, the rise of technology markets has encouraged many smaller firms and 

start-ups to follow a licensing business model whereby they choose strategically not to become 

downstream producers, but focus on technology licensing without investing in the 

complementary assets. Examples include the so-called fab less or chip less companies in 

semiconductors, or the small research-intensive firms in the biotech industry. This suggests that 

once a small firm or a start-up lacks the complementary assets to innovate, in current markets 

and industry settings there are factors that encourage them to remain a specialized business 

licensing out rather than integrating technology.  

The association between smaller firms and licensing has been emphasized by several 

streams of the literature. For example, in the organizational literature on entrepreneurship, Baron 

and Hannan (2002) or Meyer and Roberts (1986) argue that there are very different 

organizational blueprints inside the small and young firms. This suggests that the small firms that 

started from their very foundation with a strategic focus are more likely to grow and preserve 

this focus over time. Since the entrepreneur’s mental schemes greatly affect these blueprints, the 

fact that the entrepreneur is also an inventor is a sign of the innovative characteristic of the 

venture, and positively affects the probability that the firm will remain a technology supplier. As 
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a matter of fact, some authors have suggested that engineers and scientists prefer to work in 

small independent companies rather than larger companies (Freeman and Soete, 1997).  

Moreover, licensing can be an optimal tool for the new small firms to increase their 

reputation by establishing links with consolidated companies (Teece, 1986; Stuart et al., 1999; 

Shane and Venkataraman, 2003). These links may occur when the new ventures spin-off from 

large firms which can be buyers of their technology. Arora and Merges (2004) put up a 

structured argument on this topic. They maintain that with strong intellectual property rights and 

positive information spilling over between a buyer and a supplier of technology, vertical 

specialisation is preferred to integration. Moreover, for the buyer firm it is more efficient to spin-

off a specialized and motivated independent firm endowed with patents from which it can 

subsequently buy the technologies through supply contracts. In this way the independent firm 

can also learn from other buyers and leak some information to the original parent company. In 

line with Arora (1995, 1996) the independent licensee will also face fewer transaction costs for 

customising the technology to the user needs and to transfering know-how to their original 

employer, given the existence of established links and reputation reducing the risks of 

opportunism. Finally, evidence from Arora and Gambardella (1990) shows that large firms 

invest in minority shares of new companies in biotechnology not only to monitor external 

research, but also to establish preferential links with new firms for acquiring and 

commercialising important inventions. The recent literature on corporate venturing and corporate 

entrepreneurship further highlights these relationships between incumbents and new firms (e.g. 

Chesbrough, 2002).  

Core vs. non-core technologies  

Large companies are more likely to license their non-core technologies. The resource- and 

competence-based view of the firm has stressed that firms should base their sustainable 

competitive advantage on heterogeneous, imperfectly mobile, and inimitable resources, or more 

generally on resources protected by isolating mechanisms from imitation by the competitors 

(Rumelt, 1984; Barney, 1986; Peteraf, 1993). But even a large firm is unable to maintain highly 

competitive skills and capabilities in a wide range of domains. As a matter of fact, Prahalad and 

Hamel (1990) emphasized that firms should invest in a few core technologies.  

However, the increasingly complex and multi-technology nature of products and 

processes have induced large firms to invest in a wide range of technologies necessary for 

integrating different components and subsystems (Patel and Pavitt, 1997; Granstrand et al. 1997), 

or for building the internal capability necessary for selecting and assimilating external 
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knowledge (Cohen and Levinthal, 1989). This is confirmed by empirical evidence showing that 

large firms have a broader technological than product diversification (Gambardella and Torrisi, 

1998; Giuri et al., 2004). Typically, it is in the peripheral technologies that firms do not master 

the downstream production and commercialisation assets. As a consequence, they are more 

likely to license fringe or peripheral rather than core technologies. Moreover, because they can 

more effectively exploit production and commercialization in the latter case, they have greater 

incentives to protect them strategically than for the non-core technologies. This reinforces the 

probability that core technologies will not be licensed (see also Rivette and Kline, 2000). 

Competition 

Other things being equal, if there are a few firms or institutions holding the “secrets” of the 

technology, licensing is less likely. This is because their monopolistic position enables them to 

extract higher rents from exploiting the technology. This is especially true when the technology 

holders are firms with downstream capabilities. By contrast, when there are many firms or 

institutions operating in a technological domain, licensing is more likely - the more so if there is 

a higher share of small firms or non-profit research centres with little or no downstream 

capabilities. Similarly, if there are many agents holding the technology it is harder to prevent any 

one of them from licensing through agreements of various sorts. Then, if any of them licenses, 

and the technology secrets diffuse, the others have an incentive to license as well because the 

secret can no longer be kept, and the firms can make at least some rents in the technology market 

(see Arora and Fosfuri, 2003).  

A similar argument can be made for competition in the downstream market. As discussed 

earlier, Arora and Fosfuri (2003) argued that larger market shares reduce the incentive to license. 

They also show that with more competitors in the product market, the entry of an additional 

competitor has a smaller effect on incumbent profits than if there were fewer rivals – i.e. the 

competitive profits with N rivals are closer to the competitive profits with N+1 rivals (viz 

including the licensee) if N is larger. In other words, if the market is already competitive, having 

one more competitor does not affect the rent dissipation effect considerably. By contrast, with 

few rivals the addition of a new competitor may have a sizable effect on the current profits of the 

licensor. As noted earlier, in the extreme case in which the potential licensor is a monopolist in 

the product market, he will have no incentives to license. 

Other references  

Other studies in the literature have discussed the determinants of technology license. To our 

knowledge they typically reiterate, though possibly with different arguments, the hypotheses 
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discussed so far. Some of them bring together different factors among those discussed earlier. 

For example, the literature has pointed out that patent breadth and strength have an additional 

impact on technology licensing when technology is cumulative. As a matter of fact, not only 

broad patents make licensing feasible and more efficient, but licensing becomes necessary if 

second-generation products are to be developed by other firms that would otherwise infringe the 

broad patent (Scotchmer, 1991). This is especially true when the patented innovation is the 

output of basic science. With pioneer patents including general and basic knowledge with many 

potential second generation applications, the first innovator may miss the knowledge and 

complementary assets in all possible applications, therefore licensing becomes a valuable option. 

Specifically, Scotchmer (1991) maintains that when the innovation is cumulative, it is difficult to 

create the incentives for producing broad first-generation innovations if the first innovator cannot 

also appropriate part of the returns from the second generation of innovations. However, when 

the licensing fees are large enough to provide sufficient incentive to the first innovator, they may 

not provide enough incentive for second-generation innovations. She concludes that prior 

agreements among innovators at different stages of the innovation process may mitigate this 

problem. In Green and Scotchmer (1995), licensing by the first innovator before the second 

innovators commit to R&D investments can also provide incentives to the innovators. 

3 Data and Variables  

3.1 The PatVal-EU Dataset  

Since this paper is about the determinants of technology licensing by the for-profit firms, we 

only used the PatVal sample of firm patents, viz 8207 of the 9017 PatVal patents. We excluded 

the patents assigned to universities and other non-profit research centres (government research 

labs, hospital, foundations, etc.). We included patents assigned to individuals because they are in 

large part for-profit micro-firms or professional studies. However, they constitute only 2.5% of 

firm-patents.  

Missing values for some variables in our regressions reduced the final sample that we 

used in our probit regressions in Section 4.1 to 7105. Unfortunately, for the Dutch inventors 

PatVal did not record information about willingness to license patents that were not eventually 

licensed. Thus, for our Heckman probit analysis in Section 4.2 we employed only 6156 

observations, i.e. the 7105 observations without the Dutch inventor patents. By comparison, we 

also run the simple probit equations in Section 4.2 only for the latter 6156 observations. The 

results were not different from those obtained using 7105 observations.  
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Table 1 lists all the variables used in our analyses. Table 2 provides descriptive statistics 

for the 7105 observations.  

 
Table 1. Definition of variables 
Variable name Definition 

Dependent variables  

LICENSE Dichotomous variable equal to 1 if the patent was licensed and 0 if not 
licensed 

WILL_LICENSE Dichotomous variable equal to 1 if the owner was willing to license his 
patent (whether licensed or not) and 0 if not  

Covariates and controls  

NIPC4 Number of 4-digit IPC technological classes in which the patent has 
been classified by the EPO examiners 

SC_LIT Importance of the scientific literature as a source of knowledge for the 
research that led to the patented innovation (0-5 Likert scale: 0 not 
important, 5 = very important) 

SCIENCE_LABS Maximum score of importance attributed to university or non-university 
public labs as sources of knowledge for the patent (0-5 Likert scale). 

