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Abstract 

We estimate real US GDP growth as a threshold autoregressive process, and construct 
confidence intervals for the parameter estimates. However, there are various approaches that can 
be used in constructing the confidence intervals. We construct confidence intervals for the slope 
coefficients and the threshold using asymptotic results and bootstrap methods, finding that the 
results for the different methods have very different economic implications. We perform a Monte 
Carlo experiment to evaluate the various methods. Surprisingly, the confidence intervals are 
wide enough to cast doubt on the assertion that the time-series responses of GDP to negative 
growth rates are different than the responses to positive growth rates.  
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I. Introduction 
 

Threshold autoregressive (TAR) models are popular, providing a straightforward, 

economically appealing, and econometrically tractable nonlinear extension of the linear 

autoregressive (AR) model. TAR models are particularly suited for time-series processes that are 

subject to periodic shifts due to regime changes. Examples of early applications include Burgess 

(1992), Cao and Tsay (1992), Enders and Granger (1998), Galbraith (1996), Hansen (1997), 

Krager and Kugler (1993), Potter (1995), and Rothman (1991).  

 Although there have been a number of important developments in the asymptotic theory 

for estimation and inference in TAR models [e.g., Hansen (1997, 2000), Chan and Tsay (1998), 

and Gonzalo and Wolf (2005)], there has been little research concerning the finite sample 

properties of these procedures. There are a number of ways to perform inference in TAR models 

and we explore the small-sample properties of some of these methods using Monte Carlo 

experiments. One complicating factor is the need to know if the process is continuous at the 

threshold. The issue is important as a comparison of Hansen (1997) and Chan and Tsay (1998) 

indicates that the distributions relevant for inference in a continuous (C-TAR) model are 

different from those in a discontinuous (D-TAR) model. Whereas economic analysis may predict 

the existence of different regimes, it may not be clear whether a C-TAR or a D-TAR model is 

most appropriate. Enders and Siklos (2004) show that it is the combined values of the intercepts, 

threshold and autoregressive coefficients that determine whether the model is continuous at the 

threshold. Although a C-TAR model can be viewed as a restricted version of a D-TAR model, 

their work shows that testing this restriction is problematic since conventional test statistics are 

not asymptotically pivotal (i.e. the asymptotic distribution depends on nuisance parameters).  

 To address some of these issues, we apply Monte Carlo methods to study the small 

sample coverage properties of confidence intervals for the slope coefficients and the threshold 
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parameter in the class of first-order, stationary, two-regime threshold autoregressive models. The 

procedures we consider include approaches suggested by asymptotic theory and bootstrap 

methods. We show that these confidence intervals have poor coverage in a variety of conditions. 

As a result, the appropriate way to conduct inference in TAR models in small samples is unclear, 

particularly when the threshold is unknown, and our results cast doubt on some standard 

methods. Either economic theory should provide guidance for choosing among D-TAR or C-

TAR alternatives, or the threshold should be large enough to guide in the choice of models.  

 We consider the implications of our results for the behavior of real US GDP growth, one 

of the most widely studied time series. The consensus opinion seems to be that the growth rate of 

real US GDP is a nonlinear process, perhaps of the threshold autoregressive variety. Several 

papers, such as Kapetanios (2003), Peel and Speight (1998) and Potter (1995), indicate that GDP 

behaves very differently in periods of high growth than in periods of low growth. However, we 

show that different methods of constructing confidence intervals lead to different implications 

concerning the way that GDP behaves in expansions versus contractions. The confidence 

intervals for the alternative persistence parameters overlap and the location of the threshold value 

is unclear. As a result, concluding that there are different degrees of persistence in positive 

versus negative growth regimes may be problematic, throwing into doubt some widely held 

beliefs concerning the properties of US real GDP growth.  

II. The TAR Model  

The simplest D-TAR model can be formulated as follows: 

(1) yt = (α0 + α1yt-1)It + (β0 + β1yt-1) (1−It) + εt t = 1, … , T

where It is the indicator function defined in terms of the threshold parameter τ as 
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where d is the delay parameter, and the εt’s are i.i.d. (0, σ2) random variables.  

 We assume that σ2 < ∞ and that the autoregressive parameters in (1) satisfy stationarity 

conditions. Sufficient conditions for stationarity are: 0 < α1 < 1 and 0 < β1 < 1. Petrucelli and 

Woolford (1984) provide further discussion of conditions for stationarity and ergodicity.   

 We will also consider the inference problem for the following C-TAR model that is a 

constrained version of (1): 

(2)  yt = τ + α1(yt-1 – τ)It + β1(yt-1 − τ)(1−It) + εt t = 1, …, T

where τ denotes the thresholds parameter, α1 and β1 are slope coefficients that satisfy stationarity 

conditions, and It and εt are stochastic processes defined as in (1).  

 Model (1) has the two attractors: α0/(1 − α1) and β0/(1 − β1). Model (2) implies that yt has 

a unique long-run equilibrium, which is equal to the threshold parameter. The short-run 

dynamics of the C-TAR model depend on whether the system is above or below the long-run 

equilibrium. In some applications, this version of the model may be a more “natural” 

representation of the TAR model than (1). Note that, in contrast to version (1), version (2) 

implies that yt is continuous in the neighborhood of the threshold. 

 Extensions of these models allowing for unit roots and higher order autoregressive terms 

have been considered in the theoretical and applied literature. Note that if α1 = β1 (and in (1), α0

= β0) the D-TAR and C-TAR models collapse to an AR(1) model. However, testing this 

restriction is complicated by the failure of τ to be identified under the null hypothesis.1

The ordinary least squares estimator of α1 and β1 is asymptotically efficient when the 

threshold parameter is known, or when it is unknown but is replaced by a consistent estimator. In 
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particular, conditioning on τ ,or a consistent estimator of τ, the least squares t-statistics 

associated with α0, α1, β0, and β1 converge in distribution to standard normal random variables. 

As described in Enders (2004), a grid search over all potential thresholds and delay parameters 

yields a consistent estimate of the threshold. Consequently, the standard textbook approach to 

confidence interval construction provides intervals with asymptotically correct coverage. 

