
MŰHELYTANULMÁNYOK                           DISCUSSION PAPERS

INSTITUTE OF ECONOMICS, HUNGARIAN ACADEMY OF SCIENCES
BUDAPEST, 2007

MT-DP – 2007/4

Stable Allocations of Risk

PÉTER CSÓKA - P. JEAN-JACQUES HERINGS -
LÁSZLÓ Á. KÓCZY

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6960312?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Publisher:
Institute of Economics, Hungarian Academy of Sciences

Discussion papers
MT-DP – 2007/4

Institute of Economics, Hungarian Academy of Sciences

KTI/IE Discussion Papers are circulated to promote discussion and provoque comments.
Any references to discussion papers should clearly state that the paper is preliminary.

Materials published in this series may subject to further publication.

Stable Allocations of Risk

Péter Csóka,
Department Economics, Universiteit of Maastricht

P.Csoka@algec.unimaas.nl

P. Jean-Jacques Herings,
Department of Economics, Universiteit Maastricht,

P.Herings@algec.unimaas.nl

László Á. Kóczy,
Department of Economics, Universiteit Maastricht,

L.Koczy@algec.unimaas.nl

September 2007

ISBN 978-963-9796-01-0
ISSN 1785-377X



Stable Allocations of Risk
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Abstract

Measuring risk can be axiomatized by the concept of coherent measures of risk. A risk

environment specifies some individual portfolios’ realization vectors and a coherent measure

of risk. We consider sharing the risk of the aggregate portfolio by studying transferable utility

cooperative games: risk allocation games. We show that the class of risk allocation games

coincides with the class of totally balanced games. As a limit case the aggregate portfolio can

have the same payoff in all states of nature. We prove that the class of risk allocation games

with no aggregate uncertainty coincides with the class of exact games.

JEL: C 71
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Stabil kockázatelosztások

Csóka Péter, P. Jean-Jacques Herings, Kóczy László

Összefoglaló
A kockázatmérés axiomatizálható a koherens kockázati mértékek koncepciójával. Egy

kockázati környezet néhány egyéni portfólió realizációs vektorát és egy koherens kockázhati

mértéket tartalmaz. Cikkünkben az aggregált portfólió kockázatának megosztását

tanulmányozzuk átruházható hasznosságú kooperatív játékok, kockázatelosztási játékok

segítségével.

Megmutatjuk, hogy a kockázatelosztási játékok osztálya egybeesik a  teljesen

kiegyensúlyozott játékok osztályával. Szélsőséges esetként az aggregált portfóliónak ugyanaz

az értéke minden világállapotban. Belátjuk, hogy az aggregált kockázat nélküli

kockázatelosztási játékok pontosan az egzakt játékok.

Tárgyszavak:
koherens kockázati mértékek, kockázatelosztási játékok, teljesen kiegyensúlyozott játékok,

egzakt játékok
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Abstract

Measuring risk can be axiomatized by the concept of coherent measures of risk.
A risk environment specifies some individual portfolios’ realization vectors and a
coherent measure of risk. We consider sharing the risk of the aggregate portfolio by
studying transferable utility cooperative games: risk allocation games.

We show that the class of risk allocation games coincides with the class of totally
balanced games. As a limit case the aggregate portfolio can have the same payoff
in all states of nature. We prove that the class of risk allocation games with no
aggregate uncertainty coincides with the class of exact games.

Keywords: Coherent Measures of Risk, Risk Allocation Games, Totally Balanced
Games, Exact Games

JEL Classification: C71

1 Introduction

Financial institutions are regulated to hold economic capital as a cushion against default.
A regulator determines the institution’s required economic capital by a measure of risk.
Risk measures are also used to calculate portfolio managers’ risk adjusted performance. It
is therefore crucial to measure and as there is usually a diversification effect allocate risk
in an appropriate way.
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We will use the term portfolio when referring to a risky entity (portfolio of stocks
and bonds, firm, insurance company, bank, etc.). The value of a portfolio might change
due to all kinds of uncertain events. For the sake of simplicity we use realization vectors
of discrete random variables, specifying the portfolios payoff in all states of nature. A
measure of risk assigns a real number to a realization vector. It is the minimal amount of
cash the regulated agent has to add to his portfolio, and to invest in a zero coupon bond
for its risk to be acceptable to the regulator. Coherent measures of risk (Artzner, Delbaen,
Eber, and Heath, 1999) are defined by four axioms: monotonicity, subadditivity, positive
homogeneity and translation invariance. In particular, they include spectral measures of
risk (Acerbi, 2002), for instance the discounted maximum loss. Csóka, Herings, and Kóczy
(2007b) show that the axioms of coherent measures of risk are compatible with a natural
general equilibrium approach for measuring risk.

