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Abstract

Using the Laplace transform approach, we compute the expected
value and the variance of the error of a hedging strategy for a contin-
gent claim when trading in discrete time. The method applies to
a fairly general class of models, including Black-Scholes, Merton’s
jump-diffusion and Normal Inverse Gaussian, and to several inter-
esting strategies, as the Black-Scholes delta, the Wilmott’s improved-
delta and the local optimal one. With this approach, also transaction
costs may be treated. The results obtained are not asymptotical ap-
proximations but exact and efficient formulas, valid for any number
of trading dates. They can also be employed under model mispecifi-
cation, to measure the influence of model risk on a hedging strategy.



1 Introduction

The object of this paper is the measurement of the hedging error due to trad-
ing in discrete time, usually referred to as the ”discretization error”. Most of
the financial models for pricing and hedging derivatives assume that trading
is possible in continuous time. Of course, such an assumption does not hold
for practical applications. For example, the widely used Black-Scholes delta
hedging strategy produces a discretization error even if all other assumptions
of the model are met. The discretization error depends on the path followed
by the underlying asset until maturity and hence, even computing the vari-
ance of the error on a claim as simple as a European call, can be a very hard
task. The practical importance of such a computation is self-evident, since
it provides a way to measure the risk involved with discrete trading and,
consequently, to quantify a compensation for it.

Quantifying the discretization error associated to an hedging strategy is
a problem that is relevant both from a practical and a theoretical point of
view and has been addressed by many papers in the literature. Hayashi
and Mykland [8] use a weak convergence argument to derive the asymptotic
distribution of the hedging error as the number of trades goes to infinite.
Some approximating formulas for the variance have been obtained, under the
assumption of small trading intervals and for the log-normal model, by Kamal
and Derman [10], by Mello and Neuhaus [15] and, in presence of transaction
costs, by Toft [21]. The fact that such approximations hold for vanishing time
intervals constitutes an important limitation to their application, since in this
case the error would also vanish. Moreover (to the best of our knowledge)
the error associated with such approximations has never been measured. Our
results may also be useful to assess this point.

The discretization error becomes even more important in presence of
transaction costs. The pioneer study in the Black-Scholes setting is the paper
of Leland [13], where a heuristic argument lead to find a hedging volatility,
transaction costs adjusted, when the level of transaction cost does not depend
on the number of trading intervals, which is perhaps the most interesting case
from a practical point of view. This result was then used by Toft [21] to find
the approximation of the variance cited above. Following a conjecture of
Leland, Lott [14] proved that, when the transaction cost level goes to zero as
the inverse of the square root of the number of trading intervals, the hedging
error converges to zero. More generally, Kabanov and Safarian [9] were able
to show that this convergence result holds when the transaction cost level
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goes to zero as the inverse of any power within the interval (0, 0.5). In the
case of constant level transaction costs considered by Leland, Kabanov and
Safarian proved that the argument given by Leland was only heuristic: in
fact, they showed that the hedging error, in this case, does not converge to
zero as the number of trading intervals goes to infinity.

A related, very important, problem is that of determining a strategy that
minimizes the variance of the hedging error in an incomplete market. An
extremely rich branch of the financial literature flourished after the seminal
papers of Föllmer and Sondermann [5]. Schweizer [19] contains a review
of the main results and contributions. The general solution in a discrete
setting was found by Schweizer [20], who provided a characterization of the
optimal strategy and a general formula for the optimal variance. However, an
explicit computation for practical application is usually quite burdensome.
For this reason, some algorithms useful for actual implementation have been
proposed, for example by Bertsimas et al. [1] , with a dynamic programming
approach or by Wilmott [22], with an independent approach, specific to the
Black-Scholes model and based on second order approximation, who proposed
a very easily implementable trading strategy.

A breakthrough in the problem of determining an efficient way to compute
optimal strategies and their associated variances was proposed by Hubalek
et al. [7] and by C̆erný [2]. Their idea is to consider contingent claims whose
payoff function can be written as an inverse Laplace transform. They showed
that, under quite general assumption on the dynamics of the underlying, it
is possible to compute the optimal strategy and its variance as an inverse
Laplace transform of a function that depends on the claim and on the under-
lying process. This represents a relevant contribution from a practical point
of view, since inverse Laplace transform can be evaluated very efficiently with
standard numerical algorithms.

The present paper follows such approach, with the main objective of de-
termining an efficient way to compute the first two moments of the distribu-
tion of the hedging error, in presence of transaction costs, for ”sub-optimal”
strategies, such as the standard Black-Scholes delta or Wilmott hedge ratio.
The formulas that we obtain are valid for any fixed number of trading dates,
whereas all previous formulas are asymptotic approximations. Equipped with
our results, we are able to assess the precision of the approximations, that
hold under much more restrictive assumptions on the model and on the claim,
like those of Kamal and Derman [10] or by Toft [21]. Moreover, our result can
be applied to measure the performance of a hedging strategy under model
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misspecification. For example, in the case of a trader that detects a market
implied volatility higher than what she expects and wishes to exploit it. In
this case, we can measure the expected performances of the hedging strate-
gies in terms of Sharpe ratios. From a practical point of view this could help
a trader to choose which trading strategy to adopt.

The rest of the paper is composed as follows: Section 2 contains the
general setting and defines the class of strategies, that we call ”compatible”,
whose hedging error will be measured. Section 3 contains the main result,
while Section 4 shows how to extend the same techniques to transaction costs.
We provide some details of the numerical implementation of our results in
Section 5, showing some applications in Section 6. Section 7 concludes..

2 Compatible hedging strategies

Let (Ω,F , (Fn)n∈(0,1,...,N), P ) be a filtered probability space. We consider a
one-dimensional process

Sn = S0 exp(Xn),

where the process X = (Xn) for n = 0, 1, . . . , N , satisfies

1. X is adapted to the filtration (Fn)n∈(0,1,...,N),

2. X0 = 0,

3. ∆Xn = Xn −Xn−1 has the same distribution for n = 1, . . . , N ,

4. ∆Xn is independent from Fn−1 for n = 1, . . . , N .