TACIT Sum of the 0-5 scores attributed to three sources of knowledge for the 
patent: users, suppliers and competitors 

LARGEFIRM Dummy equal to 1 if the inventor (PatVal respondent) was employed in 
a firm with more than 250 employees 

MEDIUMFIRM Dummy equal to 1 if the inventor was employed in a firm with 100-250 
employees 

SMALLFIRM Dummy equal to 1 if the inventor was employed in a firm with less than 
100 employees 

MARGINAL Dummy equal to 1 if the patent is marginal or niche, and 
LARGEFIRM=1 

BACKGROUND Dummy equal to 1 if the patent is background, and LARGEFIRM=1 

TARGET Dummy equal to 1 if the PatVal respondent indicated that the invention 
was the targeted achievement of a structured R&D project, and equal to 
0 if not (e.g. by-product of other activities, pure outcome of creativity 
and inspiration) 

CLAIMS_GRANT Number of claims listed in the patent at the date of grant 

OPPOSITION Dummy equal to 1 if the patent was opposed at the EPO after the grant 

OBS_III_PARTY Dummy equal to 1 if third parties have presented observations at the 
EPO prior to the grant of the patent 

STATES Number of designated countries in which the patent was applied for by 
the applicant 

IPC4_C4 Share of the patents held by the top four applicants in each 4-digit IPC 
patent class (computed by using the entire sample of EPO-Epasis patents 
in 1993-1997 of inventors located in the six surveyed countries) 

IPC4_D10 Dummy equal to 1 if there are ten or fewer patents in the 4-digit IPC 
patent class 

DE, ES, FR, IT, NL, UK Dummies for the six countries (Germany, Spain, France, Italy, the 
Netherlands, UK) where the first inventor of the PatVal patent is 
located. 

AppYear Six dummies for application years 1993-1998 

TechClass Thirty dummies for the technological classes of the patent (ISI-INIPI-
OST classification). The list is reported in the Appendix. 

Macro_TechClass Five dummies for the macro technological classes (ISI-INIPI-OST 
classification): Electrical Engineering, Instruments, Chemicals & 
Pharmaceuticals, Process Engineering, Mechanical Engineering.  
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Table 2. Descriptive statistics   

 Mean St. Dev. min Max N 

Dependent variables      
LICENSE a 0.114 0.318 0 1 7105 
WILL_LICENSE 0.187 0.390 0 1 6156 
Covariates and controls      

NIPC4 b 1.430 0.690 1 7 7105 
SC_LIT b 2.504 1.870 0 5 7105 
SCIENCE_LABS b 1.205 1.636 0 5 7105 
TACIT b 6.766 4.106 0 15 7105 
LARGEFIRM 0.761 0.427 0 1 7105 
MEDIUMFIRM 0.096 0.294 0 1 7105 
SMALLFIRM 0.143 0.351 0 1 7105 
MARGINAL 0.031 0.172 0 1 7105 
BACKGROUND 0.061 0.240 0 1 7105 
TARGET 0.364 0.481 0 1 7105 
CLAIMS_GRANT b 10.642 6.902 1 131 7105 
OPPOSITION 0.102 0.302 0 1 7105 
OBS_III_PARTY 0.006 0.075 0 1 7105 
STATES b 8.585 4.729 1 19 7105 
IPC4_C4 b 0.336 0.173 0 1 7105 
IPC4_D10 0.009 0.094 0 1 7105 
DE 0.427 0.495 0 1 7105 
ES 0.031 0.174 0 1 7105 
FR 0.065 0.247 0 1 7105 
IT 0.160 0.367 0 1 7105 
NL 0.134 0.340 0 1 7105 
UK 0.182 0.386 0 1 7105 
AppYear1993 0.028 0.166 0 1 7105 
AppYear1994 0.282 0.450 0 1 7105 
AppYear1995 0.265 0.441 0 1 7105 
AppYear1996 0.231 0.421 0 1 7105 
AppYear1997 0.150 0.357 0 1 7105 
AppYear1998 0.045 0.207 0 1 7105 

a in the sample of 6156 observations the mean of licensing is 0.111. b Absolute value, not in logs. 

 

Below we describe our dependent and independent variables. The sources are PatVal, and 

the EPO-Epasis dataset which is used for additional data about the patents (for additional 

information about the EPO patent indicators see Harhoff et al., 2005 and Webb et al., 2005). We 

also use the Who Owns Whom dataset to group firms under the names of their parents. 

3.2 Dependent Variables 

Each respondent in PatVal was asked whether the patented innovation was licensed by the patent 

holder to an independent party. When the patent was not licensed, the respondent was also asked 
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whether he thought that the patent holder was willing to license it. We used this information to 

create two dependent variables: 

LICENSE: This is a dichotomous variable equal to 1 if the patent was licensed and 0 if not. This 

is the dependent variable of our probit estimation in Section 4.1. From Table 2, the mean value 

of LICENSE is 11.4%, which is the share of licensed patents in our sample (11.1% for the 6156 

observations). 

WILL_LICENSE: This variable takes the value 0 if the owner was not willing to license his 

patent, and 1 if he was willing to license (whether actual or not). This is the dependent variable 

of the selection equation of the Heckman estimation in Section 4.2, where LICENSE is the 

dependent variable of the selected equation. The sample average of WILL_LICENSE is 18.7% 

(6156 observations).  

3.3 Covariates and Controls 

Strength of patent protection and generality 

Measuring patent protection is not straightforward. The extent of patent protection depends on 

the policy of the patent system of a country. For example, patents are stronger if they are well 

enforced by the judicial system. However, we would not get very far by measuring patent 

protection in this way because all our observations would be part of the same patent system. 

Moreover, differences across individual countries would be too coarse for our data, and would 

mix with other country-level fixed effects.  

Most of the literature discussed in the earlier Section measures patent protection at the 

patent level by the scope or the length of patent protection. Again, we cannot use the latter 

because it is common to all the patents. The breadth of patent protection can instead vary across 

them. Following the literature, the broader the scope of protection of the patent, the larger the 

number of domains or applications covered by it, and the lower is the opportunity of another 

party to invent around the patent.  

At the empirical level the most commonly used proxies for patent breadth are the number 

of claims and the number of IPC technological classes listed in the patent. We retrieved both 

measures from the EPO-Epasis dataset.  

CLAIMS_GRANT: Lerner (1994) notes that the best way to measure patent scope would be a 

direct assessment of the breadth of patent claims, which is a practice often undertaken by firms 

before concluding a transaction such as an acquisition or a licensing agreement. However, 

assessing the breadth of all patents’ claims is an impractical exercise in an empirical analysis 
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with a large number of observations. As a proxy for patent scope we thus used the number of 

claims listed in a patent. In so doing, we exploit the possibility that different technologies may 

have different characteristics that make them easier or harder to protect, e.g. their degree of 

codification, or the fact that there are other patents in the nearby domain that limit its scope. 

Thus, a larger number of claims may mean that the field is more open or that the technology can 

make more allegations of protection. To avoid endogeneity we employ the number of claims at 

the moment of grant, not application. Before the grant, the patent examiners revise the claims 

made by the applicant. The claims at grant are then checked by an independent party.1 A more 

serious problem is that it is not clear whether the number of claims measures protection rather 

than the value of the patent (e.g. Lanjouw and Schankerman, 2004). In our empirical analysis, 

we will thus interpret this variable cautiously. 

NIPC4: Another proxy for patent scope is the number of 4-digit IPC technological classes in 

which the patent has been classified by the EPO examiners. Lerner (1994) also used this measure 

as a proxy for patent scope. The number of IPC classes can also be interpreted as a measure of 

the generality of knowledge. Thus, like with the claims we cannot unambiguously interpret this 

variable as a measure of patent scope (hence protection) or of the generality of the technology. 

Because theoretically the two concepts have the same impact on licensing, we can assess 

empirically whether either of them matters. 

Scientific nature of the technology 

As proxies for the scientific nature of the knowledge underlying the invention, we use the 

following set of variables:  

SC_LIT: Each PatVal respondent was asked to rank on a 0-5 Likert scale the importance of the 

scientific literature as a source of knowledge for the research that led to the patented innovation. 

SCIENCE_LABS: The respondents were also asked to rate on the same 0-5 scale the importance 

of university or other public research labs as sources of knowledge for the patent. We defined 

this variable as the maximum score attributed to university or non-university public labs.  

                                                 
1 For 60% of the patents in our sample the claims at grant are equal to the claims at the moment of the application. 
On average the patents at grant have 0.91 fewer claims (slightly less than 10% given the average of 
CLAIMS_GRANT in Table 2). Thus, the examiners do not change things dramatically. This may be explained by 
the fact that especially in recent years the notable increase in the number of applications is making more and more 
demands on the examiners’ time. At any rate, in our empirical analysis we try our regressions without introducing 
the claims variable, and the results do not change.  
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TACIT: This is the sum of the 0-5 scores in PatVal attributed to three sources of knowledge: 

users, suppliers, competitors. These are more tacit sources of knowledge, especially when 

compared to scientific sources. 