 However, even in the special case of the linear AR(1) model, the OLS t-statistics for the 

slope coefficient will not be approximately normal or even approximately pivotal in small 

samples, particularly for values close to the unit root boundary. Monte Carlo simulations by 

Hansen (1999) illustrate the poor finite sample performance of normal confidence intervals, 

bootstrap-t, and bootstrap-percentile confidence intervals for the AR(1) model. We will apply 

Monte Carlo simulations to evaluate the finite sample performance of these intervals for the 

slope coefficients and for the threshold parameter τ in the D-TAR and C-TAR models. 

 Confidence interval construction for the threshold parameter τ has been considered by 

Hansen (1997) for model (1), by Chan and Tsay (1998) for model (2), and Gonzalo and Wolf 

(2005) for both models. These procedures involve inverting a likelihood ratio statistic 

constructed from a model estimated using a consistent estimate of the threshold. Hansen’s 

procedure is based on the limiting distribution of the likelihood ratio statistic for model (1), a 

nonstandard distribution derived by Hansen (1996). Chan and Tsay (1998) show that the limiting 

distribution of the likelihood ratio statistic is chi-square for model (2). The difference in the 

asymptotic behavior of the likelihood ratio statistic according to whether model (1) or model (2) 

is assumed is what motivates our consideration of both models. Gonzalo and Wolf (2005) use 

sub-sampling to generate confidence intervals for an unknown threshold for both the D-TAR and 
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C-TAR models. They also propose a test for continuity but coverage probabilities are good only 

for relatively large samples (e.g., T = 500).    

We apply Monte Carlo simulations to evaluate the finite sample performance of these 

procedures as well as intervals constructed from bootstrapped distributions of these 

(asymptotically pivotal) statistics. Specifically, we will examine the finite sample properties of 

the following types of confidence intervals for the slope parameters: 

• The so-called ‘normal approximation’ uses intervals constructed from the t-statistics 

for α1 and β1 obtained from a standard t distribution. 

• Bootstrap-percentile confidence intervals. For example, a 90% confidence interval 

for α1 (β1) can be constructed from the lowest 5% and highest 95% of the ordered 

bootstrapped estimates of α1 (β1). 

• Bootstrap-t confidence intervals (which assume that the t-statistics are 

approximately pivotal though not necessarily student-t).2 For example, a 90% confidence 

interval for α1 (β1) can be constructed from inverting the lowest 5% and highest 95% of 

the ordered bootstrapped t-statistics for the null hypothesis α1 = 0 (β1 = 0).  

Confidence intervals for the threshold parameter itself will be constructed from inversion of the 

likelihood ratio statistic using its asymptotic and bootstrapped distributions. In addition, the 

bootstrap percentile methods will be applied to construct these intervals. 

 
III. Confidence Intervals  

 For each parameterization of the TAR model, 1000 realizations of y1, …, yT were 

generated for T = 236.3 The threshold parameter τ was always set to 0, the initial value y0 was set 

to the unconditional mean of the process, and the εt’s were drawn from the standard normal 

distribution. Each series was generated for T + 100 data points and the initial 100 observations 
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were discarded. For each of the realized series, we used the standard grid-search method 

described in Enders (2004) to find a consistent estimate of the threshold.4 The t-statistics and 

student-t distributions were used to construct confidence intervals with nominal coverage equal 

to 0.75, 0.9, 0.95, 0.975, and 0.99 for each of the two slope coefficients. Next, for each of these yt

series, the estimated slope coefficients and estimated value of τ were used to construct 1000 

bootstrap samples in order to construct the bootstrap-percentile and bootstrap-t intervals. Hence, 

there are 1000 bootstrap samples for each of the 1000 generated yt series. Actual coverage 

percentages were computed as the proportion of instances in which the true slope coefficients fell 

into each type of constructed interval. Note that for each realization of the yt process, the 

bootstrap samples used to construct the bootstrap-percentile and bootstrap-t intervals were 

generated using the estimated threshold rather than the true threshold and that the threshold 

parameter was re-estimated (along with the intercept and slope coefficients) for each bootstrap 

sample. 

 These simulations were very time-consuming because of the need to search for τ in each 

of the bootstrap samples. Therefore, we used a relatively small set of parameter combinations for 

the data-generating process. Specifically, the threshold parameter τ was set to zero, the slope 

coefficient α1 was set to 0.3, and the slope coefficient β1 was sequentially selected from {0.6, 

0.9, 0.95}. For the D-TAR model (1) we set the intercepts α0 and β0 equal to 0 and 0.9, and for 

the C-TAR model we set α0 = β0 = 0.  

a. Confidence Intervals for the Slope Coefficients in the D-TAR Model 

 The simulated coverage probabilities for the slope coefficients using the three methods of 

interval estimation are presented in Table 1 for the D-TAR model. Consider, for example, the D-

TAR model with T = 236, 0 0α = α1 = 0.3, τ = 0, β0 = 0.9 and β1 = 0.6. The nominal 90% 
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confidence interval constructed using the normal approximation (i.e., 64.1*)ˆ.(.ˆ
11 ββ es± )

included the true value of α1 in 87.1% of the trials and included the true value of β1 in 78.1% of 

the trials. As such, these confidence intervals are “too narrow” in that the simulated coverage is 

smaller than the nominal coverage. Notice that for these same parameter values, the bootstrapped 

t-statistic yielded confidence intervals closer to the nominal values than the normal 

approximation (88.1 for α1 and 81.8 for β1). Among the key points to note in Table 1 are: 

• The confidence intervals, constructed using the normal approximation, are always 

too narrow in that their simulated coverage is less than their nominal coverage. Hence, 

the use of the normal approximation (i.e., the ‘usual’ t-test) to test the null hypothesis α1

= 0 or β1 = 0 is likely to result in too few rejections.  

• The percentile method yields confidence intervals for α1 that are very close to their 

nominal values. Those for β1 are generally too narrow, although they are better than those 

generated from the normal approximation. Notice that the coverage properties for β1

clearly deteriorate as the magnitude of β1 increases, and improve as the nominal size of 

the confidence interval increases.  

• Of the three methods, the bootstrap-t generally has the best coverage. Although 

tending to produce intervals that undercover, the interval coverage rates for α1 are almost 

always within one-to-two percent of the desired rate. Regarding β1, the interval coverage 

is within one-percent of the desired rate when β1 = 0.9 and 0.95.  

