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Abstract: We �x the status quo (Q) and one of the bilateral bargain-
ing agents to examine how shifting the opponent�s ideal point (type) away
from Q in a unidimensional space a¤ects the Nash and Kalai-Smorodinsky
bargaining solutions when opponents di¤er only in their ideal points. The
results are similar for both solutions. As anticipated, the bargainer whose
ideal point is farthest from Q prefers a opponent whose ideal is closest to her
own. A similar intuitive ranking emerges for the player closest to Q when
opponent�s preferences exhibit increasing absolute risk aversion. However, if
the opponent�s preferences exhibit decreasing absolute risk aversion (DARA),
the player closest to Q prefers a more extreme opponent. This unintuitive
result arises for opponents with DARA preferences because the farther their
ideal point is from Q, the easier they are to satisfy. 130
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1 Introduction

We examine bilateral bargaining situations where principals delegate bargain-

ing to agents (e.g., voters to governments in international negotiations or to

central and sub-national authorities in intergovernmental negotiations; work-

ers to unions in wage negotiations). With heterogenous agents, the outcome

of bargaining depends on the bargaining pair and on their preferences over

the set of alternatives. Choosing a delegate requires ranking the agreements

reached between di¤erent pairs. Though not concerned with delegation, we

study bargaining outcomes in a unidimensional space.

In Gallego and Scoones (2005), voters elect one of three parties to rep-

resent them in intergovernmental negotiations. The elected State formateur

engages in intergovernmental Nash (1950) bargaining over policy with its

Federal counterpart. Agreements depend on the identity and risk "attitude"

of the formateurs. Voters rank the anticipated agreements. If parties have

quadratic utility functions, voters rank agreements and party�s ideal policies

identically. However, if one party is more risk averse than the other, agree-

ments may not follow the party�s ranking. We show that policies and party�s

ranking may di¤er when the agents�type and status quo matter. We extend

and bring insights to their �ndings in a general bargaining framework.

A bilateral bargaining problem is de�ned by a set of feasible utility payo¤s

(S) including the disagreement point (D) that prevails if negotiations fail over

a set of alternatives (X). Several unique solutions to the bargaining problem

have been proposed in the literature1. In this paper, we concentrate on the

commonly used Nash (NS) and Kalai-Smorodinsky (KS) solutions.

1For an excellent discussion on bargaining solutions see Thomson (1994).
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We study the e¤ect that varying the opponent�s type has on the bar-

gaining solutions. We assume agents have concave utility functions and

opponent�s type is de�ned by its ideal point but maintain the remaining

characteristics of the opponent�s utility function constant. Opponents�utili-

ties are then just perfect translations of each other. We have then a family

of problems indexed by pairs of negotiators. We also assume the existence

of a status quo or fallback position completely outside the agents�control.

This seems natural if the status quo is the outcome of previous negotiations

arrived at by perhaps di¤erent agents. We cast our model in a complete

information riskless framework to isolate the e¤ect of types and the status

quo on the di¤erent solutions.

We assume bargainers�utility functions are single-peaked2 over a unidi-

mensional space with L and R representing the two agents. To rank agree-

ments between di¤erent pairs, we �x one agent and shift the opponent�s ideal

point by � > 0 units, � identi�es the opponent�s type. We �x R (L) and

shift L (R) to the right. To avoid repetition, some cases are re�ections of

those we consider, we assume the status quo Q is to the left of R�s ideal

point. Single-peakedness and agents�types bring out the role of the status

quo (relative to the ideal points) in these solutions3.

Varying opponent�s type a¤ects the components of the bargaining prob-

lem: the set of feasible payo¤s, the concavity of the opponent�s utility at

a given point and the disagreement outcome. The set of alternatives over

which the players agree to negotiate A � X depends on the pair involved,

may expand or shrink as � increases but remains anchored for one of the

2This is a common assumption in political economy models.
3Under single peakedness the status quo may constrain the set of feasible alternatives.
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players. The change in A and the rightward translation of the opponent�s

utility a¤ect the set of feasible payo¤s S in ways that �add�and �subtract�4

from it. S and S� may not be contained within one another. If preferences do

not exhibit constant risk-aversion throughout X, the translation changes the

concavity of the opponent�s utility function. As the opponent�s ideal point

shifts away from Q, her disagreement point and bargaining position worsen

(Thomson 1987). Even under the assumption of perfect translations, the si-

multaneous interaction of these changes render ranking agreements di¢ cult.

We �nd that the NS and KS may not increase in opponent�s type. The

ranking depends on whether the opponent is the one closest or farthest from

Q. Given a pair of utility functions, the results are similar for both solution

concepts. In the following summary, Q lies to the left of L�s ideal point.

When we �x R and shift L, R prefers a less extreme opponent, i.e., whose

ideal point is closer to her own. However, when we �x L and shift R, whether

L prefers R or the shift to R� depends on the absolute risk aversion (ARA)

of R�s utility function uR (a property connected to its concavity). When

uR exhibits IARA (increasing ARA), L prefers R. When uR has DARA

(decreasing ARA), L prefers R�. The �unintuitive�DARA result in a sense

contrasts (the models di¤er) with Kihlstrom et al.�s (1981) �nding that, for a

�xed set of alternatives5, an agent prefers a more risk averse opponent who is

easier to satisfy under both solution concepts (Köbberling and Peters 2003).

In our model, fallback positions matter and a¤ect bargaining outcomes.

4Though related, adding and substracting from S in our model di¤ers from similar
concepts developed by Myerson and Thomson (1980). Whereas in their model, the original
equilibrium solution remains an element of the Pareto set; in ours it may not.

5In our model the set of feasible alternatives may change. Kannai (1977) �rst observed
the results of Kihlstrom et al. (1981) and Roth (1977).
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Since both solutions (NS and KS) move closer to R�s ideal point when L��s

ideal point moves to the right, this result is in the spirit of Thomson (1987)

where both solutions hurt the player whose fallback position worsens for a

�xed S6. In contrast with Thomson, though R��s disagreement point worsens

in �, R��s bargaining position improves if uR has IARA.

In the applied bargaining literature, preferences are given certain mathe-

matical representations. Since quadratic utilities exhibit IARA, the ranking

of solutions and opponent�s ideal points coincide7. By contrast, logarithmic

utilities exhibit DARA and L ranks opponents opposite to their ideal points.

We �nd that the counter-intuitive ranking of opponents in the DARA case

is due to the opponent with ideal point farther from Q being easier satisfy.

More importantly, we show also that even under IARA preferences, a minor

departure from IARA near the solution is enough to �upset�the ranking of

agreements and the preferences over opponents�types (see Example 2 below).

2 The Model

We assume two bargainers have di¤erent preferences over a unidimensional

set of alternatives X. Their unimodal or single-peaked utilities have di¤erent

ideal points located somewhere in the interior of X. Let L and R represent

the two agents. The given status quo is outside the agents�control8.

L and R have utility functions, uL and uR respectively, de�ned on the

6Others also examine the e¤ect of disagreement outcomes on bargaining solutions (see
e.g., Wakker 1987, Bossert 1994 and Bossert and Peters 2002).

7This supports the assumption made in multiparty (> 2) models where policy is mod-
elled as a convex combination of the ideal points of parties involved in negotiations.

