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~ Can Nominal GDP Targeting

Rules Stabilize the Economy?

HE FEDERAL RESERVE HAS SHOWN that it
would support making price stability the explicit
goal of monetary policy.1 How to accomplish
this, however, is a matter’ of considerable dis-
cussion. Some economists have suggested that
the best way to ensure that price stability is the
foremost goal of monetary policy is to adopt a
monetary policy rule. Such a rule would he a
verifiable program of action designed to maintain
price stability without constricting long-term
economic growth. As long as the Federal Reserve
faithfully implemented the rule’s prescriptions,
the public would have cause to believe that
prices, once stabilized, would remain stable.

One way to achieve price stability ini a gm’owing
economy is to have nominal gross domestic
product (GDP) grow at the same rate as potential
output.2 One monetary policy rule, proposed by
McCallum (1987), provides a systematic way for
the Federal Reserve to adjust the monetary base
as nominal GDP deviates from desired leve1s.~
Simulations of this rule, presented in McCallum
(1987, 1988) and Judd and Motley (1991), appear
to suggest that the monetary base can he manip-
ulated to keep nominal CUP close to a path con-
sistent with price stability. In these simulations

McCailum’s rule proves to be robust to a variety
of empirical models that relate changes in the
monetary base to resulting changes in nominal
CUP: Keynesian, Real Business Cycle and atheo-
retical vector’ autoregression models. Each em~
pirical specification, hrnm’ever’, confronts
McCallum’s rule with a world in which the

structure of the economy is stable: the model’s
coefficients are held constant.

This article broadens the set of empirical
models used to evaluate McCallum’s rule to in-
clude one in which the relationship between
base growth and nominal GOP growth is subject
to structural change that takes the form of
stochastic changes in the model’s coefficients.
Such a time-varying parameter (TVP) model
presents a new environment in which the
properties of McCallum’s rule have not yet been
examined. Simulation results from the TVP model
indicate that McCallum’s rule is more prone to
the problem of instr’ument instability than simu-
lations from constant-coefficient models have
suggested. The instrument instability can he
remedied, however, by targeting nominal GOP
less stringently than McCallum’s original rule
had specified.”

tmSee Chairman Alan Greenspan’s statement to Congress
[Greenspan (1969)].

“Because of difficulties in allowing for quality changes and
other imperfections in currently available price indices,
many economists believe that 1 or 2 percent annual infla-
tion in a measure like the consumer price index is actually

consistent with price stability. In this case nominal GDP
should grow slightly faster than potential output.

“Bradley and Jansen (19B9) discuss possible rationale for
nominal GDP targeting.

4See McCaIIum (1987).
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THE ROLE OF VELOCITY IN
SIMULATIONS OF RULES

Simulations present an opportunity to learn
how closely nominal GOP can he expected to
adhere to its target level and how variable the
monetary base will have to he under McCallum’s
rule. As we will see, McCallum’s rule specifies a
rate of gr’owth for the monetar’y base, given the
level of nominal GOP relative to its target. Simu-
lations of McCallum’s rule require a model of
how the monetary base is related to nominal
GOP, which can be summarized by the income
velocity of the monetary base. McCallum (1987)
provides a simple model relating changes in the
base to nominal income, where MB is the mone-
tary base and e is a mean-zero random distur-
bance with variance o~:

or’, restating the model in terms of velocity
growth,

This model illustrates the way in which veloci-
ty is generally modeled in simulations of McCal-
lum’s rule: the percentage change in the velocity
of the monetary base is modeled as a function
of time t — I variables, base growth at time t and
a random disturbance. The model also raises

questions about the constancy of the parameters
in the model of velocity growth: a,p,b,o~.Simu-
lations using a calibrated version of a constant-
coefficient model will represent the economy’s
behavior under the rule only to the extent that
the coefficients do not change in the long time
span the rule is to he in effect. As an alternative,
this article posits a simple short-run forecasting
model of velocity with time-varying parameters
and tests the restriction that the coefficients ar’e
constant over the sample period. Then simula-
tions of McCallum’s rule are r’un using a cali-
brated time-varying parameter model of velocity
growth. The article next discusses the role of
velocity forecasts in formulating McCallum’s
rule, in contrast to the foregoing paragraphs
which discussed their role in simulating the r’ule.

