
2008/3

■

On cycling in the simplex method of the
Transportation Problem

Wlodzimierz Szwarc

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6960675?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CORE DISCUSSION PAPER
2008/3

On cycling in the simplex method

of the Transportation Problem

Wlodzimierz SZWARC1

January 2008

Abstract

This paper shows that cycling of the simplex method for the m×n Transportation Problem
where k-1 zero basic variables are leaving and reentering the basis does not occur once it does
not occur in the k×k Assignment Problem. A method to disprove cycling for a particular k is
applied for k=2,3,34,5 and 6.

Keywords: Transportation Problem, Assignment Problem, cycling, basic solution, node, link,
directed weighted tree.

1 School of Business Administration, University of Wisconsin-Milwaukee, USA. E-mail:
wlodek.1@comcast.net

This paper presents research results of the Belgian Program on Interuniversity Poles of Attraction
initiated by the Belgian State, Prime Minister's Office, Science Policy Programming. The scientific
responsibility is assumed by the author.

 1

1. Introduction

 It is well known ([1], [3], [5], [6]) that cycling does occur in the simplex method of

Linear Programming when it produces a basic solution sequence X,X1,…,Xt where X=X1=…=Xt

and X and Xt share the same basis. B.J. Gassner [2] presented two n×n assignment examples for

n=4 and 5 where cycling does occur. However, she did not apply the classical rule where the cell

with the largest negative reduced cost enters the basis at each iteration. G.B. Dantzig and M.N.

Thapa [2] posed the following question: Does cycling occur for the simplex method in the

Transportation Problem if this rule is applied?

 This classical rule is crucial in establishing the following result (Sections 3 and 4): To

disprove cycling for the Transportation Problem, it is sufficient to show that it does not occur for

a special k×k Assignment Problem that deals with basic solutions X={xij} where

a) the only positive elements xij are on main diagonal.

b) the reduced cost is non-negative for at least one cell of each off-diagonal pair (i,j),(j,i). The

reduced costs of the basic cells are zero.

This result was established by using a surrogate simplex transportation method of [7] and [8]

outlined in Section 2.

 This paper presents a method of disproving cycling in a k×k assignment problem for a

particular k. Consider all pairs (i,j),(j,i) of off-diagonal cells. Mark a cell with a non-negative

reduced cost by “+” and the other one by “-“. The k-1 off diagonal basic cells are marked by

“+”. Each basic solution X is then described by a k-node weighted directed tree T. The trees

turn out to be a convenient tool to generate all cycles for a given k. Cycling does not occur in the

Assignment Problem if the trees form no cycle T0,T1,…,Tt, T0=Tt, or if for each cycle the

 2

respective solution sequence X,X1,X2,… terminates with an optimal basic solution Xu, u<t. The

Appendix uses this method to disprove cycling for k=2,3,4,5 and 6.

2. The Surrogate Simplex Method for the Transportation Problem

 The transportation problem deals with minimizing

 z(X) = !!
= =

m

i

n

j

ijijxc
1 1

 (1)

subject to

 !
=

n

j

ijx
1

= ai, i=1,…,m (2)

 !
=

m

i

ijx
1

= bj, i=1,…,n (3)

 xij ≥0, i=1,2,…,m, j=1,…,n (4)

where ai>0, bj>0, and cij are given numbers with !
=

m

i

ia

1

=!
=

n

j

jb
1

.

 A loop L is a set of 2k cells (i,j), 2≤k≤min(m,n), arranged in a sequence (i1,j1), (i1,j2),

(i2,j2), …, (ik,jk-1) (ik,j1). Let B be a set of m+n-1 cells (i,j). B is a basis if none of its subsets

forms a loop. Matrix X(B) = {xij(B)} is a basic feasible solution and B a feasible basis if X(B)

satisfies (2), (3), and (4) and xij(B)=0 for each (i,j)∉B. It is known that for each basis B there

exists a unique matrix X that satisfies (2) and (3). The simplex method generates basic feasible

solutions

 X(B), X(B1), X(B2), …, (5)

leading to an optimal solution. Notice that replacing the cij of (1) with cij+ui+vj where the ui and

vj are arbitrary numbers results in an equivalent transportation problem since z(X) changes by a

constant !
=

m

i

iiua

1

+!
=

n

j

iivb
1

 for every X. The surrogate simplex method of [7] and [8] generates for

 3

each basis of (5) matrices {cij+ui+vj} where cij+ui+vj=0 for each (i,j)∈B. Such matrices are

symbolized by C(B)={cij(B)}. Then the –ui and –vj are dual variables associated with B and the

original cij. X(B) is optimal if all cij(B)≥0 since z’[X(B)] = !!
i j

cij(B) xij(B) = 0 ≤ z’(X) for

every X. Once
Bji !,

min cij(B) = -c1<0 a new feasible solution X(B1) is generated. Matrix C(B1) is

created by adding c1 or –c1 to certain rows and columns of C(B). To illustrate this procedure

consider Figure 1.