When the risk measure is subadditive then the risk of an aggregate portfolio consisting
of many individual portfolios is lower than the sum of the risks of the individual portfolios.
To allocate the whole risk to the subportfolios one has to share the risk diversification
effects. Risk allocation is modeled by Denault (2001) with transferable utility cooperative
games. We separate the risk environment specifying the individual portfolios’ realization
vectors and a coherent measure of risk from the derived cooperative game that we call risk
allocation game.

A totally balanced game is a cooperative game having a non-empty core in all of its
subgames. Totally balanced games arise from a wide range of applications. They coincide
with market games (Shapley and Shubik, 1969); also with a special case of market games
with a continuum of indivisible commodities: cooperation in fair division (Legut, 1990);
they are equivalent to a class of maximum flow problems (Kalai and Zemel, 1982a); and
also to permutation games of less than four players (Tijs, Parthasarathy, Potters, and
Prassad, 1984). Moreover, totally balanced games are generated by linear production games
(Owen, 1975), generalized network problems (Kalai and Zemel, 1982b), and controlled
mathematical programming problems (Dubey and Shapley, 1982).

We show that the class of risk allocation games coincides with the class of totally bal-
anced games, that is all risk allocation games are totally balanced and all totally balanced
games can be generated by a risk allocation game with a properly specified risk envi-
ronment. Using linear programming we characterize all the risk environments with the
maximum loss that generate a given totally balanced game.

In many cases the individual portfolios are riskier than the aggregate portfolio. In this
paper we study the limit case when there is no aggregate uncertainty, that is the payoff
of the aggregate portfolio is the same in all states of nature. We show that the class of
risk allocation games with no aggregate uncertainty coincides with the class of exact games
(Schmeidler, 1972). As evidenced by the previous paragraphs, there are many applications
giving rise to the class of totally balanced games. to the best of our knowledge, risk
allocation with no aggregate uncertainty is the first application that leads to the class of
exact games.

The structure of the paper is as follows. First we introduce coherent measures of risk,
transferable utility games and risk allocation games. In Section 3 we prove that the class
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of risk allocation games coincides with the class of totally balanced games and investigate
our constructive proof by linear programming. In Section 4 we show that the class of risk
allocation games with no aggregate uncertainty coincides with the class of exact games. In
Section 5 we conclude.

2 Preliminaries

2.1 Coherent Measures of Risk

Consider the set RS of realization vectors, where S denotes the number of states of nature.
State of nature s occurs with probability ps > 0 and

∑S
s=1 ps = 1. The vector X ∈ RS

represents a portfolio’s (firm’s, insurance company’s, bank’s, etc.) possible profit and loss
realizations on a common chosen future time horizon, say at t = 1. The amount Xs is the
portfolio’s payoff in state of nature s. Negative values of Xs correspond to losses. The
inequality Y ≥ X means that Ys ≥ Xs for all s = 1, . . . , S.

A measure of risk is a function ρ : RS → R measuring the risk of a portfolio from the
perspective of the present (t = 0). It is the minimal amount of cash the regulated agent has
to add to his portfolio, and to invest in a reference instrument today, such that it ensures
that the risk involved in the portfolio is acceptable to the regulator. We assume that the
reference instrument has payoff 1 in each state of nature at t = 1, thus its realization
vector is 1S = (1, . . . , 1)>. The reference instrument is riskless in the “classical sense”,
having no uncertainty in its payoffs. It is most natural to think of it as a zero coupon
bond. The price of the reference instrument, the discount factor is denoted by δ ∈ R+,
where R+ = [0,∞). We adjust the definition of coherent measures of risk to the discrete
case with realization vectors as follows.

Definition 2.1. A function ρ : RS → R is called a coherent measure of risk (Artzner et
al., 1999) if it satisfies the following axioms.

1. Monotonicity : for all X, Y ∈ RS such that Y ≥ X, we have ρ(Y ) ≤ ρ(X).

2. Subadditivity : for all X, Y ∈ RS, we have ρ(X + Y ) ≤ ρ(X) + ρ(Y ).

3. Positive homogeneity : for all X ∈ RS, h ∈ R+, we have ρ(hX) = hρ(X).

4. Translation invariance: for all X ∈ RS and a ∈ R , we have ρ(X +a1S) = ρ(X)−δa.

Acerbi (2002) treats a subclass of coherent measures of risk: spectral measures of risk in
case of discrete random variables with equiprobable outcomes, that is when p1 = · · · = pS =
1/S, as a special case. He assumes that the discount factor is 1. In order to be compatible
with the definition of coherent measures of risk, we have to multiply his definition by δ.
The definition of spectral measures of risk with equiprobable outcomes is as follows.