We denote the moment generating function of X1 by m(z). We assume that
E[S2

1 ] < ∞ so that the moment generating function m(z) is defined at least
for complex z with 0 ≤ Re(z) ≤ 2 . Moreover, we exclude the case when S
is a deterministic process. We suppose, without loss of generality, that the
risk-free rate is zero or, equivalently, that S represents a discounted price.

Following the approach proposed by Hubalek et al. [7] we consider Euro-
pean contingent claims written on S with maturity T and payoff H = f(SN),
where f : (0,∞) → IR is of the form

f(s) =

∫
szΠ(dz), (2.1)

for some finite complex measure Π on a strip in the complex plane. Condition
(2.1) states that the payoff function can be written as an inverse Laplace
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tranform. For instance, for a European call option with strike price K > 0,
the function (s−K)+ may be written as

(s−K)+ =
1

2πi

∫ R+i∞

R−i∞
sz K1−z

z(z − 1)
dz,

for an arbitrary R > 1 and for each s > 0. For more details and other
examples of integral representation of payoff functions we refer to [7].

Let ϑ = (ϑn), for n = 1, . . . , N , be an admissible trading strategy 1 with
cumulative gains Gn(ϑ) =

∑n
k=1 ϑk∆Sk. Note that, because of the assump-

tion of a null interest rate, the money market account does not contribute to
the cumulative gain. The hedging error of the strategy is

ε(ϑ, c) = H − c−GN(ϑ).

The random variable ϑn may be interpreted as the number of shares of the
underlying asset held from time n− 1 up to time n. If there exists a riskless
asset, the strategy ϑ determines a unique self-financing portfolio and the
hedging error ε(ϑ, c) may be viewed as the net loss one can suffer at maturity
if one starts with the initial capital c and follows the strategy. The problem
is to evaluate its expected value E[ε(ϑ, c)] and its variance var(ε(ϑ, c)).

It is well known that, for each initial endowment c, there exists a strategy
ξ(c) which minimizes the expected square value of the hedging error (see for
instance [20]). The optimal strategy and its variance are effectively computed
by Hubalek et al. [7] under the same assumptions on the process of the
underlying as the present paper. It is also possible (see [20]) to compute
the optimal c. However the most widely used trading strategy in practice is
still the Black-Scholes delta hedging strategy. In this paper we will compute
expected value and variance of the error of delta hedging and we will compare
it to other possible strategies, in particular to the optimal one.

First of all we note that the Black-Scholes price at time n for claims
satisfying Condition (2.1) can be computed as

Cbs
n = Ebs

n [H] = Ebs
n

[∫
Sz

NΠ(dz)

]
,

where Ebs
n is the Black-Scholes risk neutral expectation conditional to Fn,

which assumes i.i.d. and normal log-return, with (annual) volatility σ. By

1An admissible strategy is a predictable process such that the cumulative gains are
square-integrable, see [7] or [20].
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Fubini’s theorem, we can exchange the expected value with the integral in
the complex variable to get

Cbs
n =

∫
Ebs

n [Sz
N ] Π(dz) =

∫
Sz

nEbs
n [exp(z(∆Xn+1 + . . . ∆XN))] Π(dz)

=

∫
Sz

nmbs(z)N−nΠ(dz),

where

mbs(z) = exp

((
−σ2

2
z +

σ2

2
z2

)
T

N

)
.

Therefore, the units of underlying held from time n − 1 to time n, when
following the Black-Scholes delta hedging strategy, are

∆n =
∂Cbs

n−1

∂Sn−1

=

∫
mbs(z)N−n+1∂Sz

n−1

∂Sn−1

Π(dz) =

∫
zmbs(z)N−n+1Sz−1

n−1Π(dz)

Motivated by this computation, we give the following

Definition 2.1 A hedging strategy ϑ is compatible with a contingent claim
with a payoff function satisfying Condition (2.1) if it is of the form

ϑn =

∫
ϑ(z)nΠ(dz), (2.2)

with ϑ(z)n = fϑ(z)nSz−1
n−1, where fϑ(z)n is a function of the complex variable

z which does not contain Sk for any k.

We remark that our method continues to hold even in the case of strate-
gies that are not compatible with a given contingent claim, as long as Con-
dition (2.2) is satisfied. In fact, as it will be made clear in the following, our
approach can be adopted, for instance, to compute the variance of any dy-
namic strategy satisfying (2.2). However, for the sake of a clearer exposition,
since we are focusing on hedging, we preferred to connect each strategy to
its associated contingent claim.

The Black-Scholes delta hedging is not a unique case; other interesting
strategies which are compatible are:

• the local optimal strategy, that is the strategy which minimizes the
variance of the next period costs (for a formal definition, see [20]). This
is

ξn =

∫
ξ(z)nΠ(dz) =

∫
f ξ(z)nS

z−1
n−1Π(dz),

where f ξ(z)n is given in Theorem 2.1 in [7].
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• the ”improved-delta” strategy proposed by Wilmott ([22]) for the Black-
Scholes model, that is an easily implementable approximation to the
local optimal strategy

∆w
n = ∆n +

T

N
(µ− 1

2
σ2)ΓnSn−1 =

=

∫
Sz−1

n−1

(
zmbs(z)N−n+1 +

T

N
(µ− 1

2
σ2)z(z − 1)mbs(z)N−n+1

)
Π(dz),

where µ and σ are respectively the drift and the volatility of the process.
The expression of ∆w

n has been obtained in an analogous way as for the
delta, since the gamma of the claim Γn is the second derivative of Cbs

n−1

with respect to Sn−1.

Of course, not all strategies are compatible. The most important example
of a non-compatible strategy is the optimal one.

The delta and the improved-delta strategies are conceived for a log-normal
process. Nevertheless, they may also be considered, and our results will still
apply, when the underlying is not log-normal; in this case, a sensible choice
for parameters µ and σ would be to fit mean and variance of the log-returns.
We will show one such example in Section 6.