Insert Figure 1 about here

where B = {(1,1), (1,3), (2,1), (2,2), (2,4),(3,3)}, min cij(B) = -5, and B1 = B+(3,4) – (1,1). To

get C(B1) add 5 to the columns 1, 2 and 4 and –5 to row 2 of C(B). This can also be accom-

plished by adding 5 to rows 1 and 3 and –5 to column 3 of C(B).

3. Problem Reduction

 Recall that cycling occurs in the transportation problem if the simplex method generates a

sequence of feasible bases.

 B, B1, B2, …, Bt, Bt+1, …, (6)

where B=Bt and
1),(

min

!" sBji

cij(Bs-1) = -cs < 0 for all s≥1 (B0=B). Notice that cs is the maximum

implicit cost of C={cij} for Bs-1 and z[X(Br)] is constant for each X(Br) of (6).

 A cell (i,j)∈B is called white cell if it leaves and reenters B and black cell if it stays in

every basis of (6).

 4

Theorem 1: Each cycling in an m×n transportation problem where k-1 cells reenter B=Bt of (6)

can be replicated in some k×k transportation problem where all k diagonal cells stay in the initial

basis B’ while k-1 off diagonal cells leave and reenter B’.

Proof: Let W and B-W be sets of white and black cells respectively. This set is composed of k

subsets V1,V2,…,Vk where two cells are assigned to the same Vs if they share the same row or

column. None of the Vs is empty since for each (i,j)∈W, xuj(B)>0, and xiv(B)>0 for some u and

v. Rearrange the rows and columns such that set V1 is situated in rows I1={1,…,m1} and

columns J1={1,2,…,n1}, V2 in rows I2={m1+1,…,m2} and columns J2={n1+1,…,n2}, and so on.

 Let A11, A22, …, Akk, where Ass=Is×Js be areas occupied by V1,V2,…,Vk respectively.

Figure 3 presents an 8×12 matrix C(B) where W={(2,7), (1,9), (4,11)} where I1={1,2,3},

J1={1,2,3}, I2={4,5}, J2={4,5,6,7}, I3={6,7}, J3={8,9,10}, L4={8}, J4={11,12}.

Insert Figure 2 about here

 Figure 2 presents only the basic entries cij(B)=0 and min cij(B) for each Auv=Iu×Jv that

does not contain the cells of B. A white cell links Vr and Vs if it shares a row with a black cell of

Vr and a column with a black cell of Vs. Notice that two cells of W cannot link the same pair Vr

and Vs since B would contain a loop. Since the black cells stay in every basis of (6), cij(B) =

cij(Bs) = 0 for each (i,j)∈Auu and each u and k. This can only happen if C(Bs) is a result of add-

ing to cij(B): -d1 to each row of I1 and d1 to each row of I1, -d2 to each row of I2 and d2 to each

column J2, and so on. Then for each (i,j)∈Auv, cij(Bs) = cij(B) + du – dv. This implies that only

the cells with
uvAji !),(

min cij(Bs) can enter Bs+1 as white cells. This also includes the white cells

which left B and entered some basis of (6). Notice that for each Ars area r≠s only cells with the

 5

smallest cij(B) may leave and reenter B when cycling occurs. We squeeze each Ars area into a

single cells and define a k×k matrix C’(B’) by placing
rsAji !),(

min cij(B) in cells (r,s) and 0 in cells

(r,r). Recall that for a white cell of Ars this minimum is zero. B’ consists of k black cells (r,r)

and k-1 white cells. Figure 3 presents C’(B’) derived from the 8×12 matrix C(B) of Figure 3.

Insert Figure 3 about here

Here B’ = {(1,1), (2,2), (3,3), (4,4), (1,2), (1,3), (2,4)}.

 Consider B1 = B – (i1,j1) + (i2,j2) where (i1,j1) links Vr and Vs and (i2,j2) links Vp and Vq.

Since –c1 = ci2j2(B) = min cij(B) = c’pq(B’) cell (p,q) enters B’1. Next we examine the loops L

and L’ contained in B+(i2,j2) and B’+(p,q) respectively. Let (u1,v1),S,(u2,v2) be a segment of L

where (u1,v1) and (u2,v2) are white cells while S is a sequence of black cells of Vh.