8In political economy models, voters and parties have di¤erent ideal policies to capture
di¤erences in preferences over policies. The status quo may represent agreements reached
in previous legislative, international trade, or intergovernmental policy negotiations.
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compact interval x 2 X = [a; b]. For arbitrary unimodal utility functions, letbL � argmaxuL(x) and bR � argmaxuR(x) be the ideal points of L and R

with bL < bR. (See example with quadratic utilities in Figure 1.)
If L and R simultaneously demand the payo¤ pair (u; v) (i.e. L demands

u and R demands v where u and v are real numbers) for which u � uL(x)

and v � uR(x) for some x 2 X, they both receive their demands. Otherwise

(i.e. if, for all x 2 X, either u > uL(x) or v > uR(x)), they receive the

default payo¤s (uL(x0); uR(x0)) for some �xed status quo x0 2 X. To avoid

repetition, some cases are re�ections of those we consider, we assume x0 < bR.
In our Nash (1950) bargaining problem, the feasible set S is

f(u; v) j uL(x0) � u � uL(x) and uR(x0) � v � uR(x) for some x 2 [a; b]g:

Given concave utility functions, it can be shown S is a compact convex

subset of R2 (as in Figure 2 below9). The disagreement point is D =

(uL(x0); uR(x0)). Every other point in S weakly dominates D (i.e. neither

agent is worse o¤ at this other point and at least one is better o¤). The pair

(S;D) constitute the bargaining problem (where S and D depend on x0).

The Pareto optimum set [PO(S)] is then given by

PO(S) = f(u; v) 2 S j either u0 < u or v0 < v for all other (u0; v0) 2 Sg

and the subset of alternatives A � fx 2 X j (u(x); v(x)) 2 PO(S)g is

the bargaining set. Both the NS and KS solutions belong to PO(S) and

correspond to (possibly di¤erent) points x� 2 A.
9Figure 2(a) shows the feasible set S for the quadratic utility functions of Example 1.

Figure 2(b) shows the feasible set when S is bound on the right by the parametric curve
f(uL(x); uR(x))jx 2 [a; b]; uL(x) � uL(x0); uR(x) � uR(x0)g. The NS and the KS are
una¤ected by which feasible set is taken. We take the latter form of S in our �gures.
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When the status quo lies between the ideal points of the two bargainers,

x0 2 [bL; bR], the bargaining solution is x� = x0 regardless of the solution

concept used, since the bargaining set is A = fx0g.

From now on assume x0 < bL. For x 2 [x0; bL], L�s and R�s preferences
are aligned, i.e., both prefer agreements to the right of x. Thus, agreements

acceptable to both cannot lie to the left of bL (i.e. A � [bL; b]). Let x0 > bL
be the agreement that keeps L indi¤erent to the status quo, i.e., uL(x0) =

uL(x0)
10. Whether x0 constrains the bargaining set depends on the location of

R�s ideal point relative to x0. When x0 2 (bL; bR], since L rejects any proposal
to the right of x0, A = [bL; x0]. However, when bR < x0, for x 2 [ bR; x0], both
prefer agreements to the left of x0, A = [bL; bR] in this case.
We now illustrate the NS and KS solutions using quadratic utilities.

Example 1 (Figure 1) Suppose uL and uR are given by

uL(x) = �(x� 1)2 + 1
uR(x) = �(x� 2)2 + 1

: (1)

Figure 1 about here

Clearly, the agents want to agree on a payo¤ pair (uL(x); uR(x)) for some x

between the vertices of these parabolas (i.e. for some x 2 [1; 2]) since every

other point (u; v) in the feasible set is dominated by a point of this form.

When x0 2 [1; 2], the agents agree on x0, the only Pareto optimum point.

When L wants to increase his payo¤ by demanding something higher than

uL(x0) (i.e., x < x0), R opts for x0 to avoid a decrease in her payo¤.

When x0 < 1 (or x0 > 2), both increase their payo¤ if they agree on

(uL(x); uR(x)) for some x 2 A = [1; 2]. Figure 2 plots the boundary of the

10If there is no such x0 (i.e. uL(x) > uL(x0) for all x > bL that are in X), we take x0 as
the right-hand endpoint of X (i.e. x0 = b).
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feasible set S when x0 = 0 and x0 = 2. Every point in the interior of S has

another point on the boundary in the �rst quadrant that dominates it. This

boundary represents the Pareto optimum set.

Figure 2 about here

The Nash solution (NS) in this example is the unique point on the Pareto set

corresponding to the x� that maximizes the Nash product (see Section 3)

max
x2A

[uL(x)� uL(x0)] [uR(x)� uR(x0)]:

A straight forward calculation with x0 = 0 yields x� = (9�
p
17)=4 �= 1:219 2.

The Kalai-Smorodinsky solution (KS) in this example is the unique point

corresponding to x� on the Pareto set for which (see Section 4)

uL(x)� uL(x0)
uL(bL)� uL(x0) = uR(x)� uR(x0)

uR( bR)� uR(x0) ;
i.e., x� satis�es 4uL(x) = uR(x) + 3 where x 2 A. When x0 = 0, x� = 4=3.

In Figure 2, the solutions are the intersection of the relevant level curve

(NS) or the ray from the disagreement point to the maximum utilities (KS)

with the boundary of the feasible set S.

As is well known, an agent�s risk attitude, associated with the concavity of

his utility function for given ideal points, can a¤ect each bargaining solution

(Kannai 1977, Kihlstrom et al. 1981, Roth 1979). If in Example 1, uL

is �xed and uR maintains her ideal point but increases in concavity (e.g.

uR(x0) = �c(x � 2)2 + 1 for some c > 1), the NS moves closer to L�s ideal

point. We are not interested how changes in a player�s attitude to risk for

given ideal points e¤ects the solutions; rather, we consider what happens
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when the ideal points change through horizontal translations of the utility

functions for a given status quo. We state the problem in technical terms.

Problem: Suppose u:(x) (where u: is either uL or uR) is a concave utility
function de�ned on x 2 X = [a; b] with its maximum in the interior11.

Let x0 be the �xed status quo for some x0 2 [a; bL]. If u:;�(x) = u:(x��)
for some � > 0 (i.e. a horizontal translation to the right by � units),

describe how the solution depends on �. Does the bargaining solution

x(�) of a horizontal shift of � units increase as � increases?

We rephrase in terms of ranking opponents. Suppose L can choose be-

tween two R opponents whose utility functions are perfect translations of

each other with di¤erent ideal points. The best for L is that R�s ideal point

coincides with his own to agree on their common ideal point. However, if this

is not possible, it seems intuitive that the agent whose ideal point is closest

to L�s should provide L with the better payo¤ for any bargaining solution.

We expect the ranking of agreements and opponents�ideal points to coincide.

Sections 3 and 4 rank the NS and KS solutions respectively.

3 The Nash Solution

In his seminal paper, Nash (1950) shows the existence of a unique solution

(NS) to his bargaining problem satisfying the following axioms: Pareto opti-

mality, symmetry (invariance under all permutations of agents), contraction

independence (independence of irrelevant alternatives), and scale invariance

11In fact, we assume that the domain of these utility functions contains a larger interval
than X so that their horizontal translations that we consider are still de�ned for all x 2 X.

9



(invariance to positive a¢ ne transformations). We now de�ne the Nash so-

lution to our bargaining problem (S;D) in formal terms.

Let NS(A) be the pair of equilibrium payo¤s of the NS and let x� 2 A

be the agreement associated with NS(A). The NS corresponds to the x that

maximizes the Nash product [NP (x)]

NP (x) � [uL(x)� uL(x0)] [uR(x)� uR(x0)]:

Though our problem di¤ers from Nash�s (1950) (symmetry and scale in-

variance no longer hold and disagreement outcomes matter), there is a single

NS (i.e. NS(A) is well de�ned) since the feasible set S is compact and

convex for any uL and uR. Assuming these utility functions are su¢ ciently

smooth (i.e., continuous and di¤erentiable), the NS can be found by setting

the derivative of the Nash product to zero. x� 2 A is the unique solution to

u0R(x)

u0L(x)
= �uR(x)� uR(x0)

uL(x)� uL(x0)

and corresponds to the point where the level curve NP (x) = C for some

constant C > 0 meets the feasible set S at a point of tangency (Figure 2).

