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Abstract

We explicitly compute the optimal strategy in discrete time for a
European option and the variance of the corresponding hedging error
under the hypothesis that the underlying is a martingale following a
Geometric Brownian motion.



1 Introduction

This paper is devoted to the computation of an explicit formula for the op-
timal hedging strategy, and its associated variance, for a given contingent
claim when the underlying asset follows a geometric Brownian motion with
time-varying volatility, the trading is restricted to a given set of dates and
the objective is to minimize the variance of the total hedging error. Figlewski
[4], in an accurate study on the practical consequences of the most impor-
tant assumptions underlying the Black-Scholes model, computed by simu-
lation the sample variances on different cases of delta hedging strategies,
concluding that: ”It is apparent that, simply by rebalancing discretely in-
stead of continuously, we have departed markedly from the theoretical world
of Black-Scholes”.

We are concerned with the classical problem of minimizing the hedging
risk in an incomplete market, proposed in a seminal paper by Föllmer and
Sondermann [5]. Schweizer [12] contains a review of the main results and con-
tributions. The main reference for the problem in discrete time is Schweizer
[11]. That paper shows that, under a non-degeneracy condition for the under-
lying process, there exists a unique solution and proposes a characterization
of the optimal strategy and its variance. Although the problem has been
theoretically solved, the effective computation of the optimal strategy and of
the minimal variance is usually quite burdensome.

Because of the practical importance of the problem, approximating formu-
las to compute the variance of a delta-hedging strategy have been proposed,
for example, by Kamal and Derman [8], by Toft [13] and, more recently, by
Hayashi and Mykland [7]. Such formulas measure the discretization risk of
a hedging strategy and can be used by a trader to correct the price (bid or
ask) of a derivative. Their major drawback is that they are all asymptotical,
i.e. they work better as the number of trading dates increases, that is exactly
when the discretization risk vanishes.

Another stream of studies mostly devoted to practical applications is
concerned with the actual computation of optimal trading strategies under
specific modeling assumptions. Some, like Bertsimas et al. [2] or Primbs
and Yamada [9], propose algorithms based on backward induction. Others,
like Hubalek et al. [6] and C̆erný [3], determine the Laplace transforms
of the optimal strategy and of its associated variance for a rather general
class of models and claims. Laplace transforms must be numerically inverted
to recover the required quantities. With a similar methodology and in the
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same setting, Angelini and Herzel [1] determine the Laplace transform of the
variance of the error produced by a standard delta hedging strategy.

In this paper we derive exact formulas for the optimal hedge ratio and its
variance for a specific model. To the best of our knowledge, such quantities
are usually computed through some kind of numerical algorithms, and this is
the first study where closed form formulas are presented. We believe that our
results can be of general interest for several reasons: the case considered (an
extension of the Black-Scholes model with time-varying volatility) is widely
used in many applications; the formulas are easy to implement, hence the
optimal hedge ratio can be employed as a valid substitute to the standard
Black-Scholes delta; the knowledge of the variance of the total error can be
useful for measuring and managing the hedging risk. Moreover, our simple
results can serve as a benchmark to check the accuracy, in a particular case,
of the approximating formulas and the numerical algorithms valid for more
general settings. More details and examples of applications are provided in
Section 4.

Our results hold under the strong assumption that the underlying process
is a martingale, namely that the drift of the process is zero. As a first con-
sequence, the computed strategy, which, in general, is only locally optimal,
is, in this case, also globally optimal. More importantly, the value process of
the optimal portfolio is also a martingale and, since the underlying follows a
geometric Brownian motion, it may be readily computed. When the drift is
not zero the value of the optimal portfolio is a martingale only with respect
to the so called minimal martingale measure, and it cannot be determined
in closed form. In this case one has to turn to numerical algorithms, like the
one proposed by Hubalek et al. [6], via the inversion of a Laplace transform,
or by Bertsimas et al. [2], via a recursive procedure involving numerical ap-
proximation of expectations. While the assumption of a zero drift could be
considered as unrealistic, it is well known that statistical estimates of the
drift are less reliable than those of the volatility. Hence it is a common prac-
tice, at least for short time horizons, to set the drift equal to zero, falling in
the case here considered.