 The following four cases are possible: 1) u1,u2∈Ih, 2) v1,v2∈Jh, 3) v1∈Jh, u2∈Ih, 4) u1∈Ih,

v2∈Jh. It is easy to see that the number of cells in S is even for cases 1 and 2 and odd for cases 3

and 4. Suppose that (u1,v1) and (u2,v2) link: Vh with Vk1 and Vh with Vk2 (Case 1); Vk1 with Vh

and Vk2 with Vh (Case 2); Vk1 with Vh and Vh with Vk2 (Case 3); V1 with Vk1 and Vk2 with Vh

(Case 4). Then in L’, (u1,v1),S,(u2,v2) corresponds to a segment: (h,k1),(h,k2) (Case 1);

(k1,h)(k2,h) (Case 2); (k1,h),(h,h),(h,k2) (Case 3) and (h,k1),(h,h),(k2,h) (Case 4). Notice that (h,h)

is a black cell. Thus if the number of cells of (u1,v1),S,(u2,v2) is even (odd) that it remains so in

the corresponding segment of L’. Since (i1,j1) leaves B, there is an even number of cells in both

(i2,j2),…,(i1,j1) segments of L. This number remains even for both (p,q),…,(r,s) segments of L’.

Thus cell (r,s) that corresponds to (i1,j1) can also be deleted from B’.

 The c’rs(B’1) coincide with the
rsA

min cij(B1), r≠k for a simple reason. If c1 is added to

 6

column s of C’(B’1) then it is also added to each column of Js of matrix C(B1). Then –c1 is added

to each row s of C’(B’1) and each row of Is of C(B1). Thus cycling in sequence (6) can be repli-

cated by sequence B’, B’1,…,B’t,…, where B’=B’1. QED.

 To illustrate the second part of the proof, consider Figure 2, where B1 = B-(2,7)+(6,12).

B+(6,12) contains a 16 cell loop L that passes the Ars areas in order A34, A33, A13, A11, A12, A22,

A24, A44. In addition to (6,12) it involves 3 white cells, 4 cells of V1, 3 cells of V2, 3 cells of V3,

and 2 cells of V4. According to cases 1,2,3,4, L’ = (3,4), (3,3), (1,3), (1,2), (2,2), (2,4) (see

Figure 3). Since (2,7) links V1 and V2 and (6,12) links V2 and V4, basis B’1 = B’1 –(1,2) + (2,4).

To get C’(B’1) we add 6 to columns 2 and 4 and –6 to rows 2 and 4 of C’(B’). The same

numbers are added to each column of J2 and J4 and row I2 and I4 of C(B) in order to get C(B1).

4. Properties of k×k Matrices C(Br)

 From now on we assume that cycling occurs in a k×k transportation problem where each

basis of (6) consists of k black cells (i,i), i=1,2,…,k and k-1 white cells which leave B and enter

some subsequent bases. Consider formula cij(Br) = cij(B) + ui +vj. Since all cii(Br)=0 we have

ui=-vi. Then

 cij(Br) = cij(B) +vj - vi. (7)

Suppose a basic off diagonal cell (p,q) leaves Br-1. Define a subset A of Br-1-(p,q) as follows:

1) Each (i,q) of set Br-1-(p,q) belongs to A, 2) If (i,j) belongs to A then each cell (u,j) and (i,v)

also belongs to A. Let Jr-1 is set of columns of A.

 Notice that if (i,j) replaces (p,q) in Br then both q and j belong to Jr-1 while i and p do not

belong to Jr-1. To get C(Br) we add cr and –cr to the columns and rows of Jr-1 of C(Br-1).

 Notice that the vj satisfy condition

 vj = !
" j

s

s
c

#
, (8)

 7

where αj is a subset of {1,2,…,r}.

Theorem 2: Suppose that for some r all white cells left B (some may have reentered later). Then

for each (p,q), p≠q, and some s≥r either cpq(Br) = cpq(Bs-1) + cs or cqp(Br) = cqp(Bs-1) + cs.