3 Measuring the discretization error

To assess the risk of the discretization error of compatible strategies one
can compute its variance and expected value. C̆erný [2] and Hubalek et al.
[7] computed the variances for global and local optimal strategies. We will
generalize their results to sub-optimal strategies and in presence of model
risk, that is when the adopted strategy is obtained by a model that is not
the data generating process. Later on, transaction costs will also be included
in the picture.

The hedging error of a strategy which is compatible with a contingent
claim satisfying Condition (2.1) has the following integral representation

ε(ϑ, c) = H − c−
N∑

k=1

ϑk∆Sk

=

∫ (
H(z)−

N∑

k=1

ϑ(z)k∆Sk

)
Π(dz)− c, (3.3)
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where H(z) = Sz
N .

The following theorem gives the expected value and the variance of the
hedging error of a compatible strategy for a given initial capital c.

Theorem 3.1 Let ϑ be a strategy which is compatible with a contingent claim
H and let c be its initial value, then

E[ε(ϑ, c)] =

∫
Sz

0

[
m(z)N − (m(1)− 1)

N∑

k=1

fϑ(z)km(z)k−1

]
Π(dz)−c (3.4)

and

E[ε(ϑ, 0)2] =

∫ ∫
Sy+z

0 (v1(y, z)− v2(y, z)− v3(y, z) + v4(y, z))Π(dz)Π(dy),

(3.5)
where

v1(y, z) = m(y + z)N ,

v2(y, z) =
N∑

k=1

fϑ(y)km(y + z)k−1m(z)N−k(m(z + 1)−m(z)),

v3(y, z) =
N∑

k=1

fϑ(z)km(y + z)k−1m(y)N−k(m(y + 1)−m(y)),

v4(y, z) = (m(2)− 2m(1) + 1)
N∑

k=1

fϑ(y)kf
ϑ(z)km(z + y)k−1 +

+ (m(1)− 1)
∑

k<j

N∑
j=2

fϑ(y)kf
ϑ(z)jm(y)j−1−km(z + y)k−1(m(y + 1)−m(y)) +

+ (m(1)− 1)
∑

j<k

N∑

k=2

fϑ(y)kf
ϑ(z)jm(z)k−1−jm(z + y)j−1(m(z + 1)−m(z)).

Therefore, the variance of the hedging error is

var(ε(ϑ, c)) = var(ε(ϑ, 0)) = E[ε(ϑ, 0)2]− E[ε(ϑ, 0)]2.
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Proof. Given (3.3), we have, by Fubini’s Theorem,

E[H −
N∑

k=1

ϑk∆Sk] =

∫
E[Sz

N −
N∑

k=1

fϑ(z)kS
z−1
k−1∆Sk]Π(dz) =

=

∫ {
E[Sz

0 exp(z(∆X1 + . . . ∆XN))]−
N∑

k=1

fϑ(z)kE[Sz−1
k−1∆Sk]

}
Π(dz) =

=

∫
Sz

0

{
m(z)N −

N∑

k=1

fϑ(z)kE[exp((z − 1)(∆Xk−1 + . . . + ∆X1))

×[exp(∆Xk + . . . + ∆X1)− exp(∆Xk−1 + . . . + ∆X1)]]}Π(dz) =

=

∫
Sz

0

{
m(z)N −

N∑

k=1

fϑ(z)k

×E[(exp(z(∆Xk−1 + . . . + ∆X1) + ∆Xk)− exp(z(∆Xk−1 + . . . + ∆X1))]}Π(dz) =

=

∫
Sz

0

[
m(z)N −

N∑

k=1

fϑ(z)km(z)k−1(m(1)− 1)

]
Π(dz).

which is (3.4). To prove (3.5) we need to compute

E[(H −
N∑

k=1

ϑk∆Sk)
2] =

= E[

∫
(H(z)−

N∑

k=1

ϑ(z)k∆Sk)Π(dz)

∫
(H(y)−

N∑

k=1

ϑ(y)k∆Sk)Π(dy)] =

= E[

∫ ∫
(H(z)−

N∑

k=1

ϑ(z)k∆Sk)(H(y)−
N∑

k=1

ϑ(y)k∆Sk)Π(dz)Π(dy)] =

=

∫ ∫
E[(H(z)−

N∑

k=1

ϑ(z)k∆Sk)(H(y)−
N∑

k=1

ϑ(y)k∆Sk)]Π(dz)Π(dy).

Let us compute all the expectations needed:

E[H(z)H(y)] = Sy+z
0 exp(z(∆XN + . . . + ∆X1) + y(∆XN + . . . + ∆X1)) =

= Sy+z
0 m(y + z)N = Sy+z

0 v1(y, z).
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E[H(z)
N∑

k=1

ϑ(y)k∆Sk] =

=
N∑

k=1

fϑ(y)kE[Sz
NSy−1

k−1∆Sk] =

=
N∑

k=1

fϑ(y)kS
z+y
0 E[exp(z(∆XN + . . . + ∆X1)) exp((y − 1)(∆Xk−1 + . . . + ∆X1))

× [exp(∆Xk + . . . + ∆X1)− exp(∆Xk−1 + . . . + ∆X1)]] =

= Sz+y
0

N∑

k=1

fϑ(y)k

×{E[exp((y + z)(∆Xk−1 + . . . + ∆X1)) exp(z(∆XN + . . . + ∆Xk)) exp(∆Xk)] +

− E[exp((y + z)(∆Xk−1 + . . . + ∆X1)) exp(z(∆XN + . . . + ∆Xk))]} =

= Sz+y
0

N∑

k=1

fϑ(y)k

[
m(y + z)k−1m(z)N−km(z + 1)−m(y + z)k−1m(z)N−k+1

]
=

= Sz+y
0 v2(y, z).