ROLE OF VELOCITY IN NOMINAL

GDP FEEDBACK RULES

Mccallum’s Rule

McCatlum (1987) proposes a monetary policy
rule that uses the monetary base to target nomi-
nal GOP. ‘rhe rule employs a four-year moving
average of past growth in base velocity to fore-
cast its growth in the coming quarter. Based on
this forecast, the rule then specifies the percen-
tage of the gap between target and actual levels
of nominal GOP that policymakers should try to
close in the coming quarter.

Specifically McCallum’s rule takes the follow-
ing form:

(3) LslnMI, = A,, ~ (mv,
1
—In V, ,7)

+A, (InGOP —IriGDP),1

(4) AInGDP, = A,, Vt

where MI is the monetary instrument, V is the
income velocity of the monetary instrument, GOP,
is the target level of nominal GOP at time t, and
GOP, is the actual level of GOP at time t. Also,
A0 > 0 and A, > 0. The second term on the
right-hand side of equation (3) is the average ve-
locity growth in the previous 16 quarters. The
rule calls for the monetary authority to adjust
the growth in the monetary instrument accord-
ing to this velocity forecast. The third term
represents the percentage gap between target
and actual nominal GOP and thereby provides
the feedback. When the gap is positive, the rule
seeks but does not guarantee (because of sur-
prise changes in velocity) GOP growth gr’eater
than the growth rate of target GOP (A0).

McCallum uses average velocity growth be-
cause trends in velocity growth can shift over
time, hut not every change in base velocity
represents a long-lasting shift in the trend.
McCallum’s velocity forecast, however, uses only
the past 16 values of velocity. In the next section
an alternative monetary rule is described. This
rule differs from McCallum’s in that it uses ex-
planatory variables to help forecast velocity; it
also uses a time-varying parameter model. By al-
lowing for time-varying coefficients, the fore-
casting model will he less prone than fixed-
coefficient models to breaking down as time
passes.

(1) A/nGDP, = a-t-pAlnGDP,,+ht%InMB,+e,,

(2) LI1nGDP,—tsInPvIB, =

a + pAlriGDP, ,+ (h — 1)AInMB, + e,.
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Figure 1

Squares of Deviations in Base Velocity Growth from Its Mean

0.001 25

0.001

0.00075

0~0005

0.00025

0

A Forecasting-Based Monetary

Rule

A short-run velocity forecasting model with
time-varying parameters offers a possible source
of one-step-ahead velocity forecasts required by
a monetary rule such as McCallum’s. This type
of model would adapt in a systematic way to
structural changes, that is, to changes in the
relationships between velocity and the variables
used to forecast velocity, such as interest rates.

The forecast-based feedback rule consider-ed
in this paper takes the form

(5) A!nA41~ = A0—(AlnV),1 ,~,÷A,UnGDP— 1nGDP),~,

(6) Ab~GDP,= A,, Vt

where the variables are as defined in equations
(3) and (4), and the second term on the right-
hand side of equation (5) is the forecast of ve-
locity growth for’ period t based on information
available through period t —1. ‘this rule differs
from McCallum’s rule in that it uses an explicit-
ly derived forecast of velocity growth, rather
than an average of past velocity growth. ‘rhe
next section details the velocity forecasting
model.

A Forecasting Equation

This article reports results on one of many
possible velocity forecasting equations. The ve-
locity forecasting model employed here allows
for time-varying coefficients on the explanatory
variables, which are the lagged change in the
three-month Treasury bill rate and lagged growth
in the monetary instrument. Velocity growth
should be positively related to the lagged change
in the Treasury bill rate, because this short-
term interest rate indicates the opportunity cost
of money; velocity growth should he negatively
related to lagged gr’owth in the monetary instru-
ment, because if nominal GOP is somewhat slug-
gish, part of additional money growth will lead
to decreased velocity in the short run. The ve-
locity forecasting equation employed here uses
the Kalman filter and generalizes Bomhoff’s
(1991) velocit forecasting equation in three
ways: it includes lagged money growth, lets the
interest elasticity vary over time, and allows the
variance of the error term to change.