Economic value of the technology 

We employ three measures of the economic value of the technology, from EPO-Epasis.  

OPPOSITION: This is a dummy equal to 1 if the patent was opposed at the EPO after the grant. 

Any third party may file an opposition at the EPO up to 9 months after the grant of a patent in 

order to challenge the validity of the patent in all designated countries. It is a measure of value 

because it is likely that a competitor of the applicant or another interested third party, who decide 

to file the opposition procedure, can be potentially damaged by the patent. Moreover, the 

opponent has to pay a fee for filing an opposition. Harhoff and Reitzig (2004) have shown that 

opposed patents are more likely to be correlated with other measures of economic value of the 

patent, such as forward citations, claims or designated countries. 

OBS_III_PARTY: This is a dummy equal to 1 if third parties have presented observations to the 

EPO prior to the grant of the patent. According to the European Patent Convention (art. 115) any 

person may present observations concerning the patentability of the invention in respect of which 

an application has been filed. It is a measure of value because it is a sign of external 

consideration for the patent, for example by potential buyers or competitors.  

STATES: This is the number of designated countries in which the patent was applied for by the 

applicant. It is a measure of the economic value of the technology because patenting in each new 

country entails an additional fee. Since the cost is incurred at the moment of the grant it can be 

thought of as a lower bound of the expected discounted stream of rents produced by the patent. It 

is clearly a noisy measure of value. For example, it is a measure of the value of the patent for the 

applicant, not for the potential buyers. If a given patent is granted to a firm with no stakes in 

foreign countries, it may not pay the corresponding fees, while an international company would. 

However, it is likely to be correlated with valuable technologies. Moreover, Lanjouw and 

Schankerman (2004) show that it is correlated with other measures of patent quality or 

protection. 

Another commonly employed measure for the value of patents is the number of forward 

citations. In our analysis however this measure is likely to be endogenous. The PatVal patents 

had priority dates 1993-1998. Both citations and the decision to license occur later, and they may 

be affected by common shocks that we do not observe. Moreover, citations may occur because of 
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licensing, for example they may be put by the licensee in their subsequent patents. Evidence on 

this is scattered. The only available evidence for university licensing shows that on average 16% 

of citations of licensed patents are made by licensees (Sampat and Ziedonis, 2003).  

By contrast, the measures that we used are all defined at the moment of application or grant, thus 

before the occurrence of a licensing event. Moreover, opposition and observations by third 

parties are not decided by the licensor but by a third party. It is still possible that both the 

decision to license and the measures that we used are influenced by unobserved factors at the 

time of application or grant. We are aware of this possibility and we used these variables 

cautiously by gradually introducing them in our regressions. The various experiments produce 

very similar results. 

Firm size and complementary assets 

We lump firm size and complementary assets together in the same dummy variables for large, 

medium, and small firms. It is not easy to find specific measures of complementary assets for all 

the firms in a sample as large as ours. Moreover, because PatVal spans a wide spectrum of firm 

sizes, the variations across our size classes in the extent of complementary assets are large 

compared to variations within the same class.  

LARGEFIRM: Dummy equal to 1 if the PatVal respondent indicated that he was employed in a 

firm with more than 250 employees (76.1% of the patents); 

MEDIUMFIRM: Dummy equal to 1 if the PatVal respondent indicated that he was employed in 

a firm with 100-250 employees (9.6%); 

SMALLFIRM: Dummy equal to 1 if the PatVal respondent indicated that he was employed in a 

firm with less than 100 employees (14.3%). 

Core vs. non-core technologies 

We also controlled for whether in the large firms the patented innovation is a core or non-core 

technology. This distinction is not meaningful for the small and medium firms because they own 

relatively few patents, which are presumably all core technologies. To create our measures of 

core and non-core technologies we used all the EPO patents (not just the PatVal ones) of 

inventors located in France, Germany, Italy, the Netherlands, Spain and the UK in the surveyed 

period (1993-1997). Each patent of our large firms was assigned to one of 30 technological 

classes. These classes are described later in this Section, as we also use them as dummies for 

control. Granstrand, Patel and Pavitt (1997) define the criteria to distinguish the technologies of 

a firm in four categories: core, background, marginal, and niche. We mimic their classification 

by using the share of each of the 30 technological fields on the total patents of the firm (patent 
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share), and an index of the firm’s revealed technology advantage in each of the 30 technological 

fields (RTA). The first one reflects the relative importance of each field in the firm’s total 

technological portfolio. Since the average share is about 3%, this value is used to distinguish 

between above and below average shares. The RTA reflects the relative importance of the firm 

in each field of technological competence. This is defined as the firm’s shares in total patenting 

in each of the 30 technological fields divided by the firm’s share of total patenting in all the 

fields. RTA=2 distinguishes high from low RTA. We define:  

 Core: dummy equal to 1 if patent share >3% and RTA>2 

 Background: dummy equal to 1 if patent share >3% and RTA<2 

 Marginal: dummy equal to 1 if patent share <3% and RTA<2 

 Niche: dummy equal to 1 if patent share <3% and RTA>2. 

Background technologies are, for instance, technologies of important components of the firm, or 

in complementary fields. The firm produces many of them because they are useful internally, but 

it is not a specialist compared to others in the area. By contrast, marginal technologies are 

relatively few and the firm is not specialised in them. The niche are like the marginal, but the 

firm is specialized in the area. In our sample, 87.9% of the patents of the large firms are core, 

8.1% are background, 3.8% are marginal, and 0.2% are niche. To confirm that it makes little 

sense to distinguish among these classes for small and medium firms, their share of core patents 

are respectively 98.7% and 98.4%. We combine marginal and niche in one dummy, and 

construct the following variables:  

MARGINAL: Dummy equal to 1 if the patent is marginal or niche, and the firm is a large firm 

(LARGEFIRM=1). 

BACKGROUND: Dummy equal to 1 if the patent is background and the firm is a large firm 

(LARGEFIRM=1). 

Competition 

As noted earlier, technological or product competition raises the incentive to license. 

Unfortunately, it is hard to develop measures of product competition for all patents in our 

sample. This would require us to identify which product markets correspond to a certain patent 

area or technology and find the competitive structure of that market, a task which would be 

impractical with such a large number of firms and observations. We used the following 

variables: 
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C4_IPC4: This is the share of the patents held by the top four applicants in each 4-digit IPC 

patent class computed by using the entire sample of EPO-Epasis patents of inventors located in 

the six surveyed countries between 1993 and 1997.  

IPC4_D10: This is a dummy variable taking the value 1 if there are ten or fewer patents in the 4-

digit patent class, and zero otherwise. This dummy singles out cases in which the small number 

of patents in the class may make the concentration index not very meaningful. 

As alternatives to C4_IPC4 we employed the one- and eight-applicant concentration index (and 

relative dummies), with no appreciable change in results. All these variables account for 

technological rather than product competition. As noted in the earlier Section, technological 

competition is one of the dimensions that we want to capture. Moreover, it is correlated with 

product competition, and as noted above it is easier to construct in our context. Our earlier 

discussion also pointed out that the effects of a competitive situation on licensing is more marked 

if the technology holders are smaller firms or universities with fewer stakes in the downstream 

activities, which then have a higher propensity to license. We then also used the share of 

licensing by university and non-profit research centres in the 4-digit IPC class, or the share of 

small firm licensing. These variables did not work as well as the concentration indices. One 

reason is that the licensing shares of university or non-profit research centres and of the small 

firms are very small, and they are zero for many technological classes. 

Controls 

TARGET: This is a dummy equal to 1 if the PatVal respondent indicated that the invention was 

the targeted achievement of a structured R&D project, and equal to 0 if not (e.g. by-product of 

other activities, pure outcome of creativity and inspiration). We expect this variable to be 

negatively correlated with licensing because a structured R&D project is more likely to be the 

outcome of a planned decision in a relatively hierarchical organization. In turn, this is correlated 

with firm size, the ownership of complementary downstream assets, and other factors that make 

it more likely to pursue the project internally. By comparison, by-products of other activities, 

outputs of creative jobs, and the like are more likely to be produced by smaller entities, less 

hierarchical organizations, and other factors associated with licensing.  