Analogously, computing the expectation

E[H(y)
N∑

k=1

ϑ(z)k∆Sk]

one gets Sy+z
0 v3(y, z).
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The last term is

E[
N∑

k=1

ϑ(z)k∆Sk

N∑
j=1

ϑ(y)j∆Sj] =

=
N∑

k=1

N∑
j=1

fϑ(z)kf
ϑ(y)jE[Sz−1

k−1S
y−1
j−1 ∆Sk∆Sj] =

= Sy+z
0

N∑

k=1

N∑
j=1

fϑ(z)kf
ϑ(y)j

×E[exp((z − 1)(∆Xk−1 + . . . ∆X1)) exp((y − 1)(∆Xj−1 + . . . ∆X1))

× exp(∆Xk−1 + . . . ∆X1)(exp(∆Xk)− 1)

× exp(∆Xj−1 + . . . ∆X1)(exp(∆Xj)− 1)] =

= Sy+z
0

N∑

k=1

N∑
j=1

fϑ(z)kf
ϑ(y)j

×E[exp(z(∆Xk−1 + . . . ∆X1)) exp(y(∆Xj−1 + . . . ∆X1))

×(exp(∆Xk)− 1)(exp(∆Xj)− 1)].

The last sum may be computed separating the cases k = j, k < j and k > j
as

∑

k=j

N∑

k=1

fϑ(z)kf
ϑ(y)km(y + z)k−1(m(2)− 2m(1) + 1) +

+
∑

k<j

N∑
j=2

fϑ(z)kf
ϑ(y)jm(y + z)k−1(m(y + 1)−m(y))(m(1)− 1) +

+
∑

k>j

N∑

k=2

fϑ(z)kf
ϑ(y)jm(y + z)j−1(m(z + 1)−m(z))(m(1)− 1),

which is v4(y, z). 2

Theorem 3.1 states that the expected value and the variance of the hedg-
ing error may be represented respectively as one- and two-dimensional inverse
Laplace transforms. Although the formulas look a bit involved, they can be
easily evaluated numerically. In Section 5 we will give some details on their
implementation and discuss the precision of the algorithm used.
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A similar argument can be applied to compute higher order moments
of the hedging errors, that can be useful to get more information on the
probability distribution.

We remark that for Theorem 3.1 to hold it is not necessary that the
compatible strategy is consistent with the model. One can, for instance,
consider the case where the data generating process is the Black-Scholes
process with a certain drift and volatility, while the strategy is based on
different estimates. Or it may be the case that the data generating model
is the Merton jump-diffusion model ([16]), while the strategy is conceived
according to the Black-Scholes world, perhaps by fitting mean and variance
of the returns.

A more general form of Theorem 3.1 holds if the increments ∆Xn are not
identically distributed. In this case, all of the computations would go through
and one would get similar results by substituting all the powers of m(·) in
the formulas with suitable products of the moment generating functions of
each ∆Xn, for n = 1, . . . , N . Such a generalization may have interesting
application to interest rate sensitive derivatives, where most of the model
adopted for hedging and pricing consider a non-constant volatility for the
underlying.

Since a compatible strategy does not depend on the initial value endow-
ment, the expected value of the error produced by such a strategy with initial
value c can be obtained by simply subtracting c from the expected value of
the same strategy with zero endowment. For the same reason, the variance
of the error produced by a compatible strategy does not depend on c. On
the other hand, the optimal strategy does indeed depend on the initial cap-
ital. We will now prove, in our setting, a result that measures the influence
of the initial capital c on the expectation and the variance of the optimal
strategy. It gives an immediate way to compute the expected value of the
optimal strategy for a given c, provided that one knows the optimal initial
endowment V0, that is the value of c that minimizes the expectation of the
square of the discretization error (namely, the solution of Problem (3.1) in
[20]). It also shows that the variance of an optimal strategy does not depend
on c.

Proposition 3.1 Let ξc be the optimal, N-step, strategy for a contingent
claim H with an initial endowment c and let ε(ξc, c) be its hedging error.
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Then

E[ε(ξc, c)] = (V0 − c)

(
m(2)−m(1)2

m(2)− 2m(1) + 1

)N

(3.6)

where V0 is the optimal initial capital. Moreover, the variance of ε(ξc, c) does
not depend on c.

Proof. From Corollary 2.5 in [20] it follows that

E[ε(ξc, c)] = E[HZ̃0]− cE[Z̃0]

= (V0 − c)E[Z̃0]

where (using the fact that we are in the case of a deterministic mean-variance
payoff),

Z̃0 =
N∏

k=1

(1− αk∆Sk)

with

αk =
E[∆Sk|Fk−1]

E[∆S2
k |Fk−1]

.

Setting

λ =
(m(1)− 1)

m(2)− 2m(1) + 1
,

we have

E[Z̃0] =
N∏

k=1

(1− λ(m(1)− 1)) =

(
m(2)−m(1)2

m(2)− 2m(1) + 1

)N

,

from which we get (3.6).
To prove the statement on the variance, recall that, from Theorem 4.4 in

[20],

E[(H − c−GN(ξ(c))2] = (V0 − c)2

N∏

k=1

(1− αkE[∆Sk|Fk−1]) + var(H −GN(ξV0))

= (V0 − c)2

(
m(2)−m(1)2

m(2)− 2m(1) + 1

)N

+ var(H −GN(ξV0))

= E[H − c−GN(ξ(c)]2 + var(H −GN(ξV0)),
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where we used (see (2.8) in [20]),

E[Z̃0] = E[(Z̃0)2]

2

This concludes our exposition for the case of markets without transaction
costs, whose influence on the hedging error will be studied in the next section.

4 Transaction Costs

In this section we show how to compute the expectation and the variance of
the hedging error of compatible strategies in presence of transaction costs.
We consider the case of proportional transaction costs, that is we indicate by
S the mid-price of the underlying, so that the bid and ask prices are given,
respectively, by S(1− k/2) and S(1 + k/2). The transaction cost at time tn
to change the position from ϑn to ϑn+1 is

TCn =
k

2
Sn|ϑn+1 − ϑn|.

In line with other authors (e.g. Kabanov and Safarian [9]), we set TCN = 0,
because this last transaction cost depends upon contract specification. Also,
we do not consider the transaction cost in n = 0, as it is known. The hedging
error of a strategy ϑ in presence of transaction costs is equal to

εtc(ϑ, c) = ε(ϑ, c) +
N∑

n=1

TCn.