Figure 1 shows squared deviations from the
mean in the quarterly percentage change in the
velocity of the St. Louis monetary base. The
figure suggests that the volatility of velocity is
not constant. This is not too sur’prising: econo-

195961 63 65 67 69 71 73 75 77 79 81 83 85 87 891991
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mists believe that velocity is related to interest
rates and expected inflation. Research has found
that interest rates and inflation do not have
constant volatilities, so we might expect velocity
to share this property.”

The particular specification used to generate
short-run forecasts is

(7) A~~ñ’,= flu, + f3,,/STB3, +13,,LslnMI, +

- Normal (0, /i,)

Ii, = a~+ (o~—o~)S,

S,c {o, t}

o~>o~

Probability(S, = 1 ] S,,=1) = p

Probability(S, = 0 ]~ = 0) = q

where V stands for the velocity of the monetary
instrument, Mi, and TB3 is the three-month
Treasury bill rate.G The errors in equation (7), e,,
have time-varying volatilities in that their vari-
ance is assumed to switch between a low and
high level according to a fir-st-order Markov
process.7

With time-varying coefficients, equation (7)
will be estimated using the Kalman filter under
the assumption that the state variables, /3,, follow
random walks:8

(8) /3, = p,~-,+ V

- Normal (0, Q)

In a short-run forecasting context, the assump-
tion that the coefficients follow random walks
suggests that people need new information be-
fore changing their’ views about the relation-
ships among variables. This is essentially why
Engle and Watson (1985) advocate the view that
time-varying coefficients should have unit roots.
The innovations to the coefficients, v, are as-

sumed to be uncorrelated, so the covariance
matrix Q is diagonal. Kim (forthcoming, b) dis-
cusses the specific form the Kalman filtering
takes for- this model and the evaluation of the
likelihood function, which is maximized with
respect to (a~,a~,p,q,Q), where Q~.= o~,,i =

1,2,3. The appendix also includes a summary of
the filtering algorithm used in simulations.

By construction, this model allows for two
sources of forecast error: error in predicting
the value of the coefficients and the hetero-
scedastic random disturbance. In general, in a
model with time-varying coefficients

(9) y, = X,j3, + e,,

the one-step-ahead forecasts are

(10) y, =

Thus the forecast errors have two components
which equal X,1(/3,—13,1,)+e,. if the variance of

(f3,—f3,,~,)= 11,1,, and var(e,) = o~,the one-

step-ahead forecast error variance is

(11) H, = H,, + H2, = X,_,R,1,_,X,’_, +

The first component (H,,) is called the variance
due to time-varying parameters (TVP); the se-
cond (H2,) is simply the variance of the random
disturbance e. Inferences about the relative
sizes of the two sources of forecast error vari-
ance play an important role in updating the
coefficients. Using the Kalman filtering equa-
tions in the appendix, one can write the fore-
cast y,411, as

(12) y,4,1, = X,P,1,~, +

where X, are the explanatory variables, r-~,,~, is
last period’s forecast error (and is thus the new
information available), and Z, is proportional to

H,, -

H,, + H2,

“References are Bollerslev (1986) for inflation and Engle,
Lilien and Robins (1987) for interest rates.

‘Only one lag of each explanatory variable appears in equa-
tion (5), but, unlike a constant-coefficient model, the time-
varying parameter model uses past values of the explana-
tory variables and forecast errors in generating its forecast.
The appendix describes how the inferred coefficients em-
body past information.

7The combination of time-varying parameters and this type
of heteroscedasticity was introduced by Kim (forthcoming,
b). Kim (forthcoming, b) also illustrates that this model of
heteroscedasticity is quite similar in practice to the well-

known autoregressive conditional heteroscedastic (ARCH)
model of Engle (1982). Basically, the Markov model tries to
match the persistence of periods of high and low volatility
in the data, where persistence of high and low volatility
states is increasing in p and q, respectively.