We conclude that for the D-TAR model confidence intervals constructed from the normal 

approximation were the least satisfactory while the bootstrap-t intervals were usually the most 

satisfactory. 
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b. Confidence Intervals for the Slope Coefficients in the C-TAR Model 

The simulated coverage probabilities for the slope coefficients of the C-TAR model are 

presented in Table 2. As in the D-TAR model, the intervals constructed from the normal 

approximation perform the worst. For all cases considered, the normal approximation yields 

simulated coverage percentages for both α1 and β1 that are very low when compared to the 

nominal percentages. Relative to the D-TAR model, the performance of the normal 

approximation actually deteriorates for the C-TAR model. The bootstrap percentile intervals for 

α1 work very well with actual coverage rates almost always within one-percent of the nominal 

coverage rates. The bootstrap percentile intervals for β1 work reasonably for small β1 (i.e., β1 =

0.6) but very poorly for large β1 (i.e., β1 = 0.9 and 0.95). The bootstrap-t intervals for β1 work 

very well with actual coverage rates almost always within one-percent of the nominal coverage 

rates. While the bootstrap-t intervals for α1 are not quite as good as those generated using the 

bootstrap percentile method, they are reasonable. As such, in applied work the bootstrap-t seems 

to be the best choice among the three methods. Alternatively, it may be best to use a combination 

of the two bootstrap methods, using the percentile method for the smallest slope coefficient and 

the bootstrap-t for the largest slope coefficient.  

c. Confidence Intervals for the Threshold Parameter 

Hansen (1997) derived the (non-standard) asymptotic distribution of the least-squares 

estimator of the threshold parameter and the likelihood ratio statistic for inference concerning the 

threshold parameter in the D-TAR model. Critical values for these distributions are tabulated in 

Hansen (1997). Chan and Tsay (1998) studied the asymptotic distribution of the least squares 

estimator of the threshold parameter and the likelihood ratio statistic in the C-TAR model, 
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showing that in this case the asymptotic distribution of the likelihood ratio statistic is a chi-

square with one degree of freedom. 

 In this section, we evaluate the finite sample coverage properties of confidence intervals 

for τ constructed using three different procedures. The first procedure is to invert the likelihood 

ratio statistic using the asymptotic critical values. That is, the likelihood ratio statistic to test the 

null hypothesis that τ = τ0 is  

)ˆ(
)ˆ()(

)( 0
0 τ

ττ
τ

SSR
SSRSSR

LR
−

=

where: SSR( )τ̂ is the sum of squared residuals from the regression model (1) or (2) using a grid-

search procedure to estimate τ and SSR(τ0) is the sum of squared residuals from the regression 

model (1) or (2) fixing τ at τ0. The δ-percent confidence interval for τ found by inversion of the 

likelihood ratio statistic is Γ(δ) = {τ : LR(τ) < C(δ)} where C(δ) is the δ-level critical value from 

the asymptotic distribution of LR(τ). Following Hansen (1997) we use the convexified region 

Γ*(δ) = [τ1 τ2], where τ1 and τ2 are the minimum and maximum elements of Γ(δ), respectively. 

 The second procedure is identical to the first except that it uses the bootstrapped 

distribution of LR(τ) to determine the critical value C(δ). The third procedure is the bootstrap 

percentile distribution constructed as the values of τ falling within the (1−δ)/2 and 1−δ+(1−δ)/2 

percentiles of the bootstrap distribution of τ̂ .

The results for a nominal 90% confidence interval are presented in Table 3 for the D-

TAR and C-TAR models. Values for other percentages were found to be ordered similarly and 

are not reported here. These results were obtained as part of the Monte Carlo experiments used to 

construct the confidence intervals for the slope coefficients in the TAR models. For the bootstrap 

procedures, the estimated threshold from each simulated series was used to generate the 
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bootstrap samples and re-estimated for each bootstrap sample so as to simulate the bootstrap 

distributions of the least-squares estimator of τ and the likelihood ratio statistic LR(τ).5

According to Table 3, none of the three procedures performs satisfactorily for the D-TAR 

model. All three methods over-cover in the sense that the confidence intervals are too wide. 

Surprisingly, the bootstrapped likelihood ratio method has the worst performance—the 

confidence intervals were so wide they have 100% coverage for β1 = 0.6 and β1 = 0.90 and 

99.8% coverage for β1 = 0.95. The poor performance of the bootstrap-LR procedure is somewhat 

surprising since the likelihood ratio statistic is asymptotically pivotal. The bootstrap-percentile 

procedure provides good coverage when β1 = 0.6, (simulated coverage is 91.7%) but not for β1 =

0.9 or β1 = 0.95. The normal approximation provides coverage rates greater than 96% in all three 

cases.  

 In contrast, the normal approximation works best among the three procedures applied to 

the C-TAR model. The simulated coverage is reasonably close to 90% for all three values of β1.

The confidence intervals from the two bootstrapped procedures are far too wide for the C-TAR 

model. The percentile method works worse than the bootstrap-LR method when β1 is large. 

Hence, the normal approximation works poorly for the slope coefficients but works reasonably 

well for the threshold parameter (especially in the C-TAR model). 

d. Estimating the C-TAR Model as a D-TAR Process 

 In many applications it is not clear whether the true data generating process is continuous 

or discontinuous at the threshold. Since a C-TAR is a restricted form of a D-TAR model, it might 

seem plausible to estimate a D-TAR model in the form of (1) and then test whether the restriction 

implied by (2) [i.e., τ = (β0 - α0)/(α1 - β1)] is binding. However, this strategy is not feasible. 

Enders and Siklos (2004) demonstrate that an F-statistic for the null hypothesis τ = (β0 – α0)/(α1
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– β1) is not asymptotically pivotal. An important issue, then, is to analyze the consequences of 

estimating the wrong functional form. We focus our attention on the case of estimating a C-TAR 

model in the functional form of (1) since the C-TAR process is nested within a D-TAR model. In 

contrast, a D-TAR model estimated as a C-TAR process results in a misspecification error.  

 We generated 1000 C-TAR series using the parameter set and methodology described 

above. However, unlike the results described in Sections 3b and 3c, we estimated each simulated 

series as a D-TAR process and calculated the coverage properties of each method of constructing 

confidence intervals. The results for the slope coefficients are reported in Table 4. Notice that the 

simulated coverage of the normal approximation is always far too low. For example, for the case 

of β1 = 0.6, the calculated coverage using a nominal 90% confidence interval was only 69.5% for 

α1 and 67.2% for β1. The intervals for the percentile method were too wide for β1 = 0.6 but were 

generally too narrow for β1 = 0.9 and β1 = 0.95. The intervals for the bootstrap-t method were 

always too narrow.  

