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Abstract

We review, under a historical perspective, the developement of the problem of non-
fundamentalness of Moving Average (MA) representations of economic models, starting
from the work by Hansen and Sargent [1980]. Nonfundamentalness typically arises when
agents’ information space is larger than the econometrican’s one. Therefore it is impos-
sible for the latter to use standard econometric techniques, as Vector AutoRegression
(VAR), to estimate economic models. We re-state the conditions under which it is pos-
sible to invert an MA representation in order to get an ordinary VAR, and we consider
how the latter is used in the literature to assess the validity of Dynamic Stochastic Gen-
eral Equilibrium models, providing some interesting examples. We believe that possible
nonfundamental representations of considered models are too often neglected in the liter-
ature. We consider how factor models can be seen as an alternative to VAR for assessing
the validity of an economic model without having to deal with the problem of nonfun-
damentalness. We then review the works by Lippi and Reichlin [1993] and Lippi and
Reichlin [1994] which are the first attempts to give to nonfundamental representations
the economic relevance that they deserve, and to outline a method to obtain such repre-
sentations starting from an estimated VAR.
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1 Introduction

Predictions from different structural models can be evaluated empirically using the VAR tool,
where linear combinations of structural shocks are estimated as residuals of OLS regressions,
being the structural shocks then identified by imposing a set of restrictions. If such restrictions
are verified by a broad class of models, different predictions of models can be compared by
looking at the estimated shocks and their coefficients (impulse response functions). However,
if the structural model has a moving average (MA) component, the VAR representation is
admissible only under some conditions which may not be verified in the structural model. In
that case, there is no hope to recover the structural shocks from VAR estimation. This point
was first made by Hansen and Sargent [1980], Hansen and Sargent [1980], Lippi and Reichlin
[1993], and Lippi and Reichlin [1994] and recently brought back in the macroeconomic debate
by Chari et al. [2005], Christiano et al. [2006] and Fernandez-Villaverde et al. [2005].

In the next section we give the main definitions of nonfundamentalness. In section 3 we
illustrate the debate between Blanchard and Quah [1989] and Lippi and Reichlin [1993] as
a textbook example of how an economically meaningful model can generate nonfundamental
representations. In section 4 we look at another case of nonfundamentalness generated by ra-
tional expectations. In section 5 we consider briefly Dynamic Stochastic General Equilibrium
(DSGE) models and a recent method proposed by Fernandez-Villaverde et al. [2005] to detect
nonfundamentalness in these models. In section 6 we propose the Dynamic Factor model as an
alternative tool for identification. First we introduce the model as a consequence of DSGE mo-
dels with measurement errors and then we show how to deal with nonfundamentalness in this
case. In section 7 we deal with a different method by Giannone and Reichlin [2006] to detect
nonfundamentalness based on Granger causality that naturally leads to a factor representa-
tion. In Section 8 we recall Blanchard and Quah [1993] argument for nonfundamentalness in
cointegrated models. In section 9 we explain how to generate nonfundamental representations
by means of Blaschke matrices and we review the method proposed by Lippi and Reichlin
[1994] to obtain such representations. Section 10 proposes a development for future research
on nonfundamental representations.

2 Nonfundamentalness

Consider an N -dimensional covariance stationary zero-mean vector stochastic process xt of
observable variables and a q-dimensional vector process ut of structural (i.e. with economic
meaning) shocks that are not observable but that have impact on xt. We can write

xt = C(L)ut , (1)

where C(L) =
∑

∞

k=0 CkL
k is a one-sided polynomial in the lag operator L, in principle of

infinite order. The shocks are orthogonal white noises: ut ∼ w.n.(0, Γu
0), with Γu

0 diagonal,
so that all possible serial correlation is captured by C(L). In all what follows we assume
that xt has rational spectral density and therefore the entries of C(L) are rational functions
of L. We define the k-th lag impulse response of the variable xit to the shock ujt as the
(i, j)-th element of the matrix Ck. Whenever ut ∈ span {xt−k, k ≥ 0}, we say that ut is fun-
damental with respect to xt. It is then clear that if N < q then it is impossible to obtain
ut from the present and past values of observed data, since we observe fewer series than the
shocks that we want to recover. Thus a necessary condition for fundamentalness is that N ≥ q.
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The typical tool used to estimate (1) are VAR models where we always assume that N = q
and we estimate the equivalent representation

A(L)xt = ut , (2)

where A(L) is a one-sided polynomial of finite order. Clearly the obtained shocks ut are,
by construction, fundamental and their identification as structural shocks is accomplished by
imposing restrictions derived from economic theory. The old literature used to impose such
restrictions directly on the lag coefficients, however Sims [1980] dubbed them as “incredible”
and proposed to put weaker identifying restrictions generally on the covariance matrix of the
residuals of a VAR, or on the impact multiplier C(0) and on the long run multiplier C(1)
(for an introduction see Watson [1994]). A VAR with structural restrictions is usually called
Structural VAR. In any case, whatever the identification scheme used, the identified shocks are
still fundamental for the VAR representation given that they are simple rotations of the ones
estimated in (2). There is no way to identify nonfundamental shocks by means of VAR tech-
niques. However economic theory, in general, does not provide support for fundamentalness
so that all representations that fulfill the same economic statements but are nonfundamental
are ruled out by VAR with no justification. Typically nonfundamentalness can be restated as
a case where the agents’ information space is larger than the econometricians’ one.

We now start by considering the square systems (i.e. N = q) and we provide the sufficient
condition for fundamentalness.

Definition 1 (Fundamentalness in square systems) Given a covariance stationary vec-

tor process xt, the representation xt = C(L)ut is fundamental if:

1. ut is a white noise vector;

2. C(L) has no poles of modulus less or equal than unity, i.e. it has no poles inside the

unit disc;

3. det C(z) has no roots of modulus less than unity, i.e. all its roots are outside the unit

disc

det C(z) �= 0 ∀ z ∈ C s.t. |z| < 1 . (3)

If the roots of det C(z) are outside the unit disc, we have invertibility in the past (i.e. the
inverse representation of (2) depends only on non-negative powers of L) and therefore we have
fundamentalness. If at least one of the roots of det C(z) is inside the unit disc, we still have
invertibility and we have nonfundamentalness. However, since in this case the inverse repre-
sentation of (2) depends also on negative powers of L, we speak of invertibility in the future.
Finally if there is one root on the unit circle the representation is still fundamental but it is
not invertible.

Hence, summarizing, if det C(z) has roots outside the unit disc we can estimate a VAR for xt

and the residuals, once identified, are the real economic shocks. On the opposite, if at least
one root is inside the unit circle, there is a problem of nonfundamentalness and we cannot use
standard techniques as VAR to identify the model, due to the fact that different specifications
might imply the same covariance structure. The problem of nonfundamentalness is a problem
only for the estimation of Structural VAR models. When instead we use VAR models just
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for forecasting we are not concerned about nonfundamentalness since, in this case, we are not
interested in recovering the structural shocks, but we just care of exploiting all the information
available. Notice that that fundamental representations arise naturally with linear prediction,
being the prediction error ut = xt − Proj (xt|xt−1, xt−2, . . .), by construction, fundamental for
xt. Therefore when estimating a VARMA with forecasting purposes, the MA matrix polyno-
mial is always chosen to be fundamental.