The rest of the paper is organized as follows: Section 2 sets the problem
and gives a brief overview of the main theoretical results. In Section 3 we
derive the closed formulas for the hedging strategy and its variance for our
specific setting. Section 4 analyzes the results and shows some of the possible
applications.
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2 The optimal hedging strategy

We consider the problem of hedging a European option with maturity T and
strike price K written on a underlying asset or index S. The payoff of the
option is indicated by H. We assume that trading takes place only on a finite
set of times {t1, . . . , tN−1} between time t0 = 0 and time tN = T and that
the price process S is a martingale.

We suppose that there exists a riskless asset and, without loss of gener-
ality, that the risk-free rate r is zero. In fact, the results obtained will still
hold after a change of numeraire, by substituting all the prices entering in
the formulas (including the strike price) by their discounted values.

Let Vk be the value at time tk of a portfolio composed by the underlying
and the riskless asset and let ξk, k = 1, . . . , N , be the units of asset S held
from time tk−1 up to time tk. A trading strategy is defined by the two
dimensional process (Vk, ξk+1), k = 0, . . . , N − 1 and by its terminal value
VN . The cumulative cost Ck necessary to follow the strategy up to time tk
is given by the difference between the value Vk and the cumulative trading
gain

Ck = Vk −
k∑

i=1

ξk∆Sk,

for k = 1, . . . , N , where ∆Sk = Sk − Sk−1. We denote by C0 the initial cost
of the strategy so that V0 = C0. A strategy is self-financing if the cumulative
cost process C is constant. It is mean self-financing if the process C is a
martingale.

There are several alternatives available to a trader who wants to hedge
the risk of the contingent claim when perfect replication with a self-financing
strategy is not possible. One possibility is to determine a strategy with final
value VN = H and such that the local costs Ck+1 − Ck are minimized in the
mean square sense, that is

min
ξk,Vk−1

Ek−1[(Ck − Ck−1)
2] (2.1)

where Ek−1, k = 1, . . . , N , denotes expectation conditional to the information
available at time tk−1. This is the approach proposed in the seminal paper
of Föllmer and Sondermann [5].

For each time tk, the objective function is equal to

Ek−1

[
(Vk − Vk−1 − ξk∆Sk)

2
]

= vark−1(Vk−ξk∆Sk)+Ek−1 [Vk − ξk∆Sk − Vk−1]
2
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Note that the first term does not depend on Vk−1. Therefore it is optimal to
choose Vk−1 so that

Vk−1 = Ek−1 [Vk − ξk∆Sk] . (2.2)

This implies that the cumulative cost process of an optimal strategy for
(2.1) is mean self-financing. Moreover, since the price process S is a martin-
gale, the optimal value process V is also a martingale; in particular Vk−1 =
Ek−1[H].

Therefore the optimal solution to (2.1) is given by (2.2) and by

ξk =
covk−1(Vk, ∆Sk)

vark−1(∆Sk)
=

Ek−1[Vk∆Sk]

Ek−1[∆S2
k ]

. (2.3)

Hence the optimal value is

min
ξk

vark−1(Vk − ξk∆Sk) = vark−1(Vk)− ξ2
kEk−1

[
∆S2

k

]
, (2.4)

with ξk defined in (2.3). Expression (2.4) follows from

Ek−1 [ξkVk∆Sk] = ξ2
kEk−1[∆S2

k ]

and the fact that V is a martingale. It is remarkable that the optimal strategy
does not depend on the initial capital C0 invested. Such a strategy may be
determined by backward recursion, starting from the terminal value VN = H.

