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with different intrinsic qualities. We study how the relative importance of vertical 
differentiation with respect to the network effect influences the price competition as well as the 
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differentiation. Under weak network effect, full compatibility may arise: the low quality firm 
has higher incentives to offer it in order to prevent the rival from dominating the market. 
Under strong network effect we observe multiple equilibria for consumers' demands. However, 
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we assume, always maintains its overall quality dominance. 
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1 Introduction

On March 2003, Sony announces that it is ready to deliver its first blue-laser DVD
recorder (Blu-Ray), which will allow discs to hold up to five times more data than current
DVD models. HD-DVD format constitutes its main rival, although the storage potential
is around 40 percent lower for HD-DVD disks, its technology is less expensive and can
be available sooner. In the war for standards, timing can be crucial, as consumers
regard the installed network, before making a decision. Both HD-DVD and Blu-Ray
developers have taken this into account, by allowing their players to be compatible with
existing DVD technology (backward compatibility). However, both work separately
without considering (to the present), the possibility of rendering their players compatible
with the rivals disc format. The purpose of this paper is to analyse the incentives to
render compatible two standards with different intrinsic qualities, which compete in
prices in the product market. Another example of network goods with different intrinsic
qualities is MAC vs Microsoft Windows operating systems, where it is widely recognized
that Microsoft has captured the largest market share with lower prices, whereas Apple
Macintosh has proved to be a higher quality product (for instance in terms of high
resolution graphics).

Compatibility represents an important issue in network industries. Indeed, firms de-
cide whether to make their goods compatible with those of their rivals, thus competing
in the market, or to make them incompatible thus competing for the market (standard
war). As Besen and Farrell (1994) put forward, “there is no general answer to the ques-
tion of whether firms will prefer competition for the potentially enormous prizes under
inter-technology competition, or the more conventional competition that occurs when
there are common standards. Indeed, the same firms may choose different strategies in
different situations”. A recent example (October 2005), is Microsoft and Sony Team
on Digital Entertainment Content Management System: though rivals in the gaming-
console market, both companies find they have much to gain from working closely to
integrate the new Sony VAIO XL1 Digital Living System with Microsoft Windows XP
Media Center Edition 2005.1

Mainly, there are two ways to ensure compatibility: standardization, that is firms
may bring products to a uniform standard and the provision of a converter, that is firms
may produce a device which allows consumers from one side of the market to enjoy some
compatibility with the network of the other side. A converter can be either one-way
or two-way depending on whether the benefits for the consumers are private or public.
In the case of one-way converter, consumers from each side of the market enjoy the
opposing network in an unilateral fashion. For instance, if a device is created to allow
HD-DVD discs to be read by Blu-Ray players (even though quality might be imperfect),
this would allow the owners of Blu-Ray players to enjoy not only the Blu-Ray network
but also the HD-DVD network (at least partially). Nevertheless, HD-DVD player owners
could not use the same device likewise. Consequently, the benefits stemming from a one-
way converter are private. Also, when firms decide to offer a one-way converter, they

1http://www.microsoft.com/presspass/features/2005/oct05/10-18Sony.mspx.
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choose the degree of compatibility separately from each other.
In the case of two-way converter, consumers from each side of the market enjoy the

opposing network in a bilateral fashion. This would correspond to the existence of a de-
vice that allows both Blu-Ray and HD-DVD players to read the discs of the opponent’s
format (even though conversion might also be imperfect). The benefits stemming from
a two-way converter are then public. Depending on the specificities of the technologies
involved, we can have two situations. First, both firms may have to contribute to the
quality of compatibility, and as such, contributions are complementary. This situation
has been modeled by Crémer et al. (2000) while discussing the interconnectivity be-
tween internet backbones. The idea is that the quality of the interconnection is the
minimal of the qualities offered by each backbone. This is sensible as their problem
entails communication networks and it is clear that both parties must contribute for
good communication. Second, each firm may be able to successfully provide a two-way
converter, not being necessary that both contribute to the quality of the device. In this
case contributions are substitutes. We can find examples in the network formation lit-
erature: Bala and Goyal (2000) refer to the phone call where only the caller has to pay,
however information can be exchanged by both parties. Also, Bloch and Dutta (2005)
model separable investment implying non complementarity in the link formation. Re-
calling the Blu-Ray vs HD-DVD example, we can think of both producers having the
incentive to provide a two-way converter, but finally agreeing on using the most efficient
one i.e. the level of compatibility will be the maximal between the levels chosen by each
firm. The complementarity or substitutability among converters can also depend on the
status of firms’ property rights. Indeed, it can be the case that a firm needs a license to
develop a converter and to make its good compatible with a rival good.

In the present article we investigate the provision of substitutable two-way converters
in a setup where firms are vertically differentiated. We also compare the private and
social incentives towards compatibility. To this end, we develop a two-stage game where
firms first choose the degree of compatibility and then the price of their products. Finally,
consumers buy one unit of either good.

The main finding is that the interaction between the intrinsic quality differentiation
and the importance of the network effect leads to different market configurations which
in turn imply different incentives to provide compatibility. This is due to the fact
that the degree of conversion, hence the final network size, affects the overall product
differentiation. Under weak network effect, i.e., when the weight of the network effect
relative to the vertical differentiation is not very strong, we can observe full compatibility
at equilibrium. In this case, where both firms may remain active in the market, they are
willing to offer it because an increase in the conversion level makes competition milder.
However, the low quality firm has higher incentives to provide full compatibility in order
to avoid the possibility of being stranded out of the market. On the other hand, under
strong network effect, i.e., when the network effect dominates the vertical differentiation,
we observe multiple equilibria for consumers’ demands. Namely, as consumers value very
highly the network, they can all coordinate on either the high quality or the low quality
good. However, in any equilibrium of the full game, coordination takes place on the
high quality good which, we assume, always maintains its overall quality dominance.
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To sum up, we show that both firms may have incentives to provide compatibility. In
spite of that, as long as the network effect is not high enough to allow a switch in the
overall quality differential, the low quality firm is willing to pay more for compatibility.
Concerning the social incentives, we find that compatibility is always underprovided.

In the theoretical literature, we can distinguish between compatibility strategies
towards horizontal and vertical competitors. As far as the first strand is concerned,
to which this work is directly linked, Cremer et al. (2000) who consider an extension
of the seminal paper by Katz and Shapiro (1985), study compatibility decisions in a
Cournot oligopoly with homogeneous goods and heterogeneous consumers, where firms
differ in their installed base of consumers. The standard result predicts that smaller
firms always have higher incentives for product compatibility than bigger firms. To
our knowledge, only Baake and Boom (2001) study firm’s compatibility decisions in a
framework of vertical differentiation. As Cremer et al. (2000), they model compatibility
as a firms’ complementary decision; however, it is a zero-one choice. In line with this
literature, they show that the high quality firm, in contrast with the rival firm, is against
compatibility.

