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Can Nominal GDP Targeting

Rules Stabilize the Economy?

HE FEDERAL RESERVE HAS SHOWN that it
would support making price stability the explicit
goal of monetary policy.* How to accomplish
this, however, is a matter of considerable dis-
cussion. Some economists have suggested that
the best way to ensure that price stability is the
foremost goal of monetary policy is to adopt a
monetary policy rule. Such a rule would he a
verifiable program of action designed to maintain
price stability without constricting long-term
economic growth. As long as the Federal Reserve
faithfully implemented the rule’s prescriptions,
the public would have cause to believe that
prices, once stabilized, would remain stable.

One way to achieve price stability in a growing
economy Is to have nominal gross domestic
product (GIIP) grow at the same rate as potential
output.? One monetary policy rule, proposed by
McCallum {1947), provides a systematic way for
the Federal Reserve to adjust the monetary base
as nominal GI}P deviates from desired levels.®
Simulations of this rule, presented in McCallum
(1987, 1888) and Judd and Motley (1991), appear
to suggest that the monetary base can be manip-
ulated to keep nominal GDP close to a path con-
sistent with price stability. In these simulations

McCallum's rule proves to be robust to a variety
of empirical models that relate changes in the
monetary base to resulting changes in nominal
GDP: Keynesian, Real Business Cycle and atheo-
retical vector autoregression models. Each em-
pirical specification, however, confronts
McCallum's rule with a world in which the
structure of the economy is stable: the model's
coefficients are held constant.

This article broadens the set of empirical
models used to evaluate McCallum’s rule to in-
clude one in which the relationship between
base growth and nominal GDP growth is subject
to structural change that takes the form of
stochastic changes in the model's coefficients.
Such a time-varying parameter {TVP) model
presents a new environment in which the
properties of McCallum’s rule have not vet been
examined, Simulation results from the TVP model
indicate that McCallum's rule is more prone to
the problem of instrument instability than simu-
lations from constant-coefficient models have
suggested. The instrument instability can be
remedied, however, by targeting nominal GDP
less stringently than McCallum’s original rule
had specified.*

tSee Chairman Alan Greenspan’s statement to Congress
[Greenspan (1989)].

2Because of difficulties in allowing for quality changes and
other imperfections in currently available price indices,
many economisis believe that 1 or 2 percent annual infla-
tion in a measure like the consumer price index is actually

consistent with price stability. In this case nominal GDP
shouid grow slightly faster than potential output,

3Bradley and Jansen (1989} discuss possible rationale for
nominal GDP tfargeting.

4See McCallum (1987).
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THE ROLE OF VELOCITY IN
SIMULATIONS OF RULES

Simulations present an opportunity te learn
how clesely nominal GDP can be expected to
adhere to its target level and how variable the
muonetary base will have to be under McCallum’s
rule. As we will see, McCallum's rule specifies a
rate of growth for the monetary base, given the
level of nominal GDP relative to its target. Simu-
lations of MeCallum's rule require a model of
~ how the monetary base is related to nominal
GDP, which can be summarized by the income
velocity of the monetary base, McCallum {1987)
provides a simple model relating changes in the
base to nominal income, where MB is the mone-
tary base and e is a mean-zero random distur-
bance with variance ¢

(1) AlnGDP, = o+pAINGDP,_ +bAInMB, +e,

or, restating the model in terms of velocity
growth,

(2) AlnGDP, - AnMB, =
a+pANGDP_ +{b-1)AINMB +e_

This model Hlustrates the way in which veloci-
tv is generally modeled in simulations of McCal-
lumy’s rule: the percentage change in the velocity
of the monetary base is modeled as a function
of time t—1 variables, base growth at time t and
a random disturbance. The model also raises
guestions about the constancy of the parameters
in the mode! of velocity growth: a.p,b,ol. Simu-
lations using a calibrated version of a constant-
coefficient model will represent the economy’s
hehavior under the rule only to the extent that
the coetficients do not change in the long time
span the rule is to be in effect. As an alternative,
this article posits a simple short-run forecasting
maodel of velecity with time-varying parameters
and tests the restriction that the coefficients are
constant over the sample period. Then simula-
tions of McCallum’s rule are run using a cah-
brated time-varying parameter model of velocity
growth. The article next discusses the role of
velocity forecasts in formulating McCallum's
rule, in contrast to the foregoing paragraphs
which discussed their role in simulating the rule.