A different approach to the problem tries to determine the self-financing
strategy that minimizes the second moment of the final shortfall E0[(H −
VN)2]. Schweizer [11] shows that such a problem admits a unique solution
when the process S satisfies a rather general ”non-degeneracy” condition. In
the martingale case the two approaches are equivalent, that is the optimal
strategy, self-financing strategy is still given by (2.2) and by (2.3) 1. The
computation of the optimal strategy and of the minimal variance is usually
a non trivial task. Hubalek et al. [6] show how to compute them by using a
methodology based on the Laplace transform. Their approach, although not
widely general, covers a number of important cases. In the next section we
will study in detail a particular case where explicit computations are indeed
possible.

1For a self-financing strategy it is necessary to invest also in the riskless asset. The
units of the riskless asset are determined from relations (2.2) and (2.3).
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3 Computing the strategy and its variance

In this section we explicitly compute the optimal hedging strategy in the case
of European call option and the variance of the corresponding hedging error.
Analogous computations can be made in the case of a put option.

We suppose that the price Sk of the underlying at tk is the martingale
process

Sk = Sk−1 exp

(
−1

2
σ2

k−1,k(tk − tk−1) + σk−1,k

√
tk − tk−1Zk

)
, (3.5)

where σ0,1, . . . , σN−1,N are deterministic parameters and Zk are i.i.d standard
gaussian variables. Prices Sk can be interpreted as discrete observations of
the continuous process S

dSt = σ(t)StdWt,

with W standard Brownian motion and σ(t) a deterministic function. In this
case the volatility parameters of the discrete process would be given by

σ2
k−1,k =

1

(tk − tk−1)

∫ tk

tk−1

σ(u)2du.

The first crucial point of the computation is that, since S is a martingale,
the value of the optimal portfolio Vk is a martingale too. In particular,
Vk = Ek[H]. The second relevant ingredient is that, since the underlying is
log-normal, Vk, for k = 1, . . . , N − 1, is given by the Black-Scholes formula.

Let us denote the Black-Scholes formula at time t

V (t, s, σ) = sN (d1(t, s, σ))−KN (d2(t, s, σ)) ,

where N(·) is the standard normal distribution function,

d1(t, s, σ) =
log(s/K) + 1

2
σ2(T − t)

σ
√

T − t

and
d2(t, s, σ) = d1(t, s, σ)− σ

√
T − t.

Hence,
Vk = V (tk, Sk, σk,N) = Ek[max{SN −K, 0}], (3.6)

5



where

σ2
l,m =

1

(tm − tl)

m∑

j=l+1

σ2
j−1,j(tj − tj−1),

for l = 0, . . . , N − 1 and m = l + 1, . . . , N . We set σl,l = 0, for l = 0, . . . , N .
If the volatility of the underlying process is constant, σk−1,k = σ for all
k = 1, . . . , N , then σl,m = σ for all l and all m > l.

Before stating the main results, we define, for l = 0, . . . , N−1 and m ≥ l,
the quantity

Al,m(s1, s2) (3.7)

= s1s2e
σ2

l,m(tm−tl)N
(
d1(tl, s1, σl,N) + ρl,mσl,N

√
T − tl,

d1(tl, s2, σl,N) + ρl,mσl,N

√
T − tl, ρl,m

)

−Ks1N
(
d1(tl, s1, σl,N), d2(tl, s2, σl,N) + ρl,mσl,N

√
T − tl, ρl,m

)

−Ks2N
(
d1(tl, s2, σl,N), d2(tl, s1, σl,N) + ρl,mσl,N

√
T − tl, ρl,m

)

+K2N (d2(tl, s1, σl,N), d2(tl, s2, σl,N), ρl,m) ,

where N(x1, x2, ρ) is the cumulative distribution function of the bivariate

normal variable with correlation ρ and ρl,m =
σ2

l,m(tm−tl)

σ2
l,N (T−tl)

. Note that when

l = m we have ρl,l = 0 because we defined σl,l = 0, and the cumulative
distribution function of the bivariate normal is, in this case, the product
of the cumulative distribution functions of two univariate standard normal.
Hence

Al,l(s1, s2) = V (tl, s1, σl,N)V (tl, s2, σl,N).