‘Bomhoff (1991) and Hem and Veugelers (1983) also use the
Kalman filter to forecast velocity. Bomhoff (1991) holds the
interest elasticity ~ constant and restricts ~ to equal
zero, so past money growth is not included in the set of in-
formation used in his forecasts; Hem and Veugelers (1983)
restrict both and /3,, to equal zero, further restricting the
information set used for forecasting.
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would play a relatively small role in determining
next period’s forecast.

FORECAST RESULTS

The forecasting model was estimated for
quarterly data from 111/1959 to 11/1992 on the

If H2, is large relative to H,,, observers would at-
tribute less of a forecast error to a change in
coefficients; instead, they would believe that it
was probably an outlier. A large value of H2,
then implies that last period’s forecast error

velocities of the following monetary aggregates:
the St. Louis measure of the monetary base, the
Board of Governors monetary base, Ml and M2.
The latter three measures are included to pro-
vide some context for the St. Louis base results.
Tables 1 through 4 contain parameter estimates
of the forecasting model of equations (7) and (8)
for each monetary aggregate.

For the two measures of the monetary base
and Mi, the coefficient with the most significant
variation is the interest rate elasticity. Because



20

Table 3
Quarterly Growth in Wloctty ot Ml

Parameter Standard
VarIabt~ Parameter value eWor

Low a~aftte o 0880 189
High vartance 180 322
Con~tarmt 0~01a osa
iTha 0906 350

SlnMt *064 02S

Pmbabrtyf$~ I p ~580 9a

Pieba ityfa 0$ —0) q 0723 4

Leg-ftktthoOd

Q~Sia(t$t (a41a9&) 2700

Q2 tistrc(a raOs) 218eb

Table 4

Quarterly Gi~omtin Wiocityof M2
Pemmetet Standard

VariabJØ Parameter Value error

Lowva ante 0729 .07~t
High y~ttai1p 1370 217
Csn8tant 0033 043

~TB3 0001 183

AtrrM 0.004 098

Probabrlr~r{S— — t) p 0856 039

ProbStityts 0 9- 0~ 0 0.896

tog,ftksl hood 171400

Q’sta i 16100

Q!samtso(24tags~ 27100

Mctallum’s rule is written for the St louis base, rariance due to trme-varying parameters in
pecification tests are done for the St 1 ouis figure 2 appear to account for a relatively

base. ‘the log-likelihood for the T\ P model with small portion of the o~erall forecast error van-
Markov switching is —167.8. the log likelihood ance for S - louis base velocity, the model’s
with Marko~switching and constant coeffrcients parameter s exhibit statistically significant i~aria-
is —175.1. Ihis implies a likelihood-ratio statistic tion. ‘Ihe log-likelihood for- OIS is —1844, so
of 14.6, which is rejected as a x variable at the we can similarly reject homoscedasticitv in the
99 percent confidence level. Thus, while the error term in an OLS regression. This means
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Table 5
Velocity Forecast Error Variances

St. Louis Base Ml M2

rota: loracast error variance H. 0992 1050 1040
Varance due to oistjrbance term H. 0831 0813 0.94~
Varance due t0TVP H.. 0161 0236 0098

that o~does not remain constant thr’oughout the
sample period.

The Q-statistics test for serial correlation, and
all are insignificant as are the Q2-statistics, which
test for serial correlation in the squared fore-
cast errors. (The distribution of the Q- and Q2-
statistics is x~,under the null hypothesis of no
serial correlation; the 5 percent critical value is
36.4.) The lack of serial correlation indicates
that the model avoids making persistent errors
in its forecasts. Significant Q2-statistics would in-
dicate that the Markov model of hetenoscedasti-
city is an inadequate model of the persistence in
the variance of the error terms. The sum p + q
indicates the persistence of the volatility of the
error term. If p + q > 1, the Markov process
is called persistent. Interestingly, M2 has the
most persistent volatility states with p + q =

1.85, which is not far from the upper bound of
2. This finding suggests that when policymakers
are finding relatively large forecast errors in M2
velocity, they will likely continue to be plagued
with large forecast errors (in either direction) in
the near term.

Table 5 compares the relative importance of
the two sour-ces of forecast uncertainty: the var-
iance due to coefficient variation and the vari-
ance of the disturbance term, e,. (Because of the
great similarity between the results for the two
measures of the monetary base in tables 1 and
2, only results for the St. Louis monetary base
will he presented hereafter.)