 A comparison of the results in Tables 2 and 4 indicates the cost of estimating the over-

parameterized D-TAR model when the true data generating process (DGP) is a C-TAR model. 

Clearly, the simulated coverage values for the normal approximation and bootstrap-t methods 

shown in Table 4 are even narrower than those shown in Table 2. The percentage differences for 

the normal approximation are small. For example, for a nominal 90% confidence interval, when 

1 0.6β = the coverage for α1 shown in Table 2 is 73.8% and the coverage shown in Table 4 is 

69.5%. In percentage terms, the losses using the bootstrap-t are far larger when a D-TAR model 

is used to estimate a C-TAR process. As illustrated by a nominal 90% confidence interval for α1,

the simulated coverage shown in Table 2 is 92.5%, whereas the simulated coverage shown in 
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Table 4 is 71.7%. The results for the percentile method are tricky to interpret since some of the 

confidence intervals are too narrow and others are too wide.  

 If we use a nominal 90% confidence interval, the coverage properties for the threshold 

parameter are 

Coverage of Threshold Parameter 
Asymptotic 

Approx. 
BS – Percentile BS – LR 

β1=
0.6 93.9 91.7 100.0
0.9 91.6 87.5 99.7
0.95 85.3 86.5 95.2

Notice that the confidence intervals for the bootstrapped likelihood ratio statistic are 

always too wide. The asymptotic approximation and the percentile methods work similarly--

sometimes the intervals are too wide and sometimes they are too narrow. In comparing these 

results to those shown in Table 3, it is interesting that the coverage properties of the percentile 

method actually improve when the C-TAR process is estimated as a D-TAR process.  

 Overall, the losses from estimating the D-TAR model when the actual DGP is a C-TAR 

process can be small. The most serious loss involves the bootstrap-t method for the slope 

coefficients. Nevertheless, if there is little knowledge of the actual form of the DGP, it seems 

preferable to estimate the D-TAR model than a possibly misspecified C-TAR model.  

IV. Confidence Intervals for TAR Estimates of US GDP  

 The aim of this section is to compare the various methods for constructing confidence 

intervals for the threshold and slope parameters of the real US GDP series. The time path of the 

logarithmic change in real US GDP (yt) over the 1947:Q1 to 2006:Q1 sample period is shown as 

the solid line in Figure 1. It is quite possible that this series represents a litmus test for nonlinear 

time series modeling. For example, Potter (1995) modeled and fit the logarithmic difference of 
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real US GNP (not GDP) through 1990:Q4 to a threshold autoregressive model under the 

assumption that the threshold is known and equal to zero.6

a. Model Selection  

We followed Hansen’s (1999) procedure to test for linearity and, if linearity is rejected, 

perform a test to select the appropriate number of regimes for the TAR model of GDP. The first 

step in the process is to fit GDP to an AR(p) model. Choosing among lag lengths 1, …, 8, the 

AIC selected a lag length of 4, yielding the following estimated AR(4) model of GDP.7 Below, 

and in what follows, t-statistics are reported in parenthesis. 

(3) yt = 0.006 + 0.298yt-1 + 0.139yt-2 − 0.085yt-3 − 0.108yt-4 + εt
(6.25)    (4.51)        (2.03)       (−1.23)       (−1.64) 

 
aic = −903.13, rss = 0.0195 

 

Next, we fit a two-regime TAR model to GDP by minimizing the sum of squared 

residuals with respect to the intercept, slope, threshold, and delay parameters, maintaining the lag 

length of four. The estimated threshold was constrained to require that at least 10-percent of the 

observations fall above and below the threshold. This estimator selected a delay parameter of two 

(as does Potter 1995) and produced the following estimated TAR model: 

(4) yt = It [0.006 + 0.320yt-1 + 0.137yt-2 − 0.083yt-3 − 0.067yt-4 ]   
 (4.64)    (4.38)       (1.56)        (−1.15)   − (0.097)   
 

+ (1 − It )[−0.003 + 0.208yt-1 − 0.909yt-2 − 0.156yt-3 − 0.506yt-4 ] + εt
(−1.01)   (1.53)       (−3.03)     (−0.86)        (−2.79)   

 
2

2

1 0.00167
0 0.00167

t
t

t

if y
I

if y
−

−

≥ −
=  < −

aic = −918.01, rss = 0.0178 
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To test the null of linearity against the two-regime TAR alternative, we used the test 

statistic 

)(
2

21
12 S

SSTF −
=

where S1 is the sum of squared residuals from the estimated linear autoregression and S2 is the 

sum of squared residuals from the estimated two-regime TAR. Following Hansen (1999), we 

used the bootstrap (with 1000 bootstrap samples) to estimate the percentiles of the asymptotic 

null distribution of F12. The value of the F12 statistic turned out to be 22.54 and the resulting p-

value was 0.026. Therefore, we rejected the null of linearity against the alternative of a two-

regime TAR model. 

 We also tested the null of a two-regime TAR model against the three-regime alternative, 

using the test statistic 

)(
3

32
23 S

SS
TF

−
=

where S3 is the sum of squared residuals from the estimated three-regime TAR. The value of F23 

was 15.6 and the bootstrapped p-value was 0.216. Therefore, we did not reject the null of a two-

regime TAR model. 

 On the basis of these tests, we conclude that the two-regime threshold model is the 

appropriate choice within the class of TAR models for GDP. Figure 1, the time series graph of 

quarterly real GDP growth rates, includes a dashed horizontal line at the estimated threshold of   

–0.00167. Of the 236 observations, 30 fell below the threshold and 206 fell above the threshold. 

Thus, approximately 12-percent of the observations fell into the ‘low-growth’ regime. 

Interestingly, this is roughly the same proportion of quarters over the sample period that are 

NBER-dated recession periods.8 It is also interesting to note that the value of the threshold is 
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near zero and that the sum of the lag coefficients is positive (0.307) in the ‘high-growth’ regime 

but strongly negative (–1.363) in the low-growth regime. These results are roughly in line with 

those reported by Potter (1995, Table II). The point estimates of the AR coefficients in the low-

growth regime violate the stationarity condition. However, the interval estimates we present 

below suggest that these coefficients are measured very imprecisely, which is not surprising 

since there are only 30 observations in the low-growth regime. 