Proof: Suppose (p,q), the basic cell of Br entered Bs and stayed basic in Bs+1, Bs+2, …, Br. Then

cpq(Bs-1) = -cs and cpq(Br) = cpq(Bs) = cpq(Bs-1) + cs. Next assume that (p,q)∉Br. Then Br+(p,q)

contains a loop L = (p,q), (p,j2), (i2,j2), …, (iu,ju-1), (iu,q). Assign all odd cells of L to L1 and all

even cells to L2. Then for any ui and vj

 !
1L

cij - !
2L

cij = !
1L

(cij+ui+vj) - !
2L

(cij+ui+vj). (9)

Notice that cij(Br)=0 for each (i,j)∈L – (p,q). Hence cpq(Br) = !
1L

cij(Br) - !
2L

cij(Br).

 Suppose cells of L – (p,q) belong to Bs,Bs+1,…,Br and (k,1) is one of its cells that entered

Bs. Then ck1(Bs-1) = -cs < 0 and cij(Bs-1) = 0 for each (i,j)∈L – (p,q) – (k,1). Due to (9),

cpq(Br) = !
1L

cij(Bs-1) - !
2L

cij(Bs-1).

Then

  cpq(Bs-1) + cs if (k,l)∈L2
 cpq(Br) =  (10)
  cpq(Bs-1) - cs if (k,l)∈L1

If cpq(Br) = cpq(Bs-1) – cr, then cqp(Br) = cqp(Bs-1) + cr. QED.

 We call (p,q) a “+” (“-“) cell if it satisfies the first (second) condition of (10). There are

½k(k-1) cells in each category. Notice that cpq(Br)≥0 for each “+” cell. Only “-“ cells can

replace the “+” cells in a basis.

Corollary 1: Under the assumption of Theorem 2 αp≠αq for each p≠q, p,q=1,2,…,k.

Proof: Suppose αp=αq. Then up+vq = -vq+vq = 0 and cpq(Br) = cpq(Bu) for each u≤r, contrary to

the fact that (p,q) is either a “+” or “-“ cell.

 8

 Since cycling occurs we can expand sequence (6) to B-t,B-t+1,…,B-1,B,B1,…,Bt,…,

where the initial basis B-t=B=Bt. This is why we can assume that Theorem 2 holds for C(Bu) of

any Bu of (6).

 We say that column j dominates column i in C(Bu) if vj-vi=cr+L(cr) for some r≤u, where

L(cr)=a1c1+a2c2+…+ar-1cr-1 and ai are 0, 1 and –1.

 Due to Corollary 1, for each C(Bu) either column j dominates i or i dominates j. Notice

that (7) implies that (i,j) of C(Bu) is a + cell if column j dominates column i. Otherwise (i,j) is a

– cell. Then for each C(Bu) one can list the columns such that the number of + cells is

0,1,2,…,k-1 respectively. Use the following rule. Assign weight wi=r to column i if there are r-1

+ cells in this column. Then (i,j) is a + cell of C(Bu) if wi<wj and a – cell if wi>wj. We can

assume that all + cells of C(B)=C(Bt) are above the main diagonal since this can be done by

rearranging the rows and columns of C(B). Then wi=i for each column i. Notice that all (i,j) of

C(B) below the main diagonal are – cells.

 Consider basis B* where each white basic cell appears in a separate row and column. We

prove the following:

Property 1: B* does not belong to sequence (6).

Proof: Suppose B*=Bu for some Bu of (6). We can rearrange the rows and columns of C(B*)

such that all cells above (below) the main diagonal are +(-) cells. Let (i,j) where cij(Bu) = -cu+1.

Then Bu+1=Bu+(i,j)-(p,q) for some cell (p,q). Then (see proof of Theorem 2), Bu+(i,j) contains a

loop L=L1+L2 where (i,j) belongs to the set L1 of odd elements of L and (p,q) belongs to L2, the

set of even elements of L. Since all elements of L2 are black diagonal cells, z(Bu+1) = z(Bu)-cu+1.

Hence B* cannot appear in (6) where z(Bu) is constant for each u=0,1,…,t, where B0=B.

 9

5. Directed Weighted Trees

 Since the columns of matrices C(Bu) have assigned distinct weights we are in a position

to define a corresponding k-node weighted directed tree Tu as follows:

Each column i of C(Bu) is a node of Tu while each white basic cell (i,j) is a directed link i→j of

Tu where wi<wj since (i,j) is a + cell of C(Bu). Link i→j will also be described as [wi]i→[wj]j.

Now, instead of C(B), C(B1), …, C(Bt) where C(B)=C(Bt) we deal with a sequence, called cycle:

 T0, T1, …, Tt , where T0=Tt , (11)

where each link of T0 leaves and re-enters T0.