Let us introduce the ordered statistics Xs:S given by the ordered values of the S-tuple
X1, . . . , XS, that is {X1:S, . . . , XS:S} = {X1, . . . , XS} and X1:S ≤ X2:S ≤ · · · ≤ XS:S.
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Definition 2.2. Let the outcomes be equiprobable. Consider a vector φ ∈ RS. The
measure Mφ : RS → R defined by

Mφ(X) = −δ

S∑
s=1

φsXs:S (1)

is a spectral measure of risk if φ ∈ RS satisfies the conditions

1. Nonnegativity: φs ≥ 0 for all s = 1, . . . , S,

2. Normalization:
∑S

s=1 φs = 1,

3. Monotonicity : φs is non-increasing, that is φs1 ≥ φs2 if s1 < s2 and s1, s2 ∈
{1, . . . , S}.

Spectral measures of risk are discounted weighted average losses, with non-increasing
weights, with the highest weight on the worst outcome. The weight vector φ is the so-
called risk spectrum, the “attitude” toward risk. In the following we define an example for
a spectral measure of risk.

Definition 2.3. Let the outcomes be equiprobable and let k ∈ {1, . . . , S}. The k-expected
shortfall of the realization vector X is defined by

ESk(X) = −δ
k∑

s=1

1

k
Xs:S. (2)

The k-expected shortfall is the discounted average of the worst k outcomes. For a
detailed discussion see Acerbi and Tasche (2002).

2.2 Transferable Utility Games

Let N = {1, . . . , n} denote the finite set of players. A value function v : 2N → R defined
on all subsets of N satisfying v({∅}) = 0 gives rise to a cooperative game with transferable
utility (game, for short) (N, v). Let Γ denote the set of games with n players. A single-
valued solution concept is a function Φ : Γ → Rn that maps each game to a unique
allocation x ∈ Rn, where xi is the payoff of player i ∈ N . An allocation x ∈ Rn is
called efficient, if

∑
i∈N xi = v(N); individually rational, if xi ≥ v(i) for all i ∈ N ; and

coalitionally rational if
∑

i∈C xi ≥ v(C) for all C ∈ 2N . Efficient and individually rational
allocations are imputations, their set is denoted by I. The set of efficient and coalitionally
rational allocations, the core is denoted by C.

Let for each C ∈ 2N , a(C) ∈ Rn be the membership vector in C, where ai(C) = 1
if i ∈ C and ai(C) = 0 otherwise. Let (λC)C∈2N ∈ R+ denote the collection of numbers
λC ∈ R+ for all C ∈ 2N .
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Definition 2.4. A balanced collection of weights is a collection of numbers (λC)C∈2N ∈ R+

such that
∑

C∈2N λCa(C) = a(N). A game is balanced if
∑

C∈2N λCv(C) ≤ v(N) for all
balanced collections of weights.

One of the well-known interpretations is that the players can distribute one unit of
working time to any coalition and if each coalition is active during a fraction λC of a unit
of time then the players cannot reach more than v(N), the value of the grand coalition.
Balancedness is a necessary and sufficient condition for a non-empty core in a transferable
utility game (Bondareva, 1963; Shapley, 1967). See Predtetchinski and Herings (2004) for
the appropriate extension of the concept of balancedness to be necessary and sufficient for
non-emptiness of the core in non-transferable utility games.

For a game (N, v) and a coalition C ∈ 2N a subgame vC is obtained by restricting v to
subsets of C.

Definition 2.5. A game (N, v) is totally balanced if for every D ∈ 2N its subgame vD is
balanced, that is, if for all D ∈ 2N and for all collections of real numbers (λC)C∈2D ∈ R+

satisfying
∑

C∈2D λCa(C) = a(D) we have
∑

C∈2D λCv(C) ≤ v(D).

In a totally balanced game every subgame has a non-empty core. Let Γtb denote the
family of totally balanced games with n players. An interesting subclass of totally balanced
games are exact games (Schmeidler, 1972).

Definition 2.6. A game (N, v) is an exact game if for every C ∈ 2N there exists a core
allocation x ∈ C such that x(C) = v(C).

Let Γe denote the family of exact games with n players. Csóka, Herings, and Kóczy
(2007a) give the following necessary and sufficient condition for a game to be exact.

Theorem 2.7. A game (N, v) ∈ Γ is exact if and only if it is totally balanced and over-
balanced.

Definition 2.8. An overbalanced collection of weights is a collection of real numbers
(λC)C⊂N ∈ R+ such that

∑
C∈2N\{D,N} λCa(C) = a(N) + λDa(D). A game is overbal-

anced if
∑

C∈2N\{D,N} λCv(C) ≤ v(N)+λDv(D) for all overbalanced collections of weights.

The difference between balancedness and overbalancedness is that in case of overbal-
ancedness one coalition is forced to exist for a non-positive amount of time (−λD ≤ 0),
which allows players to spend more than one unit of time in the other coalitions.

Convex games are a subset of exact games (Schmeidler, 1972).

Definition 2.9. A game (N, v) is convex if for all C, D ∈ 2N we have that
v(C) + v(D) ≤ v(C ∪D) + v(C ∩D).