As for the second strand, there is a literature that is related to firms’ compatiility
strategy towards vertically related firms, the suppliers of complementary goods. Theo-
retical models distinguish according to whether each component is sold by an indepen-
dent firm or each firm produces everything necessary to form the final good (system).2

Farrell et al. (1998) make the distinction between competing on final products only
(closed organization), or competing at intermediate stages components as well as on
final products (open organization). As they state, “in the 1980s, the industry gener-
ally evolved towards an open structure, in which hardware systems are composed of
independently produced components combined through standardized interfaces with, in
general, several competing providers of each component [...] More recently, however, the
software side has arguably become increasingly closed as more and more functionality
is built into the Microsoft operating system and user interface.”

The structure of the paper is as follows. Section 2 describes the model, Section 3
provides the main results on the price competition and compatibility choice by firms
and, finally, Section 4 presents the socially optimal compatibility level and compares it
with the private incentives.

2 Model

Two firms, A and B, produce competing technologies at constant marginal cost set
to zero. These technologies are vertically differentiated and characterized by network
externalities in consumption, i.e. consumer’s utility is increasing in the number of con-
sumers that choose the same technology. Firms may decide to render the technologies

2As an example of the first context, Church and Gandal (1992) study the software provision decision
of software firms to hardware firms. As for the case of firms supplying all the necessary components,
Matutes and Regibeau (1992), which extend Matutes and Regibeau (1988), study firms’ incentives to
standardize components in industries where consumers try to assemble a number of components into a
system that meets their specific needs.

4



compatible through a converter whose quality determines the degree of network ben-
efits that the consumers enjoy from the rival technology. Hence, consumers’ utility is
a function of the intrinsic quality of the technology, of the size of the network and of
the compatibility that can be achieved with the rival network. We assume that there
is a continuum of consumers indexed by x which is uniformly distributed in the inter-
val [0, 1]. Thus, x measures consumers’ valuation of the quality: high consumer types
value quality improvements more than low consumer types.3 Each consumer has a unit
demand and buys either one unit of good A or one unit of good B. We rule out the
possibility of no purchase, that is we concentrate on the situation in which the market
is fully covered.4

We assume that consumer’s utility takes the following standard form:

UA(x) = βAx + α [DA + τDB]

UB (x) = βBx + α [DB + τDA]

The first term of the utility function, βix is the stand alone value of the technology
for consumer type x. The parameter βi represents the quality of technology i and we
assume throughout that βB > βA, i.e., the intrinsic quality of technology B is higher
than that of technology A. The second term in the utility is the network benefit, where
the parameter α > 0 denotes the intensity of the network effect and Di is the demand
of technology i. Therefore, consumers differ in their valuation of the intrinsic quality
but value equally the network effect. The latter consists of the externality coming from
the interaction with consumers that buy the same technology, (Di), and the externality
resulting from the existence of a converter, which allows consumers to partially benefit
from the rival network (τDj).

The final quality of conversion is endogenous and given by τ ∈ [0, 1] which is a
function of the degrees of conversion chosen by each firm, τA and τB, respectively. In
order to model a two-way converter, we assume that τ = max {τA, τB}. Underlying
this formulation is the idea that the devices produced noncooperatively by each firm
are substitutes in the sense that the compatibility achieved by the consumers of one
technology is also achieved by the rival consumers. As such, the final compatibility is
the maximum of the levels chosen by the firms. There is a linear cost of producing the
converter which is increasing in τi and given by cτi. We assume that firms are equally
efficient in producing the converter and thus face the same cost function.

The final level of conversion influences the overall quality differential between the
technologies, which is then determined by two sources of quality differentiation. The first
one is exogenous and given by k ≡ βB − βA and the other, endogenous, is proportional
to the difference in the networks’ size and given by α(DB −DA)(1−τ). The endogenous
source of differentiation can be manipulated by the firms through the choice of prices and

3We discuss about alternative asymmetric distributions for consumer types in Appendix 6.1. The
intuitive result is that the more consumers are concentrated around zero (one), the more firm A (B) has
a demand advantage.

4We also exclude the possibility for consumers to join both networks. This could be an alternative
way to achieve compatibility.
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through the choice of the conversion level (τ). We define the overall quality differential
as:

k + α(DB − DA)(1 − τ).

We can interpret this expression as follows: when either the two networks have the same
size (DA = DB) or compatibility is perfect (τ = 1), consumers perceive the technologies
as being identical in terms of the network effect.

We assume throughout the paper that the overall quality of good B is higher than
that of good A. A sufficient condition for this is k ≥ a(1 − τ), i.e. even in the extreme
case that the network benefit for firm A is the highest (DA = 1 and DB = 0), good B
maintains its quality dominance.

Both firms decide first the quality of the conversion that they are willing to offer
their consumers and then compete in prices. We model their decisions as a two stage
game and as such the solution concept that we will be using is the subgame perfect Nash
equilibrium.

Consumers choose between the technologies maximising their net surplus. In this
maximization problem they take as given the decisions of the other consumers. We
assume that consumers have rational expectations about the size of the networks. Con-
sumer x buys technology A if and only if UA (x)−pA > UB (x)−pB and UA (x)−pA > 0.
Denote x̂ the consumer type which is indifferent between the two technologies and as-
sume that the type x = 0 has positive net utility from buying product A, i.e. UA (0)−pA

is nonnegative.5 Demands are then given by

DB = 1 − x̂,

DA = x̂.

We analyse the situation where both firms face a nonnegative demand, x̂ ∈ [0, 1]. There
are three possible market configurations:

1. DA = 1 and DB = 0. In this case, the utility of consumers becomes UA =
βAx + α − pA and UB = βBx + ατ − pB. For this market configuration to be
possible, all consumers, even consumer type x = 1 should prefer to buy good A,
i.e. pB − pA ≥ k − α(1 − τ).

2. DA = 0 and DB = 1. In this case, the utility of consumers becomes UA =
βAx + ατ − pA and UB = βBx + α − pB. For this market configuration to be
possible, all consumers, even consumer type x = 0 should be interested in buying
good B, i.e. pB − pA ≤ α(1 − τ).

3. DA, DB ∈ (0, 1) and DA + DB = 1. In this market configuration both firms set
positive prices and obtain positive profits.

5The market coverage assumption in this model where x ∈ [0, 1] is only possible thanks to the presence
of positive network effects. Indeed, with α > 0, consumer type zero may prefer buying because even if
its valuation of the intrinsic quality is zero he benefits from the network of consumers buying the same
good or compatible goods.
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The market configurations described above occur when the following conditions on the
variables of the model hold:

pA − pB ≤ α (1 − τ) (DA − DB) , (1)

pB − pA ≤ α(1 − τ)(DB − DA) + k, (2)

pA ≤ α (DA + τDB) . (3)

Condition (1) corresponds to UA(0)− pA ≥ UB(0)− pB. In words, consumer type x = 0
prefers good A: the price difference between product A and B must be compensated
by the gain in terms of the network effect, since he has no valuation for the intrinsic
benefit of the good. In particular, we can interpret the RHS of condition (1) in the
following way: if no conversion is available, τ = 0, then what it takes to compensate for
the difference in prices is α(DA −DB). Since there is a converter, the compensation can
be smaller (as τ < 1).