For convenience assume that wi=i in T0. Then all cells i,j, i<j of C(B) are + cells. Let T* be the

tree corresponding to C(B*) of Property 1. Then T* = i1→i2→i3→…→ik-1→ik where the

weights of nodes i1,i2,…,ik are 1,2,…,k. Due to Property 1, T* is of the type

(1,2),(2,3),…,(k-1,k) and cannot appear in cycle (11). Next consider any tree T other than T*.

To construct a successor T’ of T apply the following procedure:

1. Remove a link p→q from T thus splitting it into two nonempty subtrees.

2. Let A and Ā be sets of nodes of the two subtrees.

3. Assign p to A and q to Ā. Assume |A|=m. Obviously m≥1.

4. Select nodes i of A and j of Ā where wi>wj.

5. Define T’ as follows: Replace p→q with i→j. Distribute new weights w’i in T’ by assigning

weights 1,2,…,m to the nodes of A and m+1,…,k to the nodes of Ā such that for each pair r,s

belonging to the same subset A or Ā, w’r<w’s if wr<ws.

 Due to 4, T* has no successors.

 10

 Let T0 correspond to C(B). Then (p,q) is a + basic white cell while (i,j) is a – cell of

C(B). To disprove cycling consider each of the kk-2 trees T0 where wi=i. For each To we

construct all possible sequences T0,T1,T2,… where Tu+1 is a successor of Tu.

Definition. Trees Ts and Tr of (11) are equivalent if for every link [wi]i→[wj]j of Ts there

corresponds a link [wi]f(i)→[wj]f(j) of Tr where f(1),f(2),…,f(k) is a permutation of numbers

1,2,…,k. The set of pairs (wi,wj) describes their identical type.

 Next we focus on those T0 for which there exists a sequence

 T0, T1, T2, …, Tr , (12)

where Tr is the earliest tree equivalent to T0.

 Notice that Tu and Tr+u, u≥1 are equivalent if for each u the weights of nodes i, j, p, and q

in Tu and Tr+u are identical. Then (11) can be also written as

T0,…,Tr,…,T2r,…,Thr = Tt = T0.

where n≥1 and T0, Tr, T2r,…, are equivalent trees.

 Each of the h sequences T0,…,Tr; Tr,…,T2r; …; T(h-1)r, …, Thr is called a subcycle.

 To create a subcycle consider tree

T0 = [1]1→[3]3, [2]2→[3]3, [2]2→[5]5, [4]4→[5]5,

which in terms of (wi,wj) is of the type (1,3),(2,3),(2,5),(4,5). Remove from T0 the link with

weights 2,3; i.e. link 2→3. Then A={1,3} and Ā={2,4,5}. Select nodes with weights 4 and 3,

i.e. nodes 4 and 3 and replace it with link 4→3 to create a successor tree T1 = [1]2→[3]5,

[2]4→[3]5, [2]4→[5]3, [4]1→[5]3.

Remark: Tree T0 has seven other successors.

T1 is equivalent to T0 since its (wi,wj) type is also (1,3),(2,3),(2,5),(4,5) where

f(1),f(2),f(3),f(4),f(5) = 2,4,5,1,3.

 11

 The shape of T0 and T1 can be presented as follows:

[1]→[3]←[2]→[5]←[4],

where the numbers indicate the weights of the nodes. Repeating the same procedure for T1,

where p,q=4,5 and i,j=1,5, A={2,5} and Ā={1,3,4} we get

T2 = [1]4→[3]3, [2]1→[3]3, [2]1→[5]5, [4]2→[5]5.

Continuing in the same fashion we get a cycle T0,T1,…,T6 where T0=T6.

 Notice that cycling does not occur if no subcycle exists for any T0. To study the other

properties of subcycles it is sufficient to consider subcycle (12). Let i→j symbolize the link that

enters Tu+1 by replacing some link of Tu. Link i→j varies with u. Let wru-1 and wru be weights of

node r in Tu-1 and Tu. The following properties eliminate certain T0 trees.

Property 2: Link 1→k does not appear in T0=Tt.

Proof: Suppose 1→k belongs to T0. Then w01=wlt=1 and wk1=wkt=k and for some u, link 1→k

reenters Tu+1 by replacing some link p→q of Tu and stays in all subsequent trees Tu+1,…,Tt.

Suppose wlu+1=1 and wku+1=k. Then wpu>wlu>wku>wqu which contradicts wpu<wqu. This

contradiction also holds when p=1 or q=k. Hence wku+1 – wlu+1 < k-1. But wku+1 – wlu+1 ≥ wku+2

– wlu+2 ≥ … ≥ wkt – wlt = k-1 which contradicts the last inequality. QED.