Let Γc denote family of convex games with n players. We have that Γtb ⊇ Γe ⊇ Γc.
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2.3 Risk Allocation Games

Denault (2001) introduces risk capital allocation problems : Suppose a firm has n portfolios,
the matrix of their realization vectors1 is given by X ∈ RS×n. The question is how to
allocate the risk of the firm measured by a coherent measure of risk to the portfolios.

Let X·i denote the i-th column of X, it is the realization vector of portfolio i. Let
Xs· denote the row of X corresponding to state of nature s; Xs,i its element at row s and
column i; and {Xs,i}i∈D the row vector corresponding to state of nature s with elements
i ∈ D. For a coalition of portfolios C ∈ 2N let X(C) =

∑
i∈C X·i and Xs(C) =

∑
i∈C Xs,i.

Denault (2001) assumes that the nth portfolio equals b ∈ R units of reference instru-
ment: X·n = b1S, but we will consider a more general setting, where Xn can be any
portfolio. Moreover, we separate the risk environment from the induced game.

Definition 2.10. A risk environment is a tuple (n, S, p, X, ρ), where n is the number of
portfolios, S indicates the number of states of nature, p = (p1, . . . , pS) is the vector of
probabilities, X is the matrix of realization vectors, and ρ is a coherent measure of risk.

Definition 2.11. Given a risk environment (n, S, p, X, ρ) a risk allocation game is a game
(N, v), where the value function v : 2N → R is defined by

v(C) = −ρ(X(C)) for all C ∈ 2N , (3)

and ρ({∅}) = 0 by definition.

A risk allocation game with n players is induced by the number of states of nature,
their probability of occurrence, n realization vectors and a coherent measure of risk. Let
Γr denote the family of risk allocation games with n players. In such a game, according to
Equation (3), the larger the risk of any subset of portfolios, the lower its value.

If the rows of a matrix of realization vectors sum up to the same number then it captures
that there is no aggregate uncertainty. Formally:

Definition 2.12. A payoff matrix X ∈ RS×n expresses no aggregate uncertainty if there
exists a number h ∈ R such that for all s ∈ {1, . . . , S} we have that Xs(N) = h.

Let Γrn denote the family of risk allocation games with n players with no aggregate
uncertainty. Obviously, Γrn ⊆ Γr. We first study risk allocation games in general, then
with no aggregate uncertainty.

3 Total Balancedness

3.1 Risk Allocation Games and Totally Balanced Games

Denault (2001) proves (Theorem 4) that the family of risk capital allocation problems is
balanced (Definition 2.4). As a subgame of a risk allocation game is also a risk allocation
game, we can adjust his proof to show that risk allocation games are totally balanced.

1Denault (2001) uses continuously distributed random variables. We adjust his setting to the more
tractable setup with discrete random variables, resulting in realization vectors.
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Proposition 3.1. All risk allocation games v ∈ Γr are totally balanced, Γr ⊆ Γtb.

Proof. Take any risk environment (n, S, p, X, ρ). We show that for any subgame the
induced risk allocation game (N, v) is balanced. Take any coalition D ∈ 2N and con-
sider the subgame vD. Take any collection of real numbers (λC)C∈2D ∈ R+ such that∑

C∈2D λCa(C) = a(D). Then by Equation (3), the positive homogeneity and subadditiv-
ity of ρ we have that

∑
C∈2D

λCvD(C) = −
∑

C∈2D

ρ(
∑
i∈C

λCX·i) ≤ −ρ(
∑

C∈2D

(
∑
i∈C

λCX·i)) =

= −ρ(
∑
i∈D

(
∑

C∈2D,C3i

λCX·i)) = −ρ(
∑
i∈D

X·i) = −ρ(X(D)) = v(D),

where the last line follows from rearranging the summation and using the fact that we have
a balanced collection of weights. Thus the arbitrarily chosen subgame is balanced. 2

Not only is it true that all risk allocation games are totally balanced, but also any totally
balanced game can be generated by a risk allocation game as the following proposition
shows. We illustrate Proposition 3.2and its proof by Example 3.3.

Proposition 3.2. For each totally balanced game (N, v) ∈ Γtb there exists a risk environ-
ment inducing it, so Γtb ⊆ Γr.

Proof. Take any totally balanced game (N, v) ∈ Γtb. Let us zero-normalize v using

v0(C) = v(C)−
∑
i∈C

v({i}). (4)

It is easy to see that v0 is also totally balanced. Using the singletons with weights one it
follows from the total balancedness of v0 that for any C ∈ 2N

0 =
∑
i∈C

v0({i}) ≤ v0(C). (5)

Moreover, for any C ∈ 2N partitioning N into C and N \ C we have that

v0(C) + v0(N \ C) ≤ v0(N). (6)

Using Equations (5) and (6) we obtain that for any C ∈ 2N

0 ≤ v0(C) ≤ v0(N). (7)