Even though the number’s in table 5 cannot
be directly compared across monetary instru-
ments, they do illustrate that M2 has the most
stable coefficients among the three monetary
aggregates, measured as a percentage of total
forecast variance. By this measure, Ml has less
stable coefficients than the monetary base, so
the narrowness of the monetary aggregates is
not necessarily inversely related with coefficient
stability.

Figures 2 through 5 divide the conditional
forecast error variance into its two components,
H,, and H2,, for the four monetary aggregates
examined in this paper. As the figures show,
the relative sizes of H,, and H2, are not constant
over time. One should point out that, if the
magnitude of the variance of the random distur-
bances, H,,, is generally large relative to the var-
iance caused by time-varying coefficients, H,,, it
does not mean that H,, is too close to zero to be
important: the likelihood-ratio test reported
previously rejects the hypothesis that the fore-
cast error variance due to time-varying param-
eters is equal to zero for the velocity of the St.
Louis base. The velocities of all four aggregates
show heightened forecast error variance due to
time-varying coefficients from 1979 to 1982, the
period of nonborrowed reserves targeting and
financial deregulation. For reference the time-
varying coefficients for St. Louis base velocity
are shown in figures 6 through 8. The estimated
coefficients generally have their expected signs:
a positive interest rate elasticity and a negative
money growth elasticity. Iiickey-Fuller unit root
tests do not reject the hypothesis that each of
these three coefficients follows a random walk;
thus the inferred coefficient values do not con-
tradict the assumed random walk specification.

Given that two monetary rules, which differ
only in their velocity forecasts, will be simulat-
ed, it is useful to compare the forecast errors
from the forecasting equation with time-varying
parameters and McCallum’s 16-quarter moving
average. As table 6 shows, the 16-quarter mov-
ing average is close to the TVP model in mean
squared for-ecast error only for the velocity of
the St. Louis base. For the broader aggregates,
the mean squared errors are at least 33 percent
higher for the moving-average forecast than for
the TVP model. If the forecast errors are persis-
tent, they can compound errors in targeting
nominal GDP. Thus, we also report Q-statistics
which test for’ serial correlation in the forecast
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Figure 2
Variance Decomposition of St. Louis Base Velocity Growth

Forecast Error Variance

Figure 3
Variance Decomposition of BOG Base Velocity Growth

Forecast ErrorVariance
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Figure 4
Variance Decomposition of Ml Velocity Growth

Forecast ErrorVariance
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Figure 5

Variance Decomposition of M2 Velocity Growth

Forecast ErrorVariance

Variar,ce• caused by TVP
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Figure 6
Intercept for St. Louis Base Velocity Growth
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Figure 7

Effect of Lagged Base Growth on Growth of St. Louis Base Velocity
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Figure 8
Effect of Lagged Change in the Three-Month T-Bill Rate on Growth of
St. Louis Base Velocity
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Table 6
Velocity Forecast Error Comparison

St. Louis Base Ml M2

Mean squaed forecast error r~pmodel .981 1 03 994
Q-stal:st,c (24 lags: for 1W mode~ 710 27.1 161

MSFE from Mccallum’s i6.qua’-ter mov-ng average 108 1.62 134
Q-slat’stic c24 lags) ‘or 16.ouarler mo~.’ngaverage 363 596 446

errors. With a x~.,critical value of 36.4 at the S
percent significance level for the Q-statistics,
the 16-quarter moving average forecast errors
are significantly serially correlated for all three
monetary aggregates.