3.1 Ranking R�s opponents

We �x R and vary L�s ideal point, so that uL;�(x) = uL(x � �) for some

� > 0. The x(�) = x associated with the NS in this case satis�es

u0R(x)

u0L(x� �)
= � uR(x)� uR(x0)

uL(x� �)� uL(x0 � �)
:

Given the rightward shift of AL;�, we anticipate R prefers opponents�with

ideal points closer to her own. As the following result con�rms, R orders the

x(�) as she orders L�s ideal points (i.e. x(�) > x(b�) i¤ � > b� � 0).
10



Theorem 1 Suppose uL is a unimodal utility function with argmaxuL = bL
and the status quo is at x0 < bL. Let uL;� be the horizontal translation of uL to
the right by � units (i.e. uL;�(x) = uL(x� �)). Suppose uR is an increasing

utility function for all x 2 [x0; bL + �]. Then the agreement x(�) associated
with the NS between L� and R satis�es dx(�)

d�
> 0. Thus, if uR is unimodal

and bR > bL + �, R prefers a less extreme opponent, i.e., an opponent whose
ideal point is closer to her own.

The analytic proof of this theorem (and all others) can be found in the

Appendix. To gain a more conceptual understanding of this result, we study

how translating uL a¤ects the components of the bargaining problem; namely,

(i) the set of feasible alternatives AL;�,

(ii) the disagreement outcomes DL;� and

(iii) the set of feasible payo¤s SL;�

and how these a¤ect the Pareto set POL;� and the Nash product curves.

An increase in � causes a rightward shift in AL;�. Had nothing else

changed, this can only bene�t R, i.e., dx(�)
d�

> 0 (Thomsom and Myerson

1980). Moreover, L��s disagreement outcome worsens as � increases. Had

nothing else changed, L��s bargaining position worsens relative toR�s (Thom-

son 1987). Finally, had nothing else changed, at high levels of x 2 AL;�, the

upward shift of L��s utility relative to L�s makes it easier for R to satisfy L�

rather than L (Thompson and Myerson 1980). Though each of these e¤ects

on its own does not guarantee that dx(�)
d�

> 0, the following qualitative de-

scription of their separate e¤ects on the feasible set and the Nash product

curves does. We illustrate the e¤ects for the quadratic utility functions of

Example 1 but they are similar for all unimodal utilities.
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We �rst study how increasing � a¤ects the feasible set ignoring its e¤ect

on the Nash product curves. From Figure 3, the Pareto set PO(SL;�) domi-

nates PO(S) over some range that includes the agreement reached between

L and R. Thus, an increase in � can only bene�t R, i.e., dx(�)
d�

> 0.

Figure 3 about here

Now, we analyze the e¤ect of increasing � on the Nash product curves

ignoring its e¤ect on the feasible set. Given x0 and the upward shift of L��s

utility, the trade-o¤ in the Nash product curves NP (AL;�) moves in R�s favor

(the thin and solid equilibrium Nash level curves in Figure 3(a)). So that

changes that a¤ect the implementation of the Nash solution also favor R.

The simultaneous changes in the feasible set and in the Nash product

curves reinforce one another to R�s bene�t making it easier to satisfy L�

rather than L at high x 2 AL;�. R gets a higher payo¤ when facing L�

rather than L (solid versus dashed horizontal lines intersecting the uR axis in

Figure 3(a)) and prefers an opponent whose ideal point is closer to her own.

3.2 Ranking L�s opponents

Fix L and vary R, so that uR;�(x) = uR(x � �) for some � > 0. The NS

x(�) = x in this case satis�es

u0R(x� �)
u0L(x)

= �uR(x� �)� uR(x0 � �)
uL(x)� uL(x0)

:

An increase in � causes AR;� to expand away from bL up to bR� = x0. Since
x� 2 AR;�, had nothing else changed, this suggests R� can only bene�t, i.e.,
dx(�)
d�

> 0 (Thomsom and Myerson 1980). Moreover, R��s disagreement out-

come worsens as � increases. Had nothing else changed, R��s bargaining

12



position worsens relative to L�s, suggesting dx(�)
d�

6 0 (Thomson 1987). Fi-

nally, had nothing else changed, at low levels of x 2 AR;�, the downward

shift of R��s utility relative to R�s makes it easier for L to satisfy R� rather

than R, suggesting dx(�)
d�

6 0 (Thompson and Myerson 1980). However, their
simultaneous net e¤ect on the bargaining outcome is unclear, i.e., dx(�)

d�
T 0,

making the analysis more complex than in Section 3.1.

Figure 4 about here

Theorem 2 Suppose uL is a unimodal utility function with argmaxuL = bL
and the status quo is x0 < bL. Suppose uR is an increasing utility function for
all x 2 [x0; bL]. Let uR;� be the horizontal translation of uR to the right by �
units (i.e. uR;�(x) = uR(x��)). If uR has increasing absolute risk aversion,

the x(�) associated with the NS between L and R� satis�es
dx(�)
d�

> 0. If uR is

unimodal, L prefers an opponent whose ideal is closer to his own. If uR has

decreasing absolute risk aversion, the x(�) associated with the NS between L

and R� satis�es
dx(�)
d�

< 0; L prefers a more extreme opponent.

Our main contribution here is to show that the concavity of uR (i.e., R�s

absolute risk aversion) a¤ects the ranking of opponents. Theorem 2 shows

that R��s bargaining position vis à vis L, i.e., whether
dx(�)
d�

T 0, depends on
the simultaneous e¤ect these factors have on R��s utility. Thus, the concavity

of R��s utility, i.e., R��s strength of preference (Peters 1992)12, is a major

12Peters (1992) de�nes a strength of preference relation as follows. For a player facing
four choices fa; b; c; dg 2 A, let the binary relation %� be a complete transitive binary
relation on A�A. If (a; b) %� (c; d), then the player prefers the change from b to a to the
change from d to c, i.e., for utility function u, u(a)�u(b) > u(c)�u(d). Peters proves that
for two players the utility function of the player with the weaker strength of preference
relation is a concave transformation of the other player�s utility.
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determinant of dx(�)
d�
. To show this we use the Arrow-Pratt coe¢ cient of

absolute risk aversion (ARA) as it measures changes in concavity that are

invariant to positive linear transformations even in riskless environments such

as ours (Mas-Colell et al. 1995). R��s coe¢ cient of ARA is

ARAR;� � �
u00R;�
u0R;�

Since we allow R��s ideal point to shift as far as the upper bound of X =

[a; b], we examine situations where R�s ARA uniformly increases or decreases

over the relevant range. By de�nition, uR exhibits increasing (decreasing)

ARA (respectively IARA and DARA) when d
dx

�
�u00R
u0R

�
> (<)0.

The above theory can be applied to common utility functions. For in-

stance, suppose uL and uR are quadratic as in Example 1. Since

d

dx

�
�u

00

u0

�
=
(u00)2 � u000u0

(u0)2
;

and u000 = 0, quadratic utility functions exhibit IARA and so both L and R

prefer an opponent whose ideal point is closer to their own. On the other

hand, the utility function uR(x) � lnx used in Figure 5 (where the set of

alternativesX can be taken as [a; 3] where a is positive and close to 0) satis�es

d

dx

�
�u

00

u0

�
= � 1

x2
< 0:

That is, uR;� exhibits DARA and so
dx(�)
d�

< 0 by Theorem 2.