The proof is constructive. First we consider the zero-normalized game, then we show
how the construction can be generalized to the original game. Specify the risk environment
(n, S, p, X0, ρ) as follows. Let us introduce a state of nature for all non-empty coalitions
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of N , thus let S = 2n − 1. We label states of nature by C, D ∈ 2N \ {∅}. Let p1 = · · · =
pS = 1/S, and let ρ be the 1-expected shortfall (Definition 2.3), that is for any X ∈ RS

ρ(X) = ES1(X) = −δX1:S. (8)

For the moment assume that δ = 1. Then for a realization vector X0
·i ∈ R2n−1 Equation

(8) can be rewritten as

ρ(X0
·i) = − min

D∈2N
X0

D,i, (9)

so ρ simplifies to the maximum loss. The risk environment (n, S, p, X0, ρ) induces the
game (N, v̄0). We will show that v̄0 = v0. Using Definition 2.11 we have that for every
C ∈ 2N \ {∅},

v̄0(C) = −ρ(X0(C)) = min
D∈2N

X0
D(C). (10)

For each coalition (state of nature) C ∈ 2N \ {∅} let the row vector X0
C· be such that

{X0
C,i}i∈C is a point in the core of the subgame vC

0 , and (11)

for all i /∈ C let X0
C,i = v0(N). (12)

It follows from the definition of a subgame, from (11), and the efficiency of a core
element that for every C ∈ 2N \ {∅}

vC
0 (C) = v0(C) = X0

C(C). (13)

Notice, that for all C, D ∈ 2N we have that

X0
C(C) ≤ X0

D(C), (14)

since if D ⊇ C then Inequality (14) follows from (11) as we have that for a core element
{X0

D,i}i∈D in subgame v0
D

X0
C(C) = v0(C) ≤ X0

D(C), (15)

and if D 6⊇ C then one of the components of {X0
D,i}i∈C is v0(N), and using Equation (7)

Inequality (14) follows immediately. Combining Equations (13) and (14) with Equation
(10) we obtain that v̄0 = v0.

It is easy to see that after normalizing back using the realization vectors X·i = X0
·i +

1Sv({i}), i ∈ N , we can conclude that v̄ = v. After multiplying the components of X by
1/δ, the δ = 1 assumption can also be released. 2
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C v(C) v0(C)
{1} -10 0
{2} 3 0
{3} -2 0
{1, 2} -4 3
{1, 3} -6 6
{2, 3} 2 1
{1, 2, 3} -1 8

Table 1: A totally balanced game and its zero-normalized game.

S X0
·1 X0

·2 X0
·3 X·1 X·2 X·3

{1} 0 8 8 -10 11 6
{2} 8 0 8 -2 3 6
{3} 8 8 0 -2 11 -2
{1, 2} 1 2 8 -9 5 6
{1, 3} 2 8 4 -8 11 2
{2, 3} 8 1 0 -2 4 -2
{1, 2, 3} 2 1 5 -8 4 3

Table 2: Payoff matrices for the zero normalized game and for the original game.

Example 3.3. Consider the following example with 3 players, where we show how a totally
balanced game can be generated by a risk allocation game.

It is easy to see that v is the value function of a totally balanced game and v0 is obtained
by zero-normalizing v. Note that Inequality (7) is satisfied by v0.

In Table 2 we have specified the matrix of realization vectors X0 according to require-
ments (11) and (12). For instance, for C = {1, 2} we have that (X0

{1,2},1, X
0
{1,2},2) = (1, 2)

is a point in the core of the subgame with players 1 and 2, and X0
{1,2},3 = 8 = v0(N).

Assume that δ = 1. It is easy to check that X0 and the 1-expected shortfall generate v0.
The matrix X is obtained by using X·i = X0

·i + 1Sv({i}) for all i ∈ N . As one can verify
the original game v is induced by X and the 1-expected shortfall.

Note that in our constructive proof the statement of Proposition 3.2 is strengthened in
the sense that the family of games induced by risk environments with S ≤ 2n − 1 and the
1-expected shortfall equals the family of totally balanced games with n players, that is any
totally balanced game can be generated by a properly specified risk environment with the
1-expected shortfall and 2n − 1 (or lower) states of nature. From Propositions 3.1 and 3.2
we have the following theorem.

Theorem 3.4. The class of risk allocation games coincides with the class of totally balanced
games, Γr = Γtb.
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Interestingly, Kalai and Zemel (1982b) uses a similar construction to show that a game
is totally balanced if and only if it is the minimum game of a finite collection of additive
games. A game (N, v) is called additive if there exists a set of real numbers b1, . . . , bn such
that for every C ∈ 2N , v(C) =

∑
i∈C bi. For a collection of games {vt}t∈T the minimum

game is defined by (min vt)(C) = mint∈T vt(C). It is easy to see that the totally balanced
game v in Table 1 is also generated as the minimum game of the additive games generated
by XC·, C ∈ 2N , in Table 2.