Estimating a velocity forecasting equation with
time-varying coefficients (equations (7) and (8))
not only provides a way to modify Mccallum’s

rule (equation (5)), it also provides estimates of
the variances of the coefficients that can be
used to calibrate a data-generating pr’ocess for
velocity to he used in simulations of McCallum’s
rule. We also n-un simulations on the forecast-
based rule to learn about its properties. The ob-
ject here is to learn sonrething about the feasi-
bility of nominal GUP targeting when velocity’s
relationship with other variables is subject to
structural change.
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Tab
stmuIattonJ3esIIts. to $omn$-
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Mean ua *0 ftSQ~
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SIM ATIONS OF THE RULES

All of the velocity models employed in simula-
tions of McCallum’s rule in McCallum (1987,
1988), Judd and Motley (1991, 1992), Rasche
(1993) and Thornton (forthcoming) have assumed
constant coefficients. This paper takes a different
tack by estimating time-varying parameter
models of velocity growth. A data-generating
process with stochastic coefficients is then used
to generate data in simulations. In this way, we
attempt to study how a monetary rule would
perform when the velocity relationship is sub-
ject to unpredictable structural change.

Simulations were run for a data-generating
process calibrated to the velocity growth of the
St. Louis base. The modifications to the forecast-
ing model of equations (7) and (8) are the fol-
lowing:

1. Short-term interest rates are dropped as an
explanatory variable and the model is then
re-estimated. This approach is adopted be-
cause we have no good way to determine in-
terest rates using any of the equations we
have estimated. In effect, we are forecasting
with a smaller information set, which will
make the forecast error variance larger.

Without interest nates in the forecasting
equation, the actual increase in the forecast
error variance is less than 7 percent, so the
quantitative effect of this change should be
small.

2. The error term e, is assumed to be homo-
scedastic for simplicity. This allows us to
drop Markov switching from the simulations.

3. ‘l’he coefficient on lagged base growth, j~2,’ is
no longer assumed to have a unit root; in-
stead it is modeled as an autoregressive
process with a near-unit root: j32, = -~~J~2, +
v3,. When running the simulation for 400
quarters, it is not reahstic to allow /~2, to be-
come less than negative one indefinitely,
though it is allowed to do so for lengthy
periods.~

4. The starting values for (3,,, are randomized
from their calibrated values to reduce depen-
dence on a particular choice of starting values.

Details on this simulation are in the appendix.
The other choices to be made in the simulation
are the parameters in the monetary rule of
equation (7). The target for quarterly nominal
Gifi’ growth was set to A,, = .00985, which cor-
responds with 4 percent annual growth. The
value of A1 determines how much of the gap be-
tween the target and actual levels of nominal
GDP policymakers should try to eliminate in the
coming quarter. For A,, we follow McCallum’s
(1987) suggestion by setting it equal to 0.25.

The exercise consists of simulating particular
monetary rules 200 times for periods of 400
quarters each. To reiterate, the important point
of this exercise is to study the performance of a
monetary policy rule under a data-generating
process for velocity that includes unpredictable
structural change. The desired information is
how closely nominal GDP might he kept to its
target path and how variable the growth rate of
the monetary instrument would have to be. The
numbers in table 7 represent averages across
the 200 simulated 400-quarter periods for the
forecast-based rule.

The results in table 7 show that simulated
nominal GDP in levels is on average 1.7 percent
below its target, with extr’eme deviations of 2.5

9This is somewhat analogous to models of nominal interest
rates that assume unit roots. Random walk behavior might
provide a very close approximation to interest rate behavior
in the short run, but long-run simulations cannot plausibly
assume a unit root, or negative nominal interest rates
would eventually result.
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Table 8
Simulation Results for McCallum’s
Rule (Averages across 200 simu-
lations)

Forecasting Rule: = 00985: A. = .10

Mean value of /nGDP. — InGDP. .038

Mean square error of InGDP1 — InGDP. .009

High value of InGDP, — InGOP, 108

Low value of )nGDP1 — InGDP, - .057

Mean annual growth rate ot monetary base 192

Standard dev:ation ot annual base growlh 1.20

High value of annual base growth 8.20

Low value of annual base growth - 0827

percent above and 6 percent below the target.
Considering that the simulations ran for 400
quarters, the differences between target and ac-
tual GDP are small. The simulated rate of base
growth averages 4.7 percent per year across the
200 replications, with extremes of 15.7 percent
and —2.2 percent annual growth. The latter
figure should be small in absolute value, be-
cause of the political difficulty in selling a mone-
tary rule that would potentially call for
substantial decreases in the monetary base for
as long as a year. The former figure suggests
that double-digit base growth would occasionally
occur under a policy of nominal GDP targeting.