Condition (2) corresponds to UA (1)−pA ≤ UB (1)−pB. In words, consumer type x =
1 prefers good B. The price difference between product B and A must be compensated
by the advantage of buying B i.e., by the difference in the network effect and the
difference in the intrinsic qualities (since the consumer located at x = 1 cares about the
intrinsic benefit as well as the network benefit).

Condition (3) corresponds to UA(0)−pA ≥ 0. In words, consumer type x = 0 prefers
buying good A to not buying anything if and only if the benefit which he obtains from
the network exceeds the price.

The indifferent consumer is:

x̂ = α(1 − τ)
DA − DB

k
+

pB − pA

k
, (4)

which implies that demands, in the interior solution case, are given by:

DA = −α(1−τ)
k−2α(1−τ) + pB−pA

k−2α(1−τ) ,

DB = k−α(1−τ)
k−2α(1−τ) −

pB−pA

k−2α(1−τ) .

Observing these expressions, we see that depending on the sign of k − 2α (1 − τ) they
are either decreasing or increasing in own price. In what follows we distinguish the two
cases.

• Weak Network effect. Assume first that k > 2α(1− τ), such that DA and DB are
decreasing in own price.

DB =





1, pB − pA ≤ α(1 − τ)
k−α(1−τ)
k−2α(1−τ) −

pB−pA

k−2α(1−τ) , α(1 − τ) < pB − pA ≤ k − α (1 − τ)

0, pB − pA > k − α (1 − τ)

(5)

DA =





1, pB − pA > k − α (1 − τ)
−α(1−τ)

k−2α(1−τ) + pB−pA

k−2α(1−τ) , α(1 − τ) < pB − pA ≤ k − α (1 − τ)

0, pB − pA ≤ α (1 − τ)

(6)
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Figure 1: Demand functions: k > 2α(1 − τ).

Figure 2: Demand for network good A: k < 2α(1 − τ).

• Strong Network effect. Assume now that k < 2α(1−τ). The network effect plays a
dominant role in the differentiation among products. As such, multiple equilibria
in the consumers’ game arise. In particular, as illustrated in Figure 2 for good A,
the demands for the network goods are correspondences:

DB =





1, pB − pA ≤ α(1 − τ)
−k+α(1−τ)
2α(1−τ)−k

+ pB−pA

2α(1−τ)−k
, k − α (1 − τ) ≤ pB − pA ≤ α(1 − τ)

0, pB − pA ≥ k − α (1 − τ)

(7)

DA =





1, pB − pA ≥ k − α (1 − τ)
α(1−τ)

2α(1−τ)−k
− pB−pA

2α(1−τ)−k
, k − α (1 − τ) ≤ pB − pA ≤ α(1 − τ)

0, pB − pA ≤ α (1 − τ)

(8)

For the range of prices such that pB −pA ∈ [k−α(1− τ), α(1− τ)] there are three
possible equilibria: either they all coordinate on good A or they all coordinate
on good B or some consumers prefer good A and others prefer good B. Notice
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that in the last case, demands are increasing in own price. This is due to the fact
that when deciding between A and B consumers value mostly the dimension of
the network that they will enjoy. Thus, as demands increase, also the value of the
goods does and in turn the consumer’s willingness to pay increases.

In all cases, consumers’ expectations are rational and none of these equilibria is
Pareto dominant. Therefore, we cannot select any of them.

A complete analysis of the feasible price regions determined by the conditions (1)-(3)
and consumers’ demands can be found in Appendix (6.2).

3 The characterization of equilibria

3.1 Price competition under weak network effect

In the second stage of the game, firm i chooses its price pi so as to maximize its profit
Πi:

6

Πi (pi, pj) = piDi (pi, pj) , with i 6= j and i, j = A, B

Under weak network effects, i.e. when k > 2α(1−τ), the demands for the network goods
are well defined functions, in particular they are linear and decreasing in own price. We
can therefore proceed by computing firms’ reaction functions. Given demands (5) and
(6), the profits are:

ΠB =





pB, pB − pA ≤ α(1 − τ)(
k−α(1−τ)
k−2α(1−τ) + pA−pB

k−2α(1−τ)

)
pB, α(1 − τ) < pB − pA ≤ k − α (1 − τ)

0, pB − pA > k − α (1 − τ)

ΠA =





pA, pB − pA > k − α (1 − τ)(
−α(1−τ)

k−2α(1−τ) + pB−pA

k−2α(1−τ)

)
pA, α(1 − τ) < pB − pA ≤ k − α (1 − τ)

0, pB − pA ≤ α (1 − τ)

The following Lemma characterizes the reaction functions on prices of firms under the
weak network effect assumption.

Lemma 1 For k > 3α(1 − τ), the reaction function of firm B is given by,

pB (pA) =

{
1
2 (k − α (1 − τ)) + pA

2 , if pA ≤ k − 3α (1 − τ)
α (1 − τ) + pA, if pA > k − 3α (1 − τ)

Whereas for 2α (1 − τ) < k ≤ 3α (1 − τ), the reaction function is:

pB (pA) = pA + α(1 − τ)

6We here forgo the compatibility costs to simplify the presentation but this is without loss of gener-
ality. We introduce them in the compatibility choice stage (next subsection).
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Figure 3: Reaction functions: k > 3α(1 − τ).

As for firm A, the reaction function, for k > 2α(1 − τ), is

pA (pB) =





pA = 0, pB ≤ α (1 − τ)
pB−α(1−τ)

2 , if α (1 − τ) < pB ≤ 2k − 3α (1 − τ)
pB − k + α (1 − τ), if pB > 2k − 3α (1 − τ)

Proof. See Appendix (6.3.1). The reaction curves are depicted in Figure 3 for the
case k > 3α(1− τ), and in Figure 4 for the case 2α (1 − τ) < k ≤ 3α (1 − τ). From the
observation of the reaction functions, it is easy to see that:

1. When k > 3α (1 − τ), there exists a unique Nash equilibrium of the price game,
given by7

p∗A =
1

3
k − α (1 − τ) , (9)

p∗B =
2

3
k − α (1 − τ) . (10)

The corresponding equilibrium demands are

D∗
A =

1

3

k − 3α (1 − τ)

k − 2α (1 − τ)
, (11)

D∗
B =

1

3

2k − 3α (1 − τ)

k − 2α (1 − τ)
. (12)

7By solving the system, it is easy to see that the computed price equilibrium is the unique intersection
of the reactions functions in the relevant domain.
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Figure 4: Reaction functions: 2α(1 − τ) < k ≤ 3α(1 − τ).

Notice that in this price equilibrium, a necessary condition for the market coverage
assumption to hold is k ≤ 3.46α.8 When the vertical differentiation is very high
(k > 3.46α), consumer type zero prefers not buying rather buying good A whose
quality is relatively very low.