ROLE OF VELOCGCITY IN NOMINAL
GDP FEEDBACK RULES

McCallum's Rule

McCallum {1987} proposes a monetary policy
rule that uses the monetary base to target nomi-
nal GDP. The rule employs a four-year moving
average of past growth in base velocity to fore-
cast its growth in the coming quarter. Based on
this forecast, the rule then specifies the percen-
tage of the gap between target and actual levels
of nominal GDP that policymakers should try to
close in the coming quarter.

Specifically McCallum's rule takes the follow-
ing form:

1
(3) AlnMI, = A, ~— UnV,_

+A, (InGDP -InGDP),_,

mlnvn~17)

1

(@) AInGDP, = &, v

where MI is the monetary instrument, V is the _
income velocity of the monetary instrument, GIP,
is the target ievel of nominal GDP at time ¢, and
GDP, is the actual level of GDP at time 1. Also,
A, > 0 and A, > 0. The second term on the
right-hand side of equation (3} is the average ve-
locity growth in the previous 16 quarters. The
rule calls for the monetary authority 1o adjust
the growth in the monetary instrument accord-
ing to this velocity forecast. The third term
represenis the percentage gap between target
and actual nominal GDP and therehy provides
the feedback, When the gap is positive, the rule
seeks but does not guarantee (hecause of sur-
prise changes in velocity) GDP growth greater
than the growth rate of target GDP ().

McCallum uses average velocity growth be-
cause trends in velocity growth can shift over
time, but not every change in base velocity
represents a long-lasting shift in the trend.
MeCallum’s velocity forecast, however, uses only
the past 16 values of velocity. In the next section
an alternative monetary rule is deseribed. This
rule differs from McCallum's in that it uses ex-
planatory variables to help forecast velocity; it
also uses a time-varving parameter model. By al-
lowing for time-varying coefficients, the fore-
casting model will be less prone than fixed-
coefficient models to breaking down as time
passes.
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Figure 1

Squares of Deviations in Base Velocity Growth from its Mean
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A Forecasting-Based Monetary
Rule

A short-run velocity forecasting model with
time-varyving parameters offers a possible source
of one-step-ahead velocity forecasts required by
a monetary rule such as McCallum's. This type
of model would adapt in a systematic way to
structural changes, that is, to changes in the
relationships between velocity and the variables
used -to forecast veloeity, such as interest rates.

The forecast-based feedback rule considered
in this paper takes the form

(5) AlnMI = X, —(AlnV),  +A,0nGDP - InGDP),_,

1] 1t

(6} AlnGDP, = A, V1

where the variables are as defined in equations
(3) and (4), and the second term on the right-
hand side of equation (5) is the forecast of ve-
Iocity growth for period t based on information
available through period t—1. This rule differs
trom McCallum’s rule in that it uses an explicit-
ly derived forecast of velocity growth, rather
than an average of past velocity growth. The
next section details the velocity forecasting
model.

A Forecasting Equation

'This article reports results on one of many
possible velocity forecasting equations. The ve-
locity forecasting model employed here allows
for time-varying coefficients on the explanatory
variables, which are the lagged change in the
three-month Treasury bill rate and lagged growth
in the monetary instrument. Velocity growth
should be positively related to the lagged change
in the Treasury bill rate, because this short-
term interest rate indicates the opportunity cost
of money; velocity growth should be negatively
related to lagged growth in the monetary instru-
ment, because if nominal GDP is somewhat slug-
gish, part of additional money growth will lead
ta decreased velocity in the short run. The ve-
locity forecasting equation emploved here uses
the Kalman filter and generalizes Bomhoff's
{1991) velocity forecasting equation in three
ways: it includes lagged money growth, lets the
interest elasticity vary over time, and allows the
variance of the error term to change.