TECHCLASS: Thirty dummies for the technological classes of the patent. We employed the 

technology-oriented classification system jointly elaborated by the German Fraunhofer Institute 

of Systems and Innovation Research (ISI), the French patent office (INPI) and the Observatoire 

des Science and des Techniques (OST). It distinguishes among 30 different fields of technology 
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and five higher-level technology areas (“macro” technological classes) based on the International 

Patent Classification (IPC). For a direct comparison between the ISI-INIPI-OST technological 

classes and EPO IPC classes see Hinze et al. (1997). Breschi et al. (1998) provide an application 

and a detailed discussion of this classification. We find this classification to be particularly 

useful because it associates the 4-digit IPC classes, which are highly technological, to industrial 

sectors, or at least to classes that are much more intuitively associated with industries. The 

descriptive statistics for the 30 ISI-INIPI-OST technological classes are reported in Table A1 of 

the Appendix. 

MACRO_TECHCLASS: Five dummies for the macro technological classes of the ISI-INIPI-

OST classification above. They are: Electrical Engineering, Instruments, Chemicals & 

Pharmaceuticals, Process Engineering, and Mechanical Engineering.  

DE, ES, FR, IT, NL, UK: Dummies for the six countries (Germany, Spain, France, Italy, the 

Netherlands, UK) where the first inventor of the PatVal patent is located. In our regressions we 

use DE as the baseline dummy.  

APPYEAR: Six dummies for application years 1993-1998.2  

We tried other variables as controls in our regressions, like the number of inventors in the patent 

(from EPO-Epasis), the sources of funds for the invention (from PatVal), or else. They do not 

add much to the results.  

4 Empirical Results 

4.1 Determinants of Licensing 

We start by estimating a probit equation for the probability of licensing using our full sample of 

7105 PatVal patents applied by firms. The structure of these models is well known. There is a 

latent variable y = X′′′′ββββ + e, where X′′′′ is an n x k vector of the k covariates and n observations, ββββ is 

the k x 1 vector of parameters to be estimated, and e is the n x 1 vector of i.i.d. normally 

distributed  errors. Since the latent variable is not observed, we estimate the probability of 

licensing Prob(LICENSE=1) ≡ Φ(εi < i′x ββββ) where εi is the ith observation of e, i′x  is the ith row 

of X′′′′, Φ is the standard normal, and the vector ββββ is normalized by the standard error of e. 

                                                 
2 The PatVal survey originally targeted patents with priority date 1993-1997. However, a few 1998 patents sneaked 
in, and we controlled for them as well. 
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 The empirical results in Table 3 report the marginal effects of changes in the covariates 

on the probability of licensing evaluated at the mean of the covariates, i.e. for the jth covariate xj 

they are 
ˆ( ) ˆ( )i

j i
jx

β φ
′∂Φ ′= ⋅

∂
β βx x , where ˆ

jβ  and β̂  are the estimated parameters, i′x  is evaluated at 

the sample mean, and φ is the standard normal density. We report the marginal effects because 

they have a more direct interpretation (change in probability) than the parameters ββββ. The changes 

for the dummies go from 0 to 1. For the continuous variables STATA approximates the change 

in the probability of licensing produced by an infinitesimal change in the covariates defined 

consistently with the scale of the data. The way to understand this is that if we multiply the 

marginal effects in Table 3 by any change in the covariate we obtain the corresponding linear 

change in the probability of licensing. For all the covariates that are not dummies we used logs 

as indicated in the Table. Thus, we are measuring the changes in probability produced by a 

percentage change in the original variable.  

We show the results of three estimations where we gradually introduce 

CLAIMS_GRANT and the proxies for the value of the patent. This is to show that the results do 

not change when we exclude these variables. For this and other reasons discussed in the previous 

Section, we do not think that the endogeneity of these variables is a serious problem in our study. 

In our discussion below we then always refer to the third column of Table 3. Finally, since there 

are firms holding several patents in our sample, we run all three regressions after clustering on 

firms. This takes into account any unobserved correlation among the errors of the patents 

belonging to the same company. 

Table 3 shows that the most important effect on the probability of licensing is by far the 

size of the firm. Belonging to a large firm reduces the probability of licensing by 14.4 percentage 

points. The effect is statistically quite significant. It is also consistent with the basic statistics of 

our sample. While the unconditional share of licensing in our 7105 patents is 11.4%, the share of 

licensing of the large firms is 9.0%; for the small firms it rises to 25.3%. The most notable point 

of Table 3 is that other effects are statistically significant, but none of them is as sizable as the 

firm size class. For example, the three variables measuring the economic value of the technology 

are largely significant and their sign is the expected one. But a 50% increase in the number of 

countries in which the patent is applied (STATES) corresponds to just a 1.4% change in the 

probability of licensing, one-tenth of the effect of the firm size class. A 50% increase in 

STATES from its average is quite a reasonable change in our sample. From Table 2 the sample 

average of STATES is 8.6 and a 50% increase is just slightly smaller than a one standard 
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deviation change (4.7 in Table 2). Similarly, an opposed patent, or one for which there is a third 

party observation, increases the probability of licensing respectively by 3.8% and 8.9%. The 

latter is closer to the large firm effect, but still more than 5% lower. The effect of 

CLAIMS_GRANT is again significant, but quite small. In Table 2, a one standard deviation 

increase from the sample average of CLAIMS_GRANT corresponds to about 65%, which 

translates into a 0.9% change in the probability of licenses. The distribution of claims is greatly 

skewed. There are a few hundred patents in our sample with 20 or more claims which correspond 

to a 100% increase or more with respect to the sample average of this covariate. Even a 50 

claims patent (roughly 400% from the sample average), which is well into the first percentile of 

the claims distribution, would increase the probability of licensing only by slightly more than 

5%. 

There are other significant effects. The SCIENCE_LABS covariate is significant. Thus, 

more scientific patents are more likely to be licensed. Similarly, more general patents (NIPC4), 

and technological areas with a larger number of technology producers (smaller C4_IPC4) are 

associated with greater probabilities of licensing. The MARGINAL technologies are also more 

likely to be licensed, while the effect is less pronounced for BACKGROUND technologies. In 

the latter case the large companies probably still have some strategic interest to keep them inside 

because they can be important for their core products. The marginal technologies instead entail a 

potentially good revenue effect and a small rent dissipation effect, given that the firms focus on 

other businesses (e.g. Rivette and Kline, 2000). In all these covariates a one standard deviation 

change from the sample mean is in the order of a 50% increase (see Table 2). The reader can 

check this from our estimates in Table 3. Fifty percent increases in these covariates entail 

relatively small changes in the probability of licensing compared to LARGEFIRM.  

To summarize, the empirical analysis of this Section shows that the previous theories of 

the determinants of licensing are broadly consistent with our data. We find that measures of 

patent protection, the generality of knowledge, the value of the patent, the science-based nature 

of the technology, competition, and firm size or complementary assets have a positive effect on 

the probability of licensing. However, the firm size or complementary asset effect dwarfs all the 

others. A large firm has a probability of licensing that is orders of magnitude smaller than the 

small firms.  
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Table 3. Probit estimations of the determinants of actual licensing, marginal effects  

Variable Probit Lic1 Probit Lic2 Probit Lic3 
log(NIPC4) 0.024 0.023 0.022 
 (0.007)*** (0.012)** (0.015)** 
log(1+SC_LIT) -0.003 -0.003 -0.004 
 (0.655) (0.612) (0.536) 
log(1+SCIENCE_LABS) 0.029 0.028 0.027 
 (0.000)*** (0.000)*** (0.000)*** 
log(1+TACIT) -0.001 0.000 -0.001 
 (0.912) (0.946) (0.841) 
LARGEFIRM -0.144 -0.142 -0.136 
 (0.000)*** (0.000)*** (0.000)*** 
MEDIUMFIRM -0.078 -0.078 -0.077 
 (0.000)*** (0.000)*** (0.000)*** 
MARGINAL 0.060 0.062 0.066 
 (0.103) (0.087)* (0.078)* 
BACKGROUND 0.017 0.018 0.021 
 (0.316) (0.299) (0.217) 
TARGET -0.001 -0.001 -0.001 
 (0.911) (0.877) (0.864) 
log(IPC4_C4) -0.064 -0.063 -0.050 
 (0.087)* (0.092)* (0.186) 
IPC4_D10 0.053 0.055 0.064 
 (0.253) (0.237) (0.193) 
ES 0.027 0.034 0.030 
 (0.311) (0.223) (0.262) 
FR 0.021 0.018 0.013 
 (0.248) (0.318) (0.443) 
IT 0.001 0.000 -0.002 
 (0.969) (0.987) (0.856) 
NL 0.028 0.027 0.024 
 (0.055)* (0.073)* (0.133) 
UK 0.025 0.019 0.018 
 (0.053)* (0.134) (0.158) 
log(CLAIMS_GRANT)  0.016 0.013 
  (0.031)** (0.057)* 
OPPOSITION   0.038 
   (0.011)** 
OBS_III_PARTY   0.088 
   (0.163) 
log(STATES)   0.027 
   (0.000)*** 
AppYear Dummies Yes Yes Yes 
TechClass Dummies Yes Yes Yes 
N 7105 7105 7105 
Ll -2362.429 -2358.930 -2343.408 
chi2 343.780 364.800 385.980 
Predicted prob. 0.102 0.101 0.100 

* p<0.10, **p<0.05, ***p<0.01. p-values in parenthesis, based on robust standard errors adjusted for clusters by 
firms’ identifier. 
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4.2 Actual vs. Potential Licensing 

The Heckman Selection probit 

We then estimated a model in which the applicants first decide whether or not to license a patent, 

and if so whether the patent is actually licensed. We employ a Heckman selection probit model. 