 The next issue is to construct confidence intervals for the TAR parameters. 

b. Confidence Intervals for the Threshold 

 Figure 2 shows the value of the LR-statistic as a function of the potential threshold values 

where: 

(5)  
)ˆ(

)ˆ()(
)( 0

0 τ
ττ

τ
SSR

SSRSSR
LR

−
=

In (5), SSR(τ0) is the sum of squared residuals from fitting the growth rate of real GDP to 

a four-order, two-regime TAR model with delay parameter equal to two and threshold equal to τ0

and SSR(τ̂ ) is the sum of squared residuals from (4), i.e., τ̂ = –0.00167 and SSR(τ̂ ) = 0.0178. 

Hansen (1997) shows that when evaluated at the true value of τ, LR(τ) is asymptotically chi-

square with one degree of freedom. The 90%, 95% and 99% critical values for LR(τ0) are drawn 

as horizontal dashed lines in Figure 2. It is clear from the figure that the change in LR is quite 

pronounced around the estimated threshold τ = −0.00167. The jump in the function LR(τ0) is so 

sharp that the 90%, 95% and 99% confidence intervals, which are found by inverting the 

likelihood ratio statistic, are precisely that same. (Recall that the estimated threshold is only 

identified up to the observed values of the dependent variable.) Specifically, the confidence 

intervals implied from the asymptotic approximations are: 
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Asymptotic Confidence Intervals for τ
Low            High 

 90%     −0.00469      −0.00076 
 95%         −0.00469          −0.00076 
 99%         −0.00469      −0.00076  
 

Since there is only one clear trough in the figure, there is fairly strong evidence of a 

single threshold; in a three-regime model there should be two distinct threshold values. In other 

words, Figure 2 is consistent with the formal test results we presented above regarding the 

appropriate number of regimes. 

We bootstrapped equation (4) 2500 times, generating the 2500 bootstrap estimates of the 

threshold. Retaining only the middle 90%, 95% and 99% of the ordered threshold estimates 

yielded the bootstrap percentile confidence intervals shown below. Note that these intervals are 

far larger than the confidence intervals reported above and always span τ = 0. In fact, the 99% 

confidence interval constructed using the percentile method spans nearly all of the data set.  

 
Bootstrap Percentile Confidence Intervals for τ

Low            High 
 90%     −0.00289       0.00097 
 95%         −0.00348           0.00443 
 99%         −0.00486       0.01577  

 Finally, since LR(τ0) is an asymptotically pivotal statistic, we also bootstrapped the 90%, 

95% and 99% critical values of its distribution and used these to construct the confidence 

intervals for τ. The 90% (and, therefore, 95% and 99%) critical values were so large that all of 

the data points that were candidate threshold values fell into each of these intervals. 

Consequently, the threshold confidence intervals implied by this procedure went from the 10-th 

percentile of the data (-0.00469) to the 90-th percentile of the data (0.01961). This is consistent 
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with our simulation indicating that the actual coverage of the 90% bootstrap-LR intervals for the 

threshold in the D-TAR model were 100% for each parameter configuration we considered.  

 
Bootstrap-LR Confidence Intervals for τ

Low            High 
 90%     −0.00469       0.01961 
 95%         −0.00469          0.01961 
 99%         −0.00469       0.01961 
 

Our conclusion is that the evidence to support the claim that the threshold for real US 

GDP growth is negative is not very compelling. Although we cannot reject the null hypothesis of 

threshold behavior, the problem is to produce a reliable confidence interval for the threshold 

parameter. When we construct confidence intervals using an asymptotic approximation we can 

rule out the possibility of a positive threshold. However, the bootstrap methodology does not 

support the assertion that the time-series properties of negative growth rates behave differently 

from positive growth rates.  

c.  Confidence Intervals for the Slope Parameters 

 Although there are four lags in the model, we focus on the two first-order slope 

coefficients and the sum of the slope coefficients within each regime as these sums are a measure 

of within-regime persistence. The two first-order slope coefficients are 0.320 and 0.208 with t-

statistics of 4.38 and 1.53, respectively, and standard errors of 0.0729 and 0.1352, respectively. 

Since we use a consistent estimate of the threshold, asymptotically valid confidence intervals for 

these slope coefficients can be constructed using the percentiles of the normal distribution. The 

90%, 95% and 99% confidence intervals for the two slope coefficients (called α1 and β1) using 

the normal approximation are reported in the top-left portion of Table 5. For example, the 95% 
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confidence intervals for α1 and β1 run from 0.1908 to 0.4727 and from −0.0574 to 0.4725, 

respectively.  

 We bootstrapped equation (4) 2500 times, generating 2500 bootstrap estimates of the two 

first-order slope coefficients. Retaining only the middle 90%, 95% and 99% of the ordered slope 

coefficients yielded the percentile confidence intervals reported in the top-middle portion of 

Table 5. For each bootstrapped series, we also constructed the bootstrap t-statistic for the null 

hypothesis α1 = 0.320 and β1 = 0.208. This bootstrap t-statistic allows us to ‘back-out’ the 

confidence intervals reported in the top-right portion of Table 5.  

 As shown in Table 5, the confidence intervals for the slope coefficient α1 are roughly the 

same, both in location and length, across the three procedures. All three include only positive 

values of α1. Closer inspection shows that the intervals for α1 constructed from the normal 

approximation are slightly shifted to the right relative to those constructed from the bootstrap-

percentile and the intervals for α1 constructed from the bootstrap-t are slightly shifted to the right 

relative to those constructed from the normal approximation. The confidence intervals for the 

slope coefficient β1 show less uniformity across methods. However, for any given method and 

coverage rate, the interval for β1 is larger than the interval for α1. In fact, β1 ≤ 0 is in the 95% 

confidence interval constructed from each of the three methods. In addition, note that the 

percentile method yielded 95% and 99% confidence intervals for β1 that fully contain the 

confidence intervals constructed from the two other methods. Also, each confidence interval for 

β1 constructed from the normal approximation is contained within the corresponding interval 

constructed from the bootstrap-t. Thus, the percentile method appears to be the most conservative 

method, and the normal approximation appears to be the least conservative method, to obtain the 
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confidence intervals for β1. The percentile method seems to exacerbate the effect of poorly 

estimated coefficients.  