Figure 1 shows squared deviations from the
mean in the quarterly percentage change in the
velocity of the St. Louis monetary base. The
figure suggests that the volatility of velocity is
not constant. This is not too surprising: econo-




1B

mists believe that velocity is related to interest
rates and expected inflation. Research has found
that interest rates and inflation do not have
constant volatilities, so we might expect velocity
to share this property.®

The particular specification used to generate
short-run forecasts is

(7} AlnV, = B,+B ATB3,_, +B,AlnMI__ +e,
e ~Normal (0, h)
h = 62 + (62~02) S,
Se [0, 1]
g >0l
Probability(S, = 1 |8, ,=1) = p
Probability(S, = 0|8, ,=0) = g

where V stands for the velocity of the monetary
instrument, MI, and TB3 is the three-month
Treasury bill rate.® The errors in equation (7}, e,
have time-varying volatilities in that their vari-
ance is assumed to switch between a low and
high level according to a first-order Markov
process.”

With time-varying coefficients, equation (7)
will be estimated using the Kalman filter under
the assumption that the state variables, 8, follow
random walks:®

8) B, =

V,~Normal 0, Q)

|6l‘*] + Vi

In a short-run forecasting context, the assump-
tion that the coefficients follow random walks
suggests that people need new information be-
fore changing their views about the relation-
ships among variables. This is essentially why
Engle and Watson (1985) advocate the view that
time-varying coefficients should have unit roots.
The innovations to the coefficients, v, are as-

sumed to be uncorrelated, so the covariance
matrix () is diagonal. Kim {forthcoming, b} dis-
cusses the specific form the Kalman filtering
takes for this model and the evaluation of the
likelihood function, which is maximized with
respect to (02 ,0% ,p,q.0), where Q_ = &%, [ =
1,2,3. The appendix also includes a summary of
the filtering algorithm used in simulations.

By construction, this model allows for two
sources of forecast error: error in predicting
the value of the coefficients and the hetero-
scedastic random disturbance. In general, in a
model with time-varying coefficients

() Yo = Xt—xﬁa + ey
the one-step-ahead forecasts are
(10) Yo = ‘XtAlﬁut—l‘

Thus the foreecast errors have two components
which equal X,_,(3,-8,,_)+e,. If the variance of
B.~B...) = B, _, and varle) = o?, the one-
step-ahead forecast error variance is

-

(1) H, =H,+H, =X_R X  +¢&

tlt-5" -1

The first component (H,} is calied the variance
due to time-varying parameters {TVP); the se-
cond (L) is simply the variance of the random
disturbance e. Inferences about the relative
sizes of the twoe sources of forecast error vari-
ance play an important role in updating the
coefficients. Using the Kalman filtering equa-
tions in the appendix, one can write the fore-
cast y as

tet |t
(12) yt+1|t = Xtﬁt\t—l + Ztniglml
where X are the explanatory variables, n,| _, is

last period’s forecast error {and is thus the new
information available), and Z, is proportional to

SHeferences are Boliersiev (1886) for infiation and Engle,
Lilien and Robins (1987) for interest rates.

80nly one lag of each explanatary variable appears in equa-
tion (5}, but, unlike a constant-coefficient model, the time-
varying parameter model uses past values of the explana-
tory variables and forecast errors in generating its forecast.
The appendix describes how the inferred coefficients em-
body past information.

The combinaticn of time-varying parameters and this type
of heteroscedasticity was introduced by Kim (forthcoming,
b). Kim (forthcoming, b} also illusirates that this model of
heteroscedastigity is quite similar in practice to the well-

known autoregressive conditional heteroscedastic {ARCH)
madel of Engle (1982). Basically, the Markov model tries to
match the persistence of periods of high and low volatility
in the data, where persistence of high and low volatility
states is increasing in p and g, respectively.