Figure 5 about here

DARA (Figure 5(b)). Since R� is a perfect translation of R�s utility, R�s

utility is a concave transformation of R��s (Mas-Colell et al. 1995). Thus,

14



R��s utility increases faster than R�s for x 2 AR;�, i.e., R� has lower strength

of preference, is less tough in negotiations, than R: L can more easily satisfy

R� than R at low levels of x since, to avoid the breakdown of negotiations,

R� accepts a bigger compromise than R. The trade-o¤ of the feasible set

and the Nash product curves improves in L�s favor increasing L�s payo¤. L

prefers an opponent whose ideal point is farther from its own.

IARA (Figure 4(a)). In this case, R� is tougher in negotiations than

R (i.e. R� has stronger strength of preference). L gives up more when

bargaining with R� than with R, i.e.,
dx(�)
d�

> 0 and prefers R to R�.

As stated in the Introduction, only the DARA result contrasts in a sense

(the models di¤er) with that of Kihlstrom et al. (1981) where for a given set of

alternatives a player prefers a more risk averse opponent. In our framework,

we no longer work in an ordinal domain but work instead in one where

strength of preferences matters and interpersonal comparisons are possible,

i.e., Nash�s (1950) scale invariance axiom no longer holds (Thomson 1994).

Remark. Our use of ARA should not be interpreted as asserting players

are risk averse13 in our model. We use the Arrow-Pratt coe¢ cient of ARA

because it measures changes in the concavity of R��s utility relative to R�s.

Changes in concavity are associated with R��s strength of preferences relative

to R�s (Peters 1992) and not to changes in R��s risk aversion since there is

no risk in our model. The ARA coe¢ cient re�ects the responsiveness of R��s

utility to the combined e¤ect of changes in the components of the bargaining

problem and in the Nash product curves. It is unfortunate that the ARA

13Köbberling and Peters (2003) distinguish between utility and probabilitic risk aversion.
Volij and Winter (2002) distinguish attitude towards wealth from attitude towards risk.
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measure has been associated with a player�s attitude towards risk even in

riskless environments rather than the player�s strength of preference. In our

context, a player�s strength of preference decreases as the concavity of player�s

utility function increases, i.e., as the coe¢ cient of ARA increases.

The proofs of Theorems 1 and 2 in the Appendix rely heavily on the

assumption that the coe¢ cient of ARA does not change sign on the interval

[x0; x(�)] (i.e. the utility function is either uniformly IARA or uniformly

DARA). We now ask what happens if ARA changes sign somewhere in the

set of alternatives. For instance, from the Appendix, we see that x(�) = x

decreases in � when R�s utility function is translated if and only if

u0L(x) [u
0
R(x)� u0R(x0)] + [uL(x)� uL(x0)]u00R(x) > 0. (2)

Thus, if utilities are risk neutral (or close to being risk neutral) near x(�),

then u00R(x) = 0 and (2) is satis�ed. In particular, a small change in a utility

function that exhibits IARA uniformly to one that is risk neutral near the NS

will change the sign of d
d�
(x(�)). This is illustrated in the following example

where, for clarity, we make the interval of risk neutrality fairly large14.

Example 2 For mathematical convenience, we change uL(x) in Example 1

to uL(x) = �x2 and take uR;�(x) = uL(x� �). Let the status quo x0 = �7.

If � = 3, the NS is x(3) = 1. We make both players risk neutral near this

NS by taking secants to the downward parabola for uL(x) in the intervals

x 2 [�3;�1] and x 2 [0; 2]. Thus, rede�ne uL(x) as

uL(x) =

8<:
4x+ 3 if � 3 � x � �1
�2x if 0 � x � 2
�x2 otherwise

14If uR is risk neutral for all alternatives in X, then x(�) is constant (i.e. d
d� (x(�)) = 0).
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and we keep uR;�(x) = uL(x� �).

For � close to 3, the NS is close to 1. Near x = 1, we maximize f�(x) �

[uL(x)�uL(�7)][uR(x)�uR(�7)]. For � = 3, f3(x) = [�2x+49][4(x� 3)+

3 + 100] = �8x2 + 14x + 4459 which has a maximum when �16x + 14 = 0.

The new NS is x = 7=8. As � varies slightly from 3, we maximize

f�(x) = [�2x+ 49]
�
4(x� �) + 3 + (�7� �)2

�
= (�2x+ 49)

�
4x+ 52 + 10�+ �2

�
:

Now df�(x)
dx

= �16x + 92 � 20� � 2�2 = 0 when x�(�) = 46�10���2
8

. Clearly,

as � increases (i.e. uR(x) is translated farther to the right), x(�) decreases

(i.e. moves to the preferred solution of player L).

Remark. The above discussion using uR(x) = lnx as in Figure 5 illus-

trates Theorem 2 must be applied with care in the DARA case since the

utility function that is always DARA must be increasing and so cannot be

unimodal. From the proof in the Appendix, clearly we only need DARA uni-

formly on the interval [x0; x(�)] to conclude
dx(�)
d�

< 0. Thus, we can modify

uR(x) for x > x(�) so that it becomes unimodal outside this interval without

a¤ecting the statement of Theorem 2.

Care must also be taken when applying the above theory to functions that

are not always di¤erentiable. For instance, Euclidean preferences (u(x) =

� jx� bxj) common in political economy models, exhibit constant ARA every-
where except at bx. If uR(x) = �

���x� bR���, then the NS between L and R�
may equal bR� (i.e., dx(�)d�

= d bR�
d�

> 0). On the other hand, for � su¢ ciently

large, x(�) < bR� and then x(�) is constant (i.e., dx(�)d�
= 0) as in the risk

neutral situation15.
15In Theorem 1 when L� has Euclidean preferences, for small values of �, x(�) > bL�
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4 The Kalai-Smorodinsky Solution

Kalai and Smorodinsky (1975) replace Nash�s contraction independence ax-

iom with individual monotonicity, requiring that in equilibrium a player ben-

e�ts from any expansion of his feasible alternatives/payo¤s. The KS selects

the Pareto optimum point in S at which the utility gains for each agent from

the disagreement point D are proportional to their maximum possible gains

in utilities, i.e., proportional to the di¤erence between the maximum utilities

achievable within the feasible set S and their disagreement outcome. We now

formally de�ne the KS solution to our bargaining problem (S;D).

Let KS(A) be the pair of equilibrium payo¤s of the KS and let x� be the

agreement associated withKS(A). Let uL(eL) = maxfuL(x) j (uL(x); uR(x)) 2
Sg and uR( eR) = maxfuR(x) j (uL(x); uR(x)) 2 Sg be respectively the maxi-
mum utilities L and R can achieve within S. Note that eL � bL with equality
when bL 2 A. Similarly, eR � bR. Then, x� 2 A satis�es

uR(x
�)� uR(x0)

uL(x�)� uL(x0)
=
uR( eR)� uR(x0)
uL(eL)� uL(x0) : (3)

The components of the KS solution refer to the left and right hand side

(LHS and RHS) of (3). The RHS, s(x0) =
uR( eR)�uR(x0)
uL(eL)�uL(x0) , represents the agree-

ment on how utility gains from the disagreement point must be shared. The

KS is the x 2 A that equates the maximum gain in utilities achievable within

the feasible set S (LHS) to s(x0). Geometrically, KS(A) corresponds to the

point where the ray from the disagreement point D = (uL(x0); uR(x0)) to the

maximum utilities M = (uL(eL); uR( eR)) intersects the feasible set S (Figure
2). s(x0) determines the shareable gains over the disagreement point (the

and then x(�) is constant. Once � is su¢ ciently large, x(�) = bL� and increases in �.
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DM ray) and the feasible set determines where along the ray the solution

is located. The KS is then the proportion of the maximum possible gain in

utilities to which the players agree (the point along the DM ray).