This is a maximum likelihood model in which not only the selection equation but also the 

“selected” equation is a probit model. 

Specifically, there are two latent variable models y1 = 1′X ββββ1 + e1 and y2 = ′2X ββββ2 + e2. The 

X′′′′s are n x ki vectors of the ki (i=1,2) covariates and n observations in the two equations, ββββ1 and 

ββββ2 are the k x 1 vectors of parameters to be estimated, and e1 and e2 are the n x 1 vectors of i.i.d. 

normally distributed errors where E ′1 2e e  is a non-diagonal matrix. Since the latent variables are 

not observed, we estimate a probability model whose log-likelihood function is 

( )1, 1 1 1 2 2 2
_ 1

log log ,  LICENSE
WILL LICENSE

L x xε β ε β=
=

′ ′= Φ > − > − +∑  

( ) ( )0, 1 1 1 2 2 2 2 2 2 2_ 0_ 1
log ,   logLICENSE WILL LICENSEWILL LICENSE

x x xε β ε β ε β= ==
′ ′ ′Φ < − > − + Φ < −∑ ∑  

where ε1 and ε2 are the two generic elements of e1 and e2, 1′x  and 2′x  are the corresponding row 

vectors of the ki covariates of the two equations (i=1, 2), Φ(⋅) is a bivariate standard normal, 

Φ2(⋅) is the standard marginal normal of ε2, and the three summations correspond to the 

following three probabilities (and related sets of observations): 

1)  Prob(LICENSE=1, WILL_LICENSE=1);  

2)  Prob(LICENSE=1, WILL_LICENSE=0); 

3)  Prob(WILL_LICENSE=0). 

The latter is a marginal probability because when WILL_LICENSE=0, LICENSE=0 with 

probability 1. We estimate ββββ1, ββββ2, and the covariance between ε1 and ε2, through maximum 

likelihood. In all our estimations we cluster observations by firms to take into account potential 

unobserved correlations among the patents owned by the same company. 

Identification  

In this model we need to identify the selection equation. This is not easy because in principle we 

cannot rationally exclude any variable from the selected equation. This is also in the very nature 

of our test. For example, our science or tacitness variables can affect the willingness to license 

because the supplier knows that they affect transaction costs or protection. But they can also 

influence the conditional probability of licensing because if a non-codified technology is offered 
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for licensing, the buyers are less likely to buy it, or more ambiguities will be raised before or 

during the negotiations which reduce the probability of concluding the deal. Similarly, our 

variables for generality and value can in principle affect both the probability of selection and the 

conditional probability of licensing. A more general or a more valuable technology is more likely 

to be offered for licensing because the suppliers expect more buyers to be interested in them, 

with potentially higher revenue from licensing. At the same time, if less valuable or less general 

technologies are offered, fewer buyers will be interested in them reducing the conditional 

probability of licensing. The competition variable, C4_IPC4, together with its dummy 

IPC4_D10, is another potential exclusion restriction. As noted in Section 2, when there are many 

potential technology suppliers, each of them is less concerned about restricting the diffusion of 

the technology because it is harder to do it in any case. This ought to influence the decision of 

the suppliers to supply, not the decision of the buyers to buy. However, with many potential 

licensors in a technological area it may be harder to find a buyer for each license because of the 

greater supply and competition.  

 The variables that affect protection, CLAIMS_GRANT or NIPC4, or the non-core 

technologies, MARGINAL or BACKGROUND, could in principle affect the decision to license 

but not the actual licensing. If a technology can be protected, the supplier can choose to license it 

for the reasons that we discussed. Yet, this should not affect whether the buyer wants to buy it or 

not. Perhaps the supplier exercises more effort to sell licenses that are better protected, but this 

cannot be a first-order effect. Similarly, if a technology is non-core for the licensor, this should 

not affect the buying decision. The reason why we did not use these variables as exclusion 

restrictions is that we cannot be sure that they are just measures of protection or of non-core 

technologies. As noted, CLAIMS_GRANT can be a measure of the value of the patent, and 

NIPC4 can be a measure of generality. The non-core variables could be a measure of value, as 

they are technologies in which the firm may have less expertise. 

We concluded that the only variables that can be safely excluded from 1′x  but not from 

2′x  are the 30 technological dummies. The rationale is that they account for differences across 

sectors, which in turn account for differences in the nature of the technology, competition, and 

related factors. But we already have quite a few covariates spanning potential differences across 

sectors or technologies. Moreover, in our regression of the actual licensing decision we included 

the 5 macro-technological class dummies. In addition, we performed several robustness checks. 

First, we tried the same Heckman probit model using as exclusion restrictions some of the 

variables that have an insignificant impact in the selected equation when using the 30 
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technological dummies as exclusion restrictions. The results are very stable. As we shall see, we 

also find an insignificant correlation between the two equations, suggesting that we can estimate 

the two probits independently. As a matter of fact, we estimated the independent licensing 

equation only for the sample of patents that are offered for licensing, and with the 30 

technological dummies instead of the 5 macro-technological classes. Again the results do not 

change.  

Empirical Results 

We present our empirical findings in Table 4. As in the previous Section, we report the marginal 

effects rather than the ββββs because they have a more direct interpretation. We show the impacts of 

our covariates on three probabilities:  

1) The probability of selection, Prob(WILL_LICENSE=1); 

2) The probability of licensing conditional on selection, Prob(LICENSE=1|WILL_LICENSE=1); 

3) The marginal probability of licensing, Prob(LICENSE=1, WILL_LICENSE=1). 

As in the previous Section, Table 4 reports the effects of changes from 0 to 1 in the dummy 

variables, while for the continuous variables it approximates the effects of appropriately scaled 

unit changes in the covariates. Since our continuous covariates are in logs, the marginal effects in 

Table 4 can be multiplied by any percentage change to obtain the corresponding effects on the 

probability. We performed the same sets of regressions of the previous Section, i.e. we 

experimented with and without claims or the proxies for patent value on the ground that they 

may be endogenous. The results are very similar. Here we present the estimates using all the 

covariates. We also found that the correlation between the two probit equations is not 

significantly different from zero. As noted, independent estimation of the selection equation and 

of the licensing equation for the selected sample produced similar results. 
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Table 4. Heckman Probit estimations of actual licensing and willingness to license, marginal effects 

Variable P-selection P-conditional P-bivariate 11 
log(NIPC4) 0.032 0.008 0.021 
 (0.018)** (0.832) (0.038)** 
log(1+SC_LIT) 0.009 -0.057 -0.004 
 (0.372) (0.030)** (0.584) 
log(1+SCIENCE_LABS) 0.045 -0.014 0.026 
 (0.000)*** (0.588) (0.000)*** 
log(1+TACIT) -0.011 0.023 -0.003 
 (0.121) (0.283) (0.562) 
LARGEFIRM -0.190 -0.150 -0.158 
 (0.000)*** (0.000)*** (0.000)*** 
MEDIUMFIRM -0.119 -0.123 -0.082 
 (0.000)*** (0.070)* (0.000)*** 
MARGINAL 0.090 0.045 0.067 
 (0.051)* 0.649 0.158 
BACKGROUND 0.040 -0.021 0.020 
 (0.082)* 0.739 0.315 
TARGET -0.024 0.063 -0.005 
 (0.042)** (0.050)* (0.584) 
log(IPC4_C4) -0.095 0.116 -0.039 
 (0.062)* (0.444) (0.329) 
IPC4_D10 0.018 0.191 0.046 
 (0.733) (0.091)* 0.340 
ES 0.046 0.010 0.030 
 (0.166) (0.908) (0.286) 
FR 0.055 -0.099 0.013 
 (0.028)** (0.088)* (0.466) 
IT -0.009 0.019 -0.002 
 (0.617) (0.687) (0.880) 
UK 0.142 -0.271 0.019 
 (0.000)*** (0.000)*** 0.171 
log(CLAIMS_GRANT) 0.016 0.022 0.013 
 (0.072)* (0.399) (0.070)* 
OPPOSITION 0.050 0.042 0.039 
 (0.010)** (0.399) (0.019)** 
OBS_III_PARTY 0.097 0.117 0.090 
 (0.194) (0.382) (0.178) 
log(STATES) 0.033 0.024 0.024 
 (0.003)*** (0.380) (0.005)*** 
AppYear Dummies Yes   
TechClass Dummiesa Yes   
Macro_TechClass Dummiesa  Yes   
N 6156   
Ll -3398.527   
chi2 91.070   
Athrho 0.081   
 (0.926)   
predicted prob. 0.166 0.616 0.102 

* p<0.10, **p<0.05, ***p<0.01.  
p-values in parenthesis, based on robust standard errors adjusted for clusters by firms’ identifier. 
a For the identification TechClass dummies are included only in the selection equation and MacroTechClass 
dummies are included only in the selected equation. 
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 The probability of selection is the analogue of the probits in the previous Section. There 

we estimated the impacts of the covariates on the probability of an actual license (i.e. LICENSE 

= 1), while here we estimate the probability that a patent holder offers the technology on the 

market (WILL_LICENSE=1). Since the latter set overlaps to a good extent with the former, the 

marginal effects of the probability of selection are similar to those in Table 3. In particular, we 

find that our measures of protection (CLAIMS_GRANT), generality (NIPC4), scientific 

intensity (SCIENCE_LABS), value (OPPOSITION, STATES), competition (C4_IPC4), and 

marginal technologies (MARGINAL) are statistically significant, and have the expected sign. 