8Bomhoff {1981) and Heir and Veugelers (1983} alsc use the
Kaiman flter to forecast velocity. Bomhoff (1991) holds the
interest elasticity (f,} constant and restricts §,, to equal
zerg, so past money growth is not included in the set of in-
formation used in his forecasts; Hein and Veugelers (1983)
restrict both g, and f3,, to equal zero, further resiricting the
information set used fa{Jr forecasting.
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IfH, is large relative to H Observers would at- velocities of the foilowmg monetary aggregates:
trlbute less of a forecast eFmr 1o a change in the St. Louis measure of the monetary base, the
coetficients; instead, they would believe that it Board of Governors monetary base, M1 and M2,
was probably an outlier. A large value of H,, The latter three measures are included to pro-
then implies that last period's forecast error vide some context for the St. Louis base results.
would play a relatively small role in determining Tables 1 through 4 contain parameter estimates
next period’s forecast. of the forecasting model of equations (7) and (8)
for each monetary aggregate.

Z

FORECAST RESULTS

For the two measures of the monetary base
The forecasting model was estimated for and M1, the coefficient with the most significant
quarterly data from I1I/1959 to 1/1992 on the variation is the interest rate elasticity. Because




McCallum’s rule is written for the St Louis base,
specification tests are done for the 5t. Louis
base. The log-likelihood for the TVP model with
Markov switching is - 167.8. The log-likelihood
with Markov switching and constant coefficients
is —175.1. This implies a likelihood-ratio statistic
of 14.6, which is rejected as a y2 variable at the
99 percent confidence level. Thus, while the

variance due to time-varying parameters in
figure 2 appears to account for a relatively
small portion of the overall forecast error vari-
ance for $t. Louis base velocity, the model’s
parameters exhibit statistically significant varia-
tion. The log-likelihood for OLS is —184.4, s0
we can similarly reject homoscedasticity in the
error term in an OLS regression. This means




that ¢? does not remain constant throughout the
sample period.

The ()-statistics test for serial correlation, and
all are insignificant as are the Q%statistics, which
test for serial correlation in the squared fore-
cast errors. {The distribution of the Q- and 0
statistics is xZ, under the null hypothesis of no
serial correlation; the 5 percent critical value is
36.4.) The lack of serial correlation indicates
that the model avoids making persistent errors
in its forecasts. Significant (*-statistics would in-
dicate that the Markov model of heteroscedasti-
city is an inadequate model of the persistence in
the variance of the error terms. The sum p + g
indicates the persistence of the volatility of the
error term. If p + g > 1, the Markov process
is called persistent. Interestingly, M2 has the
most persistent volatility states with p + g =
1.85, which is not far from the upper bound of
2. This finding suggests that when policymakers
are finding relatively large forecast errors in M2
velocity, they will likely continue to be plagued
with large forecast errors (in either direction) in
the near term.

Table 5 compares the relative importance of
the two sources of forecast uncertainty: the var-
iance due to coefficient variation and the vari-
ance of the disturbance term, e. {Because of the
great similarity between the resulis for the two
measures of the monetary base in tables 1 and
2, only results for the 5t. Louis monetary base
will be presented hereafter)

Even though the numbers in table 5 cannot
be directly compared across monetary insiro-
ments, they do illustrate that M2 has the most
stable coefficients among the three monetary
aggregates, measured as a percentage of total
forecast variance. By this measure, M1 has less
stable coefficients than the monetary hase, so
the narrowness of the monetary aggregates is
not necessarily inversely related with coefficient
stability.