In Sections 4.1 and 4.2, Theorems 3 and 4 show that the theoretical NS

results of Section 3 (i.e. Theorems 1 and 2) extend to the KS as well.

4.1 Ranking R�s opponents

Fix R and vary L, uL;�(x) = uL(x � �) for some � > 0. De�ne x0(�) as

the solution of uL;�(x) = uL;�(x0) for x > bL� � bL + �16. Although bR and

x0 remain �xed, the KS depends on whether bR < x0(�) or bR > x0(�) as

this determines the bargaining set, i.e., whether AL;� = [bL�; bR] or AL;� =
[bL�; x0(�)]. When bR < x0(�), fbL�; bRg � AL;� and the KS x(�) = x satis�es

uR(x)� uR(x0)
uL(x� �)� uL(x0)

=
uR( bR)� uR(x0)

uL(bL)� uL(x0 � �) :
When bR > x0(�), we know bR =2 AL;�, so that the KS x(�) = x satis�es

uR(x)� uR(x0)
uL(x� �)� uL(x0)

=
uR(x0(�))� uR(x0)
uL(bL)� uL(x0 � �)

since the maximum utility R can achieve in SL;� is uR(x0(�)).

Regardless of whether bR is or is not in AL;�, given the rightward shift in
AL;� we anticipate that R�s ranking of opponents monotonically increases in

�, i.e. the KS, x(�), strictly increases in �.

Theorem 3 Under the assumptions of Theorem 1, the agreement x(�) cor-

responding to the KS bargaining solution between L� and R satis�es
dx(�)
d�

> 0.

16Again, if no such x0(�) exists, we set x0(�) = b.
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While the statements of Theorem 1 and 3 are the same with NS replaced

by KS, given di¤erences in the two solution concepts the intuition leading to

them also di¤ers. The intuition for Theorem 3 is similar regardless of whetherbR < x0(�) or bR > x0(�), so we only discuss that pertaining to bR < x0(�).
As in the NS, an increase in � a¤ects the feasible set and the share of the

maximum possible gains in utilities (the implementation of the KS solution).

We examine how increasing � a¤ects the feasible set disregarding changes

in the agreed upon share. We know that, for � > 0, there is a range where

PO(SL;�) lies above and to the right of PO(S). The trade-o¤ at the Pareto

frontier shifts in R�s favor when facing L� rather than L (Section 3.1). As in

the NS case, these changes favor R but are not su¢ cient to guarantee that
dx(�)
d�

> 0. However, there are other changes that do.

We now study how increasing � a¤ects sL;�(x0), R and L��s agreed upon

share of the maximum gains in utilities, ignoring its e¤ect on the feasible set.

By assumption, the maximum utilities are such that (uL;�(bL�); uR( bR)) =
(uL(bL); uR( bR)). Under complete information, R understands that, although
L��s fallback position worsens relative to L�s, L��s maximum gain in utility

increases, uL;�(bL�)� uL;�(x0) > uL(bL)� uL(x0). To avoid the breakdown of
negotiations L� agrees to R�s demand of a bigger share. For � > 0, the slope

of DL;�M ray �attens relative to that of DM , i.e., sL;�(x0) < s(x0) (Figure

3(b)). Had nothing else changed, the redistribution of the share in R��s favor

assure R� a greater payo¤ within the feasible set S.

The combination of changes to the feasible set and improvements in R�s

share leads to an additional e¤ect that also favors R. Since L� and R under-

stand that over some range PO(SL;�) strictly dominates PO(S), they agree
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to take a higher proportion of L��s greater maximum utility gain (relative to

L�s). The KS then picks the point on PO(SL;�) that is proportional to L��s

now higher maximum gain in utility. In Figure 3(b), the �atter DL;�M ray

intersects the Pareto set at a point where x(�) > x�, i.e., dx(�)
d�

> 0. Thus,

R�s payo¤ increases in �.

4.2 Ranking L�s opponents

Fix L and vary R, so that uR;�(x) = uR(x��) for some � > 0. We take into

account that beyond a certain � the set of feasible alternatives changes. For �

small enough such that bR� < x0, we have that uL( bR�) = uL( bR+�) > uL(x0)
and the bargaining set is AR;� = [bL; bR�]. The KS solution, x(�) = x, satis�es

uR(x� �)� uR(x0 � �)
uL(x)� uL(x0)

=
uR( bR)� uR(x0 � �)
uL(bL)� uL(x0) : (4)

For large enough �, bR� > x0, so that uL( bR�) = uL( bR + �) < uL(x0) =
uL(x0). The set of alternatives is AR;� = [bL; x0]. The KS x(�) = x satis�es

uR(x� �)� uR(x0 � �)
uL(x)� uL(x0)

=
uR(x0)� uR(x0 � �)
uL(bL)� uL(x0) : (5)

The relative location of bR� and x0 determines which equation, (4) or (5),
is relevant for our analysis. Theorem 4 shows that the qualitative behavior

of dx(�)
d�

is independent of their location. However, � a¤ects the components

of the bargaining problem and the share of the maximum possible gain in

utilities (the implementation of the KS) through R��s strength of preferences

(ARA). As in the NS, the KS depends on R�s ARA.

Theorem 4 Suppose the assumptions of Theorem 2 hold. If uR has IARA,

the KS solution x(�) between L and R� satis�es
dx(�)
d�

> 0. L prefers a less
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extreme opponent. If uR has DARA, the KS solution x(�) between L and R�

satis�es dx(�)
d�

< 0. L prefers a more extreme opponent.

The statements of Theorems 2 and 4 are the same with NS replaced

by KS. Since the intuition behind Theorem 4 is similar when bR� > x0, we

assume that bR� < x0. Note that AR;� expands as � increases until bR� = x0.
We study how increasing � a¤ects the agreed upon share sR;�(x0) ignoring

changes in the feasible set. Under complete information, L understands that

R��s maximum gain in utility increases as R��s fallback position worsens. L

demands a bigger share as �compensation�for bargaining with a R� rather

than R. Thus, sR;�(x0) < s(x0) (a steepening of the DR;�M ray in Figures

4(b) and 5(c)). Within the feasible set S, L��s bigger share ensures L��s

payo¤ increases relative to L�s. This suggests dx(�)
d�

> 0.

Now consider the e¤ect of increasing � on the feasible set ignoring its

e¤ect on sR;�(x0). Within the relevant range, the downward shift in R��s

utility relative to R�s shifts PO(SR;�) over some range in and below PO(S).

If we maintain the share constant at s(x0), the shrinkage of the Pareto set

forces the agents to agree to a smaller proportion of the maximum gain in

utilities, and the payo¤ of both L and R� fall, so that
dx(�)
d�

T 0.
The combined e¤ect of changes to the agreed share and in the feasible

set is unclear, i.e., dx(�)
d�

T 0. One of our major contributions is to show that
the improvement in L�s bargaining position depends again on R��s strength

of preference (toughness in negotiations), i.e., on uR�s ARA.

DARA (Figure 5(c)). Since some payo¤s in S are no longer available to

L and R�, a redistribution of share in L�s favor is not enough. Both players

must also agree to take a smaller proportion of their maximum gains in util-
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ities (i.e., a lower point along the DR;�M ray). Moreover, under DARA, R�s

utility is a concave transformation of R��s (Mas-Colell et al. 1995) implying

R� has lower strength of preferences than R. Since R� is less tough in ne-

gotiations, the trade-o¤ at the Pareto frontier moves in L�s favor. Thus, the

KS moves in L�s favor, dx(�)
d�

< 0 and L prefers R� to R.