 Perhaps, the more important results concern those pertaining to the sum of the lagged 

coefficients in each regime since this sum is an indication of the degree of persistence within a 

regime. The confidence intervals for the persistence parameter in the high-growth regime are 

roughly the same, both in location and length, across the three procedures. All three include only 

positive values of this parameter, with the exception of the 99% interval constructed using the 

bootstrap-percentile procedure. Closer inspection shows that the intervals for the high-growth 

persistence parameter constructed from the normal approximation are slightly shifted to the right 

relative to those constructed from the bootstrap-percentile procedure and the intervals for the 

high-growth persistence parameter constructed from the bootstrap-t procedure are slightly shifted 

to the right relative to those constructed from the normal approximation. Notice that the 

confidence intervals for persistence in the high-growth regime are far tighter than those for the 

corresponding intervals in the low-growth regime. For example, a 95% confidence interval for 

the persistence parameter using the normal approximation runs from 0.0819 to 0.5339 for the 

high-growth regime, and from −2.0974 to −0.6294 for the low-growth regime. This is not very 

surprising given the relatively small number of observations that define the low-growth regime. 

All of the low-growth intervals contain only negative values of the persistence parameter, except 

for the 99% interval constructed using the bootstrap-percentile procedure.  

d. The C-TAR Model 

 Since there is no a priori way of knowing whether real GDP growth is a C-TAR or a D-

TAR process, we also estimated yt as a continuous threshold process in the form of (2). A lag 

length of two and a delay parameter of two provided the best fitting C-TAR model, resulting in: 
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(6) yt = τ + It [ 0.358(yt-1 − τ) + 0.213(yt-2 − τ) ]
(3.97)                 (2.52)                 

 
+ (1 − It )[ 0.242(yt-1 − τ) − 0.089(yt-2 − τ) ] + εt

(2.54)                  (−0.831)                

 τ = 0.00571 2
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aic = −908.37 ssr = 0.0199 

 In comparing this C-TAR model to the D-TAR model in (4), notice that the aic selects 

the D-TAR model even though the C-TAR model is far more parsimonious. The difference, 

however, is not very large. The first-order autoregressive coefficients in the high and low-growth 

regimes are quite similar across the fitted C-TAR and D-TAR models. However, the estimated 

threshold is positive in the fitted C-TAR model. Figure 3 shows the value of the LR-statistic 

constructed from (6) as a function of the potential threshold values.  

 Table 6 provides the confidence intervals for the slope parameter in the high and low-

growth regimes constructed from the normal approximation, the bootstrap-percentile and 

bootstrap-t procedures. The confidence intervals for each of the slope coefficients, α1 and β1, are 

roughly the same, both in location and length, across the three procedures. All include only 

positive values of α1 and, except for the 99% intervals constructed using the methods, only 

positive values of β1. Closer inspection shows that every interval for α1 and β1 constructed from 

the normal approximation is contained within the corresponding intervals constructed from the 

two bootstrap procedures. Every interval for α1 constructed from the bootstrap percentile method 

is slightly shifted to the left relative to the corresponding interval constructed from the bootstrap-

t method. Every interval for β1 constructed from the bootstrap percentile method contains the 

corresponding interval constructed from the bootstrap-t method.   
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Table 6 also provides the confidence intervals for the persistence parameter in the high 

and low-growth regimes constructed from the normal approximation, the bootstrap-percentile 

and bootstrap-t procedures. These intervals behave in most respects like the intervals for the 

persistence parameters in the D-TAR model. The confidence intervals for the persistence 

parameter in the high-growth regime are roughly the same, both in location and length, across the 

three procedures. All three include only positive values of this parameter, with the exception of 

the 99% interval constructed using the bootstrap-percentile procedure. The intervals for the high-

growth persistence parameter constructed from the normal approximation are generally slightly 

shifted to the right relative to those constructed from the bootstrap-percentile procedure and the 

intervals for the high-growth persistence parameter constructed from the bootstrap-t procedure 

are generally slightly shifted to the right relative to those constructed from the normal 

approximation. The confidence intervals for the persistence parameter in the high-growth regime 

constructed using the bootstrap percentile method tend to be much larger than the corresponding 

intervals constructed using the normal approximation which, in turn, tend to be slightly larger 

than the intervals constructed using the bootstrap-t method. The confidence intervals for the 

persistence parameter in the high-growth regime are far tighter than those for the corresponding 

intervals in the low-growth regime. All of the low-growth intervals contain zero. The bootstrap-t

intervals for the persistence parameter in the low-growth regime are much larger than the 

corresponding intervals constructed using the normal approximation which, in turn, tend be 

slightly larger than the intervals constructed using the bootstrap-percentile methods. The 

intervals for the high-growth persistence parameter constructed from the normal approximation 

are generally shifted to the right relative to those constructed from the bootstrap-t procedure and 
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the intervals for α1 constructed from the bootstrap-percentile procedure are generally shifted to 

the right relative to those constructed from the normal approximation.  

As shown in Table 7, the 90%, 95% and 99% confidence intervals for τ using the 

asymptotic approximation are fairly tight. However, those formed using the percentile method 

are even tighter, being fully contained within those formed using the asymptotic approximation. 

For both methods, the confidence intervals for τ are such that they rule out the plausibility of a 

negative threshold. As in the D-TAR model, the confidence intervals formed from the bootstrap-

LR method are essentially non-informative in that they span the entire range of potential 

thresholds.9

V. Summary and Conclusions 

 Monte Carlo methods were applied to study the finite-sample performance of standard 

regression approaches to confidence interval construction in threshold autoregressive models. 

More specifically, intervals based upon asymptotic approximations and bootstrap methods were 

generated for the coefficients in the stationary, first-order, threshold autoregressive model. 

Interval coverage probabilities were used to measure the quality of the various procedures. When 

the true threshold is unknown, and is estimated along with the slope parameters, none of the 

procedures provide intervals for the slope coefficients with good coverage properties over the 

full range of parameters considered. Standard-t intervals performed especially poorly in this case.  