Now we can state the main results of the paper. The first one provides
an expression for the optimal hedge and the minimal local variance.

Proposition 3.1 Consider a European call option with maturity T and strike
K. Then the optimal hedge at time tk−1, for any k = 1, . . . , N , is

ξk =
V

(
tk−1, Sk−1e

σ2
k−1,k(tk−tk−1), σk−1,N

)
− V (tk−1, Sk−1, σk−1,N)

Sk−1(e
σ2

k−1,k(tk−tk−1) − 1)
(3.8)

and the optimal local variance is

min
ξk

vark−1(Vk−ξk∆Sk) = Ak−1,k(Sk−1, Sk−1)−V 2
k−1−ξ2

kS
2
k−1

(
eσ2

k−1,k(tk−tk−1) − 1
)

.

(3.9)
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The second result provides an expression for the variance of the shortfall
up to time tn of the optimal self-financing strategy.

Proposition 3.2 Consider a European call option with maturity T and strike
K. Then the expected value and the variance of the hedging error up to time
tn, for any n = 1, . . . , N , corresponding to the optimal strategy are given by

E0

[
Vn − C0 −

n∑

k=1

ξk∆Sk

]
= V0 − C0 = 0; (3.10)

var0

(
Vn −

n∑

k=1

ξk∆Sk

)
= A0,n(S0, S0)− V 2

0 −
n∑

k=1

1

eσ2
k−1,k(tk−tk−1) − 1

×
{

A0,k−1(S0, S0) + A0,k−1

(
S0e

σ2
k−1,k(tk−tk−1), S0e

σ2
k−1,k(tk−tk−1)

)

−2A0,k−1

(
S0, S0e

σ2
k−1,k(tk−tk−1)

)}
. (3.11)

The case of major interest is when n = N so that Vn = H. Nevertheless, the
variance of the strategy up to a certain time may also turn out to be useful, for
instance, to monitor the running costs and check the ongoing performances
of a strategy. For instance, one could derive a confidence interval for the
hedged position at time t1, next re-hedging date. If at that time the realized
shortfall V1−C0−ξ1∆S1 falls within the confidence interval, then the strategy
is behaving as predicted by the model, otherwise one should probably start
questioning some or all of the modeling assumptions.

The proof of both propositions are by direct computation. The most
tedious computations are relegated in the following

Lemma 3.1 Under the hypotheses of Proposition 3.1 and 3.2, for any l =
0, . . . , N − 1 and m ≥ l, we have

El[SmV (tm, Sm, σm,N)] = SlV
(
tl, Sle

σ2
l,m(tm−tl), σl,N

)
; (3.12)

El [V (tm, Smex, σm,N) V (tm, Smey, σm,N)] = Al,m(Sle
x, Sle

y).(3.13)
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For convenience of the reader, we will indicate all the steps involved in
the computations. The major ingredients for proving Lemma 3.1 are the
following integrals (see Toft [13]):

∫ +∞

−∞

1√
2π

e−
1
2
(z2+Bz)N (Dz + E) dz

= e
1
8
B2

N

(√
1

1 + D2

(
E − BD

2

))
; (3.14)

∫ +∞

−z̄

1√
2π

e−
1
2
(z2+Bz)dz

= e
1
8
B2

N

(
−z̄ − B

2

)
; (3.15)

∫ +∞

−∞

1√
2π

e−
1
2
(z2+Bz)N (Dz + E) N (Dz + G) dz

= e
1
8
B2

N

(√
1

1 + D2

(
E − BD

2

)
,

√
1

1 + D2

(
G− BD

2

)
,

D2

1 + D2

)
. (3.16)

Equation 3.15 is just a re-arrangement of Formula (48) in [13] obtained by
completion of the square.
Proof of Lemma 3.1. To prove (3.12) for m < N , because of (3.6), we
have to show that:

El[S
2
mN (d1(tm, Sm, σm,N))] = S2

l e
σ2

l,m(tm−tl)N
(
d1(tl, Sle

σ2
l,m(tm−tl), σl,N)

)

(3.17)
and

El[SmN (d2(tm, Sm, σm,N))] = SlN
(
d2(tl, Sle

σ2
l,m(tm−tl), σl,N)

)
. (3.18)
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To prove (3.17) we write,

d1(tm, Sm, σm,N)

=
log(Sl

K
)− 1

2
σ2

l,m(tm − tl) + σl,m

√
tm − tlZ + 1

2
σ2

m,N(T − tm)

σm,N

√
T − tm

=
σl,m

√
tm − tl

σm,N

√
T − tm

Z +
log(Sl

K
)− 1

2
σ2

l,m(tm − tl) + 1
2
σ2

m,N(T − tm)

σm,N

√
T − tm

=
σl,m

√
tm − tl

σm,N

√
T − tm

Z +
log(Sl

K
)− σ2

l,m(tm − tl) + 1
2
σ2

l,N(T − tl)

σm,N

√
T − tm

,

where Z is a standard normal variable and the equalities are intended in
distribution. So that, setting

D =
σl,m

√
tm − tl

σm,N

√
T − tm

(3.19)

and

E =
log(Sl

K
)− σ2

l,m(tm − tl) + 1
2
σ2

l,N(T − tl)

σm,N

√
T − tm

, (3.20)

we get

El[S
2
mN (d1(tm, Sm, σm,N))]

= S2
l e
−σ2

l,m(tm−tl)

∫ +∞

−∞

1√
2π

e−
1
2
(z2−4σl,m

√
tm−tlz)N (Dz + E) dz.

Hence we can apply Equation (3.14) with B = −4σl,m

√
tm − tl to get

El[S
2
mN (d1(tm, Sm, σm,N))] = S2

l e
σ2

l,m(tm−tl)N

(√
1

1 + D2

(
E − BD

2

))
.

To conclude we have
√

1

1 + D2

(
E − BD

2

)
=

log(Sl

K
) + 1

2
σl,N(T − tl) + σ2

l,m(tm − tl)

σl,N

√
T − tl

= d1(tl, Sle
σ2

l,m(tm−tl), σl,N).

9



As for (3.18), we have that, in distribution,

d2(tm, Sm, σm,N)

=
log(Sl

K
)− 1

2
σ2

l,m(tm − tl) + σl,m

√
tm − tlZ − 1

2
σ2

m,N(T − tm)

σm,N

√
T − tm

=
σl,m

√
tm − tl

σm,N

√
T − tm

Z +
log(Sl

K
)− 1

2
σ2

l,N(T − tl)

σm,N

√
T − tm

.

Setting D as in (3.19),

E ′ =
log(Sl

K
)− 1

2
σ2

l,N(T − tl)

σm,N

√
T − tm

and
B′ = −2σl,m

√
tm − tl,

we find

El[SmN (d2(tm, Sm, σm,N))]

= Sle
− 1

2
σ2

l,m(tm−tl)

∫ +∞

−∞

1√
2π

e−
1
2
(z2+B′z)N (Dz + E ′) dz

= SlN

(√
1

1 + D2

(
E ′ − B′D

2

))

= SlN

(
log(Sl

K
)− 1

2
σl,N(T − tl) + σ2

l,m(tm − tl)

σl,N

√
T − tl

)

= SlN
(
d2(tl, Sle

σ2
l,m(tm−tl), σl,N)

)
.

When m = N the computation is slightly different and uses integral (3.15).