To compute the mean and the variance of εtc(ϑ, c) we have to compute the
mean and the variance of

∑N
n=1 TCn as well as its covariance with the trading

gains ϑn∆Sn and with the final payoff H. For the sake of a shorter exposition,
since the computations follow the approach of the previous section, we briefly
sketch the procedure and refer the reader to the Appendix for more details.

Let us first observe that the transaction costs can be written as

TCn =
k

2
Sn

[
21ϑn+1>ϑn (ϑn+1 − ϑn) + (ϑn+1 − ϑn)

]
, (4.7)

where 1A denotes the indicator function of the set A. The second term in
the above expression can be treated exactly as in the previous section, hence
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we shall concentrate on the first one. Let us make the assumption that ϑn is
a monotone function of the value of the underlying. Let us suppose that it
is an increasing function (the case of a decreasing function being analogous),
that is

ϑn+1 > ϑn ⇐⇒ Sn > Sn−1.

This is, for instance, the case of the Delta hedging strategy for a call option.
Hence

ϑn+1 > ϑn ⇐⇒ ∆Xn > 0,

therefore
1ϑn+1>ϑn (ϑn+1 − ϑn) = 1∆Xn>0ϑn+1 − 1∆Xn>0ϑn.

We are then concerned with terms of the form

Sn1∆Xn>0ϑn+j = Sn

∫
1∆Xn>0f

ϑ(z)n+jS
z−1
n+j−1Π(dz), (4.8)

with j = 0 or 1.
The expected value of a term in (4.8) can be written as inverse Laplace

transform of

E
[
1∆Xn>0f

ϑ(z)n+jSnS
z−1
n+j−1

]
=

= E
[
fϑ(z)n+jSn−1S

z−1
n−11∆Xn>0 exp ((j(z − 1) + 1)∆Xn)

]
=

= fϑ(z)n+jS
z
0E

[
exp

(
z

n−1∑
i=1

∆Xi

)]

×E [1∆Xn>0 exp ((j(z − 1) + 1)∆Xn)] =

= fϑ(z)n+jS
z
0m(z)n−1m+(j(z − 1) + 1),

where
m+(z) = E [1∆X1>0 exp (z∆X1)] .

The expected value of a term of (4.7) non-involving the indicator function
gives a similar contribution, namely

E
[
fϑ(z)n+jSnS

z−1
n+j−1

]
= fϑ(z)n+jS

z
0m(z)n−1m(j(z − 1) + 1).

Summing up the four terms, one gets that the expected value of all the
transaction costs can be written as the sum for n from 1 to N − 1 of terms

1

2
k

∫
Sz

0m(z)n−1
[
fϑ(z)n+1(2m

+(z)−m(z))− fϑ(z)n(2m+(1)−m(1))
]
Π(dz).
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The function m+(z) depends on the model considered for the underlying.
For example, in the Black-Scholes model one has

m+(z) =
1

2
exp

((
µz +

σ2

2
z2

)
T

N

) 
1− erfz


−

σz
√

T
N

2





 ,

where erfz(z) is the error function

erfz(z) =
2√
π

∫ z

0

e−y2

dy.

The computations involved for the variance-covariance terms of εtc(ϑ, c) pro-
ceed along the same lines and are relegated to the Appendix for the sake of
brevity.

5 Numerical implementation

There are at least two possible approaches to compute Equations (3.4), (3.5)
and those involving transaction costs: numerical integration and inversion
of Laplace transform. We followed the second approach, implementing the
algorithms in MATLAB. The formulas we wish to compute involve one- and
two-dimensional Laplace transforms. A list of the available MATLAB codes
for the one-dimensional case can be found in [11]. For the one dimensional
case (computation of expected values) we used ”invlap.m” constructed by
[6], based on the method by [4], which is accurate and fast. We wrote a
code based on Formula (2.11) in [3] for the bi-dimensional case (to compute
second moments).

The parameters of the algorithm in the code invlap.m for the one-dimen-
sional inversion are two: the pole with largest real part of the function to
be inverted and a tolerance parameter which essentially gives the distance
from the largest pole of the vertical line of integration. The largest pole has
to be given correctly: for instance, in the case of a call option, the largest
pole is 1. The default value for the tolerance parameter (10−9) gives, in our
experience, rather accurate results.

As explained in [3], the two-dimensional algorithm depends on six pa-
rameters, A1, A2, l1,l2, n and m, and has three possible sources of error:
the aliasing error, the roundoff error and the truncation error. Each error is
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controlled by two parameters. We found that A1 = A2 = 30 and l1 = l2 = 1
are good choices to get small, respectively, aliasing and roundoff errors. The
parameters n and m are the most relevant for our computations; in fact,
these are the parameters that control the Euler approximation to the infinite
sums.

To give an idea of the results produced by the algorithm, we consider an
at-the-money European call option with maturity T = 0.25 years, hedged
only once, at time 0, using the Black-Scholes delta. We assume that the un-
derlying process is a Geometric Brownian motion with drift µ = 0.1, volatility
σ = 0.4 and that the initial price is S0 = 100. In this case, the expected value
and the variance of the hedging error produced by this static strategy (the
units of underlying are 0.5398) can be explicitly computed. The expected
value, for an initial capital equal to the Black-Scholes price of the option
(7.9655), is 0.062723168, the variance is 39.10233. The one-dimensional al-
gorithm produces an expected value equal to 0.062723143 with largest pole
set to 1 and default tolerance parameter.

To compute the variance we use our code to invert a double dimensional
Laplace transform. In Table 1 we show the results produced by the algorithm
as a function of m and n, the most important pair of parameters, keeping
A1 = A2 = 30 and l1 = l2 = 1. We report the difference (multiplied by 104)
between the computed variance and the exact one. Note that the number of
terms in the approximating sum computed by the algorithm is n + m, hence
the computational burden increases with n and m. From this example (but
it is our general impression), it appears that a higher accuracy is reached by
increasing n, while larger m’s provide just a marginal improvement.