IARA (Figure 4(b)). When uR exhibits IARA, R� is tougher than R in

negotiations so that L gives up more when bargaining with R� rather than

R and dx(�)
d�

> 0. L then prefers R to R�.

5 Conclusions

We examine the Nash and the Kalai-Smorodinsky solutions in a bilateral

bargaining model when an agent faces an opponent who may be one of an

in�nite type when the status quo is outside the agents�control. To isolate

the e¤ect of types and the status quo in a model where the entire utility

function matters, we make opponents identical in every respect except their

ideal points. When the status quo lies between the players�ideal points, the

degenerate bargaining problem leaves the status quo in place. Otherwise, the

ranking of opponents depends on the agent doing the ranking. Surprisingly,

the results are similar for both solution concepts.

Assuming (as in the text) x0 < bL; our model provides the following pre-
dictions. R prefers an opponent whose ideal is closest to her own since the

simultaneous changes to the Pareto set and the implementation of the solu-

tion concepts bene�t R as � increases. A similar ranking emerges for L when

uR exhibits IARA. For these two cases, the ranking seems intuitive. However,

our main message is that, if uR exhibits DARA, L prefers an opponent whose
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ideal point is farthest from his own. Though initially unintuitive, the result

is rather intuitive. L prefers R� to R since R� is less tough in negotiation. In

general, L prefers the less tough opponent. Finally, we �nd that any minor

departure of uR from IARA near the solution is enough to upset the ranking.

The Nash and the Kalai-Smorodinsky solutions to our problem do not

exhibit sensitivity to risk. Peters (1992, p. 1018) states �in a model with-

out lotteries, it is incorrect to explain theoretical results by referring to the

risk attitude(s) of the decision makers.�When we introduce types we leave

behind the world of ordinal preferences and move into one where strength of

preference matter. In a riskless bargaining environment, strength of prefer-

ence is related to the concavity of the utility function and not to the player�s

aversion to risk and a major determinant of a player�s bargaining power. The

Arrow-Pratt coe¢ cient of ARA measures changes in the concavity of utility

function, one of the driving forces behind our results. As � increases, the

concavity of R��s utility function changes at a given x 2 AR;�, a¤ecting R��s

strength of preferences and her bargaining power. Our results emphasize

that bargaining outcomes depend on the location of the players�ideal points

relative to the status quo and on the players�toughness in negotiation.

Our results complement Gallego and Scoones�(2005) results on the rank-

ing of intergovernmental Nash bargaining agreements between the Federal

and the three State formateurs. When parties have quadratic utilities (IARA),

they �nd as do we that agreements follow the ranking of the party�s ideal

policies. They �nd that if the right-most party is more risk averse than the

others, agreements may not follow the party�s ranking. We show this reverse

ranking arises when the right-most party�s utility exhibits DARA.
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6 Appendix

Proof of Theorem 1. Let A � X be the bargaining set described in Section

217. The NS is the x that maximizes the Nash product

max
x2A

NP (x) = [uL(x)� uL(x0)] [uR(x)� uR(x0)]:

The NS between L� and R is x(�) 2 AL;� and the unique solution of

F (x; �) = 0

where F (x; �) � u0L;�(x) [uR(x) � uR(x0)] + [uL;�(x) � uL;�(x0)] u0R(x): By

implicit di¤erentiation,

dx(�)

d�
= �@F (x; �)=@�

@F (x; �)=@x

= � �u00L(x� �)[uR(x)� uR(x0)] + [�u0L(x� �) + u0L(x0 � �)]u0R(x)
u00L(x� �)[uR(x)� uR(x0)] + 2u0L(x� �)u0R(x) + [uL(x� �)� uL(x0 � �)]u00R(x)

:

Now, dx(�)
d�

> 0 since the denominator is negative for x 2 AL;� and

u00L(x��)[uR(x)�uR(x0)]+[u0L(x��)�u0L(x0��)]u0R(x) < 0: �

Proof of Theorem 2. For L and R�, the NS x(�) is the solution of

G(x; �) = 0

17That is, A is a compact interval with left endpoint bL. Notice that
d

dx
[(uL(x)�uL(x0)) (uR(x)�uR(x0))] = u0L(x)(uR(x)�uR(x0))+(uL(x)�uL(x0))u0R(x)

is positive at x = bL and negative at the right endpoint (since either uL(x) � uL(x0) = 0
or u0R(x) = 0 there). Since [uL(bL) � uL(x0)][uR(bL) � uR(x0)] > 0 and d2

dx2 [(uL(x) �
uL(x0))(uR(x)� uR(x0))] < 0, the NS corresponds to a unique x� in the interior of A.
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where G(x; �) � u0L(x)[uR;�(x)� uR;�(x0)] + [uL(x)� uL(x0)]u0R;�(x): Now

dx(�)

d�
= �@G(x; �)=@�

@G(x; �)=@x

= � u0L(x)[�u0R(x� �) + u0R(x0 � �)]� [uL(x)� uL(x0)]u00R(x� �)
u00L(x)[uR(x� �)� uR(x0 � �)] + [uL(x)� uL(x0)]u00R(x� �) + 2u0L(x)u0R(x� �)

:

The denominator is again negative but now the numerator,

u0L(x)[u
0
R(x� �)� u0R(x0 � �)] + [uL(x)� uL(x0)]u00R(x� �) ? 0:

By substituting G(x; �) = 0, this numerator is (with x(�) = x)

u0L(x)[u
0
R(x� �)� u0R(x0 � �)]� u0L(x)u00R(x� �)

uR(x� �)� uR(x0 � �)
u0R(x0 � �)

= u0L(x) [uR(x� �)� uR(x0 � �)]
�
u0R(x� �)� u0R(x0 � �)
uR(x� �)� uR(x0 � �)

� u00R(x� �)
u0R(x0 � �)

�
< 0

if and only if
u00R(x� �)
u0R(x0 � �)

<
u0R(x� �)� u0R(x0 � �)
uR(x� �)� uR(x0 � �)

:

Since u0R 6= 0 for all x 2 AR;�, by Cauchy�s Mean Value Theorem,
u0R(x��)�u0R(x0��)
uR(x��)�uR(x0��) =

u00R(���)
u0R(���)

for some x0�� < ��� < x(�)��. If uR is IARA (i.e. d
dx

�
�u00R
u0R

�
> 0),

u00R(���)
u0R(���)

>
u00R(x��)
u0R(x0��)

and so dx(�)
d�

> 0. If uR is DARA, then
dx(�)
d�

< 018. �

Proof of Theorem 3. We consider whether bR 2 AL;� (case a) orbR =2 AL;� (case b). Typically, (b) holds for small �, (a) for large �.