2. When k ∈ (2α (1 − τ) , 3α (1 − τ)], there exists a unique Nash equilibrium of the
price game, given by

p∗A = 0,

p∗B = α (1 − τ) ,

where D∗
A = 0 and D∗

B = 1.

As in the classical model of vertical product differentiation the firm that produces
the high quality good charges a higher price. For high intrinsic quality differences,
k > 3α (1 − τ) , prices are increasing in the degree of conversion and in the intrinsic
vertical differentiation, k. When consumers value highly the network, or in other words,
when α is large, firms behave more competitively in order to gain network advantage.
This implies that prices are decreasing in α. This effect becomes milder in the presence
of a converter. Compatibility renders the network size less important for consumers and
therefore prices increase with τ .

On the contrary, when the intrinsic quality difference is lower, k ∈ (2α (1 − τ) , 3α (1 − τ)],
the high quality firm is the only active firm in the market. In that case a higher valu-
ation of the network allows the firm to extract a higher consumer surplus by setting a

8Formally, UA(0) − pA ≥ 0 ⇐⇒ k2
− 3α(2 − τ)k + 3α2(1 − τ)(3 − τ) < 0 whose solution is

k ∈ [k1(τ), k2(τ)]; where k1(τ) is a decreasing and convex function and k2 is a concave function whose
maximum is 3.46α.
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Figure 5: Price space for α(1 − τ) < k < 2α(1 − τ).

higher price. Also, as τ increases, the overall quality differential becomes lower and as
such price competition intensifies. In order to maintain the whole market, firm B needs
to set a lower price.

3.2 Price competition under strong network effect

For the strong network effect case, α (1 − τ) < k < 2α (1 − τ), we need to consider the
demands (7) and (8). Then, profits are given by

πB =





0, pB − pA ≥ k − α (1 − τ)(
α(1−τ)−k

2α(1−τ)−k
+ pB−pA

2α(1−τ)−k

)
pB, k − α (1 − τ) ≤ pB − pA ≤ α(1 − τ)

pB, pB − pA ≤ α(1 − τ)

πA =





0, pB − pA ≤ α (1 − τ)(
α(1−τ)

2α(1−τ)−k
− pB−pA

2α(1−τ)−k

)
pA, k − α (1 − τ) ≤ pB − pA ≤ α(1 − τ)

pA, pB − pA ≥ k − α (1 − τ)

Profits are nondecreasing in own price, hence firms have incentive to set prices as high
as possible. Given the market coverage assumption, prices are bounded from above.
Moreover, the existence of multiple consumer partition equilibria suggests for multiple
price equilibria. In order to solve the price competition stage, consider the relevant price
region depicted in Figure 5. We divide this price space in 5 regions that we analyse in
turn.

In regions I and II, there is a unique consumer partition equilibrium: (D∗
A = 0, D∗

B =
1) and (D∗

A = 1, D∗
B = 0), respectively. In these regions, no price equilibrium exists: in

region I (II), firm A (B) can profitably deviate by reducing its price pA (pB).

12



In regions IV and V, all three consumer partitions DA = 1, DA = 0 and DA ∈ (0, 1)
are equilibria of the consumers’ choice. We proceed by first eliminating the consumer
partitions which are not compatible with a price equilibrium in these regions. Concerning
region IV, DA = 1 can never be part of the equilibrium of the full game because firm B
can always reduce its price pB and conquer a positive market share (going to region I).
In contrast, for DB = 1, given any pB belonging to region IV, firm A cannot profitably
deviate as its profit is zero in any case. Therefore, in region IV any price pair (pA, pB)
such that pA ≥ 0 and pB is α(1 − τ) is an equilibrium . Concerning region V, no price
equilibrium can be associated with either DA = 1 or DB = 1 because the firm with
no consumers can always reduce its price and obtain positive profit, (pA can decrease
and reach region II and similarly pB can decrease and reach region I). We conclude by
considering the possibility of DA ∈ (0, 1) in regions IV and V.

Lemma 2 Let k < 2α(1 − τ), the reaction functions of firms A and B in regions IV
and V with DA ∈ (0, 1), are given by,

pB (pA) =

{
α (1 − τ) + pA, if pA ≤ ατ
α(1−τ2)−kτ

1−τ
+ pA

(k−α(1−τ))
α(1−τ) , if pA > ατ

pA (pB) =

{
pB − k + α (1 − τ) , if pB ≥ k − α (1 − τ)

0, if pB < k − α (1 − τ)

Proof. See Appendix 6.3.2. Drawing these reaction functions, we can easily see that
they intersect only once at pA = α and pB = k + ατ . However, such a price pair is
incompatible with the consumer partition DA ∈ (0, 1). Indeed, as Figure 2 illustrates, at
pB − pA = k − α(1− τ), the equilibrium consumers’ choice is either DA = 0 or DA = 1.

Finally, in region III, we have a unique equilibrium of the consumers’ choice: any
price pair (pA, pB) such that pB ≤ k − α(1 − τ) and pA ≥ 0 is associated with DA = 0,
DB = 1. Profits are then ΠA = 0 for firm A and ΠB = pB for firm B: thus, firm A will
be indifferent between any pA ≥ 0; however, firm B would always have an incentive to
increase pB so as to move to region IV (as long as pA is sufficiently low), where it can
set a higher price.

Summing up, for α(1−τ) ≤ k < 2α(1−τ), there exist multiple equilibria for the price
subgame. Namely, any price pair (pA, pB) such that pB = α(1−τ) and pA ≤ 2α(1−τ)−k
associated with DB = 1 is an equilibrium. In order to solve the compatibility stage, and
in turn the full game, in what follows we select the particular price equilibrium such
that pA = 0 and pB = α(1 − τ) with DA = 0 and DB = 1.

In the strong network effect case, consumers exhibit what is known as strong con-
formity (Grilo et al. 2001). This means that consumers would like to coordinate their
choices on the same good in order to enjoy the maximum network effect because the
difference in intrinsic qualities is not relevant. However, as the overall quality of good
B is still superior, at equilibrium, coordination takes place on the high quality good B.
Notice that if we let k < α(1−τ), a switch in the overall quality occurs and coordination
could also take place on good A.
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3.3 Compatibility choice

Let us now analyse the first stage of the game. Consider that the firms choose their
compatibility levels noncooperatively and assume that the global conversion is given
by τ = max{τA, τB}. As seen in the price competition, there are different price equi-
libria depending on the relative weight of the intrinsic quality and the network effect.
Accordingly, we have the three following cases for the overall profits of firms.