Figures 2 through 5 divide the conditional
forecast error variance into its two components,
H, and H,, for the four monetary aggregates
examined in this paper. As the figures show,
the relative sizes of H, and H,, are not constant
over time. One should point out that, if the
magnifude of the variance of the random distur-
bances, H,, is generally large relative to the var-
lance caused by time-varying coefficients, H,, it
does not mean that H,, is too close to zero to be
important: the likelihood-ratio test reported
previously rejects the hypothesis that the fore-
cast error variance due to time-varying param-
eters is equal to zero for the velocity of the St.
Louis base. The velocities of all four aggregates
show heightened forecast error variance due to
time-varying coefficients from 1979 to 1982, the
peried of nonborrowed reserves targeting and
financial deregulation. For reference the time-
varying coefficients for St. Louis base velocity
are shown in figures 6 through 8. The estimated
coefficients generally have their expected signs:
a positive interest rate elasticity and a negative
money growth elasticity. Dickey-Fuller unit root
tests do not reject the hypothesis that each of
these three coefficients follows a random walk;
thus the inferred coefficient values do not con-
tradict the assumed random walk specification.

Given that two monetary rules, which differ
only in their velocity forecasts, will be simulat-
ed, it is useful to compare the forecast errors
from the forecasting equation with time-varying
parameters and McCallum's 16-quarter moving
average. As table 6 shows, the 18-quarter mov-
ing average is close to the TVP madel in mean
squared forecast error only for the velocity of
the St. Louis base. For the broader aggregates,
the mean squared errors are at least 33 percent
higher for the moving-average forecast than for
the TVP model. if the forecast errors are persis-
tent, they can compound errors in targeting
nominal GDP. Thus, we also report Q-statistics
which test for serial correlation in the forecast
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Figure 2
Variance Decomposition of St. Louis Base Velocity Growth

Forecast Error Variance

2.5

2 4 Total variance

Variance caused
by error term

0.5 Yariance caused
by TYP

0 liiiitEElIEiiiiElliiilli EFE!!
1960 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 1992

Figure 3
Variance Decomposition of BOG Base Velocity Growth

Forecast Error Variance
3

2.5+ Total variance

LS
YmpBaspg®

Variance caused

: by error term

L Ii!lllllll III!llE!

1960 62 64 66 68 70 72 74 786 78 80 82 84 86 88 90 1992

» Variance caused é
ﬁg??@ il




23

Figure 4
Variance Decomposition of M1 Velocity Growth
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Figure 5
Variance Decomposition of M2 Velocity Growth
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Figure 6
Intercept for St. Louis Base Velocity Growth
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Figure 7
Effect of Lagged Base Growth on Growth of St. Louis Base Velocity
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Figure 8

Effect of Lagged Change in the Three-Month T-Bill Rate on Growth of

St. Louis Base Velocity
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errors. With a yZ, critical value of 36.4 at the 5
percent significance level for the O-statistics,
the 16-quarter moving average forecast errors
are significantly serially correlated for all three
monetary aggregates,

Estimating a velocity forecasting equation with
time-varying coefficients (equations (7) and (8))
not only provides a way to modify McCallum's

rule {equation (3)), it also provides estimates of
the variances of the coefficients that can be
used to calibrate a data-generating process for
velocity to be used in simulations of McCallum's
rule. We also run simulations on the forecast-
based rule to learn about its properties. The ob-
ject here is to learn spmething about the feasi-
bility of nominal GDP targeting when velocity's
relationship with other variables is subject 1o
structural change.
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SIMULATIONS OF THE RULES

All of the velocity models employed in simula-
tions of McCallum's rule in McCallum (1987,
1988}, Judd and Motley (1991, 1992}, Rasche
{1993} and Thornton (forthcoming) have assumed
constant coefficients. This paper takes a different
tack by estimating time-varying parameter
models of velocity growth. A data-generating
process with stochastic coefficients is then used
to generate data in simulations. In this way, we
attempt to study how a monetary rule would
perform when the velocity relationship is sub-
ject to unpredictable structural change.

Simulations were run for a data-generating
process calibrated to the velocity growth of the
St. Louis base. The madifications to the forecast-
ing maodel of equations (7) and (8) are the fol-
lowing:

1. Short-term interest rates are dropped as an
explanatory variable and the model is then
re-estimated. This approach is adopted be-
cause we have no good way to determine in-
terest rates using any of the equations we
have estimated. In effect, we are forecasting
with a smaller information set, which will
make the forecast error variance larger.