El[SN max{SN −K, 0}]

= S2
l e
−σ2

l,N (T−tl)

∫ +∞

−d2(tl,Sl,σl,N )

e
1
2
(z2−4σl,N

√
T−tlz)

√
2π

dz −KSlN (d1(tl, Sl, σl,N))

= S2
l e

σ2
l,N (T−tl)N

(
d2(tl, Sl, σl,N) + 2σl,N

√
T − tl

)
−KSlN (d1(tl, Sl, σl,N))

= S2
l e

σ2
l,N (T−tl)N

(
d1(tl, Sl, σl,N) + σl,N

√
T − tl

)

−KSlN
(
d2(tl, Sl, σl,N) + σl,N

√
T − tl

)

= SlV
(
tl, Sle

σl,N (T−tl), σl,N

)
. (3.21)
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Now we will prove Equation (3.13). Consider first the case m = N . Note
that, since ρl,N = 1,

Al,N(Sle
x, Sle

y) = Sle
xV (tl, Sle

yeσ2
l,N (T−tl), σl,N)−KV (tl, Sle

y, σl,N),

when x ≤ y and analogously for x ≥ y. Let us do for instance the case x ≤ y.
We have

El [max{SNex −K, 0}max{SNey −K, 0}]
= El [(SNex −K) max{SNey −K, 0}]
= El [SNex max{SNey −K, 0}]−KEl [max{SNey −K, 0}] .

Similarly to the computation that lead to (3.21) we get

El [SNex max{SNey −K, 0}] = Sle
xV

(
tl, Sle

yeσl,N (T−tl), σl,N

)
.

This proves (3.13) for m = N and x ≤ y.
We will end by briefly showing how to get (3.13) for m < N . We have to

calculate four pieces:

El [V (tm, Smex, σm,N) V (tm, Smey, σm,N)]

= El

[
S2

mexeyN (d1(tm, Smex, σm,N)) N (d1(tm, Smey, σm,N))
]

−KEl [SmexN (d1(tm, Smex, σm,N)) N (d2(tm, Smey, σm,N))]

−KEl [SmeyN (d1(tm, Smey, σm,N)) N (d2(tm, Smex, σm,N))]

+K2El [N (d2(tm, Smex, σm,N)) N (d2(tm, Smey, σm,N))] .

Arguing in a similar manner as in the proof of (3.12), using this time Equation
(3.16), one gets exactly Al,m(Sle

x, Sle
y). For instance, let us compute the first

term:

El

[
S2

mexeyN (d1(tm, Smex, σm,N)) N (d1(tm, Smey, σm,N))
]

= S2
l e
−σ2

l,m(tm−tl)exey

×
∫ +∞

−∞

e−
1
2
(z2−4σl,m

√
tm−tlz)

√
2π

N

(
Dz + E +

x

σm,N

√
T − tm

)

×N

(
Dz + E +

y

σm,N

√
T − tm

)
dz,
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where D and E are defined respectively in (3.19) and (3.20). Hence, by
Equation (3.16), we get

El

[
S2

mexeyN (d1(tm, Smex, σm,N)) N (d1(tm, Smey, σm,N))
]

= S2
l e

σ2
l,m(tm−tl)exey

×N

(
d1 (tl, Sle

x, σl,N) +
σ2

l,m(tm − tl)

σl,N

√
T − tl

,

d1 (tl, Sle
y, σ) +

σ2
l,m(tm − tl)

σl,N

√
T − tl

,
σ2

l,m(tm − tl)

σ2
l,N(T − tl)

)
.

which is the first term of Al,m(Sle
x, Sle

y). 2

Proof of Proposition 3.1. Here we will use Lemma 3.1 for l = k − 1 and
m = k, for k = 1, . . . , N . At each time tk−1, the optimal hedge ratio is given
by (2.3). The denominator is

Ek−1[∆S2
k ] = S2

k−1,k(e
σ2

k−1(tk−tk−1) − 1).

The numerator is

Ek−1[Vk∆Sk] = Ek−1[SkVk]− Sk−1Ek−1[Vk].

By (3.6) we have Ek−1[Vk] = Vk−1 = V (tk−1, Sk−1, σk−1,N) and, from Equation
(3.12) of Lemma 3.1,

Ek−1[SkVk] = Sk−1V
(
tk−1, Sk−1e

σ2
k−1,k(tk−tk−1), σk−1,N

)
.