Moreover, here as well, the firm size effects (LARGEFIRM, MEDIUMFIRM) are statistically 

significant, and they are the most sizable impacts. This confirms that size and the ownership of 

downstream assets is a key reason for not licensing. We also find a negative and significant sign 

of our measures of the structured nature of the project, TARGET, which we did not find in the 

previous estimations. This confirms that planned and structured projects are pursued to develop 

new products internally. Finally, BACKGROUND still has a smaller impact than MARGINAL 

as in the previous Section, but its statistical significance is now higher. 

 An interesting difference is that the UK dummy is now sizable and statistically 

significant. This is consistent with some simple statistics. In our sample of 6156 patents (which 

exclude the Dutch inventors), the share of UK patents (by country of first inventor) with 

WILL_LICENSE = 1 is 31.6% against 14.3% for Germany, 14.1% for Italy, 19.5% for Spain, 

and 21.4% for France. The share of patents with LICENSE=1 are 14.3% for the UK, 9.7% for 

Germany, 10.0% for Italy, 12.8% for France, 13.6% for Spain (and 13.8% for the Netherlands, 

since we have the Dutch information in this case). The actual licensing shares are still higher for 

the UK, but the difference is much smaller. Because the firm size dummies do not control for 

differences within each size category, the UK effect may stem from uncontrolled differences in 

firm size compared to Continental Europe. In fact, the dummy for the medium firms is smaller, 

but not that different from that of the large firms. This suggests that the effect of size occurs to a 

good extent when a firm overcomes a threshold of minimal production and commercial 

capabilities. A more convincing interpretation is that the functioning of markets is more efficient 

in the UK than in Continental Europe, including lower transaction costs in the market for 

technology and a more developed firm culture for new business models like business licensing. 

This makes licensing closer to an arms-length market transaction. Companies then take licensing 

decisions more lightly. By contrast, in the more traditional Continental European setting 

licensing is a more planned event, often between larger firms involving interactions and more 
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complex exchanges among the parties closer to a collaborative agreement than a pure market 

transaction. In these cases, when the companies decide to license, it is because they have 

pondered the opportunity seriously which raises the odds of the license actually occurring. 

 The conditional probability results are the novel feature of the Heckman probit 

estimation. Table 4 shows that most of the conditional effects are small and statistically 

insignificant. The licensing opportunities seem to be in good part anticipated by the seller in her 

decision to license. There are however exceptions. First and foremost, the larger firms are less 

likely to license even after they choose to license. The large firm dummy is sizable and 

significant, like in the previous case. The medium firm dummy has a similar impact, even though 

less statistically significant. Again, more than size per se the effect seems to be associated with 

some minimal production and commercial capabilities. In this respect, one potentially 

unanticipated factor is that when the licensor has production and commercial assets, the licensees 

fear that they may be affected by his competition in the same final market, considering that the 

licensor also has better knowledge and experience with the technology. The bigger and more 

significant impact of the large-firm dummy suggests that in any case the effect is higher and 

better measured when the licensors are larger firms.  

 Another exception is that there is a slightly significant negative effect for the patents that 

rely on the scientific literature. More academic patents, which are likely to be more basic, find 

fewer opportunities to be used economically. We also find that targeted research, which was less 

likely to be offered in the technology market, is instead more likely to be licensed if the licensor 

chooses to do so. We noted that targeted research is planned and pondered, which is associated 

with a greater internal use. But for the same reason, any decision to license is equally planned, 

which makes it more likely that the technology is sold. This may even capture our earlier point 

that in Continental Europe licensing is a more seriously weighed choice. Thus, if the goal is 

stated, it is more likely to be achieved. Finally, the UK dummy is negative, sizable and 

significant. This mirrors our earlier discussion about the transaction costs and other factors that 

may raise the UK’s probability that the patent holders want to license, but reduce their ability to 

actually do so. 

 The third column in Table 4 reports the marginal effects on the probability of licensing. 

There is no need to discuss these results in detail as the marginal probability of licensing is the 

product of the previous two probabilities, and the marginal effects are equal to the sum of the 

marginal effects of the previous two columns weighted by the predicted value of the other 
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probability, which is also reported in Table 4.3 Note only that the large firm dummy is almost 

twice as big (in absolute terms) as the medium firm dummy suggesting that some continuous 

scaling effect is present.  

5 Discussion and Conclusions 

We employed a novel and rich dataset built from an extensive survey of European patents to 

study the determinants of the firms’ decision to license and the actual occurrence of the licensing 

event. Our results confirm previous findings in the literature, and provide some additional 

empirical evidence. The probability of licensing is higher in the case of greater protection and 

more codified or general knowledge. It is also higher when there are more potential technology 

suppliers, and when the patent is of greater economic value. The latter result suggests that there 

is no “lemon” problem in the market for technology.  

 Moreover, we find that all the factors above significantly affect the willingness to license, 

but only a few of them affect the probability that the licensing event occurs. This suggests that 

the sellers know which patents can be potentially licensed. For example, they do not offer patents 

that are not valuable or that are not relatively broad. In turn, because generality, value, 

protection, or non-core technologies do not affect the actual probability of licensing, they cannot 

be responsible for the lack of realized technology transactions.  

 To conclude, a useful way of summarizing our findings is to discuss their implications for 

the opportunities for increasing the size of the markets for patented technologies, and the extent 

to which policy actions can help this process. In this respect, our analysis produced three main 

findings.  

First, there are transaction costs in the market for technologies that prevent a licensing 

agreement being concluded. Since we have controlled for several factors that may affect 

technology trade, our evidence agrees with Razgaitis’ (2004) study which shows that the reasons 

why many licensing deals are not concluded depend on subtler and harder-to-observe elements 

such as the inability to find buyers, the difficulty in getting internal approval to conclude the 

deal, disagreements on exclusivity or geographical restrictions. If the failure to license was 

correlated to the value of the patents or other covariates in our regressions, there would be little 

room for enhancing the actual size of the market for technology compared to its potential. The 

patents that are not licensed would simply have characteristics that make them less appealing. 
                                                 
3 That is P(LICENSE=1, WILL_LICENSE=1) = P(LICENSE=1 | WILL_LICENSE=1)*P(WILL_LICENSE=1), 
and therefore its derivative with respect to any covariate is the sum of the derivative of the first term (i.e. its 
marginal effect) times the second term and the derivative of the second term (its marginal effect) times the first term.  
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But we find that the failure does not depend on many observable factors that we included in our 

regressions, which cannot then explain why a large share of potential licenses is left untapped. 

Our evidence is then consistent with the view that the development and the efficient 

functioning of markets require supporting institutions, as noted for instance by Rosenberg and 

Birdzell (1986) in a historical setting, and by Arora et al. (2001) in the particular case of the 

markets for technology (see also David, 1993a, 1993b, 1998). These institutions will arise and 

co-evolve with the growth of markets for technology. Experience with technology contracts will 

make them easier to write and more standardised. Moreover, if these markets grow, 

intermediaries will arise profiting from the opportunity of matching buyers and sellers, thereby 

reducing their failure to meet, like in the US XIX century patent market discussed by Lamoreaux 

and Sokoloff (1998). Policy can of course help, but in our opinion it should not take the form of 

creating such intermediaries. It should rather remove any obstacle that prevents the supporting 

institutions coming into being, or it should support their formation when they have difficulties 

emerging. Moreover, especially at their outset, markets are not very good at providing the 

economic agents with the right incentives to coordinate in order to create such institutions (e.g. 

proposing legal standards for technology contracts). Policy can sustain or accelerate this 

coordination.  