Case 1 Interior solution in prices k > 3α (1 − τ) ⇐⇒ τ ∈ (3α−k
3α

, 1]

ΠI
A =





(α(τA−1)+ 1
3
k)

2

k−2α(1−τA) − cτA if τA ≥ τB

(α(τB−1)+ 1
3
k)

2

k−2α(1−τB) − cτA if τA < τB

(13)

ΠI
B =





(α(τA−1)+ 2
3
k)

2

k−2α(1−τA) − cτB if τA ≥ τB

(α(τB−1)+ 2
3
k)

2

k−2α(1−τB) − cτB if τA < τB

(14)

Case 2 Corner solution in prices k ∈ [2α (1 − τ) , 3α (1 − τ)] ⇐⇒ τ ∈ [2α−k
2α

, 3α−k
3α

]

ΠC
A = 0 − cτA (15)

ΠC
B =

{
α (1 − τA) − cτB if τA ≥ τB

α (1 − τB) − cτB if τA < τB
(16)

Case 3 Strong network effect case where k ∈ [α (1 − τ) , 2α (1 − τ)) or τ ∈ [0, 2α−k
2α

).
In order to illustrate such a possibility characterized by multiple price equilibria,
we pick the one where pA = 0 and pB = α(1 − τ) and consumers coordinate on
good B which implies

ΠS
A = 0 − cτA , ΠS

B =

{
α (1 − τA) − cτB if τA ≥ τB

α (1 − τB) − cτB if τA < τB

To analyse the compatibility game we must consider three regions for the parameters
(as Figure 6 illustrates):

i) 3α−k
3α

≤ 0, in which case for all values of τA and τB, the unique outcome of the price
competition stage is the interior solution.

ii) 2α−k
2α

< 0 < 3α−k
3α

, in which case, for values of τA, τB ∈ [0, 3α−k
3α

), we have the corner

solution in the price competition stage and for values of τA, τB ∈ (3α−k
3α

, 1] we have
the interior solution in the price competition stage.

iii) 0 ≤ 2α−k
2α

< 3α−k
3α

, in this case, we have that for values of τA, τB ∈ [0, 2α−k
2α

) the
outcome of the price competition stage is the one assumed in the strong network
effect case (considering a particular price equilibrium is the only way to solve the
compatibility game for this range of parameters); for τA, τB ∈ [2α−k

2α
, 3α−k

3α
), the

outcome of the price competition stage is the corner solution and for τA, τB ∈
[3α−k

3α
, 1], the outcome is the interior solution.

14



Figure 6: Parameters space for the compatibility

Notice however that the corner solution and the strong network effect solution of the
price competition stage coincide, i.e., ΠC

A = ΠS
A and ΠC

B = ΠS
B, therefore the last two

regions can collapse in one.
The following Proposition presents the results for the compatibility game for each

partition of the parameter space defined above.

Proposition 3 When the intrinsic quality differentiation is very high with respect to
the network effect (k > 3α) firms have the incentive to choose full compatibility, as long
as the cost is not too high. However, when the result is either full or no compatibility,
low consumer types prefer not to buy anything.

In contrast, when the intrinsic quality differentiation, k, is low, but still the high
quality good maintains its quality dominance, (α < k ≤ 3α), the outcome of the com-
patibility game is compatible with market coverage. It yields full compatibility (τ = 1) if
and only if the cost is low, namely, c < k

9 . For higher conversion costs, the equilibrium
compatibility between the two network goods is zero.

Proof. See Appendix (6.3.3).
This proposition highlights the incentives of the firms to provide two way compat-

ibility depending on the relative importance of the network effect versus the intrinsic
quality. The following table summarizes our results.

α−k
α

< 0 ≤ 3α−k
3α

c = 0
τA = 1, τB ∈ [0, 1]

τB = 1, τA ∈
[

9α−4k
9α

, 1
]

}
τ = 1

0 < c < (4k−9α)
9

τA = 1, τB = 0
τB = 1, τA = 0

}
τ = 1

(4k−9α)
9 < c < k

9 τA = 1, τB = 0} τ = 1

c > k
9 τA = 0, τB = 0} τ = 0
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Proposition 3 deserves a closer analysis. Concerning the first statement, we find
that in a market where the products have a very high intrinsic quality differentiation
with respect to the network effect (k > 3α) firms have the incentive to choose full
compatibility for low cost levels. Indeed as the degree of compatibility increases, the
price competition softens. However, when the result is either full or no compatibility,
low consumer types prefer not to buy anything. Namely, when compatibility is absent
the quality of good A is so low with respect to the quality of good B that low consumer
types do not buy it. On the other hand, when compatibility is full, although the overall
differentiation decreases, the price increase prevents some consumers from buying.

As for the second statement, we also find that firms have incentive to provide full
compatibility for small levels of its cost. However, the lower intrinsic quality differenti-
ation allows for a market coverage equilibrium. Looking at the particular behavior of
each firm, we can see from the table that as long as 0 < c < (4k−9α)

9 , the game has two
Nash equilibria: (τA = 1, τB = 0) and (τA = 0, τB = 1). This is due to the fact that
reaction functions are discontinuous and have a unique downward jump. Intuitively,
when the opponent chooses a level of conversion high enough, not necessarily 1, the firm
prefers to enjoy this level of conversion rather than paying for the converter. Further-
more, when (4k−9α)

9 < c < k
9 , in equilibrium, only the low quality firm has incentive

to offer compatibility. This is so, because, otherwise, firm B would be in a position to
dominate completely the market. By offering compatibility, firm A attracts consumers
and becomes active in the market.

From the table, we can also notice that whenever c > 0, firms never incur in wasteful
duplication of compatibility costs. Indeed, at any equilibrium, there is only one firm
providing a converter device.

In the following, we present the equilibrium results for all the relevant variables.
When the vertical differentiation is such that α < k ≤ 3α, equilibrium prices demands
and profits depend on the compatibility cost in the following way. If c < k

9 , which
implies τ = 1 and in turn the interior solution in prices,

D∗
A =

1

3
, D∗

B =
2

3

p∗A =
k

3
, p∗B =

2k

3
.

Profits are then either, Π∗
A = k

9 − c and Π∗
B = 4k

9 or Π∗
A = k

9 and Π∗
B = 4k

9 − c. If c ≥ k
9 ,

which implies τ = 0 and in turn the corner (or the strong network effect) solution in
prices,

D∗
A = 0, D∗

B = 1

p∗A = 0, p∗B = α

Π∗
A = 0, Π∗

B = α.
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4 Welfare

We next investigate whether the equilibrium compatibility level is optimal from a social
welfare point of view. That is, we let the social planner choose the compatibility level, τ
at a cost cτ and firms compete in prices, as before. This implies that now firms’ profits
do not include the compatibility cost, as it is incurred only by the social planner.

Define, as usual, the social welfare by the following expression:

SW =

∫
bx

0
(UA (x) − pA) dx +

∫ 1

bx

(UB (x) − pB) dx + ΠA + ΠB − cτ. (17)

As before we need to distinguish the possible equilibria of the price competition stage.

• When k > 3α (1 − τ) ⇐⇒ τ ∈ (3α−k
3α

, 1],

SW I = βB
1

2
−

τ3 − k218α (4 − 3τ) + 9kα2 (1 − τ) (17 − 9τ)

18 (k − 2α + 2ατ)2
− cτ.