Property 3: Links 1→(k-1) and 2→k cannot simultaneously belong to T0.

Proof: It is sufficient to show that each of those links can only reenter Tt=T0.

Notice that during the transition from Tt-1 to Tt set A={1,2,…,m} and set Ā={m+1,m+2,…,k} for

some 1≤m<k. Suppose 1→(k-1) is in Tt-1. Then A={1,2,…,k-1}, Ā={k} and 1<wkt-1<k. Thus

wlt-1=1 and wk-lt-1=k contradicting Property 2. If 2→k is in Tt-1 then A={1}, Ā={2,…,k} and

1<wlt-1<k. Then w2t-1=1 and wkt-1=k, again contradicting Property 2. QED.

 12

 Consider sequence C(B), C(B1),…,C(Bu) where –cu+1=crs(Bu)=min cij(Bu). Let Am and

Ām be sets used in the transition from tree Tm-1 to Tm. Then

 –cu+1 = crs(B)+a1c1+a2c2+…+aucu , (13)

where

  0 if r and s both belong to either Am or Ām
 am =  -1 if r belongs to Am
  1 if r belongs to Ām

Notice that if –cu+1=crs(Bu-1)<0 then cu≥cu+1.

If –cu+1=crs(Bu-1)-cu then cu≥cu+1 if crs(Bu-1)≥0 and cu<cu+1 if crs(Bu-1)<0.

 To disprove cycling for a particular k, consider the set of kk-2 trees T0 where wi=i. From

this set eliminate first those T0 that satisfy Properties 2 and 3. For each remaining tree create a

list of possible successors that are still on the list. Next eliminate trees whose only successor is

T* and update the list of successors for the remaining trees.

 Repeating this elimination process, we end up with a list of trees T0 which participate in

subcycle (12) which is a segment of cycle (11). If no T0 remains on the list then each tree

sequence T0,T1,…, terminates with T* which corresponds to X(B*). Then, due to Property 1,

cycling does not occur in the Assignment Problem. Otherwise generate all possible cycles for

each T0.

Consider –cu+1 defined by (13). We state the following.

Conjecture: Cycling does not occur in the Assignment Problem if for each tree cycle (11) there

exists an u<t such that –cu+1≥0.

If for each cycle (11) –cu+1=min cij(Bu)≥0 for some u<t, then sequence (5) terminates with X(Bu)

which is an optimal basic solution. Hence cycling does not occur.

 We prove in the Appendix that the Conjecture holds for k=2, 3, 4, 5, and 6.

 13

6. Concluding Remarks

 The question still remains open how to prove the Conjecture for an arbitrary k. One

needs to find the sufficient conditions for a tree to appear a subcycle. So far only a few

necessary conditions have been established that reduce the types of trees in a subcycle. The

sufficient conditions might help to identify additional criteria when –cu+1≥0 for u<t in a cycle.

According to the Appendix all 21 cycles for k=5 were handled by Criterion I while all but two

out of 7083 cycles for k=6 were handled by Criteria I and II.

 One should mention another property of trees. Let sym u = k+1 – u. Define sym T as a

symmetrical tree of T by replacing every link[wi]i→[wj]j of T by link

[sym wi]sym i←[sym wj]sym j. Notice that wi<wj implies that sym wi>sym wj.

 The following property holds:

T0,T1,…,Tr is a subcycle if and only if sym T0,sym T1,…,sym Tr is a subcycle.

This result reduces considerably the number of T0 types to identify subcycles.

 14

Appendix

Proof that no cycling occurs for k=2, 3, 4, 5 and 6

 To disprove cycling for a particular k, we identify the types of T0 for which there exists a

subcycle (12). Hence type (1,2),(2,3),…,(k-1,k) that has no successors is not considered. We

assume that wi=i in T0.

Let k=2. The set of types is empty. QED

Let k=3. Due to Properties 2 and 3, the set is empty. QED

Consider case k=4.

 Properties 2 and 3 reduce the set of 16 types of T0 to the following four types:

(1,2),(1,3),(3,4); (1,2),(2,3),(2,4); (1,2),(2,4),(3,4); and (1,3),(2,3),(3,4). Each of the four types

converges to type (1,2),(2,3),(3,4) after at most 2 iterations. Thus no subcycle exists for k=4.

QED.

Case k=5.

 We identify 14 types of T0 for which there exists at least one subcycle (12). Recall that

wi=i in T0. The types form four groups: 1) 24, 2) 74, 3) 14,38,42,100, and

4) 21,25,39,45,49,72,73,99. Here is the (wi,wj) description of the 14 types.