Our second finding is that the size of the firm is by far the most important determinant of 

both the propensity to license and the actual licensing. Small firms are orders of magnitude more 

likely to license than large firms. Quantitatively, the effect of the firm size is much higher than 

all the other covariates. The probability that a large firm offers a patent for licensing is about 

19% lower than a small firm, while the conditional probability of an actual license is about 15% 

lower. In relative terms the effect is much greater in the former case, as the average share of 

patents offered for licensing in our sample of 6156 observations is 18.4% (25.3% for the small 

firms vs. 9.0% for the large firms), while the average conditional probability of an actual license 

in the same sample is 59.4% (68.0% for the small firms vs. 55.4% for the large firms). In this 

respect, our findings about what could enhance the markets for technology are pretty clear. They 

thrive when there is technological entrepreneurship, when the environment is germane to the 

formation of smaller technology-based firms, and more generally when there are such smaller 

technology specialists that are more likely to find it profitable to sell the technology rather than 

investing in the downstream assets to become a fully-fledged final producer. This same point 

was also made by  Arora et al. (2001). Yet, this paper showed that the order of magnitude of this 

effect is notable both per se and compared with other factors that may raise the utilization of the 

market for technology. In addition, this has implications for the rate of patent utilization. A first-
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order factor that may raise it, is whether industries are organised around smaller technology-

based firms as opposed to being based mainly in large integrated corporations. In short, the 

underlying organisation of the industry may seriously affect the rate of patent utilization. Thus, 

ultimately, the policies that are often advanced to favour the formation of technological 

entrepreneurship, or to sustain technology-based small firms, may have the additional advantage 

of raising the economic use of patents.  

Our third finding is that not only are the large firms less willing to license their 

technologies, but they are also less likely to license when they choose to put their technologies in 

the market. The results of our regressions show that among the few factors that prevent the 

completion of a licensing deal when the supplier is willing to license, the most important one is 

by far the size of the firm. The potential licensee may enjoy lower rents from the license because 

the large firm is an important competitor in the final market of that technology, or it could 

simply push the licensee into a niche market. Another possibility is that the large firms have 

internal licensing departments, which reduces the marginal cost of offering new licenses. Hence, 

they offer a larger number of licenses and on average put less effort into concluding each 

licensing deal. Our result that the large firm dummy has a negative impact on the conditional 

probability as well suggests that large firms do not anticipate these difficulties in the market for 

technology when they decide to license. 

From a policy perspective, these impediments are less straight forward to remove 

compared to the previous ones. The large firms are repositories of under-utilized technologies, as 

Rivette and Kline (2000) pointed out. Their willingness to license may increase if licensing 

becomes a profitable opportunity. Yet, compared to a smaller firm, it is more difficult to increase 

their rate of actual licensing because they have to reduce the perception that they may compete 

with the licensee. This may be hard to do for a firm with sizable production or commercial 

assets, and with market power. The large firms could put more effort into selling their licenses. 

Yet, to the extent that they find it profitable to organize activities on a large scale, and they set up 

internal departments to do so, a small marginal cost of offering new licenses, with implied lower 

effort per licensing deal, might be physiological. At the same time, this means that policy cannot 

do much to increase the actual licensing rate of large firms without important changes in the way 

they deal or organize their licensing business. The formation of independent concerns, like 

yet2.com in the US, which specialise in licensing, and many large firms have used as their 

technology sales agent, may be one way to go. The independence of the companies from the 

large firms might provide some insurance to the licensees that the supplier will not directly 

compete with them. Moreover, the specialisation of the company might improve the managerial 
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efficiency of the technology trade activity. A more thorough analysis of these issues is left to 

future research. Our finding simply suggests that just putting the technologies of large firms into 

the market is not enough. It has to be accompanied by a more systematic assessment of licensing 

as a business, and a careful definition of the strategies and the organizational models that can 

make it into a profitable economic activity.  

 

 
References 

 
Anand, B.N., Khanna, T., 2000. The structure of licensing contracts. Journal of Industrial Economics 48, 

103-135. 

Arora, A., 1995. Licensing tacit knowledge: intellectual property rights and the market for know-how. 
Economics of Innovation and New Technology 4, 41-59. 

Arora, A., 1996. Contracting for tacit knowledge: the provision of technical services in technology 
licensing contracts. Journal of Development Economics 50, 233-256. 

Arora, A., Ceccagnoli, M., 2006. Patent protection, complementary assets, and firms' incentives for 
technology licensing. Management Science, in press. 

Arora, A., Fosfuri, A., 2003. Licensing the market for technology. Journal of Economic Behavior and 
Organization 52, 277-295. 

Arora, A., Fosfuri, A., Gambardella, A., 2001. Markets for Technology: The Economics of Innovation 
and Corporate Strategy. MIT Press, Cambridge, MA. 

Arora, A., Gambardella, A., 1990. Complementarity and external linkages: the strategies of the large 
firms in biotechnology. Journal of Industrial Economics 38, 361-379. 

Arora, A., Gambardella, A., 1994. The changing technology of technical change: general and abstract 
knowledge and the division of innovative labour. Research Policy 23, 523-532. 

Arora, A., Merges, R., 2004. Specialized supply firms, property rights and firm boundaries. Industrial and 
Corporate Change 13, 451-475. 

Athreye, S., Cantwell, J., 2005. Creating Competition? Globalisation and the Emergence of New 
Technology Producers. Open University Discussion Paper in Economics no.52, Open University, 
Milton Keynes, UK. 

Barney, J.B., 1986. Strategic factor markets: expectations, luck, and business strategy. Management 
Science 32, 1231-1241. 

Baron, J.N., Hanna M.T., 2002. Organizational blueprints for success in high-tech start-ups. California 
Management Review 44, 8-36. 

Breschi, S., Lissoni, F., Malerba, F., 1998. Knowledge Proximity and Technological Diversification. 
TSER Project: ISE-Innovation Systems in Europe, IV Framework Programme, EC-DG XII. 

Bresnahan, T.,  Gambardella, A., 1998. The division of inventive labor and the extent of the market, in: 
Helpman E. (Eds.), General Purpose Technologies and Economic Growth. MIT Press, Cambridge, 
MA, 253-281. 

British Technology Group (BTG), 1998. IPR Market Benchmark Study, www.btgplc.com. 

Cesaroni, F., 2003. Technology strategies in the knowledge economy: the licensing activity of Himont. 
International Journal of Innovation Management 7, 1-23. 

Chesbrough, H., 2002. Making sense of corporate venture capital. Harvard Business Review, March, 90-



 33 
 
 

99. 

Cohen, W.M., Levinthal, D.A., 1989. Innovation and learning: the two faces of R & D. Economic Journal 
99, 569-596. 

Cohen, W.M., Nelson, R.R., Walsh, J.P., 2000. Protecting their intellectual assets: Appropriability 
conditions and why U.S. manufacturing firms patent (or not). NBER Working Paper n. 7522. 

David, P., 1993a. Knowledge, property, and the system dynamics of technological change, in: 
Proceedings of the World Bank Annual Conference on Development Economics 1992, (published 
as a Supplement to the World Bank Economic Review, L.Summers and S.Shah, eds.) International 
Bank for Reconstruction and Development, Washington, DC, 215-248. 

David, P., 1993b. Intellectual property institutions and the panda’s thumb: patents, copyrights, and trade 
secrets in economic theory and history, in: Wallerstein, M., Mogee, M., Schoen, R. (Eds.), Global 
Dimensions of Intellectual Property Rights in Science and Technology. National Academy Press, 
Washington, DC, 19-62. 

David, P., 1998. Common agency contracting and the emergence of ‘Open Science’ institutions. 
American Economic Review 88, 15-21. 

Economist (The), 2005. A Market for Ideas: A Survey of Patents and Technologies. October 22, 1-20. 

Fosfuri, A., 2004. The Licensing Dilemma: understanding the determinants of the rate of licensing, 
Working Paper 04-15, Business Economic Series, Universidad Carlos III de Madrid. 

Freeman, C., Soete, L.L.G., 1997. The Economics of Industrial Innovation, third ed. Pinter, London. 

Gallini, N.T., 1984. Deterrence by market sharing: a strategic incentive for licensing. American Economic 
Review 74, 931-941. 

Gallini, N.T., 2002. The economics of patents: lessons from recent US patent reform. Journal of 
Economic Perspectives 16, 131-154. 

Gambardella, A., Torrisi, S., 1998. Does technological convergence imply convergence in markets? 
Evidence from the electronics industry. Research Policy 27, 445-463. 

Gans, J., Hsu, D., Stern, S., 2002. When does start-up innovation spur the gale of creative destruction. 
RAND Journal of Economics 33, 571-586. 