• When k ∈ [α (1 − τ) , 3α (1 − τ)] ⇐⇒ τ ∈ [α−k
α

, 3α−k
3α

],

SWC =
1

2
βB + ατ + α (1 − τ) − cτ =

1

2
βB + α − cτ.

The following proposition summarizes the results for the optimal compatibility choice
of the social planner.

Proposition 4 For very high intrinsic quality differentiation, (k > 3α) the social wel-
fare is maximized by full compatibility, however, this outcome is not consistent with the
assumption that the market is covered. In contrast, when the intrinsic quality differenti-
ation is not too high with respect to the network effect (α < k ≤ 3α), market coverage is
the equilibrium outcome: full compatibility is the optimal solution from the social point
of view when the cost is low. When cost is intermediate, the social planner chooses
partial compatibility τ = 3α−k

3α
. Finally for high costs, no compatibility is the preferred

solution.

Proof. See Appendix 6.3.4
We can now discuss how the welfare maximising solution differs from the private

optimum. We always observe underprovision of compatibility. Firms are willing to offer
full compatibility for a smaller range of the costs than the social planner. This result
is rather intuitive. Compatibility in our context is a public good as both firms attain
the same level of compatibility even if the investment is provided unilaterally. Figure 7
illustrates the private and social choice of compatibility for different levels of cost.
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Figure 7: Private versus Social Choice, α < k < 3α.

5 Conclusion

In this paper, we have analysed firms’ incentives to provide two-way compatibility be-
tween two network goods with different intrinsic qualities, assuming substitutability
between the converters. Our results show that firms may be willing to offer some pos-
itive compatibility also on their own, that is not being necessary that both contribute
to the quality of the device.

Assuming that the good with higher intrinsic quality always maintains its overall
quality dominance, we have provided a complete analysis by studying how the relative
importance of vertical differentiation with respect to the network effect influences the
price competition as well as the compatibility choice. Indeed, the final degree of com-
patibility allows firms to manipulate the overall product differentiation. Namely, when
consumers’ valuation of the network is not high enough to allow an overall quality switch
of the vertically differentiated goods, full compatibility may arise: the low quality firm
has higher incentives to offer it in order to prevent the rival from dominating the mar-
ket. Comparing firms’ compatibility decisions with the social optimum, we show that
compatibility is always underprovided. This result comes from the nature of a two-way
converter which actually is a public good.

Our analysis points out new interesting results about firms’ incentives to offer two-
way compatibility. Indeed, as Besen and Farrell (1994) describe, firms’ horizontal com-
patibility strategies determine the form of competition in the market. In particular, with
two firms, there are three combinations of such strategies: both firms choose incompat-
ibility which results in a standard war; both firms prefer compatibility; and finally, one
firm chooses incompatibility whereas the other prefers compatibility. The last is the
only case where firms choose different strategies. This seems reasonable when firms are
asymmetric. For example, Katz and Shapiro (1985) show how a larger firm is more
likely to prefer incompatibility than a smaller firm. However, we show that this need
not be the case. In fact, for high levels of quality differential both firms have incentives
to provide compatibility while for low levels of quality differential they may have asym-

18



metric preferences. When vertical differentiation is very high, competition is mild and
both firms manage to stay in the market: offering compatibility they can further soften
competition because consumers’ valuation of the goods increases. In contrast, for low
levels of vertical differentiation, either the high quality firm or the low quality firm are
likely to conquer the market thus having opposite incentives for compatibility.

In our future agenda, we propose to extend the model by considering the possibility
of a switch in the overall quality differential, i.e., the case where the overall quality of the
high quality good is lower than that of the low quality good thanks to the magnitude of
the network effect. Preliminary results suggest that the firm with lower intrinsic quality
could conquer the market thus being the high quality firm who has more to gain from
compatibility.9

We are also interested in investigating firms’ strategic incentives to provide one-way
compatibility towards horizontal competitors in the context of vertical differentiation.10

In this case, the benefits stemming from the converter are private. The analysis should
thus reverse. Again, according to the relative weight of vertical differentiation, compat-
ibility would affect the degree of competition between network goods’ suppliers in the
opposite way.

6 Appendix

6.1 Consumer types distribution

Throughout the model, we assume that consumers indexed by x are uniformly dis-
tributed in the interval [0, 1]. The uniform distribution can be seen as a particular Beta
distribution with parameters a and b such that a = b = 1. Formally, the Beta cumulative
distribution function is

F (x; a, b) =
Γ(a + b)

Γ(a)Γ(b)

∫ x

0
ua−1(1 − u)b−1du,

with a > 0, b > 0 and x ∈ [0, 1]. Solving consumers’ maximization problem, in the
interior solution case, we find the indifferent consumer, x̂, defined by 4. Assuming
rational expectations, we can then set DA = F (x̂) and DB = 1−F (x̂). It is easy to see
that under the uniform distribution, F (x; 1, 1) = x, which in turn implies that DA = x̂
and DB = 1 − x̂. As a robustness check, we here consider two alternative asymmetric
distributions for consumers: Beta(1, 2) and Beta(2, 1), with F (x; 1, 2) = 2x(1 − (x/2))
and F (x; 1, 2) = x2. In the first case, consumers concentrate more around zero; whereas
in the second case, consumers concentrate more around one. Solving for the indifferent
consumer, and in turn for the demands, we find that for any given price pair, DA under
the Beta(1, 2) distribution is higher than DA under the Beta(1, 1) distribution, which
is higher than DA under the Beta(2, 1) distribution. The result is rather intuitive,
the more consumers are concentrated around low types which have a low valuation of

9We can think of Apple producing a higher quality good with respect to IBM which in contrast
benefits from a larger network.

10Chou and Shy (1993) study the effects of one-way compatibility towards vertically related firms.
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Figure 8: Beta(1, 1), solid thick line; Beta(2, 1), (lower) solid think line; Beta(1, 2),
(upper) dots line.

quality, the higher the demand for the low quality good. In turn, this affects the results
of the model since the demands influence the overall quality differential, measured by
k +α(DB −DA)(1− τ). Indeed, the relative weight of the exogenous quality differential
k with respect to the network effect determines the outcome of the full game. Namely,
the higher DA, the smaller the high quality firm advantage. Thus, for a given k, it is
more likely for good A to become the good with higher overall quality and to conquer
the market.

6.2 Price regions

Given the demands, conditions (1)-(3) can be reduced to:

pA − pB < α (1 − τ)
(2 (pB − pA) − k)

(k − 2α + 2ατ)
,

pB − pA < −α(1 − τ)
(2 (pB − pA) − k)

(k − 2α + 2ατ)
+ k,

pA < α

(
−α

(
1 − τ2

)
+ kτ − (pA − pB) (1 − τ)

)

(k − 2α + 2ατ)
.