Expression (3.9) for the optimal local variance is obtained from the general
expression (2.4) using (3.13) in Lemma 3.1 to compute Ek−1[V

2
k ]. 2

Note that the optimal hedge for a European put option is simply given
by ξp = ξc− 1, where ξc is that of a call with same strike and same maturity.
This is easily seen by using put-call parity in (2.3).
Proof of Proposition 3.2. Here we will use Lemma 3.1 with l = 0 and
m = k − 1 for k = 1, . . . , n. Equation (3.10) is obvious because the process
S is a martingale so that E0[ξk∆Sk] = E0[ξkEk−1[∆Sk]] = 0. As for (3.11)
we have

var0

(
Vn −

n∑

k=1

ξk∆Sk

)
= E0[V

2
n ]− E0[Vn]2

−2
n∑

k=1

E0[ξkVn∆Sk] +
n∑

k=1

E0[ξ
2
k∆S2

k ],
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since, for j < k, E0[ξjξk∆Sj∆Sk] = E0[ξj∆SjξkEk−1[∆Sk]] = 0. Because of
(2.3) we have that

E0[ξkVn∆Sk] = E0[ξkEk−1[Vk∆Sk]] = E0[ξ
2
kEk−1[∆S2

k ]],

so that

E0

[
(Vn −

n∑

k=1

ξk∆Sk)
2

]
= E0[V

2
n ]−

n∑

k=1

E0

[
ξ2
kEk−1[∆S2

k ]
]
.

Because of Proposition 3.1, the sum on the right hand side is equal to

n∑

k=1

E0




(
V

(
tk−1, Sk−1e

σ2
k−1,k(tk−tk−1), σk−1,N

)
− V (tk−1, Sk−1, σk−1,N)

)2

(eσ2
k−1,k(tk−tk−1) − 1)


 .

(3.22)
Equation (3.11) follows now by suitably applying Equation (3.13) of Lemma
3.1. 2

For the computation of the variance of the hedging error in the case of a
put option one should go trough all the computations in an analogous way.

The case when S is not a martingale, say with drift µ, is much more
complicated, because the value of the optimal portfolio is not given anymore
by the Black-Scholes formula. It is given indeed by Vk = Êk[H] where the
expectation is taken with respect to the minimal martingale measure (see for
instance [11]). In this case it is only possible to explicitly compute the last
locally optimal hedge as

ξN =
V

(
tN−1, SN−1e

(µ+σ2
N−1,N )(tN−tN−1), σN−1,N

)
− V (tN−1, SN−1, σN−1,N)

SN−1eµ(tN−tN−1)(eσ2
N−1,N (tN−tN−1) − 1)

.

This may be done using again integral (3.15) to compute the general solution
in (2.3). This also holds when one hedges only at initial time and then keeps
the position up to maturity, namely for N = 1.

Notice that, by expanding Formula (3.8) in the Taylor polynomial of
second order in the variable s with initial point Sk−1 we get

ξk ≈ N (d1(tk−1, Sk−1, σk−1,N))+
1

2
Γ(tk−1, Sk−1, σk−1,N)Sk−1(e

σ2
k−1,k(tk−tk−1)−1),

(3.23)
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where Γ(tk−1, Sk−1, σk−1,N) obviously stands for the gamma of the option at

time tk−1. This, approximating eσ2
k−1,k(tk−tk−1) − 1 with σ2

k−1,k(tk − tk−1) if
sufficiently ”small”, is exactly the formula, in the martingale case, given by
Wilmott in [14].

4 Applications

The first question one may ask is how big a difference there is between the
optimal hedge ratio and the usual Black Scholes delta. Figure 1 represents
the relative difference (in percent) between the optimal ratio and the Black-
Scholes delta as a function of volatility and moneyness. The claim to be
hedged is a call with maturity one year, with ten hedging times. We note that
the optimal ratio is always greater than the delta. This is the case because
delta hedging, designed as it is for continuous rebalancing, underestimates
the variance of the position. Note also that the difference increases with
volatility and decreases with moneyness.