Without interest rates in the forecasting
equation, the actual increase in the forecast
error variance is less than 7 percent, so the
quantitative effect of this change should be
small.

2. The error term ¢, is assumed to be homo-
seedastic for simplicity. This allows us to
drop Markov switching from the simulations.

3. The coefficient on lagged base growth, §,, is
no longer assumed to have a unit root; in-
stead it is modeled as an autoregressive
process with a near-unit root: 8, = 958, | +
v3,. When running the simulation for 400
quarters, it is not realistic to allow f3, to be-
come less than negative one indefinitely,
though it is allowed to do so for lengthy
periods.®

4. The starting values for §,_, are randomized
from their calibrated values to reduce depen-
dence on a particular choice of starting values.

Details on this simulation are in the appendix.
The ather choices to be made in the sirnulation
are the parameters in the monetary rule of
equation (7). The target for quarterly nominal
GDP growth was set to A, = .00985, which cor-
responds with 4 percent annual growth. The
value of A, determines how much of the gap be-
tween the target and actual levels of nominal
GDP policymakers should try to eliminate in the
coming quarter. For 4,, we follow McCallum’s
{1987) suggestion by setting it equal to 0.25,

The exercise consists of simulating particular
monetary rules 200 times for periods of 400
quarters each. To reiterate, the important point
of this exercise is to study the performance of a
monetary policy rule under a data-generating
process for velocity that includes unpredictable
structural change. The desired information is
how clesely nominal GDP might be kept 1o its
target path and how variable the growth rate of
the monetary instrumeni would have to be. The
numbers in table 7 represent averages across
the 200 simulated 400-quarter periods for the
forecast-based rule.

The results in table 7 show that simulated
nominal GDP in levels is on average 1.7 percent
below its target, with extreme deviations of 2.5

9This is somewhat anajogous to modeis of nominal interest
rates that assume unit reots. Random walk behavior might
provide a very ciose approximation to interest rate behavior
in the short run, but long-run simutations cannot plausibly
assume a unit rept, or negative nominal interest rates
would eventually result.




percent above and 6 percent below the target.
Considering that the simulations ran for 400
quarters, the differences between target and ac-
tual GDP are small. The simulated rate of base

growth averages 4.7 percent per year across the
200 replications, with extremes of 15.7 percent
and -2.2 percent annual growth. The latter
figure should be small in absolute value, be-
cause of the political difficulty in selling a mone-
tary rule that would petentially call for
substantial decreases in the monetary base for
as long as a year. The former figure suggests
that double-digit base growth would occasionally
occur under a policy of nominal GDP targeting.

I contrast, McCallum's rule, which uses
moving-average forecasts of velocity growth,
proved to be unstable with A, equal to 0.25.
(Average base growth was negative 6 percent
per year.} The results tor McCallum's rule
presented in table 8 are for simulations run
with A, equal to 0.10, so the rule attempts to
close gaps between target and actual nominal
GDTP more slowly to prevent instrument insta-
bility.

McCallum’s rule no longer displays instrument
instability once the feedback parameter, 1, is

reduced: the average gap in levels hetween ac-
tual and target nominal GDP is 3.8 percent. The
mean square error of the gap between actual
and target nominal GDP is higher than that of
the forecast-based rule, however. Nevertheless,
McCallum’s rule appears to be robust to a world
in which the growth rate of base velocity is
subject to structural change, albeit with a lower
value on the feedback parameter, A, which
means that nominal GDP cannot be targeted as
stringently period-by-period as it can with the
forecast-based rule.