Assume first k > 2α − 2ατ, then we have

pB > α (1 − τ) + pA,

pB < k − α (1 − τ) + pA,

pB > pA
(k − α + ατ)

α (1 − τ)
−

(
kτ − α

(
1 − τ2

))

(1 − τ)

The lines underlying condition 1 and 2 are parallel and their slope is 1. The intercept
of line 1 is smaller than that of line 2. As for condition 3, we have that the intercept is
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Figure 9: Price region: k > 2α(1 − τ).

smaller than the other 2 (and possibly negative) and its slope is higher than 1, therefore,
the space defined by these three lines is nonempty and given either by the light grey
area or the light and dark grey areas as in Figure 9.

Now assume k < 2α(1 − τ), then we have

pB < pA + α (1 − τ)

pB > pA + (k − α + ατ)

pB <
α

(
1 − τ2

)
− kτ

1 − τ
+ pA

k − α (1 − τ)

α (1 − τ)

The lines underlying condition 1 and 2 are parallel and their slope is 1. The intercept
of line 1 is bigger than that of line 2. As for condition 3, we have that the intercept
is bigger than the other two and its slope is positive and lower than 1. Therefore, the
space defined by these three lines is nonempty and given by the dark grey area as in
Figure 10.

6.3 Proofs

6.3.1 Proof of Lemma 1

Let us start by solving the maximization problem of firm B. In the first domain of the
profit function, the profit is increasing in the price, as as such, it attains its maximum
in the border of the interval in which this branch of the profit is defined, i.e. pB =
pA + α (1 − τ). The second branch of the profit function is concave and it attains its
maximum at pB = 1

2 (k − α (1 − τ)) + pA

2 . Whenever this maximum falls outside the
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Figure 10: Price region: k < 2α(1 − τ).

relevant domain, i.e. 1
2 (k − α (1 − τ)) + pA

2 ≤ pA + α (1 − τ), or equivalently pA ≥
k − 3α(1 − τ) the optimum is pB = pA + α (1 − τ) . Whenever pA ≤ k − 3α(1 − τ), the
optimum is pB = 1

2 (k − α (1 − τ)) + pA

2 . Evidently, given that the optimal solution for
firm depends on whether pA is superior or inferior to k−3α(1−τ), we must guarantee that
this value is positive. In case k < 3α(1−τ), then pA is always higher than k−3α (1 − τ)
and as such, the only relevant best reply for firm B is pB = pA + α (1 − τ).

Let us now solve the maximization problem of firm A. In the first domain of
the profit function, the profit is increasing in the price, therefore it attains its max-
imum in the border of the interval in which this branch of the profit is defined, i.e.
pA = pB − (k − α (1 − τ)). The second branch of the profit function is concave and it
attains its maximum at pA = 1

2 (pB − α (1 − τ)). When 1
2 (pB − α (1 − τ)) ∈ (0, pB −

(k − α(1 − τ))], or equivalentely, α (1 − τ) < pB ≤ 2k − 3α(1 − τ), the optimum ob-
tains at pA = pB − (k − α (1 − τ)) , when 1

2 (pB − α (1 − τ)) < 0, or equivalently,
pB ≤ α (1 − τ) then pA = 0. Finally, when 1

2 (pB − α (1 − τ)) > pB − (k − α(1 − τ)),
that is, pB > 2k − 3α(1 − τ), the global maximum obtains at pA = 1

2 (pB − α (1 − τ)).

6.3.2 Proof of Lemma 2

Consider the situation in which for pB − pA ∈ [k − α(1 − τ), α(1 − τ)] the equilibrium
demand is such that DA ∈ (0, 1) and DB = 1 − DA. Looking at the profit function of
firm B overall it is easy to see that: it is nondecreasing as long as pB < pA+k−α(1−τ),
it has a downward jump to zero at pB = pA +k−α(1− τ), after that it starts increasing
again as long as pB < pA + α(1 − τ) and it is zero otherwise. As such, the maximum is
attained at pB = pA+α(1−τ) if this price is lower than the limits imposed by conditions
(1)-(3) on the prices. Otherwise, the reaction function of firm B is the upperbound of
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the price region, which for k < 2α (1 − τ) is defined by

pB < pA + α (1 − τ) ,

pB > pA + k − α (1 − τ) ,

pB <
α

(
1 − τ2

)
− kτ

1 − τ
+ pA

k − α (1 − τ)

α (1 − τ)
,

A similar reasoning applies to firm A.

6.3.3 Proof of Proposition 3

i) 3α−k
3α

< 0

Remember that for 3α−k
3α

≤ 0, the unique outcome of the price stage is the interior
solution. As such, profits are given by (13) and (14). The revenues are either
constant in τi (when τi < τj) or convex in τi, (when τi > τj). Consequently, the
profit is maximized either at τi = 1 or τi = 0. Therefore overall compatiblity is
either τ = 0 or τ = 1. Checking the condition for market coverage (3) it is easy to
verify that it does not hold whenever k > 3α, given the second stage equilibrium
prices and demands, (9), (10), (11) and (12).

ii) α−k
α

< 0 < 3α−k
3α

In this case, for values of τA, τB ∈ [0, 3α−k
3α

), we have the corner (or the strong
network effect) solution in the price competition stage and profits are given by
(15) and (16); and for values of τA, τB ∈ (3α−k

3α
, 1] we have the interior solution in

the price competition stage, with profits (13) and (14). Let us consider first the
revenue function of firm B. If τA ≤ 3α−k

3α
, as long as τB ≤ τA, firm B’s revenue

is constant and equal to α(1 − τA); for τA < τB < 3α−k
3α

, its revenue is decreasing

in τB and equal to α (1 − τB); finally, for τB > 3α−k
3α

, the revenue is convex in τB.

If τA > 3α−k
3α

, then, the revenue of firm B is constant and equal to
(α(τA−1)+ 2

3
k)

2

k−2α(1−τA) ,
as long as τB ≤ τA; and convex increasing otherwise. If τA = 1, then the revenue
is constant and equal to 4k

9 . Similarly, for firm A, when τB ≤ 3α−k
3α

, its revenue is

zero as long as τA ≤ 3α−k
3α

, and positive and convex otherwise. When τB > 3α−k
3α

,

firm A’s revenue is constant and equal to
(α(τB−1)+ 1

3
k)

2

k−2α(1−τB) , as long as τA ≤ τB; and
convex increasing otherwise. When τB = 1, then the revenue is constant and equal
to k

9 .