We illustrate definition 1 with a simple example. Consider the two representations for xt

A) xt = (1 − cL)ut ut ∼ i.i.d(0, σ2
u) ,

B) xt = (1 − 1
c
L)ũt ũt ∼ i.i.d(0, σ2

ũ) ,

with | c| > 1 and σ2
ũ = c2σ2

u, so that in both cases the variance of xt is σ2
u(1 + c2). Repre-

sentation A is not invertible but the first two moments of xt are not enough to discriminate
between this model and model B which instead is invertible. Suppose model A is the true one,
a researcher using the VAR representation will be forced to estimate B and will then recover
ũt as the structural shocks and not the true ut.

Nonfundamentalness appears in the literature in two ways: endogenously or exogenously. In
the first case the model is by definition nonfundamental, this is the case of permanent income
models (see Blanchard and Quah [1993] and Fernandez-Villaverde et al. [2005]), rational ex-
pectations (see Hansen and Sargent [1980]) and heterogenous beliefs. While in the exogenous
case it is the way in which the dynamics of exogenous variables is specified which makes the
model fundamental or not. We start with an example of this latter case by Blanchard and
Quah [1989] and by Lippi and Reichlin [1993].

3 Why do nonfundamental representations matter?

Lippi and Reichlin [1993] in a comment to the well known VAR model by Blanchard and Quah
[1989] clearly highlight the possible existence of nonfundamental representations that, although
not recoverable with a VAR, may still give rise to economic meaningful representations. Both
these works take, as a starting point, the following model based on Fischer [1977]:

yt = mt − pt + aθt ,

yt = nt + θt ,

pt = wt − θt ,

wt = w| [Et−1(nt = n)] ,

where y, n, and θ denote the logs of output, employment, and productivity; n is full employ-
ment; w, p and m are the logs of nominal wage, price level, and money supply; aθ is investment
demand with a > 0. In the last equation nominal wages at t are set so that the expectation
at t − 1 of employment at t equals full employment. The evolution of money supply and
productivity is given by:

mt = mt−1 + ud
t ,

θt = θt−1 + d(L)us
t .
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There are two types of uncorrelated shocks, one that has a permanent effect on output through
productivity, while the other has not. The former can be interpreted as supply disturbances
(us

t) while the latter as demand disturbances (ud
t ). This model for output growth rate ((1 −

L)yt) and unemployment (Ut) has the structural form
[

∆yt

Ut

]

=

[

(1 − L) d(L) + (1 − L)a
−1 −a

] [

ud
t

us
t

]

= C(L)

[

ud
t

us
t

]

. (4)

The only difference between the models by Blanchard and Quah [1989] and the model by Lippi
and Reichlin [1993] is on the impact of the supply shock on output growth rate. The model by
Blanchard and Quah [1989] assumes no dynamics in productivity except for the istantaneous
response to the supply shock, therefore they implicitly assume d(L) = 1. The model by Lippi
and Reichlin [1993] assumes a learning-by-doing dynamics such that d(1) = 1, therefore in
their model the rate of increase of productivity at time t + k is dku

s
t .

We now review in detail the implications of these two choices.

Fundamental representations

Blanchard and Quah [1989] first estimate the VAR Φ(L)xt = et, where xt = (∆yt Ut)
′,

Φ(0) = I, and E(ete
′

t) = Γe
0. This can be interpreted as the reduced form of the following VAR

A(L)

[

∆yt

ñt

]

=

[

ud
t

us
t

]

, (5)

where we impose E(utu
′

t) = I. By comparing structural and reduced forms we immediately
see that ut = A(0)et. Therefore, the structural shocks ut can be recovered from the estimated
VAR innovations et, provided that we impose restrictions in order to identify A(0). The
inverse representation of (5) is given in (4) with d(L) = 1. Blanchard and Quah [1989] impose
long-run neutrality of the demand shock on yt, i.e. C11(1) = 0, moreover C(0)C(0)′ = Γe

0.
These conditions are enough to achieve identification of the structural shocks. The procedure
is the following: first estimate the reduced form VAR and get Φ(L), et and their covariance
Γe

0; from these together with the identification conditions obtain C(0), C(L) = A(L)C(0),
and ut, thus all the elements of (4). By estimating the model with real data the following
impulse responses C(L) are obtained: the effect of the demand shock is hump-shaped for both
variables, while the effect of the supply shock on output increases steadily over time before
reaching a plateau.
Note that the issue of nonfundamentalness is always present when dealing with VAR models,
even when it is not explicitly mentioned as in the work by Blanchard and Quah [1989]. Indeed
all their procedure is correct provided that C(L) is invertible in the past. From (4), with the
condition d(L) = 1, we have that det C(z) = 1, and definition 1 is trivially satisfied. Therefore
the VAR of equation (5) is a correct representation of the model. Note that if this were not
the case, then the estimated innovations et would not be a simple linear combination of ut

since the latter ones would be nonfundamental for xt. Therefore, the econometrician would
estimate nonfundamental shocks as if they were fundamental, thus committing a possibly fatal
error.

Nonfundamental representations

As mentioned above, Lippi and Reichlin [1993] assume a non trivial dynamics for the pro-
ductivity and this simple and very realistic assumption generates a variety of other possible
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impulse responses. Indeed in this case det C(z) = d(z), therefore invertibility of (4) (i.e.
fundamentalness of ut) is no more automatically guaranteed unless we impose additional re-
strictions on the process of learning-by-doing. However, economic theory does not provide
sufficent restrictions for θt in order to satisfy definition 1. For instance, the typical case of
learning-by-doing characterizing the diffusion of technological innovations can be modelled by
assuming a bell-shaped pattern for the coefficients dk, which generates an S-shaped long-run
impulse response of the output growth rate to a supply shock. Lippi and Reichlin [1993]
show that such a choice may imply that some roots of det C(z) are inside the unit disc. In
their specification of the model the property of long-run neutrality of the demand shock is
still imposed as in Blanchard and Quah [1989], but in addition a non-trivial learning-by-doing
process of diffusion of technical change is assumed. The bottom line of the work by Lippi and
Reichlin [1993] consists in the possibility of producing economically sensible models in which
the standard assumption of fundamentalness is violated. In fact we can still estimate a VAR
for such a model but we will face two problems: the usual problem of determining the matrix
A(0) through identification restrictions, plus the problem of establishing the position of the
zeroes of the representation (4). The key point of the whole procedure lies in the fact that by
inverting the estimated VAR we will obtain a fundamental representation, but it is possible
to obtain many other nonfundamental representations that we cannot rule out since some of
them may have meaningful economic interpretation as the learning-by-doing example.
To show how this can happen, Lippi and Reichlin [1993] use the same data as in Blanchard
and Quah [1989] and first estimate a VAR, then they invert it to get its MA representation,
and starting from its roots, that are by definition outside the unit disc, they generate many
different nonfundamental representations and their impulse responses by just inverting some
of the roots. Some of the impulse responses are immediately rejected as implausible, while
others can be interpreted as responses to a technology shock which does not have an instan-
taneous one-to-one impact on the variables of interest.