24: (1,2),(1,4),(3,4),(3,5) 25: (1,2),(1,4),(3,4),(4,5)
74: (1,3),(2,3),(2,5),(4,5) 39: (1,2),(2,3),(2,5),(4,5)
14: (1,2),(1,3),(3,4),(4,5) 45: (1,2),(2,4),(3,4),(3,5)
38: (1,2),(2,3),(3,4),(2,5) 49: (1,2),(2,5),(3,4),(4,5)
42: (1,2),(2,3),(3,5),(4,5) 72: (1,3),(2,3),(2,4),(4,5)
100: (1,4),(2,3),(3,4),(4,5) 73: (1,3),(2,3),(3,4),(2,5)
21: (1,2),(1,4),(2,3),(4,5) 99: (1,4),(2,3),(3,4),(3,5)

Tables 1-4 present wi, wj, wp, and wq during the transition from Tu to Tu+1 for each of the four

groups. The upper entry is wi-wj (in type 24 it is 3-2) the lower entry is wq-wp (i.e. 3-4 in 24).

*** Insert Tables 1 and 2 about here ***

 15

Table 1 means that if Tu is of type 24 and link of weights 3→2 replaces link of weights 3→4,

then Tu+1 is also of type 24. The same goes for type 74. If T0 is type 24 then T0=2←1→4←3→5

where wi=i. Since 3→2 replaces 3→4, sets A={3,5} and Ā={1,2,4}. Hence the weights in T1

are 1,2 for nodes 3,5 of A and 3,4,5 for nodes 1,2,4 of Ā.

 Tables 3 and 4 handle the other two types:

*** Insert Tables 3 and 4 about here ***

Based on Tables 1, 2, 3 and 4 we prove the following:

Property 4. If cycling occurs for k=5 then cu≥cu+1 for each u.

Proof: Consider a cycle (11) where for some u, cu<cu+1. Let wiu-1, wju-1 and wiu, wju be the

weights of nodes i and j in trees Tu-1 and Tu of (11). By assumption (i,j) is a minus cell both in

C(Bu-1) and C(Bu). Hence both differences wiu-1-wju-1 and wiu-wju are positive. According to

Tables 1, 2, 3, 4 for each s, wis-wjs=1 when link i→j enters Ts+1. Since cu<cu+1 i and j belong to

different sets A and Ā, 0 < wiu-1-wju-1 < wiu-wju = 1 which is impossible. Hence cu≥cu+1. QED

 Using Tables 1-4 we generate the following 21 subcycles:

 1. 24,24 12. 21,39,99,45,49,25,72,21
 2. 74,74 13. 25,73,72,39,45,25
 3. 14,38,42,100,14 14. 25,73,72,39,45,49,25
 4. 21,39,45,25,73,72,21 15. 25,73,72,39,99,45,25
 5. 21,39,45,25,72,21 16. 25,73,72,39,99,45,49,25
 6. 21,39,45,49,25,73,72,21 17. 25,73,49,25
 7. 21,39,45,49,25,72,21 18. 25,72,39,45,25
 8. 21,39,99,21 19. 25,72,39,45,49,25
 9. 21,39,99,45,25,73,72,21 20. 25,72,39,99,45,25
 10. 21,39,99,45,25,72,21 21. 25,72,39,99,45,49,25
 11. 21,39,99,45,49,25,73,72,21

The number of subcycles in a cycle varies from 2 to 4. The largest 33-tree cycle is composed of

four subcycles #11. The smallest 7-tree cycle is composed of six subcycles #24 and #74. To

 16

disprove cycling we have to show that for each tree cycle (11) there exists a u<t where

-cu = min cij(Bu-1)≥0. This means that X(Bu-1) is an optimal solution.

 Consider #2 cycle T0,T1,T2,…,T6 where each tree is of type 74, handled in Section 5.

Using formula (13) we get -c1=c43(B)<0, A1={1,3} and -c2=c15(B)-c1, A2={2,5}

Consider T2. To create T3 replace link p,q with weights 2,3 by a link with weights 4,3; i.e. link

i,j=2,3, -c3=c23(B)+c1-c2≥0 since (2,3) is a + cell of C(B) and c1≥c2 (Property 4).

 Cycling is disproved for this tree cycle since X(B2) is an optimal solution.

 Next consider the first four trees T0,T1,T2,T3 of the largest 33-tree cycle composed of

subcycles #11. Here -c1=c43(B), A1={2,3}, -c2=c25(B)-c1, A2={1,3,4,5}, -c3=c12(B)+c1-c2≥0.