6 Applications

In this section we employ the methodology developed above to illustrate some
applications related to hedging options with and without transaction costs.
The purpose is more that of giving a hint on the potential applications of our
approach than that of providing a deep exam of the specific problems pre-
sented. The applications we present here are: checking the precision of some
well known approximating formulas, comparing ex-ante the effectiveness of
different strategies for different models, measuring ex-ante the hedging error
of an option trader who tries to speculate on the implied volatility.
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m n err
20 40 494.21
50 50 156.21
50 100 33.91

100 100 20.01
100 200 4.31
200 200 2.51
20 400 1.01
50 400 0.91

100 400 0.71
20 600 0.31

Table 1: Absolute error (multiplied by 104) of variance of the hedging error
of the delta strategy computed with the two-dimensional inversion algorithm
for an at-the money call option with number of trading dates N = 1 as
a function of m and n. The other parameters used by the algorithm are
A1 = A2 = 30, l1 = l2 = 1.

6.1 Approximating formulas

Here we shall assess the precision of some approximations for the variance
of the hedging error. Toft [21] provided a useful formula for computing an
approximate value of the variance of the discretization error produced in the
Black-Scholes model when hedging a European call option using the standard
delta strategy. The formula, an approximation as the number of trading dates
N goes to infinite, reads as follows

var(ε(∆, c)) ≈ 1

2
σ4

(
T

N

)2

S4
0Γ

2
0

N−1∑
i=0

g(ti), (6.9)

g(t) =

√
T 2

T 2 − t2
exp

(
2µt− 2d1

(µ− r)t

σ
√

T
− (µ− r)2t2

σ2T

)
×

exp

([
d2

2 + 2d2
(µ− r)t

σ
√

T
− (µ− r)2t2

σ2T

]
t

T + t

)
,

where Γ0 is the option’s gamma computed at time 0, and d1 and d2, the usual
quantities in the Black-Scholes formula, are also computed at time 0.

17



A very popular approximation, proposed by Kamal an Derman [10], in-
volving the option’s vega κ0 at time 0, is

var(ε(∆, c)) ≈ π

4N
σ2κ2

0. (6.10)

The top panel of Figure 1 represents the relative error of the two approxi-
mating formulas of standard deviation for hedging dates N = [1, 3, 5, 7, 10, 13, 26, 39, 52, 65].
The parameters used are S0 = 100, r = 0, µ = 0.05, σ = 0.5, T = 1, K = 100.
We see that, in this case, the approximation (6.9) underestimate the stan-
dard deviation while (6.10) overestimate it. The error of the first formula is
above 4% when the trading intervals are fewer than 10 but goes under 2%
as N gets greater than 26. Formula (6.10) gives similar, if not better results,
especially for small values of N .

In the Black-Scholes setting, Toft [21] finds an approximate value for the
variance of the hedging error in presence of transactions costs, which is a
generalization of (6.9). In particular, he shows an approximating formula for
the variance of transactions costs valid if the hedging volatility is Leland’s
transactions costs adjusted volatility, namely

σ̄ = σ

√√√√1 +

√
2/πk

σ
√

T
N

.

Denoting with Γ̄n the adjusted Gamma of the option at time n, introduced
by Leland [13], the variance of each transaction cost is approximated by

var(TCn) =
1

4
Ψ0,nk2

(
1− 2

π

)(
N

T

)2

, (6.11)

where the term Ψ0,n = E
[
Γ̄nS

2
n

]
is explicitly computed in [21]. This formula

is based on the approximation, proposed by Leland [13], of the transaction
cost at time n

TCn ≈ 1

2
kΓ̄nS

2
n|

Sn+1 − Sn

Sn

|. (6.12)

However, Kabanov and Safarian [9] proved that, when k does not depend on
N , as in Leland’s and Toft’s setting, approximating the total transaction costs
by simply summing up the approximating terms (6.12) produces an error
which remains bounded even when N goes to infinity. In the bottom panel of
Figure 1, we represent the relative error of approximation (6.11) of standard
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deviation of the transaction cost at time N − 1. We considered up to a high
number of trading dates, N = [6, 12, 24, 36, 48, 60, 90, 120, 240, 360, 720], to
show that, even for a single term, as far as variance is concerned, the error
is indeed non-vanishing. To compute the total variance of transaction costs,
one should sum up all the variances and the covariances between transaction
costs at different times. The general result of [9] is that, when the level k of
transaction cost is constant, the hedging error does not converge to zero as
N goes to infinity. However, the hedging error does converge to zero when k
is of the form k0N

−α, with α ∈ (0, 1/2), and k0 > 0. This convergence result
holds also for α = 1/2, as it was proven by Lott [14].

6.2 Comparing the strategies

Now we want to compute the mean and the variance of the errors produced
by different strategies to hedge a European call option without transaction
costs. We suppose that the initial value of the strategy c is equal to the Black-
Scholes value. To provide an ex-ante measurement of the performances of
the strategies we compute the expected values and the standard deviations
of their final shortfalls. As it was shown above, the initial capital c only
influences the expected values, leaving the standard deviations unaffected,
also for the optimal strategy.

The natural goal for the hedger is to get a negative expected loss (i.e. a
gain), hopefully with a small variance. A possible way to take both objec-
tives into account is to compute the Sharpe index of the strategy s(ϑ, c) =
−E[ε(ϑ,c)]√
var(ε(ϑ,c))

.

We compare the following strategies:

1. The Black-Scholes delta hedging strategy;

2. The ”improved delta” strategy (Wilmott [22]);

3. The local optimal strategy ;

4. The optimal strategy .

For all of the instances we analysed, the improved-delta strategy looked al-
most indistinguishable from the local optimal one, and therefore we decided
not to include it in the figures.

We consider an at-the-money European call option with maturity T =
0.25 years where the initial price of the underlying asset is S0 = 100. We as-
sume that a trader believes that the underlying follows a geometric Brownian
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motion with mean µ ≈ 0.1451 and volatility σ ≈ 0.4379. The trader has the
choice between different trading strategies with different numbers of trading
dates, namely N = (1, 3, 5, 7, 10, 13, 26, 39, 52, 65). We suppose that the price
of the option is c = 8.7176, corresponding to the volatility σ. The trader sells
the option and invest all the money in the hedging strategy.