In general the literature does not provide support for fundamentalness, so that all repre-
sentations that fulfill the same economic statements but are nonfundamental are ruled out
with no justification. Although skeptical about the economic usefulness of nonfundamental
representations, Blanchard and Quah [1993] recognize that we cannot neglect this problem
just by assuming that it is not present. As another example of nonfundamentalness, they con-
sider the model of permanent income by Friedman-Muth where income yt is decomposed in a
permanent part y1t and a transitory part y0t which are independently affected by uncorrelated
shocks

∆y1t = u1t ,

y0t = u0t .

If consumption follows the permanent income hypothesis as in Hall [1978] we have: ∆ct =
u1t − (1 − β)u0t where β is the agent discount factor. Therefore we have

[

∆yt

∆ct

]

=

[

1 1 − L
1 1 − β

] [

u1t

u0t

]

= C(L)ut .

In this case det C(z) = (z − β) and hence it has the only root in β, which by definition is
inside the unit disc. The representation is nonfundamental. Permanent and transitory com-
ponents of income are not recoverable just by considering only income and consumption as
in a VAR. This is a typical case of endogenous nonfundamentalness, in that this property
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does not depend on any exogenous variable, it is instead a real property of the model that
cannot be eliminated. The model by Lippi and Reichlin [1993] is instead a case in which non-
fundamentalness is exogenously generated by the way in which the technological shock hits
the economy. However, exogeneity is not a good reason for considering nonfundamentalness
as an innocuous problem. Indeed, as we just showed, we can generate nonfundamental but
meaningful economic models, that Structural VAR models cannot identify. Unless we knew
the real economic model, we must take into account all the possible representations including
the nonfundamental ones.

Both examples in this section show how nonfundamental representations can arise even in very
simple models where no expectations are present, as it is instead the case for the models that
we will consider in the next sections. Since evidence of economic meaningful nonfundamental
representations is accumulating, it is useful to find a way for considering such representations
every time that we have to deal with identification issues.

4 A first example of nonfundamentalness:

rational expectations

Hansen and Sargent [1980] introduced the problem of nonfundamentalness while trying to set
up a method for formulating and estimating dynamic linear econometric models with rational
expectations. Estimation is usually run by estimating agents’ decision rules jointly with the
model of the stochastic process they face, subject to the restrictions implied by the rational
expectations rules. These in turn imply that agents observe and respond to more data than the
econometrician possess, i.e. the agents’ information space is larger than the econometrician’s
one. Hansen and Sargent [1980] express the problem as follows:

“[...]the dynamic economic theory implies that agents’ decison rules are exact (non-
stochastic) functions of the information they possess about the relevant state vari-
ables governing the dynamic process they wish to control. The econometrician
must resort to some device to convert the exact equations delivered by economic
theory into inexact (stochastic) equations susceptible to econometric analysis.”

As an example, Hansen and Sargent [1980] develop a model for the error terms in the estimated
decison rules by considering the simple case of a firm devising a contingency plan for the
employment of a single factor of production Lt (e.g. labour) subject to quadratic costs of
adjustment and uncertain technology Zt and factor rental (e.g. wage) processes Wt. Firms
will have to solve the maximization problem

max
Lt

E0

[

∞
∑

t=0

βt
(

(γ0 + Zt − WtLt) − (γ1/2)2L2
t − (δ/2)(Lt − Lt−1)

2
)

]

, (6)

for some parameters γ0, γ1, δ and β. The stochastic process Zt is seen by the firm but not by
the econometrician and it is an AR(p) with structural innovations ut, while Wt is observed by
both the firm and the econometrician. Using dynamic programming or alternative techniques
to solve (6), it is possible to obtain a closed formula for the decision rule as a function of the
shocks. Given that Zt is not observed by the econometrician, she will introduce an error term
et and, by use of the computed decision rule, she can always write

a(L)et = b(L)ut ,
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where ut are the structural innovations. The parameters of this representation are completely
determined by the model thus we are not free to choose them, and, in general, the roots of
b(z) can lie on both sides of the unit circle. Therefore there may be a problem of nonfun-
damentalness and, even though ut is fundamental for Zt, it may not be fundamental for et.
If this is the case, the econometrician that estimates et will not be able to recover the true
technological innovations ut.

Hansen and Sargent [1991] provide another simple example where nonfundamentalness may
arise as a consequence of rational expectations. Suppose that one set of economic variables
wt, representing the true process, is generated by an invertible moving average process, while
another set xt, representing the estimated process, is made of expectational variables. Namely,

wt = ut − θut−1 = C̃(L)ut ,

xt = E0

[

∞
∑

t=0

βtwt

]

= (1 − βθ)ut − θut−1 = C(L)ut .

The only root of C(z) is (1− βθ)/θ which can be inside the unit disc even if C̃(z) has its root
outside the unit disc. If only xt are available to the econometrician then she may not be able
to recover the structural shocks ut that generate wt.

Brock et al. [2006] analyse the role of rational expectations in the framework of frequency
domain analysis of linear systems with feedback control rules. Indeed, forward-looking sys-
tems with rational expectations give origin to non invertible representations. The authors
show that by means of an appropriate choice of the control, e.g. monetary policy, it is possible
to take the roots of the characteristic polynomial inside or outside the unit circle.
Formally, a forward-looking system with rational expectations is written as

A0xt = βEt[xt+1] + A(L)xt−1 + B(L)ct + εt ,

where xt are the state variables, ct are the control variables and εt = W (L)ut with ut being
the fundamental shocks. A generic linear feedback rule is written as

ct = K(L)xt−1 .

Finally, we denote with xt = C(L)ut the equilibrium moving average representation of the
system. The key point is that C(L) depends on the choice of the control rule, i.e on the
polynomial matrix K(L). The choice of different control rules has an impact on the spectral
density matrix of the state variable xt, which is

fx(θ) =
1

2π
C(e−iθ)Σu(θ)C(e−iθ)′ ,

Σu(θ) being the variance covariance matrix of the fundamental shocks. Indeed, the control
enters the expression for C(e−iθ):

C(e−iθ) = A0 − (A(e−iθ) + B(e−iθ)K(e−iθ)e−iθ)−1W (e−iθ) .

It is possible to show that the application of a given control can have an impact on the value
of C(L) and on the location of the zeroes of its determinant. This is crucial in the case of
forward-looking systems when the fundamental shocks cannot be recovered by current and

7



past values of the state variables. These latter constitute the policymaker information set,
while the agents also observe the fundamental disturbances and know their process W (L)ut.
However, with an appropriate choice of the feedback control, the policymaker is able to turn
a nonrevealing equilibrium into a revealing one, and vice versa. In appendix to their paper,
Brock et al. [2006] provide an example in the univariate case.

Finally, notice that the usual procedure used to get an equilibrium formula for rational ex-
pectations is valid only in the cases when the structural shocks are independent over time,
and this limits the possibility of analysing the effect of different policies which are made of
non necessarily independent shocks. Futia [1981] generalizes rational expectations equilibria
to the case of general exogenous stochastic shocks vt, by using the so-called z-tranforms which
are functions f(z) such that

xt = f(L)vt ,

with the condition that f has no poles inside the unit disc. Once again this representation can
be inverted only if f(z) �= 0 for |z| < 1. This is simply the generalization of the problem of
nonfundamentalness in the case of rational expectations models with non-independent shocks.