If c = 0, then, firm A always prefers τA = 1, being indifferent in case τB = 1.
As for firm B, she will choose, τB = 0 if α (1 − τA) > 4k

9 ⇐⇒ τA < 9α−4k
9α

, and
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τB = 1, otherwise. When τA = 1, τB is indifferent. Formally,

τB (τA) =





0 if τA ∈
[
0, 9α−4k

9α

]

1,if τA ∈ [9α−4k
9α

, 1)
[0, 1] ,if τA = 1

,

τA (τB) =

{
1,if τB ∈ [0, 1)
[0, 1] ,if τB = 1

It is straightforward to see that there are multiple pure strategy Nash equilibria
in the compatibility game, namely τA = 1 and τB ∈ [0, 1], and τB = 1 and
τA ∈

[
9α−4k

9α
, 1

]
. The overall compatibility level is τ = 1. There is an upward jump

in the reaction function of firm B at τA = 9α−4k
9α

(which is positive for k ∈
(
2α, 9

4α
)
,

even if it is negative, equilibrium is the same). The overall compatibility level is
τ = 1. This equilibrium respects the conditions (1)-(3) for the partition of the
parameter space in which it arises.11

If c ∈ (0, k
9 ], we must consider three subsets of (0, k

9 ].12 Let first c < 4k−9α
9 , then

firm B prefers τB = 1 to τB = 0, if τA ≤ 3α−k
3α

; otherwise, for τA > 3α−k
3α

she prefers

τB = 0 to τB = 1, if
(α(τA−1)+ 2

3
k)

2

k−2α(1−τA) > 4k
9 − c. This inequality holds if and only if13

τA >
1

9α

(
−9c + (9α − 2k) +

√
(k − 9c) (4k − 9c)

)
≡ τ̃ . (18)

Likewise, firm A prefers τA = 1 to τA = 0, if τB ≤ 3α−k
3α

; otherwise, if τB > 3α−k
3α

she prefers τA = 0 to τA = 1, if and only if τB > τ̃ > 3α−k
3α

. The reaction functions
are, thus,

τB (τA) =

{
1 if τA ∈ [0, τ̃ ]
0,if τA ∈ [τ̃ , 1]

,

τA (τB) =

{
1 if τB ∈ [0, τ̃ ]
0 if τB ∈ [τ̃ , 1]

.

Therefore, there are two asymmetric pure strategy Nash equilibria in the compat-
ibility game, namely, (τA, τB) = (1, 0) and (τA, τB) = (0, 1) . Moreover there exists
a unique level of τi such that firms are indifferent between τi = 1 and τi = 0, that

11The market coverage condition is satisfied for k < 3α. When τ → 1, the RHS of condition (3)→ −∞.
Therefore, as pB is finite and positive, the condition always holds.

12We assume that the boundaries of these subsets are positive. In the case in which they are negative,
only the last subset is valid. Nevertheless, results are not affected.

13Define Φ (τA) =
(α(τA−1)+ 2

3
k)2

k−2α(1−τA)
−

`
4k

9
− c

´
. Φ (τA) has two real roots, τ+ and τ−. It is straightforward

to see that τ− < 0 < τ+ < 1. We denote τ+ = 1
9α

“
−9c + (9α − 2k) +

p
(k − 9c) (4k − 9c)

”
≡ eτ . This

is positive for c <
α(4k−9α)
9(k−2α)

.
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is τ̃ , defined by (18). Now, let 4k−9α
9 < c < α

9

(
4k−9α
k−2α

)
, then, if τA < 3α−k

3α
, firm

B prefers τB = 0 to τB = 1, if α (1 − τA) > 4k
9 − c ⇐⇒ τA < 9α−4k+9c

9α
< 3α−k

3α
;

otherwise, for τA > 3α−k
3α

, firm B prefers τB = 0 to τB = 1, if τA > τ̃ . Firm A

prefers τA = 1 to τA = 0, if τB ≤ 3α−k
3α

; otherwise, if τB > 3α−k
3α

she prefers τA = 0
to τA = 1, if and only if τB > τ̃ . The reaction functions are, thus,

τB (τA) =





0 if τA ∈
[
0, 9α−4k+9c

9α

]

1 if τA ∈
[

9α−4k+9c
9α

, τ̃
]

0 if τA ∈ [τ̃ , 1]

,

τA (τB) =

{
1 if τB ∈ [0, τ̃ ]
0 if τB ∈ [τ̃ , 1]

.

Then there is a unique asymmetric pure strategy Nash equilibrium in the compat-
ibility game, namely, (τA, τB) = (1, 0) . Also the reaction function of firm B has
two jumps: one upwards at τA = 9α−4k+9c

9α
, and one downwards at τA = τ̃ . Finally,

let α
9

(
4k−9α
k−2α

)
< c < k

9 , in this case, τ̃ < 0, and therefore the reaction functions

become

τB (τA) =





0 if τA ∈
[
0, 9α−4k+9c

9α

]

1 if τA ∈
[

9α−4k+9c
9α

, 3α−k
3α

]

0 if τA ∈
[

3α−k
3α

, 1
] ,

τA (τB) =

{
1 if τB ∈

[
0, 3α−k

3α

]

0 if τB ∈
[

3α−k
3α

, 1
] .

Notice that, given the increase in the cost with respect to the previous range,
both firms start choosing zero compatibility for lower levels of the rival’s choice,
(3α−k

3α
< τ̃). Then, there is a unique asymmetric pure strategy Nash equilibrium

in the compatibility game, namely, (τA, τB) = (1, 0) . Also the reaction function
of firm B has two jumps: one upwards at τA = 9α−4k+9c

9α
, and one downwards at

τA = 3α−k
3α

. Independently of the cost subsets, the overall compatibility is τ = 1.
Equilibria, then respect conditions (1)-(3).

If c ∈ [k
9 ,∞), there is a unique symmetric pure strategy Nash equilibrium in

the compatibility game, namely τA = 0 and τB = 0. Both for τA > 3α−k
3α

and

τA < 3α−k
3α

, the best reply of firm B is to choose τB = 0. The overall compatibility
level is τ = 0. This equilibrium respects conditions (1)-(3).

6.3.4 Proof of Proposition 4

Consider the following relevant regions for the parameters:

i) 3α−k
3α

< 0

When 3α−k
3α

< 0, the unique equilibrium of the competition stage is the interior
equilibrium. Then, the social welfare (17) net of costs is a convex and increasing
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function. For high values of c, this function is maximized at τ = 0 and for low
values, it is maximized at τ = 1. Nevertheless, as shown in the proof of Proposition
3, these compatibility levels do not comply with markets being covered.

ii) α−k
α

< 0 < 3α−k
3α

For these range of parameters, the social welfare (17) is defined by:

SW =

{
1
2βB + α − cτ , τ ≤ 3α−k

3α

βB
1
2 − τ3−k218α(4−3τ)+9kα2(1−τ)(17−9τ)

18(k−2α+2ατ)2
− cτ , τ > 3α−k

3α

The candidate maxima for this function are: τ = 0, τ = 3α−k
3α

, or τ = 1. We must,

then compare SW (τ = 1) with SW
(
τ = 3α−k

3α

)
and with SW (τ = 1) . Simple

algebra allows us to conclude that

τ = 1 if c <
2

3
α

τ =
3α − k

3α
if

2

3
α < c <

(
3α (4α − 5k) + 5k2

)
α

6 (2α − k)2

τ = 0, if c >

(
3α (4α − 5k) + 5k2

)
α

6 (2α − k)2
.
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