In contrast, McCallum’s rule, which uses
moving-average forecasts of velocity growth,
proved to be unstable with A, equal to 0.25.
(Average base growth was negative 6 percent
per year.) The results for McCallum’s rule
presented in table 8 are for simulations run
with A, equal to 0.10, so the rule attempts to
close gaps between target and actual nominal
GDP more slowly to prevent instrument insta-
bility.

McCallum’s rule no longer displays instrument
instability once the feedback parameter, A,, is

reduced: the average gap in levels between ac-
tual and target nominal GDP is 3.8 percent. The
mean square error of the gap between actual
and target nominal GDP is higher than that of
the forecast-based rule, however. Nevertheless,
McCallum’s rule appears to be robust to a world
in which the growth rate of base velocity is
subject to structural change, albeit with a lower
value on the feedback parameter, A,, which
means that nominal GDP cannot be targeted as
stringently period-by-period as it can with the
forecast-based rule.

CONCLUSIONS

This paper confronts McCallum’s nominal GDP
targeting rule in simulations with a world in
which coefficients in the velocity equation for
the monetary instrument are subject to unpre-
dictable stochastic change. Hypothesis tests on
the estimated model of the velocity of the St.
Louis base reject coefficient stability. To ac-
count for unstable coefficients, a time-varying
parameter model of velocity is estimated and
used to calibrate the data-generating process
used in simulations. These simulations suggest
that McCallum’s rule can stabilize nominal GDP
growth in a time-varying parameter framework.
Nominal GDP cannot be targeted as closely as
when an alternative forecast-based monetary
rule is used, however. In addition, nominal GDP
cannot be targeted as closely as previous studies
that simulated McCallums rule using constant-
coefficient models of velocity have suggested.

Overall, McCallum’s approach to nominal GDP
targeting proves to be simple yet robust to ve-
locity behavior that is quite complex. The alter-
native forecast-based rule performed somewhat
better in simulations in which velocity was
generated in a time-varying parameter model,
but it has the disadvantage of being more
difficult for the public to verify.’°Given that it
would be easier for the public to verify that the
Fed is following McCallum’s rule, relative to the
forecast-based rule, the former may garner the
Fed more credibility, even though it is technical-
ly less able to stabilize nominal GUP growth.

‘°untilthe public was able to observe low inflation and rela-
tively stable nominal GDP growth for a considerable length
of time, the credibility of a rule-based policy would likely
depend on the publics ability to verify that the monetary
authority was actually following the rule when setting tar-
gets for money growth.
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ble. In this way the current forecasts in a time-
varying parameter model that uses the Kalman
filter are based on a larger information set than
just last period’s values of the explanatory
variables.

Combining the equations for K, and /3,!, and
multiplying through by X,~,shows how new in-
formation, nj,,,,, is used in updating forecasts of
the dependent variable:

(20) X,fi,~, =
H,, + H,,

This relation demonstrates the assertion that
the relative sizes of H,, and H,, determine the
weight put on new information when updating
the inferred coefficient values.

Calibrating the Simulations

As discussed in the text, the forecasting equa-
tions were estimated for base growth without
interest rates as an explanatory variable. The

only explanatory variables with time-varying
coefficients were the intercept and lagged base
growth. In the simulations we need to specify
starting values for the true parameter values,
the inferred parameter values and the variances
of v, where /3, = G/3,, + v,. G is a (2 x 2) di-
agonal matrix with G,, = 1 and G,, = .95. The
coefficient variances were set to IE-05 for the
intercept and .05 for lagged base growth. ‘rhe
variance of e,, the disturbance term, was set to
1.08. These values come from the estimated
forecasting model, where the value of c~is placed
near the value of the estimated unconditional
value between o~and o~.Finally the starting
values for the inferred coefficient values were
randomized by adding noise to the true starting
values. This was done to reduce dependence on
particular initial values in the Kalman filter- and
also to mimic uncertainty that would pertain to
the initiation of a new monetary policy regime,
the rule. Thus the simulations should roughly
resemble the data-generating process governing
the growth of base velocity, including changes
in the structural coefficients.