We consider two cases for the data generating process of the underlying:

1. Geometric Brownian motion with parameters µ and σ (i.e. the trader
is adopting the correct model)

2. Merton jump-diffusion process with normally distributed jumps, with
parameters of the Geometric Brownian motion µ′ = 0.05 and σ′ =
0.3, intensity of the jumps λ = 10, and mean and standard deviation
of the jumps respectively ν = 0 and τ = 0.1. Note that, with such
choice of parameters, the trader, although using an incorrect model, is
estimating the correct values for the mean and the standard deviations
of the returns.

The results of the first case are reported in Figure 2. In the top panel
we represent expected values of the total loss for the strategies considered
as functions of the number of trading dates N . In the middle panel we plot
the ratio between the standard deviation of each strategy and the minimal
variance (achieved by the optimal strategy). We note that, as the number
of trading dates increases, the means and the variances of all the strategies
go to zero, as expected since the model becomes complete in the limit. The
expected value for the standard Black-Scholes delta is positive and quite
different from other strategies. The reason for that is that the positive µ is
ignored by the delta hedging strategy but taken into account by all others.
This is also reflected by the Sharpe indexes in the bottom panel of Figure 2
showing the worse ratio attained by the Delta hedging strategy.

In the second case we assume that the trader follows a strategy based
on the Black-Scholes model, while the data generating process is the jump-
diffusion Merton model. This is an application of Theorem 3.1 to the case
of a strategy based on incorrect modeling assumptions. Analysis like this
one may offer an insight on the influence of model risk on the performances
of different hedging strategies. The trader may adopt the delta strategy
or the local optimal strategy, both based on the Black-Scholes model with
the observed parameters. Notice that we cannot analyze the performance of
the optimal strategy based on a model other than the data generating one,
because that would not be a compatible strategy. However, the local optimal
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Black-Scholes strategy is a good proxy for the optimal one. Alternatively,
if the trader had a perfect knowledge of the data generating process she/he
could use either the local or the global optimal strategy. As usual, we use
the optimal strategy to serve as a benchmark.

The results of the second case are represented in Figure 3. In this case,
the model is not complete in the limit and therefore, neither the expected
values (top panel) nor the standard deviations of the strategies go to zero.
The smallest value (2.87) of the standard deviation is achieved for N = 65 by
the optimal strategy. Interestingly enough, the local optimal Black-Scholes
strategy, performs better, with respect to the Sharpe index (bottom panel),
than the standard delta strategy also in the case of model mispecification.
In particular, the standard deviation of the delta strategy is consistently
2% higher than that of the optimal one, while that of the log-normal local
optimal stays under 2%, as it is shown in Figure 3, middle panel.

6.3 Exploiting the personal views

Now we assume that a trader has a view on the future values of the volatility
of the underlying and wants to implement a profitable strategy. In particular,
we suppose that the market price of the option considered in the previous
section is c = 5.9785, corresponding to an implied volatility σ0 = 0.3. The
trader believes that the underlying asset follows a Geometric Brownian mo-
tion with a lower volatility and therefore she/he sells the option and hedges
it using the market implied volatility σ0.

The results of this experiment are in Figure 4. The top panel reports
the Sharpe indexes of the delta hedging and of the local optimal strategy,
assuming a drift rate µ0 = 0.1 and a number of trading dates N = 10, as
the actual volatility σ ranges from 0.1 to 0.5. As expected, the Sharpe index
is positive when σ is lower than σ0, that is when the views of the trader
are confirmed. We note that the local optimal strategy gives a consistently
slightly better performance. When σ = σ0 the Sharpe index of the delta
is negative (-0.0052), while that of the local optimal strategy is positive
(0.0099). In this case we can compute the Sharpe index of the optimal
strategy, which turns out to be 0.01. It is evident that the greater influence on
the performance of the strategy is due to the difference between the hedging
and the realized volatility, rather than to the strategy followed.

The lower panel of Figure 4 represents the influence of the drift on the
Sharpe ratios of the two strategies. It appears that the Sharpe ratio of the
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local optimal strategy is consistently better than that of the delta hedging
when µ is not zero. In the martingale case the performances of the two
strategies are very similar.

The analysis is concluded by Figure 5 that shows the influence of both
the actual volatility σ and the actual drift µ on the Sharpe index of the local
optimal strategy, assuming a hedging volatility σ0 = 0.3 and a hedging drift
µ0 = 0. It is evident that the influence of the volatility is much stronger than
that of the drift.

7 Conclusions

Using the inverse Laplace transform, we are able to measure the error of a
hedging strategy for a contingent claim as measured in terms of expected
value and variance. The contingent claim must be of European type with
a payoff representable as an inverse Laplace transform. The strategies for
which the method can be adopted must be compatible. i.e. they must have
an integral representation too.

Our analysis applies to several interesting strategies, as the Black-Scholes
delta, the improved-delta and the local optimal one, and to a fairly gen-
eral class of models, including Black-Scholes, Merton’s jump-diffusion and
Normal Inverse Gaussian. The method may also be applied in presence of
transaction costs. A relevant contribution of our results is that they are not
asymptotical approximations but exact and efficient formulas, valid for any
number of trading dates. Through our approach we were able to asses the
precision of existing approximating formulas, as those proposed by [21] and
[10] for the variance of the hedging error. We found that, for the cases ex-
amined, as the number of trading intervals increases, such formulas provide
good approximations when transaction costs are not taken into considera-
tion; however, in presence of transaction costs, the errors remain bounded
away from zero, as theoretically shown by Kabanov and Safarian [9].