5 Dynamic Stochastic General Equilibrium models

A large portion of macroeconomic literature focuses on Dynamic Stochastic General Equilib-
rium (DSGE) models in order to micro-found business cycle models, which are usually gen-
erated by serially uncorrelated and orthogonal stochastic structural shocks. The validation
procedure, used for example in a couple of recent papers by Chari et al. [2005] and by Chris-
tiano et al. [2006], in order to assess the reliability of VAR as an instrument to discriminate
among competing models, is the following:

1. consider a DSGE model (e.g a real business cycle model or a nominal rigidities model);

2. reformulate it in a state space form usually obtained by (log)-linearizing about the non-
stochastic steady state;

3. estimate the parameters of the state space form (e.g. by Maximum Likelihood or with
Bayesian methods);

4. compute the impulse response functions of the DSGE variables to the economic shocks
as given in the state space form;

5. generate new data from the state space model, using parameters estimated at step 3 (this
and the following steps are repeated thousands of times in a Monte Carlo experiment);

6. using the data generated in the previous step, estimate a VAR jointly with economically
meaningful identification restrictions, and compute the same impulse responses, together
with their confidence intervals;

7. compare these simulated VAR impulse responses with the ones obtained from the esti-
mated VAR at step 4.

The last step is crucial since, if there is no bias in the estimated impulse responses and in
their confidence intervals, we can say that VARs are indeed a useful tool for discriminating
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among different models, i.e. we can estimate the VAR with real data and, from its impulse
responses, we can say which is the more correct economic model.
Let us now show how the problem of nonfundamentalness arises in dealing with DSGEs. When
using real data to estimate the impulse responses, observations for many state variables (usu-
ally stocks as e.g. capital) are typically not available. Therefore, it is not possible to estimate
the same impulse responses as the simulated ones since some of the variables of the DSGE
are omitted when using real data. Whenever we omit a variable we do not have anymore
a VAR representation but we typically end up writing a VARMA representation of the lin-
earized DSGE. When estimating a VARMA we must always consider the possibility of having
a nonfundamental MA part before transforming it in a VAR.

Consider the example by Pagan [2007] of a fiscal policy case where xt is the primary deficit and
the level of debt is defined as a gap relative to its desired equilibrium value. Debt accumulates
as ∆dt = xt where we set the interest rate on past debt to zero. In order to stabilize debt we
need a fiscal rule that relates to the past debt level and responds to an output gap yt i.e.

∆dt = xt = adt−1 + cyt + ut with a < 0 .

Typically we drop debt from the VAR thus we need to solve the previous equation for dt and
substitute it in the fiscal policy equation, obtaining

xt = (1 − a)xt−1 + c∆yt + ∆ut .

This is no more a VAR but a VARMA where the MA part ∆ut = (1 − L)ut has its root in
z = 1, thus it is not invertible.

Nonfundamentalness generated by omitted variables is often considered innocuous provided
that we estimate a VAR with enough lags. However, the feasibility of writing a VAR represen-
tation of a particular DSGE model is never seriously considered. Indeed, given the presence
of expectations in such models, it is not unlikely to face a problem of nonfundamentalness
already when solving and linearizing the DSGE. When this happens, the entire procedure of
validation of a DSGE model through a VAR is invalid, given that it will recover fundamental
representations of a nonfundamental structural model.
Fernandez-Villaverde et al. [2005] state the conditions under which we can write a VAR as a
linearized solution of a DSGE model. Let us consider a DSGE model with an N -dimensional
vector of observable variables xt and a q-dimensional vector of economic shocks ut such that
ut ∼ w.n. (0, Iq). We can obtain its state space form by log-linearizing about a non-stochastic
steady state. Once we define a k-dimensional vector of state variables ft then the state equa-
tion is

ft = Aft−1 + But , (7)

and the measurement equation is
xt = Cft + Dwt . (8)

It is then possible to find conditions on A, B, C, and D that allow for the existence of a VAR
representation for xt. We consider here only the simplest case when q = N . Indeed, since we
are in the square case, we can invert (8) and we can rewrite (7) as

[

I − (A − BD−1C)L
]

ft = BD−1xt−1 .
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We now need to invert this equation in order to have ft as a function of xt. The usual condition
for invertibility in the past (i.e. for fundamentalness) is that the eigenvalues of (A−BD−1C)
are all inside the unit circle so that we can invert the previous equation by using the sum of
a geometric series. If this is the case, then

ft =

[

∞
∑

k=0

(A − BD−1C)kLk

]

(BD−1xt) ,

and from (8)
[

I − C
∞

∑

k=0

(A − BD−1C)kLk

]

xt = Dut .

If we now compare this theoretical expression with the VAR that an economtrician will esti-
mate, say for example A(L)xt = et, we realize that the VAR representation that an econome-
trician will estimate is consistent with the theory only if the eigenvalues of (A − BD−1C) lie
all inside the unit circle. This condition stated by Fernandez-Villaverde et al. [2005] gives us a
practical way to check for fundamentalness of the economic shocks ut. Such a criterion might
be useful in the case we have a state space form of our model but we do not have a structural
representation for it as in (1), so that we cannot check directly definition 1.

6 Factor models for structural identification

Although the literature often considers nonfundamentalness as a minor problem at least in all
practical cases, we tried to convince the reader that ruling out nonfundamental representations
might hide the econometrician a large number of alternative possible meaningful representa-
tions of a given model. We would like to find econometric models that do not have to bother
with the problem, but still are able to achieve identification of structural shocks. Dynamic
factor models are a good tool for this latter purpose. In this section we outline how these
models are built and how they deal with nonfundamentalness.

Dynamic factor models as representations of DSGE models

Giannone et al. [2006] and Boivin and Giannoni [2006] provide the motivation for considering a
factor structure in validating DSGE models. Typical theoretical macroeconomic models have
few shocks driving the business cycle, e.g. only one technology shock in first generation real
business cycle models, two or three in second generation ones. We say that these models have
reduced stochastic rank. Usually in DSGE models also measurements errors are considered
and in this case it can be shown that the model can have a factor structure, since factor models
separate out measurement errors by their own nature. Indeed, in these models the spectral
density matrix of the observed variables is decomposed into two orthogonal parts: the spectral
density of the common component, of reduced rank, that contains all the relevant information
of covariances (at all leads and lags), and the spectral density of the idiosyncratic compo-
nent, of full rank, that represents non correlated or mildly correlated measurement errors.
This approach wipes away measurement errors, which heavily affect VAR impulse responses.
Therefore factor models seem to be a good alternative tool to validate DSGE models, as will
be formally discussed in this and the following sections.
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The most general DSGE model is formulated as follows:

max
Yt

E0

[

∞
∑

t=0

βtU(Yt)

]

s.t. g(Yt, Yt−1, . . . , St, St−1) ≤ 0 .