CONCLUSIONS

This paper confronts McCallum’s nominal GDP
targeting rule in simulations with a world in
which coefficients in the velocity equation for
the monetary instrument are subject to unpre-
dictable stochastic change. Hypothesis tests on
the estimated model of the velocity of the 5t
Louis base reject coefficient stahility. To ac-
count for unstable coefficients, a time-varying
parameter model of velocity is estimated and
used to calibrate the data-generating process
used in simulations. These simulations suggest
that McCallum’s rule can stabilize nominal GDP
growth in a time-varying parameter framework.
Nominal GI?P cannot be targeted as closely as
when an alternative forecast-based monetary
rule is used, however, In addition, nominal GDP
cannot be targeted as closely as previous studies
that simulated McCallum’s rule using constant-
coefficient models of velocity have suggested.

Overall, McCallum's approach to nominal GDP
targeting proves to be simple yet robust to ve-
locity behavior that is quite complex. The alter-
native forecast-based rule performed somewhat
better in simulations in which velocity was
generated in a time-varying parameter model,
but it has the disadvantage of being more
difficult for the public to verify.™ Given that it
would be easier for the public to verify that the
Fed is following McCallum’s rule, relative to the
forecast-based rule, the former may garner the
Fed more credibility, even though it is technical-
Iy less able to stabilize nominal GDP growth.

10Until the public was able to observe low inflation and rela-
tively stable nominal GDP growth for a considerable length
of time, the credibility of a rule-hased policy would fikely
depend on the public’s ability to verify that the monetary
authority was actually following the rule when setting tar-
gets for money growth.
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Appendix
Kalman Filtering

The Kalman filter is a set of recursive equa-
tions that determine how the inferred regression
coefficients are updated as new observations
are added. The Kalman filtering without Markov
switching used in the simulations consists of the
following equations:

(13) ﬁg“,] = Gﬁ;—u\rl
(14) ch,1 = GB{—itfl—]G’+ a
(15} 3’}151_1 =¥, - Xtulﬁlli»-i
(16} Hz = H“+H‘2g - thaHzgl—xX:—i +o
(17) K, = ey
t H{
(18) ﬁ1§1 = f31|1._1+-Kg"I;;;t-1
(19) B = (1 - KX JR

(AR R S Y |

The term K, called the Kalman gain, determines
how much new information, summarized hy the
latest forecast error #,,, ., is allowed to affect
the inferred f coefficients. Equation (18) shows
that the inferred coefficients are updated using
the product of the Kalman gain and the latest
forecast error. Thus the inferred coefficients
themselves are functions of past values of the
explanatory variables and the dependent varia-
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ble. In this way the current forecasts in a time-
varying parameter model that uses the Kalman
filter are based on a larger information set than
just last period's values of the explanatory
variables.

Combining the equations for K, and 3, and
multiplying through by X, _, shows how new in-
formation, n,,,_,, is used in updating forecasts of
the dependent variable:

. H
(’2’0) szzﬁi\[ = X171ﬁ3|17}+mum”nl|t—1
H +H

it 2t
This relation demonstrates the assertion that
the relative sizes of H, and H, determine the
weight put on new information when updating
the inferred coefficient values.

Calibrating the Simulations

As discussed in the text, the forecasting equa-
tions were estimated for base growth without
interest rates as an explapatory variable. The

only explanatory variables with time-varying
coefficients were the intercept and lagged base
growth. In the simulations we need to specify
starting values for the true parameter values,
the inferred parameter values and the variances
of v, where f§, = Gf, , + v. Gis a2 x 2) di-
agonal matrix with G,,= 1 and G,, = .95. The
coefficient variances were set to 1E-03 for the
intercept and .05 for lagged base growth. The
variance of e, the disturbance term, was set to
1.08. These values come from the estimated
forecasting model, where the value of ¢%is placed
near the value of the estimated unconditional
value between of and &% Finally the starting
values for the inferred coefficient values were
randomized by adding noise to the true starting
values. This was done to reduce dependence on
particular initial values in the Kalman filter and
also to mimic uncertainty that would pertain to
the initiation of a new monetary policy regime,
the rule. Thus the simulations should roughly
resemble the data-generating process governing
the growth of base velocity, including changes
in the structural coefficients.