 Confidence intervals for the threshold parameter itself were constructed by inversion of 

the asymptotic distribution of the likelihood ratio statistic, by inversion of the bootstrap 

distribution of the likelihood ratio statistic, and by the bootstrap-percentile method. None of the 

procedures perform satisfactorily across the full range of parameter values. Interestingly, the 

bootstrap-LR procedure generated overly large confidence intervals with nearly 100% actual 
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coverage for each parameterization of the D-TAR. This suggests that the bootstrap-LR procedure 

may not be very useful in D-TAR models. However, the bootstrap-LR procedure worked 

reasonably well, and better than the other procedures, for constructing confidence intervals for 

the slope coefficients. 

 We applied these procedures to obtain confidence intervals for the slope and threshold 

coefficients in a D-TAR model of real GDP growth rates, a model similar to the one estimated by 

Potter (1995) where he assumed that the threshold growth rate is zero. The confidence intervals 

for the threshold constructed using asymptotic theory always excluded zero and other 

nonnegative numbers. However, bootstrapped confidence intervals included zero, positive, and 

negative values for the threshold. The intervals from the bootstrapped likelihood ratio were so 

large that all candidate thresholds are included in these intervals. This is in line with our 

simulation results. Intervals for the slope coefficients appear to be more stable across the three 

procedures considered. 

 One message of the paper is that when the threshold parameter is unknown, asymptotic 

and bootstrap approximations of finite sample distributions do not lead to satisfactory confidence 

intervals for slope or threshold parameters in stationary TAR models. Since inference in a TAR 

model is problematic, caution must be exercised in applications attempting to conduct inference 

in threshold models.  
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NOTES 
 
1. For further discussion of this issue, see Andrews and Ploberger (1994), and Hansen (1996). 
 
2. Bootstrap confidence intervals are discussed in detail in Efron and Tibshirani (1993). The 
grid-bootstrap approach described in Hansen (1999) and the bias-corrected bootstrap approach 
described in Efron and Tibshirani (1993) were designed to improve the performance of the 
bootstrap-t and bootstrap-percentile methods, respectively. We did not consider these approaches 
for practical reasons. Our Monte Carlo experiments were very time-consuming when the 
threshold parameter was treated as unknown because of the nonlinear estimation problem that 
had to be solved for each bootstrap sample.  
 
3. Note that 236 equals the number of observations in our GDP data set. In an earlier version of 
this paper, we reported results using T = 100. The results of these simulations are available from 
the authors on request. Also note that in simulating TAR processes, it is possible that the 
constructed series never crosses the true threshold. This turned out to be especially true for 
values of β1 equal to 0.9 and 0.95. Unless there are two observations on each side of the 
threshold it is impossible to fit a TAR model to the data. In practice, researchers searching for an 
unknown threshold typically discard the largest and smallest 10 or 15 percent of the ordered data 
from their search. If one of our simulated series did not contain at least three points on each side 
of the threshold, it was discarded and replaced with another simulated series. We applied this 
rule throughout this study, including the bootstrap simulations. 
 
4. This is the estimation procedure used in Chan (1993) and Hansen (1997). The meaningful 
candidates for the threshold are the observed values of the data series.  
 
5. Note that the bootstrapped values of the likelihood-ratio statistic can be negative since the 
estimated threshold for any given bootstrap sample can generate a smaller sum of squared 
residuals than the sum of squared residuals obtained from the estimated threshold fit to the 
original sample.  
 
6. In addition, Potter (1995) estimates the model for each regime separately to allow  
for heteroskedasticity across regimes, which is straightforward when the threshold  
is assumed to be known. 
 
7. The Schwartz criteria selected a lag length of 1. In this case, the null of linearity is not rejected 
against the TAR alternative. Since our paper is concerned with interval estimation in settings 
where TAR effects are present, we followed the path implied by the AIC. 
 
8. The US economy has been in recession for 104 months between 1947Q1-2006Q1, according 
to the NBER (www.nber.org). This represents almost 15% of the sample. 
 
9. We do not report confidence intervals for the autoregressive coefficients since α1 is so similar 
to β1.
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TABLE 1: Simulated Coverage Probabilities for the Slope Coefficient in the D-TAR Model 
 

α1 = 0.3, τ = 0, α0 = 0,  β0 = 0.9, T = 236 
 Nominal 

Coverage
Normal 

Approximation 
Bootstrap 
Percentile 

Bootstrap-t

α1 β1 α1 β1 α1 β1

β1 = 0.6 75% 71.4 60.5 79.0 69.4 73.8 69.1
90% 87.1 78.1 94.3 87.2 88.1 81.8
95% 92.2 84.6 97.9 93.2 93.6 85.9

97.5% 95.7 89.4 98.9 96.2 95.8 88.7
99% 97.6 92.9 99.6 98.0 97.5 91.1

β1 = 0.9 75% 71.9 65.5 74.2 59.9 73.3 74.3
90% 85.9 82.6 91.9 82.7 89.3 89.0
95% 92.0 89.4 96.3 90.9 93.8 94.3

97.5% 95.7 93.6 98.3 95.6 96.2 97.5
99% 97.1 96.9 99.5 98.3 98.0 99.4

β1 = 0.95 75% 68.4 64.7 75.7 53.4 77.2 74.3
90% 83.6 81.7 92.6 79.8 90.3 89.1
95% 89.9 89.6 96.7 90.1 95.3 94.3

97.5% 93.9 93.6 98.9 95.1 97.3 97.6
99% 97.1 97.3 99.7 98.2 98.4 98.6
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TABLE 2: Simulated Coverage Probabilities for the Slope Coefficient in the C-TAR Model 
 

α1 = 0.3 , τ = 0, T = 236  
 Nominal 

Coverage
Normal 

Approximation 
Bootstrap 
Percentile 

Bootstrap-t

α1 β1 α1 β1 α1 β1

β1 = 0.6 75% 56.2 62.2 74.9 73.9 76.6 77.0
90% 73.8 79.3 89.7 86.3 92.5 91.0
95% 81.3 87.0 94.8 92.7 95.5 95.6
97.5% 86.7 91.7 97.1 96.2 97.3 97.7
99% 91.4 94.6 98.9 98.5 99.0 98.7

β1 = 0.9 75% 50.5 69.7 72.7 67.5 72.9 74.0
90% 65.1 86.2 89.3 82.1 86.5 89.6
95% 73.8 92.3 95.0 87.9 91.8 95.2
97.5% 80.1 95.9 98.1 91.3 95.0 97.4
99% 85.5 98.0 99.4 95.6 97.0 98.7

β1 = 0.95 75% 49.0 69.6 77.9 65.0 70.3 71.4
90% 64.6 86.8 91.2 76.7 86.1 87.5
95% 73.0 92.9 95.4 83.0 91.5 93.8
97.5% 77.9 95.7 98.0 85.8 93.2 97.4
99% 82.6 97.8 99.6 90.2 94.8 98.5

TABLE 3: Simulated Coverage Probabilities for the Threshold Parameter  
Nominal Coverage = 90-percent 

α0 = 0, β0 = 0.9, α1 = 0.3 , τ = 0, T = 236 
 

Asymptotic 
Approx.  