The model includes n endogenous predetermined variables Yt and q exogenous variables St.
These exogenous variables are usually modelled as functions of q serially uncorrelated orthonor-
mal structural shocks ut. Therefore the system contains N = n + q variables Xt = (Yt St)

′.
Let us indicate with small letters the difference between the log of the variables and their
non-stochastic steady state. We have the linearization of the model

yt = Θ(L)st ,

Ψ(L)st = ut .

The system can be transformed into a state space form by defining the state variables as
ft = (s′t, . . . , s

′

t−s) where s is the maximum degree between Ψ(L) and Θ(L). Therefore we
have

xt = Λft , (9)

A(L)ft = But .

Note that the dimension of ft is r = q(s + 1) and the static rank of the system (i.e. the rank
of the covariance of xt) is at most r and it is given by the restrictions imposed on the VAR
(the q shocks) and on the number of lags included in the model s, therefore it depends on
the structure of the economy. In most DSGE models we have reduced static rank i.e. r < N ,
which is also empirically found in the form of common cycles. From (9) we obtain the MA
representation

xt = Λ(I − A(L))−1But = C(L)ut . (10)

From this equation is clear that the dynamic rank of xt (i.e. the rank of its spectral density
matrix) is q, and therefore it depends on the number of exogenous forces. In general for
macroeconomic datasets q < N , which means that there is collinearity among the N variables.1

The reduced static and the dynamic ranks are restrictions that come from the theory and that
could be tested. In principle we could now estimate the VAR D(L)xt = εt where εt = But.
However, to estimate this VAR we need that r = N in order to invert Γx

0 , which is almost never
the case. Thus VAR estimation is not possible due to the reduced static rank of macroeconomic
datasets. There are two alternatives: either estimate a VAR only on blocks of r variables, or
add measurement errors. In the latter case we eliminate the collinearity among variables and
we can estimate the full system, thus either we estimate a VARMA on the whole system, or
we estimate a dynamic factor model. Thus, the last case is the one that we are interested in
(see Giannone et al. [2006] for details on all the cases).

1About the ranks note that
Σx(θ) = C(e−iθ)Γu

0
C(eiθ)′ ,

and since rankC(L) = q the dynamic rank is q, while

Γx
0

= ΛFtF
′
tΛ

′ .

Therefore the maximum static rank is r.
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Introducing measurement errors

When adding orthogonal measurement errors ξt, we lose collinearity of the variables and we
can write (10) for a covariance stationary process xt as a dynamic factor model

xt = C(L)ut + ξt = χt + ξt , (11)

where ut is the q-dimensional vector of common shocks s.t. ut ∼ w.n.(0, Iq), and ξt is an
idiosyncratic N -dimensional process of measurement errors s.t. ξit−k is orthogonal to ujt for
any i, j, and k. Two assumptions are made for the factor model: the q largest eigenvalues
of the spectral density matrix of xt diverge as N → ∞, while the (q + 1)-th is bounded
almost everywhere for all frequencies θ ∈ [−π, π]. These assumptions are reasonable since
measurement errors are supposed to vanish when considering linear combinations of many
collinear variables. As a consequence, the common component χt has reduced dynamic rank
q < N , while ξt has full dynamic rank: this is how we break collinearity. Notice that the
need of large cross sections to apply the factor model is perfectly consistent with the standard
practice of central banks, which use all the available information when making decisions.
We can also add measurement errors to the state space form (9)

xt = Λft + ξt ,

A(L)ft = But . (12)

Once again, given the previous assumptions, we have a common part with reduced static rank
and an idiosyncratic part with asymptotically vanishing covariance that has full static rank.
Therefore, when dealing with large cross sections we still have reduced dynamic and static
rank of the whole dataset xt. We can estimate a factor structure on every model with reduced
static and dynamic ranks, which are typical properties of macroeconomic datasets. Hereafter
we will call ft the static factors while ut will be the dynamic factors that correspond to the
structural shocks of the economy. We want to identify ut and the impulse responses that they
generate.

The most general factor model is the Generalized Dynamic Factor Model (GDFM) by Forni
et al. [2000], where some cross-correlation between the elements of ξt is allowed. In this case,
by using the one-sided estimator proposed by Forni et al. [2005] it is possible to recover the
static factors ft as the r largest generalized principal components. Then, the dynamic factors
ut are estimated by inverting the second of (12), where usually A(L) is of order one.2 Actu-
ally, this procedure recovers et = Rut with RR′ = Iq, therefore once the parameters of (12)
are estimated, the impulse responses are Λ(I − A(L))−1BR. Once again, R is determined by
imposing economic restriction.

To sum up, the two main advantages from imposing a factor structure on the linearized
solution of a DSGE model are the following:

1. given the properties of the estimator by Forni et al. [2000] we need a large cross section
(N → ∞) and to have a good estimation of the spectral density we require also a large

2The first r generalized eigenvectors zi correspond to the r largest generalized eigenvalues λi that satisfy

Γχ
0
zi = Γξ

0
λizi for i = 1, . . . , r .

The principal components are the projection of xt onto the space spanned by (z1 . . . zr).
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time dimension. This seems a perfectly realistic requirement in agreement with the
practice followed by central banks, where usually DSGE models are applied;

2. xt contains the observed variables of the DSGE model and some proxies of the state
variables which are often unobserved and can be estimated as the latent static factors
ft. Indeed, the typical macroeconomic variables included in the panel are indicators
of economic activity built by aggregation, which can be seen as linear combinations of
unobserved state variables (and their lags) plus some measurement errors. It is possible
to impose structural relations between the observed xt and the unobserved ft, i.e. to
impose restrictions on Λ. The two-step procedure for estimating the restricted model is
the following: (i) carry out a non-parametric estimation of ft as in Forni et al. [2000];
(ii) apply a Quasi-ML Kalman filter estimator as the one proposed by Doz et al. [2006].

Fundamentalness in dynamic factor models

Why in the previous section, when considering factor models as a tool for validating DSGE
models, have we not raised the issue of fundamentalness, that is pervasive when dealing with
VAR? Because we can show that actually nonfundamentalness is not a generic problem in
factor models, and, under reasonable assumptions, we can always guarantee that the dynamic
factors ut are fundamental for xt (see Forni et al. [2006]). In factor models we always have
N > q, therefore we first need a definition of nonfundamentalness that generalizes definition
1 to the case of singular systems. It is indeed the singularity of dynamic factor models that
makes the property of nonfundamentalness non generic and therefore makes us ask “Why
should we care about it?”.

Definition 2 (Fundamentalness in singular models) Given a covariance stationary vec-

tor process xt, the representation xt = C(L)ut is fundamental if:

1. ut is a white noise vector;

2. C(L) has no poles of modulus less or equal than unity, i.e. it has no poles inside the

unit disc;

3. C(L) has full rank inside the unit disc

rank C(z) = q ∀ z ∈ C s.t. |z| < 1 .

Alternatively we can restate this condition in terms of the roots of det C(z). We ask that the

determinants of all the q × q submatrices of C(z) have no common roots inside the unit disc.

More precisely, if we call Cj(L) the submatrices contained in C(L) and we define the set of

indexes I =
{

j ∈ N s.t. j = 1, . . . ,
(

N

q

)

}

, the definition of nonfundamentalness requires that

∄ z ∈ C s.t.







|z| < 1

det Cj(z) = 0 ∀ j ∈ I .