We showed some possible applications of our findings. In particular, we
compared the performance of different strategies under various model set-
tings, taking as a benchmark the optimal-variance strategy and as a main
performance measure the Sharpe index. The computations may be done also
under model mispecification, hence we measure the influence of model risk
on hedging strategies. From the cases examined resulted that the delta hedg-
ing strategy, the simplest and most used of the dynamic strategies is always
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over-performed by the other strategies.
We also quantified, always in terms of the expected gain (or loss) over

units of risk, within the Black-Scholes model, the effect of a wrong forecast
of the drift and the volatility of the underlying on the performance of the
hedging. Our partial analysis showed that a wrong choice of model parame-
ters has a stronger impact on the hedging performances than the choice of
the particular strategy adopted.

The Laplace transform approach is a very promising and effective tool
for the quantitative measure of the risk involved in dynamic strategies. We
believe that possible fields of extensions of the present approach include
multi-variate analysis, moved-based hedging strategies and processes with
autocorrelated increments.

8 Appendix

Here we give the basic expressions for the second moment of εtc(ϑ, c), the
hedging error inclusive of transaction costs. Starting from Theorem (3.1), it
remains to compute the variance of

∑N
n=1 TCn and its covariance with ε(ϑ, 0).

We base ourselves on (4.7) and (4.8). For the covariance of transaction costs
we have to compute terms like:

φc(n,m, h, k, i, j) = E
[
1i

∆Xn>0ϑn+hSn1
j
∆Xm>0ϑm+kSm

]
, (8.13)

for h, k, i and j equals 0 or 1, n,m = 1, . . . N − 1, with say n > m. For the
variances of single transaction costs, we just need

φv(n, h, k) = E [ϑn+hSnϑn+kSn] , (8.14)

for h and k equals 0 or 1 and n = 1, . . . , N − 1. As for the covariance with
ε(ϑ, 0), we need terms like

ψ(n,m, k, j) = E
[
Sn∆Sn1

j
∆Xm>0ϑm+kSm

]
, (8.15)

for k and j equals 0 or 1 and n = 1, . . . , N , m = 1, . . . , N − 1, and

ψh(m, k, j) = E
[
H1j

∆Xm>0ϑm+kSm

]
, (8.16)

for k and j equals 0 or 1 and m = 1, . . . , N − 1. Suitably summing up all
the terms, we can easily compute that second moment. First, let us define

ma(z) =

{
m+(z) a = 1;
m(z) a = 0.
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Since ϑ is compatible, we have

φc(n,m, h, k, i, j) =

∫
Sy+z

0 fϑ(z)n+hf
ϑ(y)m+k ×

m(y + z)m−1m(z)n−m−1 ×
mi(h(z − 1) + 1)mj(k(y − 1) + z + 1)Π(dz)Π(dy),

while

φv(n, h, k) =

∫
Sy+z

0 fϑ(z)n+hf
ϑ(y)n+k ×

m(y + z)n−1m(h(z − 1) + k(y − 1) + 2)Π(dz)Π(dy).

Then we have

ψ(n,m, k, j) =

∫
Sy+z

0 fϑ(z)nf
ϑ(y)m+kA(n,m, k, j)Π(dz)Π(dy),

where

A(n,m, k, j) =





m(y + z)m−1m(z)n−m−1×
(m(1)− 1)mj(z + k(y − 1) + 1) n > m;
m(y + z)n−1m(y)m−n−1×
(m(y + 1)−m(y))mj(k(y − 1) + 1) n < m;
m(z + y)n−1×
(mj(k(y − 1) + 2)−mj(k(y − 1) + 1))n = m.

Finally,

ψh(m, k, j) =

∫
Sy+z

0 fϑ(y)m+k ×
m(y + z)m−1m(z)N−m ×
mj(z + k(y − 1) + 1)Π(dz)Π(dy).
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Figure 1 Approximation errors of asymptotic formulas. Black-Scholes
model with S0 = 100, r = 0, µ = 0.05, σ = 0.5, European call
option with K = 100, T = 1. Top: relative error (1-approx/exact)
of Toft’s and Kamal-Derman’s vega approximations of the standard de-
viation of the hedging error as a function of the number of trading in-
tervals (N = [1, 3, 5, 7, 10, 13, 26, 39, 52, 65]). Bottom: relative error (1-
approx/exact) of Toft’s approximation of the single standard deviation of
last transaction cost as a function of the number of trading intervals (N =
[6, 12, 24, 36, 48, 60, 90, 120, 240, 360, 720]).
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Figure 2 Three measures of the hedging error of different strategies as the
number of trading dates increases when the model (Black-Scholes) is correct.
Expected value (top), ratio of standard deviation with respect to the optimal
one (middle) and Sharpe index (bottom) of hedging error.
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Figure 3 Three measures of the hedging error of different strategies when
the hedging model is incorrect. The delta and the local optimal bs strategies
are based on the Black-Scholes model, the local optimal and the optimal ones,
are based on the data generating process that is Merton’s jump-diffusion. The
panels represent: expected value (top), ratio of standard deviation with respect
to the optimal one (middle) and Sharpe index (bottom) of hedging error of
different strategies as the number of trading dates increases.
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Figure 4 Influence of the actual parameters on the performances of delta
hedging and of the local optimal strategies based on personal views on the
volatility parameter σ. Black-Scholes model, with S0 = K = 100 and number
of trading dates N = 10. Top: Sharpe index of hedging error of delta and
local optimal strategies as a function of σ, the actual volatility of the Black-
Scholes process. The strategies are constructed with σ0 = 0.3 and µ0 = 0.1
(assuming that the value of µ0 has been correctly estimated) . Bottom: dif-
ferences between Sharpe indexes of hedging error of delta and of local optimal
strategies as a function of σ for different values of µ. The strategies are con-
structed with σ0 = 0.3 and the correct value of µ. The three curves correspond
to µ = 0, 0.1,−0.1

30



−0.2

−0.1

0

0.1

0.2

0.1

0.2

0.3

0.4

0.5
−5

−4

−3

−2

−1

0

1

2

µσ

Figure 5 Dependence of the Sharpe index of a local optimal strategy on the
actual parameters µ and σ. Black-Scholes model, with S0 = K = 100, number
of trading dates N = 10. The strategy is constructed assuming σ0 = 0.3 and
µ0 = 0.
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