(a) Here uL;�( bR) > uL;�(x0). The KS x(�) = x between L� and R satis�es
uR(x)� uR(x0)
uL;�(x)� uL;�(x0)

=
uR( bR)� uR(x0)
uL(bL)� uL;�(x0) :

18Note that uR only needs to be uniformly IARA (or uniformly DARA) over
[x0; x(�)] (and not over all of X) to apply this method of proof. In fact, if bR� 2 [x0; x(�)],
then uR cannot be uniformly DARA since d

dx

�
�u00R
u0R

�
�=
�
�u00R
u0R

�2
> 0 near bR�.
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Since fbL�; bRg 2 AL;�, the KS solution x(�) also satis�es
F (x; �) = 0

where F (x; �) �
h
uR( bR)� uR(x0)i [uL(x� �)� uL(x0 � �)]

� [uR(x)� uR(x0)]
h
uL(bL)� uL(x0 � �)i. By implicit di¤erentiation,

dx(�)

d�
= �@F (x; �)=@�

@F (x; �)=@x

= �

h
uR( bR)� uR(x0)i [�u0L(x� �) + u0L(x0 � �)]� [uR(x)� uR(x0)] [u0L(x0 � �)]h
uR( bR)� uR(x0)i [u0L(x� �)� u0L(x0 � �)]� u0R(x) huL(bL)� uL(x0 � �)i :

Since the denominator is negative, dx(�)
d�

> 0 if and only ifh
uR( bR)� uR(x0)i [�u0L(x� �) + u0L(x0 � �)]�[uR(x)� uR(x0)]u0L(x0��) > 0:
Substituting F (x; �) = 0 and u0L(bL) = 0, this is true if and only ifh

uL(bL)� uL(x0 � �)i huR( bR)� uR(x0)i
uL(x� �)� uL(x0 � �)

[u0L(x� �)� u0L(x0 � �)]

< [uR(x)� uR(x0)]
h
u0L(

bL)� u0L(x0 � �)i
if and only if

u0L(x� �)� u0L(x0 � �)
uL(x� �)� uL(x0 � �)

<
u0L(

bL)� u0L(x0 � �)
uL(bL)� uL(x0 � �) :

Let h(x) � u0L(x)�u0L(x0)
uL(x)�uL(x0) . Then

h0(x) � u00L(x) [uL(x)� uL(x0)]� [u0L(x)� u0L(x0)]u0L(x)
[uL(x)� uL(x0)]2

< 0:

Since x(�) > bL, h(x(�)) < h(bL). The numerator is negative and so dx(�)
d�

> 0.
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(b) For � small, uL;�( bR) = uL( bR � �) < uL(x0 � �) = uL;�(x0). Let x0(�)
be such that uL;�(x0) = uL;�(x0(�)) with bL < x0(�). The KS satis�es

uR(x)� uR(x0)
uL(x� �)� uL(x0 � �)

=
uR(x0(�))� uR(x0)
uL(bL)� uL(x0 � �) :

Thus, the x(�) between L� and R is the solution of

F (x; �) = 0

where F (x; �) �
h
uR(x0(�))� uR(x0)

i
[uL(x� �)� uL(x0 � �)]

� [uR(x)� uR(x0)]
h
uL(bL)� uL(x0 � �)i. By implicit di¤erentiation,

dx(�)

d�
= �@F (x; �)=@�

@F (x; �)=@x

= �

h
uR(x0(�))� uR(x0)

i
[�u0L(x� �) + u0L(x0 � �)]� [uR(x)� uR(x0)]u0L(x0 � �)h

uR(x0(�))� uR(x0)
i
u0L(x� �)� u0R(x)

h
uL(bL)� uL(x0 � �)i

�
u0R(x0(�))

dx0(�)
d�

[uL(x� �)� uL(x0 � �)]h
uR(x0(�))� uR(x0)

i
u0L(x� �)� u0R(x)

h
uL(bL)� uL(x0 � �)i :

Since the denominator is negative, dx(�)
d�

> 0 if and only ifh
uR(x0(�))� uR(x0)

i
[�u0L(x� �) + u0L(x0 � �)]� [uR(x)� uR(x0)]u0L(x0 � �)

+u0R(x0(�))
dx0(�)

d�
[uL(x� �)� uL(x0 � �)] > 0: (A.1)

Substituting F (x; �) = 0 and u0L(bL) = 0, we get the �rst term of (A.1) ish
uR(x0(�))� uR(x0)

i
[�u0L(x� �) + u0L(x0 � �)]� [uR(x)� uR(x0)]u0L(x0 � �)

= �

h
uL(bL)� uL(x0 � �)i [uR(x)� uR(x0)]

uL(x� �)� uL(x0 � �)
[u0L(x� �)� u0L(x0 � �)]

+ [uR(x)� uR(x0)]
h
u0L(bL)� u0L(x0 � �)i

= [uR(x)� uR(x0)]
h
uL(bL)� uL(x0 � �)i "u0L(bL)� u0L(x0 � �)

uL(bL)� uL(x0 � �) � u
0
L(x� �)� u0L(x0 � �)
uL(x� �)� uL(x0 � �)

#
:
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Let h(z) � u0L(z��)�u0L(x0��)
uL(z��)�uL(x0��) . Then, for z >

bL+ �, we have
h0(z) � u00L(z � �) [uL(z � �)� uL(x0 � �)]� [u0L(z � �)� u0L(x0 � �)]u0L(z � �)

[uL(z � �)� uL(x0 � �)]2
< 0:

Since x(�) > bL+ �, the �rst term is positive. The second term of (A.1)

u0R(x0(�))
dx0(�)

d�
[uL(x� �)� uL(x0 � �)]

is positive if dx0(�)
d�

> 0. This follows since uL is unimodal and concave.

Alternatively, x0(�) satis�es H(x0(�); �) = 0 where H(x; �) � uL(x0� �)�

uL(x� �). Thus,

dx0(�)

d�
= � @H(x0(�); �)=@�

@H(x0(�); �)=@
�
x0(�)

� = u0L(x0 � �)� u0L(x0(�)� �)
�u0L(x0(�)� �)

> 0: �

Proof of Theorem 4. As in Theorem 3, there are two cases for the KS

solution, except that case (a) is now for small � and case (b) for large �.

(a) For � small, uL( bR + �) > uL(x0). The x(�) between L and R� satis�es
G(x; �) � 0

where G(x; �) �
h
uR( bR)� uR(x0 � �)i [uL(x)� uL(x0)]

� [uR(x� �)� uR(x0 � �)]
h
uL(bL)� uL(x0)i. By implicit di¤erentiation,

dx(�)

d�
= �@G(x; �)=@�

@G(x; �)=@x
(A.2)

= �
u0R(x0 � �) [uL(x)� uL(x0)] + [u0R(x� �)� u0R(x0 � �)]

h
uL(bL)� uL(x0)ih

uR( bR)� uR(x0 � �)iu0L(x)� u0R(x� �) huL(bL)� uL(x0)i :
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The denominator is negative. On substituting G(x; �) = 0 and u0R( bR) = 0,
the numerator of (A.2) becomes

�u0R(x0 � �)
[uR(x� �)� uR(x0 � �)]

h
uL(bL)� uL(x0)i

uR( bR)� uR(x0 � �)
� [u0R(x� �)� u0R(x0 � �)]

h
uL(bL)� uL(x0)i

= [uR(x� �)� uR(x0 � �)]
h
uL(bL)� uL(x0)i

�
"
u0R(

bR)� u0R(x0 � �)
uR( bR)� uR(x0 � �) � u

0
R(x� �)� u0R(x0 � �)
uR(x� �)� uR(x0 � �)

#
:

Let k(z) � u0R(z��)�u0R(x0��)
uR(z��)�uR(x0��) . Then

k0(z) � u00R(z � �) [uR(z � �)� uR(x0 � �)]� [u0R(z � �)� u0R(x0 � �)]u0R(z � �)
[uR(z � �)� uR(x0)]2

=

�
u00R(z � �)
u0R(z � �)

� u
0
R(z � �)� u0R(x0 � �)
uR(z � �)� uR(x0)

�
u0R(z � �)

uR(z � �)� uR(x0)

=

�
u00R(z � �)
u0R(z � �)

� u
00
R(� � �)
u0R(� � �)

�
u0R(z � �)

uR(z � �)� uR(x0)
for some x0 � � < � � � < z � �. As in the proof of Theorem 2 above,
dx(�)
d�

> 0 if uR is IARA and
dx(�)
d�

< 0 if uR is DARA.