As an example, consider the case q = 1. If N = 1 we are back to definition 1 and we require
that no root of C(z) is smaller than one. If instead N > 1 we have N polynomials Cj(z) and
from definiton 2 the representation is nonfundamental if they have a common root smaller
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than one. Thus, if N = q, nonfundamentalness is generic since if it holds in a point then, for
continuity of the roots of C(z), it holds also in its neighborhood; while if N > q nonfunda-
mentalness is non-generic because to have a common root we must satisfy

(

N

q

)

− 1 equality
constraints. In singular models we usually have highly heterogeneous impulse responses of the
variables to the few structural shocks, therefore it is highly improbable to have a common
root for all of them, although it is not unlikely to have common roots for some submatrices of
C(L). Roughly speaking, although in principle the econometrician has a smaller information
set than the agents’ one (i.e. there is nonfundamentalness), he can supply the lack of infor-
mation by observing additional series, and if dynamic heterogeneity is guaranteed then these
series contain useful information. In macroeconomic datasets this is very likely to happen,
thus fundamentalness in factor models is a reasonable property.

Fernandez-Villaverde et al. [2005] provide an economic example, used also by Forni et al.
[2006], that clarifies this point. Let us consider the permanent income consumption model

ct = ct−1 + σu(1 − ρ−1)ut ,

st = yt − ct = −ct−1 + σuρ
−1ut ,

where ct is consumption, yt is labour income, ut a white noise process and ρ the gross interest
rate. Fernandez-Villaverde et al. [2005] assume that st is observable while ct is not. From
equations above, we have

st − st−1 = σuρ
−1(1 − ρL)ut = d(L)ut .

Thus since d(z) = 0 for z = ρ−1 < 1, ut is nonfundamental for st. Thus a VAR(1) estimated
by the econometrician would produce innovations which are not the structural shocks. How-
ever, if the econometrician observes also some additional variables zit = bi(L)ut, then ut is
fundamental for the whole system (st zt)

′ unless d(z) and bi(z) have the same root, i.e. unless
bi(ρ

−1) = 0, ∀ i, which is extremely unlikely.

In what follows we formalize the ideas shown in this example. When considering dynamic
factor models, we make the assumption that only the largest r eigenvalues of Γx

0 diverge as
N → ∞ the others being bounded. This in turn implies that rank (Λ′Λ)/N = rank Γχ

0/N = r
for large N . Such a condition can be guaranteed if no restrictions are imposed on the entries
of C(L) which are the elements of Λ. Therefore this is equivalent to ask for heterogeneity of
the impulse responses, which in turn requires s > 0, i.e. r > q. Dynamic heterogeneity is rea-
sonable in a factor model with large cross sectional dimension N as economic variables react
differently to structural shocks: this is precisely what we need for considering nonfundamen-
talness a non-generic problem. It is thus reasonable to assume fundamentalness of dynamic
factor models. Notice that the dynamic (11) and static (12) representations are equivalent if
there exists a squared-summable one-sided r × q filter N(L) such that

C(L) = ΛN(L) and ft = N(L)ut . (13)

Forni et al. [2006] prove that, under the assumptions of the dynamic factor model, fundamental-
ness of ut for χt is equivalent to left invertibility of N(L), i.e. to the existence of a q × r filter
G(L) such that G(L)N(L) = Iq. It is enough to take S(L) = G(L)(Λ′Λ)−1Λ′, and we have

S(L)xt = G(L)(Λ′Λ)−1Λ′ΛFt + S(L)ξt
m.s.
−→ G(L)N(L)ut = ut for N → ∞ .
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Therefore ut lies in the space spanned by the present and past values of χt. Usually, as in the
previous section, we choose N(L) = (Iq (IqL) . . . (IqL

s))′ and the following identities hold

ft = (u′

t u
′

t−1 . . . u′

t−s)
′ ,

Λ = (C0 . . . Cs) ,

r = q(s + 1) .

Representations (11) and (12) are indeed equivalent for a given lag length s and with this
choice G(L) = (Iq 0q . . . 0q).

The whole reasoning suggests that, given a large cross section, we will have dynamic het-
erogeneity which, through the assumptions of pervasiveness of the static and dynamic factors
and reduced dynamic rank and of fundamentalness of dynamic factors with respect to the
static ones, in turn implies that ut is fundamental for the whole χt, but it may not be funda-
mental for a subsample. However, in such cases we can always use additional cross sectional
information from other series to recover the dynamic factors, therefore supplying the missing
information due to local nonfundamentalness. Formally, let us consider the projection

ft = Proj (ft|ft−1, ft−2, . . . , ft−m) + wt , (14)

where the prediction error wt is fundamental by construction. From the assumption of
fundamentalness, ut is fundamental for ft, therefore the representation ft = N(L)ut has an
equivalent VAR representation A(L)ft = But where B is r× q and A(L) is r× r. By compar-
ing this last representation with (14) we get wt = But. In many cases when there is dynamic
heterogeneity (r > q), the information contained in the lagged values of ft can be substituted
by using cross sectional information, therefore one lag for A(L) seems to be enough and we
have the VAR(1) specification

ft = Aft−1 + But . (15)

We already know that, once the factor model is estimated, the dynamic factors (or structural
shocks) are identified only up to a rotation R. Given that fundamentalness can be assumed in
this framework, identification is then reduced to the choice of the matrix R such that econom-
ically motivated restrictions on C(L)R are satisfied. The number of restrictions that we have
to impose is just q(q− 1)/2, which is a big advantage since we need to impose few restrictions
but we do not have any limitation on the size of the panel.

A simple example is taken from Forni et al. [2006]. Consider the case with only one dy-
namic factor loaded with one lag, therefore q = 1 and s = 1. The common part of the i-th
series is

χit = (1 − ciL)ut = Λi·ft .

If we had homogeneous responses to the static factors ft we would have ci = c ∀ i. In this
case, we can easily see that

rank (Λ′Λ) = rank

[

N Nc
Nc Nc2

]

= 1 ,

hence r = 1. Since N(L) = (1− cL), fundamentalness is guaranteed only if we impose |c| < 1.
In this case the problem of nonfundamentalness is pervasive.
In order to have fundamentalness without any additional restrictions we need heterogeneity
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in the dynamics of the responses, i.e. ci �= cj for i �= j. In this case rank (Λ′Λ) = 2 and r = 2
since

rank (Λ′Λ) = rank

[

N
∑

i ci
∑

i ci

∑

i(ci)
2

]

= 2 .

Moreover, now

ft =

[

1
L

]

ut = N(L)ut ,

hence fundamentalness is always satisfied with G(L) = (1 0). In this case indeed we can
recover ut from any couple of series as

ut =
cjχit − ciχjt

cj − ci

.

Therefore ut is fundamental for (χit, χjt) even if ci > 1 ∀ i, i.e. even if ut is not fundamental
for χit.