3.2 Linear Programming Results

Take any totally balanced game (N, v) ∈ Γtb. Just like in Proposition 3.2 let S = 2n − 1,
p1 = · · · = pS = 1/S and let ρ be the 1-expected shortfall with δ = 1 throughout the
subsection. Whenever we write v is generated by a matrix of realization vectors X we
mean that the risk allocation game induced by the risk environment (n, S, p, X, ρ) equals
v, where the other elements of the risk environment are the ones assumed above.

In Proposition 3.2 the matrix of realization vectors X generating v was constructed
using the core requirement2: for every C ∈ 2N \ {∅}

{XC,i}i∈C is a point in the core of the subgame vC . (16)

The other elements of X were chosen to be sufficiently large.
In this subsection we investigate Proposition 3.2 by linear programming and charac-

terize all the matrices generating v. We develop the linear programming problem such
that the matrices derived from its optimal solutions (which are vectors) generate v. To
do this we define the vector X̂ ∈ RSn by juxtaposing the rows of X ∈ RS×n, that is
X̂ = (X1·, X2·, . . . , XS·)

> ∈ RSn. We will use the notations X̂ and X interchangeably,
depending on whether we need a vector or a matrix containing the same numbers. Using
the row vector of zeros 0n = (0, 0, . . . , 0) ∈ R1×n for every C ∈ 2N \ {∅} we define the
matrices

A(C) =


a(C)> 0n 0n

0n a(C)> 0n

. . .
...

0n 0n · · · a(C)>

 ∈ RS×Sn (17)

containing the membership vector a(C) transposed along the “diagonal” and 0n otherwise.
For a matrix X ∈ RS×n, similarly to Equation (10), for every C ∈ 2N \ {∅} the value

function of the induced risk allocation game (N, v̄) is given by

v̄(C) = min
D∈2N

XD(C). (18)

2There we had a zero normalized game, but it is easy to see that after normalizing back the core
requirement is still satisfied.
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Let AD(C) denote the D-th row of A(C). For a vector X̂ ∈ RSn Equation (18) can be
rewritten as for every C ∈ 2N \ {∅}

v̄(C) = min
D∈2N

AD(C)X̂. (19)

Equation (19) implies that for every C ∈ 2N \ {∅}

A(C)X̂ ≥ v̄(C)1S. (20)

We introduce some more notations. Take any game (N, v) ∈ Γ.
Let E = (a({1})>, a({2})>, . . . , a(N)>) ∈ R1×Sn,

V =


v({1})1S

v({2})1S

...
v(N)1S

 ∈ RS2

and (21)

A =


A({1})
A({2})

...
A(N)

 ∈ RS2×Sn. (22)

Consider the following linear programming problem.

min EX̂
s. t.

(Pv)

AX̂ ≥ V

X̂ ∈ RSn.

The objective function of (Pv) captures the constructive proof of Proposition 3.2, as it is
minimizing exactly the sum of those elements of X̂ which are used in the core requirement
(16). To put it differently: we assign a different row of X to each coalition of N . Using
Equation (20) it can be seen that the feasibility constraints are the necessary requirements
for v to be generated by the matrix derived from a feasible solution.

The set of optimal solutions of (Pv) is non-empty, since X̂ = (k, . . . , k) ∈ RSn is
feasible solution, where k = max{maxC∈2N v(C), 0} and the set of feasible solutions is
bounded from below. Let X ∗

v denote the set of optimal solutions of (Pv) and X̂∗ ∈ RSn its
elements.

Proposition 3.5. Take any game (N, v) ∈ Γ and any optimal solution of (Pv) X̂∗ ∈ X ∗
v .

The optimal value of the objective function EX̂∗ equals
∑

C∈2N v(C) if and only if v is
generated by X∗.

11



Proof.
(⇒) Assume that EX̂∗ =

∑
C∈2N v(C). It follows from the feasibility constraints that

for every C ∈ 2N \ {∅}

AC(C)X̂∗ = v(C), (23)

and AD(C)X̂∗ ≥ v(C), for all D ∈ 2n.
(⇐) Assume that v is generated by X∗ but EX̂∗ 6=

∑
C∈2N v(C). From the feasibility

constraints it follows that then

EX̂∗ >
∑

C∈2N

v(C). (24)

Note that minD X∗
D(C) is attained in row C of X∗, otherwise we could decrease the objec-

tive function by substituting the row attaining the minimum for row C. Combining this
with Equation (24) we obtain that there exists a coalition C ∈ 2N such that

min
D

X∗
D(C) > v(C), (25)

which together with Equation (19) imply that v cannot be generated by X∗, a contradic-
tion. 2

Take any matrix of realization vectors X ∈ Rz×n, where z is a non-negative integer. Let
Y (X) ∈ R(2n−1)×n denote the matrix in which for all C ∈ 2N we have that YC·(X) = XB·,
where B = arg minD XD(C). Then we have the following proposition characterizing all the
matrices that generate a given totally balanced game.