(b) For large �; uL( bR+ �) < uL(x0). There is a unique bL < x0 < bR so that
uL(x0) = uL(x0). The x(�) = x between L and R� satis�es

G(x; �) � 0

where G(x; �) � [uR(x0 � �)� uR(x0 � �)] [uL(x)� uL(x0)]

� [uR(x� �)� uR(x0 � �)]
h
uL(bL)� uL(x0)i.

By implicit di¤erentiation, dx(�)
d�

= �@G(x;�)=@�
@G(x;�)=@x

is given by

�
[�u0R(x0 � �) + u0R(x0 � �)] [uL(x)� uL(x0)] + [u0R(x� �)� u0R(x0 � �)]

h
uL(bL)� uL(x0)i

[uR(x0 � �)� uR(x0 � �)]u0L(x)� u0R(x� �)
h
uL(bL)� uL(x0)i :
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The denominator is negative. On substituting G(x; �) = 0, the numerator is

[u0R(x0 � �)� u0R(x0 � �)]
[uR(x� �)� uR(x0 � �)]

h
uL(bL)� uL(x0)i

uR(x0 � �)� uR(x0 � �)
� [u0R(x� �)� u0R(x0 � �)]

h
uL(bL)� uL(x0)i

= [uR(x� �)� uR(x0 � �)]
h
uL(bL)� uL(x0)i

�
�
u0R(x0 � �)� u0R(x0 � �)
uR(x0 � �)� uR(x0 � �)

� u
0
R(x� �)� u0R(x0 � �)
uR(x� �)� uR(x0 � �)

�
:

From part (a) where k(z) � u0R(z��)�u0R(x0��)
uR(z��)�uR(x0��) , k

0(z) =
h
u00R(z��)
u0R(z��)

� u00R(���)
u0R(���)

i
u0R(z��)

uR(z��)�uR(x0)

for some x0�� < ��� < z��. As in the proof of Theorem 2 above, dx(�)d�
> 0

if uR is IARA and
dx(�)
d�

< 0 if uR is DARA. �

References

[1] BOSSERT, W. (1994): "Disagreement Point Monotonicity, Transfer Re-
sponsiveness, and the Equalitarian Bargaining Solution," Social Choice
and Welfare 11, 381-392.

[2] BOSSERT, W. AND H. PETERS (2002): "E¢ cient Solutions to Bar-
gaining Problems with Uncertain Disagreement Points," Social Choice
and Welfare 19, 489-502.

[3] GALLEGO, M. AND D. SCOONES (2005): "Intergovernmental Bar-
gaining between Two Three-Party Parliamentary Governments," unpub-
lished manuscript, Wilfrid Laurier University.

[4] KALAI, E. AND M. SMORODINSKY (1975): "Other Solutions to
Nash�s Bargaining Problem," Econometrica, 43(3), 513-518.

[5] KANNAI, Y. (1977): "Concavi�ability and Construction of Concave
Utility Functions," Journal of Mathematical Economics, 4, 1-56.

[6] KIHLSTROM, R. E., A. E. ROTH, AND D. SCHMEIDLER (1981):
"Risk Aversion and Nash�s Solution to the Bargaining Problem," in
Game Theory and Mathematical Economics, ed. by O. Moeschlin and
D. Pallaschke, Amsterdam: North Holland, 65-71.

31



[7] KÖBBERLING, V., AND H. PETERS (2003): "The E¤ect of Decision
Weights in Bargaining Problems," Journal of Economic Theory, 110,
154-175.

[8] MAS-COLELL, A., M. D. WHINSTON, AND J. R. GREEN (1995):
Microeconomic Theory, Oxford University Press, New York, Oxford.

[9] NASH, J. F. (1950): "The Bargaining Problem," Econometrica, 18, 155-
162.

[10] PETERS, H. (1992): "A Criterion for Comparing Strength of Prefer-
ences with an Application to Bargaining," Operations Research 40(5),
1018-1022.

[11] ROTH, A. (1979): Axiomatic Models of Bargaining, Berlin and New
York: Springer.

[12] THOMSON, W. (1987): "Monotonicity of Bargaining Solutions with
Respect to the Disagreement Point," Journal of Economic Theory, 42,
50-58.

[13] THOMSON, W. (1994): "Cooperative Models of Bargaining" in Hand-
book of Game Theory, ed. by R. J. Auman and S. Hart, Elsevier Science
B. V. 1237-1284.

[14] THOMSON, W. AND R. B. MYERSON (1980): "Monotonicity and
Independence Axioms," Int. Journal of Game Theory, 9(1), 37-49.

[15] VOLIJ, O. AND E. WINTER (2002): "On Risk Aversion and Bargain-
ing Outcomes," Games and Economic Behavior, 41, 120-140.

[16] WAKKER, P. (1987): "The Existence of Utility Functions in the Nash
Solution for Bargaining," in Axiomatics and Pragmatics of Con�ict
Analysis ed. by J.H.P. Paelinck and P.H. Vossen, Gower, Aldershot,
UK, 157-177.

32



Figure 1. The utility functions of Example 1. The solid left parabola is
uL(x) and the dashed right parabola is uR(x).

(a) (b)

Figure 2. The feasible set S for Example 1 with status quo x0 = 0
is the region bounded by the vertical axis and the thick curve. The
disagreement point is D = (0;�3). Diagram (a) shows S according to
the de�nition whereas (b) replaces the right-hand boundary with the
parametric curve f(uL(x); uR(x)) j x 2 [a; b]; uL(x) > uL(x0); uR(x) >
uR(x0)g. The Pareto optimum set is the portion of S that lies in the �rst
quadrant. Also shown are the NS and KS for Example 1. The NS is the
point of intersection of this thick curve with the solid curve (indicated
by the vertical dotted line and corresponds to x� = 1:2192) and KS is
the point of intersection the thick curve with the solid line (indicated
by the vertical dashed line and corresponds to x� = 4=3).

33



(b) NS solution (c) KS solution

Figure 3. The boundary of S for the quadratic utility functions of Example
1 with x0 = 0 when � = 0 (the thick dashed curve corresponding to Figure
2) and for L�s utility function shifted by � = 0:2 (the thick solid curve).
D = (0;�3) when � = 0 and DL;� = (�0:44;�3) when � = 0:2, so that
x0(�) > bR�. The solutions ((a) NS and (b) KS) are the intersections of these
thick curves with the dashed (� = 0) and solid (� = 0:2) horizontal lines.
x(�) increases in � since uR(x) is an increasing function near x(�).
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(a) NS solution (b) KS solution

Figure 4. The boundary of S for the quadratic utility functions of Example
1 with x0 = 0 when � = 0 (the thick dashed curve corresponding to Figure
2) and for R�s utility function shifted by � = 0:2 (the thick solid curve).
D = (0;�3) when � = 0 and DR;� = (0;�3:84) when � = 0:2, so that
x0 = 2 < bR�. The solutions ((a) NS and (b) KS) are the intersections of
these thick curves with the dashed (� = 0) and solid (� = 0:2) vertical lines.
x(�) decreases in � since uL(x) is a decreasing function near x(�).
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(a) The feasible set (b) NS solution (c) KS solution

Figure 5. The feasible (thick dashed curve) set for the utility function
uL(x) = �(x � 1:5)2 + 1 and uR(x) = lnx with status quo x0 = 0:5. The
disagreement point is D = (0;� ln 2) when � = 0. The other feasible set
(thick solid curve) is for uR shifted by � = 0:2. Now x0(�) < bR� (in fact, bR�
= 1 since uR is increasing). How the NS and KS change with � is unclear
in (a) so the relevant region is blown up in (b) and (c). In diagrams (b) and
(c) the vertical line shifts right as � increases, i.e., x(�) decreases in �.
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