7 Granger causality and nonfundamentalness

Giannone and Reichlin [2006] propose a criterion to detect nonfundamentalness in VAR rep-
resentations that is based on the concept of Granger causality. Once again, this approach
leads naturally to a factor structure for the data: indeed, while fundamentalness cannot be
tested in a VAR, it can be tested in a factor model. They consider the well known VAR firstly
estimated by Gali [1999], which can be derived from very different DSGE models such as real
business cycle models or New-Keynesian models

[

∆at

∆lt

]

= C(L)

[

uz
t

ud
t

]

, (16)

where at is the log of aggregate labour productivity and lt is the log of aggregate labour supply.
There are two structural shocks: a tehnological shock uz

T and a shock ud
t which is neutral for

productivity in the log-run, being thus interpretable as a labour income (or demand) shock
or a monetary shock. Let us call x∗

t = (∆at ∆lt)
′ the vector of observable variables which we

augment with other variables xt, so that (16) for the larger system becomes

[

x∗

t

xt

]

=

[

C(L) 0
D(L) Ψ(L)

] [

ut

vt

]

,

with vt as additional structural shocks orthogonal to ut. If ut is fundamental for x∗

t then there
exists a one-sided filter N(L) such that ut = N(L)x∗

t , therefore

xit = Di·(L)N(L)x∗

t + Ψi·(L)vt for i = 1, . . . , N .

Hence, each xit depends only on the past of x∗

t and does not incorporate any further informa-
tion useful for forecasting x∗

t , i.e. none of the xit Granger causes x∗

t . This result was firstly
introduced by Forni and Reichlin [1996]. It follows that nonfundamentalness can be detected
empirically by checking whether the variables of interest x∗

t are weakly exogenous with respect
to potentially relevant additional blocks of variables that are likely to be driven by shocks
which are common to the variables belonging to the block of interest. In the model above,
Giannone and Reichlin [2006] consider as additional variables labour productivity and labour
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input at sectoral level and they indeed reject the hypothesis of weak exogeneity, thus giving a
clue for nonfundamentalness.
Adding larger information is useful to detect nonfundamentalness but does not solve the prob-
lem, although it can help. To show how this is possible, we consider finite MA representations,
i.e. D(L) is of order s. Therefore we can write that

xt = D0ut + . . . + Dsut−s + Ψ(L)vt .

It is possible to show that we can asymptotically recover ut if

1. rank(D′D)/N → q(s + 1) as N → ∞, which implies that the shocks ut are pervasive;

and

2. the largest eigenvalue of the covariance matrix of Ψ(L)vt is bounded for N → ∞, i.e. the
idiosyncratic shocks are either measurement errors or sectoral shocks as in the example
above.

From the first assumption we have that xt Granger causes x∗

t . As shown in the previous section
(see Forni et al. [2006]), these assumptions are satisfied if the data can be represented by an
approximate factor model. Finally, if the time dimension is smaller than the cross dimension
we face a problem of dimensionality that can be solved by considering a dynamic factor model
that satisfies assumptions 1 and 2 and where the sources of variation are no more q(s+1) but
simply q, and the following representation holds:

[

x∗

t

xt

]

=

[

Λ∗

Λ

]

ft + Ψ(L)vt ,

where A(L)ft = But and ft is q(s + 1)-dimensional while ut is q-dimensional. Once again we
turn to factor models as tools for identification where the problem of nonfundamentalness is no
more pervasive. It is worth to note that, by using this method, Giannone and Reichlin [2006]
find that the shock estimated for the model (16) are actually non-structural shocks. Therefore,
nothing can be said about the dispute between real business cycle models and models with
nominal rigidities by looking only at labour productivity and labour input as it is usually done
in the literature (e.g. see Gali [1999]).

8 Nonfundamentalness and cointegration

There is one last reason for which nonfundamental representations can arise, which is explained
in Blanchard and Quah [1993] and has to do with cointegrated models. Assume to have a
bi-dimensional vector xt = (x1t x2t)

′ of integrated time series which has a fundamental MA
representation in first difference: ∆xt = C(L)ut where ut are structural shocks. We can
apply the Beveridge-Nelson decomposition into trend and cycle, i.e. into long- and short-run
dynamics

∆xt = D(1)et + (I − L)D∗(L)et = ∆Trendt + Cyclet , (17)

where (I − L)D∗(L) = D(L) − D(1). If rankD(1) = 1 then the two components of xt are
cointegrated, therefore they have a common trend and its enough to include a sufficient number
of lags of ∆xt in the empirical analysis in order to identify the short-run dynamics, provided
that D∗(L) is invertible. Actually, if we consider decomposition (17) for integrated variables we
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are sure that det D∗(z) has no roots for |z| = 1 since we obtain it by differentiation. However,
it remains the possibility to have roots for |z| < 1 as illustrated in a numerical example by
Blanchard and Quah [1993]. If indeed some roots of det D∗(z) happen to be inside the unit
disc, then there is no way to recover the fundamental shocks ut form the estimated et.

9 The search for nonfundamental representations

MA representations and Blaschke matrices

Nonfundamental representations can be generated by means of Blaschke matrices which are
the main subject of this section, at the end of which we will review in detail the procedure
used by Lippi and Reichlin [1993] for actually finding such representations.
Once again consider an MA representation xt = C(L)ut. If either definition 2 or 1 is satisfied,
we say that ut is fundamental with respect to xt. On the other hand, nonfundamentalness
implies that, although ut belongs to the agent information space, it is not contained in the
econometrician information space. This happens in many DSGE models, and such cases pose
a serious problem of identification of the shocks ut. It follows that it is correct to choose the
fundamental representation only if the agent information space is equal to the econometri-
cian’s one, since in this case economic meaning is guaranteed. Indeed, only in this case it is
possible to invert the MA and obtain a well defined VAR that, once identified, will allow to
recover the actual structural shocks.
However, there are many economically sensible theories that may generate nonfundamental
representations. Therefore, we believe that the search of the impulse responses that char-
acterize a given economic model should not be limited to fundamental representations but
should instead include also the nonfundamental ones. This is why we are interested in how to
switch from one group to the other. This task is accomplished by means of Blaschke matrices,
which take the zeroes of a representation from outside to inside the unit disc thus generating
a nonfundamental representation from a fundamental one.
We have the following definition: 3

Definition 3 (Blaschke matrix) A complex-valued matrix B(z) is a Blaschke matrix if:

1. it has no poles inside the unit disc;

2. B(z)−1 = B′(z−1), where the bar indicates the matrix obtained by taking conjugate coef-

ficients.

Whenever we apply a Blaschke matrix to an MA process we get the new nonfundamental
representation defined as

xt = D(L)vt = C(L)B(L)B(L)−1ut . (18)

The main property of Blaschke transformations is that if ut is an orthonormal white noise
then vt = B(L)ut is an orthonormal white noise if and only if B(L) is a Blaschke matrix. This
ensures also for nonfundamental representations the requirement of uncorrelated structural
shocks which is necessary in all structural models. Thus (18) together with usual identification
restrictions is still a valid structural model with new impulse responses that are not recoverable
with an ordinary VAR.

3This section is entirely drawn on Lippi and Reichlin [1994].
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As examples of Blaschke matrices we have the orthogonal matrices and the matrices with a
Blaschke factor as one of the entries. A generic Blaschke matrix can be always written as the
product of these two.