Giuri, P., Mariani, M., Brusoni, S., Crespi, G., Francoz, D., Gambardella, A., Garcia-Fontes, W., Geuna, 
A., Gonzales, R., Harhoff, D., Hoisl, K., Lebas, C., Luzzi, A., Magazzini, L., Nesta, L., Nomaler, 
O., Palomeras, N., Patel, P., Romanelli, M., Verspagen, B., 2005. “Everything you always wanted 
to know about inventors (but never asked): Evidence from the PatVal-EU survey”, LEM Working 
Paper No. 2005/20, Sant’Anna School of Advanced Studies, Pisa. 

Giuri, P., Hagedoorn, J., Mariani, M., 2004. Technological diversification and strategic alliances, in: 
Cantwell, J., Gambardella, A., Granstrand, O. (Eds.). The Economics and Management of 
Technological Diversification. Routledge, London and New York, 116-151. 

Granstrand, O., Patel, P., Pavitt, K., 1997. Multi-technology corporations: why they have distributed 
rather than distinctive core competencies. California Management Review 39, 8-25. 

Green, J.R., Scotchmer, S., 1995. On the division of profit in sequential innovation. RAND Journal of 
Economics 26, 20-33. 

Grindley, P., Nickerson, J., 1996. Licensing and business strategies in the chemical industry, in: Parr, R., 
Sullivan, P. (Eds.), Technology Licensing Strategies. John Wiley, New York, 97-120. 

Grindley, P.C., Teece, D.J., 1997. Managing intellectual capital: licensing and cross-licensing in 
semiconductors and electronics. California Management Review 39, 1-34.  

Hall, B.H., Ziedonis, R.H., 2001. The patent paradox revisited, an empirical study of patenting in the US 
semiconductor industry, 1979-1995. RAND Journal of Economics 32, 101-128. 



 34 
 
 

Harhoff, D., Hoisl, K., Webb, C., 2005. European patent citations - how to count and how to interpret 
them? mimeo. 

Harhoff, D., Reitzig, M., 2004. Determinants of opposition against EPO patent grants--the case of 
biotechnology and pharmaceuticals, International Journal of Industrial Organization 22, 443-480. 

Hinze, S., Reiss, T., Schmoch, U., 1997. Statistical Analysis on the Distance Between Fields of 
Technology. Report for European Commission TSER Project, September. 

Kollmer, H, Dowling, M., 2004. Licensing as a commercialisation strategy for new technology-based 
firms. Research Policy 33, 1141-1151. 

Lamoreaux, N., Sokoloff, K., 1998. Inventors, firms, and the market for technology: US manufacturing in 
the late nineteenth and early twentieth centuries, in: Lamoreaux, N., Raff, D., Temin, P. (Eds), 
Learning by Firms, Organizations, and Nations. University of Chicago Press, Chicago, 19-60.  

Lanjouw, J.O., Schankerman, M., 2004. Patent quality and research productivity: measuring innovation 
with multiple indicators. Economic Journal 114, 441-465. 

Lerner, J., 1994. The importance of patent scope: an empirical analysis. RAND Journal of Economics 25, 
319-333. 

Merges, R.P., Nelson, R.R., 1990. On the complex economics of patent scope. Columbia Law Review 90, 
839-916. 

Meyer, M.H., Roberts, E.B., 1986. New product strategy in small technology-based firms: a pilot study. 
Management Science 32, 806-821. 

Nakamura, K., Odagiri, H., 2003. Determinants of R&D Boundaries of the Firm: An Empirical Study of 
Commissioned R&D, Joint R&D, and Licensing with Japanese Company Data. NISTEP, 
Discussion Paper No.32. 

OECD, 2005. Intellectual Property as an Economic Asset: Key Issues in Valuation and Exploitation. 
OECD, Paris. 

Palomeras, N., 2003. Sleeping patents: any reason to wake up? IESE Research Papers No. D/506. 

Patel, P., Pavitt, K., 1997. The technological competencies of the world’s largest firms: complex and 
path-dependent, but not much variety. Research Policy 26, 141-156. 

Peteraf, M.A., 1993. The cornerstones of competitive advantage: A resource-based view. Strategic 
Management Journal 14, 179-191. 

Prahalad, C.K., Hamel, G., 1990. The core competence of the corporation. Harvard Business Review 
May-June, 79-91. 

Razgaitis, S., 2004. US/Canadian licensing in 2003: survey results. Journal of the Licensing Executive 
Society 34, 139-151. 

Rivette, K.G., Kline, D., 2000. Discovering new value in intellectual property. Harvard Business Review 
78, 54-66.  

Rockett, K.E., 1990. Choosing the competition and patent licensing. Rand Journal of Economics 21, 161-
171. 

Rosenberg, N. Birdzell, L., 1986. How the West Grew Rich. Basic Books, New York. 

Rumelt, R.P., 1984. Towards a strategic theory of the firm, in: Lamb, R.B. (Ed.), Competitive Strategic 
Management. Prentice-Hall, Englewood Cliffs, NJ, 556-570. 

Sampat, B.N., Ziedonis, A.A., 2003. Cite-Seeing: Patent Citations and Economic Value. Paper presented 
at the Conference on Empirical Economics of Innovation and Patenting, Centre for European 
Economic Research, Mannheim Germany, March. 

Scotchmer, S., 1991. Standing on the shoulders of giants: cumulative research and the patent law. Journal 
of Economic Perspectives 5, 29-41. 



 35 
 
 

Shane, S., Venkataraman, S., 2003. Guest editors’ introduction to the special issue on Technology 
Entrepreneurship. Research Policy 32, 181-184. 

Shephard, A., 1987. Licensing to enhance demand for new technologies. Rand Journal of Economics 18, 
360-368. 

Stuart, T.E., Hoang H., Hybels, R.C., 1999. Inter-organizational endorsements and the performance of 
entrepreneurial ventures. Administrative Science Quarterly 44, 315-349. 

Teece, D.J., 1986. Profiting from technological innovation: implications for integration, collaboration, 
licensing and public policy. Research Policy 15, 285-305. 

Webb, C., Dernis, H., Harhoff, D., Hoisl, K., 2005. Analysing European and international patent 
citations: a set of EPO patent database building blocks. STI working paper 2005/9, OECD, Paris. 

 

 

Acknowledgements  

 

We thank Ashish Arora, Andrea Fosfuri, Marco Giarratana and participants of the WIPO-OECD 

workshop in Geneva and the Bocconi workshop in Milan for helpful discussions and 

suggestions. We also thank Serena Giovannoni and Manuela Gussoni for excellent research 

assistance. The usual disclaimers apply. We acknowledge financial support from the European 

Commission IHP Grant No. HPV2-CT-2001-00013, and from Bocconi University (Basic 

Research Program). Alessandra Luzzi also acknowledges financial support from the Centre 

Cournot pour la recherche en Economie. 
 

 

 



 36 
 

 

 
 
 
 
APPENDIX 
Table A.1 Descriptive statistics - technological classes  
 Mean St. Dev. 
5 Macro Technological Classes   
Electrical engineering 0.158 0.365 
Instruments 0.100 0.300 
Chemistry, Pharmaceuticals 0.185 0.388 
Process Engineering 0.253 0.435 
Mechanical Engineering 0.305 0.460 
30 Technological Classes   
Electrical devices, electrical engineering, electrical energy 0.077 0.267 
Audio-visual technology 0.019 0.137 
Telecommunications 0.031 0.174 
Information technology 0.021 0.143 
Semiconductors 0.010 0.099 
Optics 0.018 0.134 
Analysis, measurement, control technology 0.056 0.230 
Medical technology 0.021 0.145 
Organic fine chemistry 0.058 0.234 
Macromolecular chemistry, polymers 0.057 0.232 
Pharmaceuticals, cosmetics 0.017 0.128 
Biotechnology 0.005 0.068 
Materials, metallurgy 0.033 0.178 
Agriculture, food chemistry 0.012 0.109 
Chemical and petrol industry, basic materials chemistry 0.036 0.185 
Chemical engineering 0.029 0.167 
Surface technology, coating 0.017 0.128 
Materials processing, textiles, paper 0.057 0.231 
Thermal processes and apparatus 0.023 0.148 
Environmental technology 0.016 0.124 
Machine tools 0.038 0.191 
Engines, pumps, turbines 0.029 0.169 
Mechanical Elements 0.044 0.205 
Handling, printing 0.082 0.274 
Agricultural and food processing, machinery and apparatus 0.020 0.141 
Transport 0.073 0.261 
Nuclear engineering 0.004 0.064 
Space technology weapons 0.006 0.076 
Consumer goods and equipment 0.049 0.216 
Civil engineering, building, mining 0.043 0.203 

Number of observations=7105. 
 

 