To study the influence of the number of trading dates, we represented
in Figure 2 the same percentage difference between Black-Scholes delta and
the optimal strategy as a function of the number of rebalancing N for three
different moneyness. We considered a one year call option with volatility
σ = 0.5. As it should be expected the difference is decreasing with N and,
as also seen in the previous Figure, with moneyness.

A practical application of the formula that computes the variance of the
hedging error is as follows: suppose that a trader, who can hedge only at a
finite number of times, wants to price an option in a Black-Scholes setting.
The trader can compute the variance of the total error of the optimal hedging
strategy and then compute an option price such that the final payoff of the
hedged portfolio is positive within a given confidence interval (assuming a
normal distribution for the error). Figure 3 shows the increments in price
necessary to get a 95% confidence interval. Note that they are higher for
out of the money options and that they are not negligible at all, even as the
number of trading dates is sufficiently great. The discretization error is well
known to most of the traders, who often use a convenient approximating
formula due to Kamal and Derman [8], involving the option’s vega κ0 at
time 0, namely π

4N
σ2κ2

0. Such formula is an heuristic approximation, as the
number of trading dates goes to infinite, of the variance of the Delta hedging
strategy. It works better for at-the-money options. Although Formula (3.11)
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refers to the optimal strategy, it is nevertheless interesting to compare the
two. Figure 4 represents the relative differences (in percent) in the estimated
standard deviation. Note that for out of the money options the difference
is negative, that is the Kamal-Derman approximation computes a variance
that is smaller than the optimal one, which is of course impossible. This
would imply, for instance, that using the Kamal-Derman formula to estimate
the variance of the error and consequently adjust the price would lead to an
underpricing of the option.

As a last application of the optimal hedging formulas we consider the
case of a market with a humped volatility term structure, represented in
the top panel of Figure 5. Such structures are quite common in the world
of interest rate derivatives like caps or swaptions. We considered an at-
the-money option with maturity T = 3 years and N = 3, 10, 50 trading
dates. The corresponding initial optimal hedges are ξ

(3)
1 = 0.6032; ξ

(10)
1 =

0.5832; ξ
(50)
1 = 0.5776, that should be compared to a Black-Scholes delta

∆ = 0.5763. Figure 5, bottom panel, shows the running variance of the
hedging error as computed by Proposition 3.2. To compare the minimal
variance to that produced by the standard Black-Scholes delta one possibility
is to simulate a number of trajectories of the underlying and to compute
the sample variance of the error (another possibility would be to compute
the Laplace anti-transform of a function of Delta, see [1]). By simulating
10000 paths of the underlying we obtained, in the case of N = 3 trading
dates, a sample variance for the total error at maturity of the Delta hedging
strategy equal to 50.3786. The variance of the optimal strategy as computed
by Proposition 3.2 is 49.1579, while the corresponding sample variance is
49.1765, with 95% confidence interval (48.7483, 49.6104). Therefore in this
case the reduction in variance obtained by following the optimal strategy
instead of the Black-Scholes hedging is between two and three percentage
points. For this example, the difference is rather small and therefore a traders
will most likely make the conservative choice of using the standard delta
hedging strategy. However, also in this case the possibility of computing
exactly the minimal variance will help the trader to assess a price and the
risk manager to set adequate capital requirements.
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Black-Scholes delta as a function of volatility σ and moneyness S/K. The
claim to be hedged is a call with maturity one year, with ten hedging times
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Figure 2 Relative difference (in percent) between the optimal ratio and the
Black-Scholes delta as a function of the number of trading dates for different
moneyness. The claim to be hedged is a call with maturity one year and a
constant volatility σ = 0.5

19



0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250
S/K=0.8
S/K=1
S/K=1.2
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