Theorem 1 Let B(z) be an N ×N Blaschke matrix then ∃ m ∈ N and ∃ αi ∈ C s.t. |αi| < 1
for i = 1, . . . , m and

B(z) =
m
∏

i=1

K(αi, L) Ri =
m
∏

i=1

(

z−αi

1−αi z
0

0 IN−1

)

Ri , (19)

where RiR
′

i = IN .

Note that B(z) has poles in (αi)
−1, i.e. outside the unit disc as required from definition 3.

With reference to (18), given a fundamental representation xt = C(L)ut, let us consider the
zeroes of det C(z), which by definition are all outside the unit disc, and call them γi. We can
build a nonfundamental representation just by applying a Blaschke matrix B(L) to C(L) with
αi = (γi)

−1 for i = 1, . . . , m and 1 ≤ m ≤ N . Theorem 1 tells us that B(L) is taking zeroes of
C(L), that are outside the unit disc (|γi| > 1), into zeroes of D(L) which are inside the unit
disc (|αi| = |(γi)

−1| < 1).
Finally, note that xt = C(L)B(L)vt, therefore B(L)−1C(L)−1xt = vt, but, although C(L) is
invertible in the past (i.e. is fundamental) by construction, the inverse of a Blaschke matrix
requires the use of L−1 (the forward operator), therefore it is impossible to recover vt only
from the past of xt: this is nonfundamentalness.

ARMA representations

We now move to ARMA representations M(L)xt = C(L)ut, where det M(z) has no zeroes
inside the unit disc in order to guarantee stationarity and causality for the AR part. The
ARMA representation is fundamental if its MA part, C(L)ut, is fundamental. Lippi and
Reichlin [1994] look for different ARMA specifications where, while the AR part is completely
identified, the MA part is identified up to a Blaschke matrix transformation. They point out
how many examples of intertemporal maximization under rational expectations produce indeed
such a situation, as discussed in section 4. If C(L) is fundamental then its determinant has
all h ≤ N roots αi outside the unit disc, hence we can build nonfundamental representations
D(L) just by moving one or more roots of det C(z) from outside to inside the unit circle by
means of a Blaschke matrix.
In order to do so, first define the subset Ω ∈ Rh such that Ω = {ω = (ω1 . . . ωh) s.t. ωi = ±1}.
We have the following theorem:

Theorem 2 For any possible ω ∈ Ω there exist representations M(L)xt = P (L)vt such that

det P (z) has h roots βi defined as

βi = αi if ωi = 1 ,
βi = (αi)

−1 if ωi = −1 .

Moreover, if P (L) and Q(L) correspond to the same ω, then P (L) = KQ(L) with K orthogo-

nal, i.e. the two representations are unique up to a rotation.

Note that if at least one of the elements of ω is −1 then P (L) will be a nonfundamental
representation. All the nonfundamental representations obtained in this way are called basic.
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They come from an ARMA just by transforming the MA part while leaving untouched the
AR part. Moreover, if we start from an ARMA(p,q) then all its basic representations are
ARMA(p,q). Non-basic representations are obtained by multiplying the MA part C(L) by an
arbitrary Blaschke matrix. By doing so we increase the order of the MA and AR matrices and
if γ is a nonfundamental root of the MA, then (γ)−1 is a root of the AR part. Both common
sense and literature suggest that this latter case is not likely to occur, thus it makes sense to
search only for basic nonfundamental representations.

VAR representations

In general we always start from an estimated VAR, and, once inverted, we get an MA rep-
resentation that by definition will be fundamental. However, from the latter we can always
get nonfundamental representations that generate the impulse responses of our alternative
theoretical model. This is the procedure followed by Lippi and Reichlin [1993] to generate
impulse responses that represent technological diffusion under learning-by-doing dynamics.
Such method is clearly explained by Lippi and Reichlin [1994]. If the true fundamental MA
representation xt = C(L)ut were known then all its nonfundamental counterparts would easily
be recovered just by applying a Blaschke matrix as in (18). However, from an estimated VAR,
A(L)xt = ut, we can only get the approximate ARMA representation as

(det A(L)) xt = Aad(L)ut .

Its associated approximate MA representation is xt = T (L)ut with T (L) = (det A(L))−1 Aad(L).
We have approximations because these are all finite order representations, although in theory
they should have an infinite MA part or, viceversa, if the true MA were of finite order, then
we should estimate an infinite VAR.

As an example, Lippi and Reichlin [1994] consider the following two-dimensional MA rep-
resentation:

xt = C(L)vt = (I − CL)ut .

They assume that det(I − Cz) has two roots α1 and α2, which by fundamentalness are both
outside the unit disc (|αi| > 1). The VAR representation that we estimate is only the order p
approximation

A(L) = I +

p
∑

k=1

CkLk ≃ (I − CL)−1 .

It is possible to show that the 2p complex roots of det A(z) are

αi exp

(

k
2πi

p + 1

)

for i = 1, 2 and k = 1, . . . , p .

Therefore, the roots of the VAR are all on circles of radius |αi| > 1.4

Actually, we are able only to get an estimate of A(L), thus we cannot estimate directly the
roots of C(L). But we can determine the radius ρ of the circle where the roots of A(L) lie. For
every complex β such that |β| = ρ, we proceed as though β were a root of T (L), which is only
an approximation of C(L). We therefore apply theorems 1 and 2 by multiplying T (L), which

4If the roots of the MA are complex we have only one circle of roots, if instead they are real we have two
circles. Hereafter we consider the case of two complex conjugate roots α1 = α2.
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is by construction a fundamental representation, by a Blaschke matrix in order to obtain a
nonfundamental representation. First, we look for a rotation R such that T (z)R has in its
first column the factor (z − β). R has to satisfy

[T (z)R]e1 = (z − β)e1 (20)

where e1 = (1 0)′. Note that (20) is a condition only on the first column of R, while the second

column is obtained just by using the orthogonality condition: RR
′

= I.5 After rotating T (z),
we can move the root, that now is in the first column, from β to (β)−1 with

K
(

(β)−1, L
)

=

[

z−(β)−1

1−β−1z
0

0 1

]

. (21)

We thus obtain a nonfundamental representation

xt = T (L)B(L)B(L)−1ut where B(L) = RK
(

(β)−1, L
)

. (22)

Actually, since we know only ρ, we need to repeat this procedure n times in order to explore
all the circle of roots of A(L). We choose β = ρ exp(ikθ) with θ = π/n, and k = 1, . . . , n − 1,
n being the number of roots. Note however that since we consider all β on the circle we are
taking in account not only the roots of C(L) but also other values, therefore we are looking
also for non-basic representations. This in turn implies that no uniqueness result as in theorem
2 holds in this case. Finally, we can study the impulse responses of the nonfundamental rep-
resentations, see if some of them are economically sensible and possibly assess differences with
the fundamental impulse responses T (L). Although this is only an approximate procedure, it
has delivered promising results in Lippi and Reichlin [1993].

10 Further research

Given a moving average representation of an economic model, we would like to identify a
correspondence between its roots and specified impulse responses. The same method would
allow us to find theoretical impulse responses which may derive also from nonfundamental
representations and are consistent both with the data and with the structural model. This is
the subject of our current research.

5If the system were N -dimensional we would determine unambigously only the first column of R while no
rule exists for fixing all other columns besides the orthogonality condition.
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