BS – Percentile BS – LR 

β1= Coverage in the D-TAR Model 
.6 98.0 91.7 100 

 .9 96.4 96.3 100 
 .95 96.2 98.1     99.8 

 
β1= Coverage in the C-TAR Model 
.6 93.1 100 100 

 .9 91.6 100     99.8 
 .95 87.7 100     93.9 
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TABLE 4: Slope Coefficient Coverage for a C-TAR Model Estimated as a D-TAR 
 

α1 = 0.3 , τ = 0, T = 236 
 Nominal 

Coverage
Normal 

Approximation 
Bootstrap 
Percentile 

Bootstrap-t

α1 β1 α1 β1 α1 β1

β1 = 0.6 75% 48.7 48.5 86.3 88.4 56.5 55.1
90% 69.5 67.2 98.2 98.0 71.7 73.0
95% 78.7 79.1 99.5 99.4 80.3 82.2

97.5% 86.3 86.6 99.8 99.9 87.1 87.3
99% 92.1 92.3 100.0 100.0 92.3 90.9

β1 = 0.9 75% 47.6 49.7 70.4 67.3 53.0 69.3
90% 61.5 70.3 92.3 90.4 70.8 84.6
95% 71.8 79.9 96.3 96.7 77.5 88.9

97.5% 78.5 86.7 97.9 98.6 81.7 91.4
99% 84.8 93.2 98.6 99.9 86.0 94.5

β1 = 0.95 75% 43.8 52.8 60.2 55.4 49.9 67.1
90% 58.2 69.0 87.0 83.4 66.7 83.0
95% 66.2 78.1 93.8 93.7 73.0 89.7

97.5% 71.7 86.2 96.5 98.1 77.6 92.0
99% 76.7 92.9 98.3 99.6 81.1 94.7
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TABLE 5: Confidence Intervals for the Slope and the Persistence Coefficients in the D-TAR 
Model of GDP 

 
Normal Approximation BS-Percentile Bootstrap-t

Slope 
Coefficients

lower 
bound

upper 
bound

lower 
bound

upper 
bound

lower 
bound

upper 
bound

α1
90% 0.2136 0.4500 0.2070       0.4388 0.2200       0.4614
95% 0.1908       0.4727 0.1788       0.4656 0.1919       0.4865
99% 0.1470       0.5165 0.1060       0.5238 0.1408       0.5539
β1

90% 0.0147                       0.4298 0.1005       0.4912 -0.0320       0.4433
95% -0.0574 0.4725 -0.1827       0.5479 -0.0828       0.4987
99% -0.1398 0.5549 -0.3962       0.7245 -0.1795       0.6042

Persistence lower 
bound

upper 
bound

lower 
bound

upper 
bound

lower 
bound

upper 
bound

yt-2 ≥ τ
90% 0.1183       0.4974 0.0760       0.4708 0.1248                     0.5280
95% 0.0819       0.5339 0.0323       0.5093 0.0862       0.5689
99% 0.0115       0.6042 -0.2643 0.5902 0.0124       0.6381

yt-2 < τ
90% -1.9791  -0.7478 -2.0471      -0.5655 -2.1810 -0.6691
95% -2.0974 -0.6294 -2.2018      -0.0472 -3.2648 -0.5373
99% -2.3259 -0.4010 -2.5048       0.3608 -6.6580 -0.3275
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TABLE 6: Confidence Intervals for the Slope and the Persistence Coefficients in the C-TAR 
Model of GDP 

 
Normal Approximation BS-Percentile Bootstrap-t

Slope 
Coefficients

lower 
bound

upper 
bound

lower 
bound

upper 
bound

lower 
bound

upper 
bound

α1
90% 0.21022       0.50658 0.19422       0.51334 0.19486       0.53114
95% 0.18174       0.53507 0.15628       0.53740 0.16646       0.57212
99%       0.12676       0.59005 0.08998       0.58954 0.11999       0.63253
β1

90% 0.08896       0.40053 0.04527 0.45727 0.05735       0.42427
95% 0.05902       0.43048 0.00012        0.51110 0.01486       0.45757
99% 0.00121       0.48828 −0.09896 0.60830 -0.05036       0.51218

Persistence lower 
bound

upper 
bound

lower 
bound

upper 
bound

lower 
bound

upper 
bound

yt-2 ≥ τ
90% 0.43015 0.71293 0.14308 0.53408 0.60507 0.85847
95% 0.40297 0.74011 0.07845 0.57148 0.57159 0.89065
99% 0.35051 0.79257 -0.01209 0.62456 0.51839 0.94490

yt-2 < τ
90% -0.07613 0.35835 -0.00261 0.42540 -0.29427 0.30599
95% -0.11789 0.40011 -0.05940 0.46373 -0.37596 0.36792
99% -0.19850 0.48072 -0.22295 0.53570 -0.56542 0.50131

Table 7: Confidence Intervals for the Threshold in the C-TAR Model of GDP 
 

Normal Approximation BS-Percentile Bootstrap-LR 

lower 
bound

upper  
bound

lower 
bound

upper  
bound

lower 
bound

upper  
bound

90%     
 

0.00237 0.01148 0.00350 0.00941 −0.00469 0.01961

95%                   0.00172 0.01203 0.00283 0.01013 −0.00469 0.01961

99%       
 

0.00005 0.01264 0.00114 0.01201 −0.00469 0.01961
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Figure 1: Quarterly Growth Rate of Real U.S. GDP
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LR Statistic 90% 95% 99%

Figure 2: Confidence Intervals for the Threshold
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LR Statistic 90% 95% 99%

Figure 3: Confidence Intervals for the GDP C-TAR Model
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