Proposition 3.6. Take any totally balanced game (N, v) ∈ Γtb. The matrix of realization
vectors X ∈ Rz×n generates v if and only if Ŷ (X) is an optimal solution of (Pv), that is
Ŷ (X) ∈ X ∗

v .

Proof.
(⇒) If X generates v then for all C ⊆ N there exists a state of nature sC such that

XsC
(C) = v(C) (26)

and for all s ∈ {1, . . . , S} we have that

Xs(C) ≥ v(C), (27)

thus Ŷ (X) is a feasible and optimal solution of (Pv).
(⇐) If Ŷ (X) is an optimal solution of (Pv) then by Proposition 3.5 v can be generated

by Y (X) and by construction also by X. 2

Take any totally balanced game (N, v) ∈ Γtb. We saw in Proposition 3.2 that v can
be generated by a matrix of realization vectors, say X. Note that X = Y (X) and by
Proposition 3.6 X̂ is an optimal solution of (Pv), X̂ ∈ X ∗

v .
We also have the following proposition about the core requirement (16).

12



Proposition 3.7. Take any totally balanced game (N, v) ∈ Γtb. For any optimal solution
of (Pv) X̂∗ ∈ X ∗

v we have that X∗, the matrix derived from X̂∗ satisfies the core requirement
(16).

Proof. Take any X̂∗ ∈ X ∗
v . For every C ∈ 2N \ {∅}

AC(C)X̂∗ = v(C), (28)

as the feasibility requires that AC(C)X̂∗ ≥ v(C), and since by Proposition 3.2 all totally
balanced games can be generated we know by Proposition 3.5 that EX̂∗ =

∑
C∈2N v(C).

The equalities in (28) together with the feasibility constraints imply that the rows of X∗

contain core allocations of the respective subgames. 2

Propositions 3.7 and 3.6 imply that if a game can be generated by X ∈ Rz×n then
Y (X) satisfies the core requirement (16). Thus to generate a given totally balanced game
the rows of the matrix of realization vectors can be permutated and some of them can be
combined, but essentially the core requirement is satisfied in all of them.

4 Exactness

In this section we show that if there is no aggregate uncertainty in a risk environment then
the induced risk allocation game is an exact game and all exact games can be generated
by a properly specified risk environment with no aggregate uncertainty.

Proposition 4.1. All risk allocation games with no aggregate uncertainty v ∈ Γrn are
exact, Γrn ⊆ Γe.

Proof. Take any risk environment (n, S, p, X, ρ), where X is expressing no aggregate
uncertainty. Using Theorem 2.7 we will show that the induced risk allocation game is
exact, since it is totally balanced and overbalanced (Definition 2.8). Total balancedness was
shown in Proposition 3.1 for a general risk allocation game. For overbalancedness take any
collection of real numbers (λC)C⊂N ∈ R+ such that

∑
C∈2N\{D,N} λCa(C) = a(N)+λDa(D).

Then by Equation (3), the positive homogeneity and subadditivity of ρ we have that∑
C∈2N\{D,N}

λCv(C) = −
∑

C∈2N\{D,N}

ρ(
∑
i∈C

λCX·i) ≤ −ρ(
∑

C∈2N\{D,N}

(
∑
i∈C

λCX·i)) =

= −ρ(
∑
i∈N

(
∑

C3i,C∈2N\{D,N}

λCX·i)) = −ρ(
∑
i∈N

X·i + λD
∑
i∈D

X·i),

(29)

where the last line follows from rearranging the summation and using the fact that we have
an overbalanced collection of weights, thus if i ∈ D then

∑
C3i,C∈2N\{D,N} λC = 1 + λD
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and if i /∈ D then
∑

C3i,C∈2N\{D,N} λC = 1. Using translation invariance and positive

homogeneity Equation (29) can be continued as∑
C∈2N\{D,N}

λCv(C) ≤ −ρ(
∑
i∈N

X·i + λD
∑
i∈D

X·i) = −ρ(X(N))− ρ(λDX(D)) =

= −ρ(X(N))− λDρ(X(D)) = v(N) + λDv(D), (30)

thus we have an overbalanced game. 2

Proposition 4.2. For each exact game (N, v) ∈ Γe there exist a risk environment with no
aggregate uncertainty such that the induced risk allocation game equals (N, v), Γe ⊆ Γrn.

Proof.
Take any exact game (N, v) ∈ Γe. We specify the risk environment (n, S, p, X, ρ) induc-

ing a game (N, v̄) as follows. Let us introduce a state of nature for all proper subcoalitions
of N , thus let S = 2n − 2. Let p1 = · · · = pS = 1/S, and let ρ be the 1-expected shortfall
with δ = 1. Since v is exact by definition for all C ⊂ N there exist a core element xC

such that xC(C) = v(C). Construct X ∈ RS×n as follows. Labeling states of nature by
the proper subcoalitions of N let for all C ⊂ N , XC· = xC . Of course XC·(N) = v(N),
thus X is expressing no aggregate uncertainty. By construction we have that for every
C ∈ 2N \ {∅} the value function of the induced risk allocation game (N, v̄) is given by

v̄(C) = min
D∈2N\{∅}

XD(C) = v(C), (31)

thus v̄ = v. 2

Note that in the proof of Proposition 4.2, v(N) is set in all rows, that is why we need
only 2n − 2 states of nature.