Again X(B2) is an optimal solution for this cycle tree.

 For nine subcycles –c4=c15(B)+c2-c3≥0 while for the remaining eleven subcycles

-c3=cij(B)+c1-c2≥0 where (i,j)=(1,2),(2,3) or (3,4). QED.

Case k=6

 There are 420 types of T0 participating in at least one of the 7083 subcycles. The

computer program used two criteria to identify cycles (composed of subcycles) where –cu+1≥0

for some u<t.

Criterion I: There exist numbers u and r, r < u-1 such that

 -cu+1=cij(Br)+cu-1-cu, cij(Br)≥0 and cu-1≥cu. (14)

Hence -cu+1≥0.

Criterion II: There exist numbers u, r and r where s+1<r<u such that

 -cu+1=cij(Br)+cs+cu-1-cu, cij(Br)≥0, (15)

where cs≥cs+1≥…≥cu-1 . (16)

To prove that –cu+1≥0 it is sufficient to show that d=cs+cu-1≥0.

 17

Notice that d≥0 if cu-1≥cu.

Consider case cu-1<cu. Suppose cell (p,q) enters basis Bu. Assumption cu-1<cu implies that

-cu=cpq(Bu-1)=cpq(Bu-2)-cu-1 (cpq(Bu-1)=cpq(Bu-2) implies that cu-1≥cu). Thus

cu-1-cu = cpq(Bu-2) ≥ min cij(Bu-2) = -cu-1 ≥ -cs. Thus d≥0. The computer program disproved

cycling for 6894 subcycles by Criterion I and for 183 subcycles by Criterion II.

 For the remaining two subcycles one or both of the conditions (16) and cu-1≥cu may not

hold. There –c8=c56(B)+c2+c6-c7 and –c8=c12(B)+c2+c6-c7. Here c56(B)≥0 and c12(B)≥0;

however, inequality c2≥c3≥…≥c6≥c7 is not met. The respective –c7 for those subcycles happen to

be identical –c7=c25(B)-c1-c6=c25(B1)-c6. Due to c25(B1)≥-c2 we get -c7≥-c2-c6. Hence d≥0 for

both subcycles. This concludes the proof of Case k=6.

 18

References

[1] Beale, E.M.L., “Cycling in the Dual Simplex Method,” Naval Research Logistics Quarterly,

2 (1955), 269-275.

[2] Dantzig, G.B., and Thapa, M.N., Linear Programming 2: Theory and Extensions, p. 216,

Springer Series of Operations Research, 2003.

[3] Cunningham, W.H. and J.E. Klincewicz, “On Cycling in the Network Simplex Method,”

Mathematical Programming, 26 (1983), 182-189.

[4] Gassner, B.J., “Cycling in the Transportation Problem,” Naval Research Logistics Quarterly,

11 (1964), 43-58.

[5] Hoffman, A.J., “Cycling in the Simplex Algorithm,” National Bureau of Standards Report

No. 2974, December 1953.

[6] Marshall, K.T. and J.W. Suurballe, “A Note on Cycling in the Simplex Method,” Naval

Research Logistics Quarterly, 16 (1969), 121-137.

[7] Szwarc, W., “Zagadnienie Transportowe” (in Polish), Zastosowania Matematyki, 7 (1962),

149-187.

[8] Szwarc, W., “The Solution of the Transportation Problem,” Mathematica, 4(27) (1962), 149-

157.

 19

0 -2 0 4

0 0 -1 0

C(B) =

2 -3 0 -5

Figure 1

 20

 0 0

 0 0 0 -3

 0 0

 3 0 0 0 0

C(B)= 0 0 -2

 2 0 -6

 -4 2 0 0 0

 1 -5 7 0 0

Figure 2

 21

0 0 0 -3

3 0 -2 0

-4 2 0 -6

C’(B’) =

1 -5 7 0

Figure 3

 22

 24 74

24 3-2
3-4

74 4-3

2-3

Table 1

Table 2

 14 38 42 100

14 3-2
1-2

38 5-4

2-3

42 4-3

4-5

100 2-1

3-4

Table 3

 21 25 39 45 49 72 73 99

21 4-3
1-2

25 3-2

3-4
3-2
1-2

39 4-3

2-3
 4-3

4-5

45 3-2

3-4
 5-4

3-4

49 3-2

4-5

72 2-1

2-3
 4-3

2-3

73 5-4

2-3
5-4
3-4

99 2-1

3-4
 2-1

2-3

Table 4