By combining Propositions 4.1 and 4.2 we have the following theorem.

Theorem 4.3. The class of risk allocation games with no aggregate uncertainty coincides
with the class of exact games, Γrn = Γe.

Csóka, Herings, and Kóczy (2007a) show that if there are less than four players then the
class of exact games coincides with the class of convex games. Using this result Theorem
4.3 can be reformulated as follows.

Theorem 4.4. If there are less than four players then the class of risk allocation games
with no aggregate uncertainty coincides with the class of convex games, Γrn = Γc.

Theorem 4.4 is illustrated by the following example.

Example 4.5. In this example we show how a 3-player convex game can be generated
by a risk allocation game with no aggregate uncertainty. Note that the game in Table
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1 of Example 3.3 is not convex since v({1, 2}) + v({1, 3}) = −4 − 6 = −10 > v({1}) +
v({1, 2, 3}) = −10−1 = −11. However, as can easily be verified, by changing v({1, 2}) to -5
we get the convex game shown in Table 3. This game is generated by the risk environment
including the matrix of realization vectors X of Table 4 and the 1-expected shortfall with
δ = 1.

Notice that the rows of X correspond to appropriately chosen marginal contribution
vectors. For instance, in the first row of X we have the marginal contributions corre-
sponding to the permutation player 3, player 2, player 1: v({3}) − v({∅}) = −2 − 0 =
−2; v({2, 3}) − v({2}) = 2 − (−2) = 4; v({1, 2, 3}) − v({2, 3}) = −1 − 2 = −3. Since in
a convex game the marginal contribution vectors are in the core, there are core elements
distributing their value to n coalitions (the increasing subsets of players) at the same time.
Thus to generate a convex game fewer states of nature are required, in this example only
3. Also note that all rows of X sum up to -1, since the sum of the marginal contributions
is always the value of the grand coalition. Thus there is no aggregate uncertainty.

C v(C)
{1} -10
{2} 3
{3} -2
{1, 2} -5
{1, 3} -6
{2, 3} 2
{1, 2, 3} -1

Table 3: The value function of a convex game v.

S X·1 X·2 X·3
∑

Xs,i

1 -3 4 -2 -1
2 -7 3 3 -1
3 -10 5 4 -1

Table 4: A matrix of realization vectors generating v.

Similarly to Proposition 3.6 we can characterize all the risk environments with the
maximum loss that generate a given exact game.

Proposition 4.6. Take any exact game (N, v) ∈ Γe. The matrix of realization vectors
X ∈ Rz×n satisfying no aggregate uncertainty generates v if and only if Ŷ (X) is an optimal
solution of (Pv), that is Ŷ (X) ∈ X ∗

v .

Proof. Proposition 3.6 characterizes all the matrices that generate a given totally bal-
anced game. Since by Proposition 4.1 only exact games can be generated with matrices
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satisfying no aggregate uncertainty, the proof is straightforward. 2

5 Conclusion

In this paper we have discussed transferable utility cooperative games derived from a risk
environment: risk allocation games. We have shown that the class of risk allocation games
coincides with the class of totally balanced games. This result makes sure that a regulator
or performance evaluator can always allocate risk in a stable way: there will always be a
core element, no matter how the risk environment is changing.

We have also studied the case when the aggregate portfolio has the same payoff in all
states of nature. We proved that if there is no aggregate uncertainty then the class of risk
allocation games equals the class of exact games, where for each coalition there is a core
element such that the coalition gets only its stand-alone value. This means that if there is
no aggregate uncertainty, then not necessarily everybody benefits from the diversification
effects in a stable allocation of risk. To put it differently, the lower aggregate uncertainty,
the more power the regulator or performance evaluator has in allocating risk, since for each
coalition there is always a stable allocation of risk, such that it gets hardly less than its
stand-alone value.

We have characterized all the matrices of realization vectors that generate a given totally
balanced or exact game. In both cases the vectors derived from the matrices by juxtaposing
their rows are related to the optimal solutions of a linear programming problem.

Denault (2001) shows that if a risk allocation game for an arbitrary matrix of realization
vectors is convex then the risk measure by which it is induced is necessarily additive, thus
the generated risk allocation game is also additive. However, by imposing some structure
on the matrix of realization vectors we have proven the following theorem: If there are less
than four players then the class of convex games coincides with the class of risk allocation
games having the discounted maximum loss, at most three states of nature and no aggregate
uncertainty in their risk environments.
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